The Spacing Interval for Supplemental Shelterbelts ${ }^{1}$

N. P. Woodruff ${ }^{2}$
Agriculture engineer,
U. S. Department of Agriculture

Shelterbilits, walls, show fences, strips of crops, and other obstacles placed in the path of wind are known generally as surface barriers. The basic definition usually given for this term states that a surface barrier is any obstacle placed in the path of the wind in such a manner that it causes an upward diversion of the air current. This diversion is accompanied by a drag on the wind at approximately the same height as the obstacle. These combined effects lessen the drag on the original ground surface, lower the prevailing surface velocity, and create a pool of relatively calm air within the zone of influence of the obstacle. This zone of influence is limited, of course, and usually does not extend to distances greater than 20 or 30 times the height of a given barrier. Since the requirements for protection usually far exceed this limited influence, it becomes necessary to extend the influence. In the case of shelterbelts this can be accomplished by creating a continuity of properly oriented supporting or supplemental belts. This study is concerned primarily with obtaining information relative to the spacing of the so-called properly oriented confinuity of belts.

There are several aspects to the problem of determining the best spacing interval for a system of shelterbelts. The principal reason for planting any shelterbelt is to reduce wind velocities. The amount and type of reduction needed, however, depend upon the object or objects to be protected and the

[^0]purpose of the protection, i.e., is the reduction in wind desired for the comfort of people or livestock, reduction in home heating loads, control of drifting snow, or for minimizing soil movement by wind.

Limiting the investigations to only one of these purposes, however, does not completely solve the dilemma. For example, determination of the best spacing to control erosion of soil must be concerned also with the susceptibility to erosion of the soil that is to be protected. This varies considerably and it is diffieult to preseribe a gencral formula for velocity reduction required to stop erosion because of factors affecting the vulnerability. of the soils. Dryness, texture, roughmess, and many other factors are involved. The economic aspect is another factor that must be considered, i.e., what proportion of the cropland can be economically deroted to trees to afford protection for the remaining land. Bates (1) has indicated that in the corn belt, T percent of the area could be devoted to belts because of the direct benefits to crops and animals. The pereentage of area, of course, varies with different crops, climatic conditions, and the intensity of agriculture practiced in a particular region. For example Chepil (2) has reported that in the sandy lands of China, single rows of willow belts averaging 12 feet in height are planted every 50 or 60 fect. Here, where an intensive type of agriculture is practiced this close spacing is neepssary and ceonomical. It might not apply, however, on large areas such as western Kansas where climatic conditions and economic. ratios would not be favorable.

This particular study does not and could not deal with all the above mentioned aspects of the problem. The object of the study is to obtain qualitative information on the mechanical reduction of wind velocity. Previous studies
$(3,4,5)$ have shown that one of the best ways to obtain data on relative results is with a wind tunnel wherein many of the variables can be controlled for sufficient time to make detailed studies. The reliability of results obtained with the tumnel has been tested in previous study (6) which showed rather good agreement between model and prototype, provided the models are placed in a tumnel having a turbulent boundary layer of sufficient depth to be similar to atmospherie conditions.

Methods of Study and Procedures

The following variations and combinations of principal and supplemental shelterbelts were tested:

7 row principal belt with 3 row sup. plementals

7-row princigal bolt with 3 row anp. plomentals

7 -row principal helt with 1 row sup. plementals

3-row principal belt with 1 row supplementals

1. row principal belt with 1 row gup plementals
The model shelterbelts used in the experiments wore fabricated from cedar boughs and green lichen placed in short lemerths of aluminum tubing. One 7 -row principal belt, three 3 -row supplementals, two 2 -row supplementals, and three 1 -row supplementals wore eonstructed by orienting the "trees" and "shrubs" in a series of holes drilled in plywood bases. The scale uscd for the models was 1 inch equals 5 feet. Thus, in terms of the prototype eomdition, the lowest or windward shrub in a 7 -row belt would be 7.5 feet and the tallest tree placed as the fifth row windward would be 30 feet. The second, third, fourth, and sixth tree rows would be $15,20,25$, and 17.5 fert, respectively, in prototype conditions. The seventh row was a shrub row corresponding to 10 feet high. The mreen lichen was used for the shrubs. The 3 -row supplementals consisted of one shrub row

Fig. 1.-One-row, 2-row, and 3-row supplemental belts, and 7 -row principal belt followed by two 1 -row supplemental belts as they were oriented in tunnel (upper left, upper right, lower left, and lower right, respectively).
and two rows of tall trees. The 2-row supplementals consisted of two rows of tall trees with a row of shrubs placed in the leeward row of trees. The single-row supplementals consisted of a combination of one row of tall trees and shrubs. Spacing between the rows of shrubs and trees was 2 inches on the model, corresponding to 10 feet for field conditions. Spacing within the rows of trees was also 2 inches or 10 feet. Spacing between shrubs in shrub rows was 1 inch or 5 fect. Where eombinations of shrubs and trees were used in one row, the spacing for the trees was 2 inches with two shrubs between each tree giving a spacing of approximately 0.67 inch or 3.5 feet
in prototype condition. Figure 1 shows views of the various models as they were oriented in the wind tunnel.

The studies of the effect of different spacing intervals on velocity reductions for the various belts were carried out in a laboratory wind tumel deseribed previously (\tilde{r}). The working section for these particular experiments consisted of a 16 -foot horizontal length begimming 40 feet downwind from the blower. The top of the tunnel for this section was constructed to facilitate horizontal movement of a staff of Pitot tubes through the entire 16 foot loneth. The floor eonsisted of sieved gravel 2.0-6.4 mm . thas assuring development of
a lumblent boundars layer similar to atmuspheric ronditions.

Indizomal velocity measuremellts wore mande at 12 different heights at varions locations to the leeward of the belts with a group of + l'itot toblos and an aleohol manometer. The Pitol tubes were momited on a rack and gear carriage to facilitate horizontal movement and on a staff sage equipped with a remior suale for acourate remial mesement. All ambinations and sawing intervals were leotme al comstant wind spereds of 16. fla erntre of the flathel at a location l关 faed 1 pwind from the wind
 Bre promaliow ansided of rimnimer (omulder traversen of arar
 tion la fown laneth of lat wetion in dupliate at anth ol the for vanditice Valmities to the lees watat of lla holl- wore hem wh failad al wiven lmation and di-
 H1, जan" lomation in the vhar tum-

Jose ratin in ame lhe velomity ration as $\frac{V_{1}}{U_{0}}$, where
$z=$ elevation above surface at which velocity is measured.
$I I=$ height of tallest tree in belt (6 inches in the model or 30 feet in actual belt).
$I_{n}=$ velocity aft of belt.
$U_{n}=$ velocity in open or clear tunnel.
Percentage reductions in velocity are equal to $100\left(1-\frac{U_{b}}{U_{0}}\right)$. Vertical and horizontal distance on the profile maps is shown in terms of belt heights $I I$.

Results

As a prerequisite to evaluating and comparing the effectiveness of the different combinations of shelterbelts it was necessary to establish arbitmary levels of velocity reduction. Tevels of 50 and 75 per-
cent were chosen. While these are only arbitrary levels, one or the other should be appropriate for most wind volocity reduction problems.

In rumning the tunnel tests each combination of belts was first tested with the supplemental belt placed at spacing intervals of approximately 12, 18, and $24 H$. Profile maps were drawn from the data obtained in these tests. Areas between the principal and the first supplemental belt and under the 50 and 75 percent reduction contours were determined with a planimeter. These areas were used as indexes of effectiveness and plotted versus the spacing interval. Λn approximate curve was then drawn and an equation determined for all cases where a definable trend in the data was indieated. In this respect it was found that the 3 points were sufficient to draw the curve and determine the equation in all cases except the 75 percent reduction level for the 7 . row principal plus 2 -row supple. mental and the 50 pereent reduction level for the 1 -row principal plus 1-row supplemental. Ifere it was necessary to resort to trial and error methods for establishing the locations. After determining the approximate equations, the critical maximum points on the curves were located by methods of calcolus wherein the first derivatives of the functions were set equal to zero and the resulting equations were solved for real roots. These points in combination with the information shown on the contour maps were used to determine the approximate spacing interval to maintain either a 50 or 75 percent reduction between belts. The final loeation was checked by velocity probings with the Pitot tubes. The sparing interval for the second supplemental was located also by velneity prohings with the Pitot tubes. Complete traverses were run for levels of 50 and 75 pereent reduction and were considered to the the "best" spacing for a partieular system of belts. Areas unler these eurves also were obtained And used to establish the final spac-
ing-effectiveness curve shown in

Fif. 2.-.Pereentage reduction in velocity obtained in vicinity of a 7 -row prineipal lelt witly a 1 -row supplemental belt placed at $12-$, 18 -, and at-II spacing intervals. Lower two figures show "hest" spacing interval for 75 and 50 percent reductions in velocity. Spacing effectiveness curves are shown in upper right corner.
the upper right corner of the fig. ures which follow.
Frow principal belt with 1-row supplemental.-Figure 2 shows the data obtained on the 7 -row principal and 1 -row supplemental combination of helts. It is noted that at least a 50 percent reduction in velocity is maintaned from tree top to ground level for the 12 II spacing. The level of this reduction berins to drop however, for the 18 II spacing and finally strikes the ground at approxi:"ately 18 H with $24 I$ spacing.

The approximate equation. derivative and eritical maximum for the spacing-effectiveness curves based on the 12, 18, and 24Π spar. ing was:

50 percent reduction curve $I=4.78+0.21 s-0.0002 c^{0.39 s}$ $y^{\prime}=0.21-0.00078 e^{0.30 s}$ critical maximum $=20.1$

35 percent reduction curve
$I=5.14-0.13 S-208 e^{-0.53} s$
$y^{\prime}=111 e^{-0.53 s}-0.13$
revical maximum $=12.8$
where $s=$ spacing interval in tree heights $I I$ and $I=$ effectiveness index. and $y^{\prime}=$ the first derivative of the equation for I.
The final spacing-effectiveness - Irres (upper richt of figure) Who a maxin um spacing interval of 19 I for a 50 percent reduction in volocity and 13 II for 75 percent reduction. Maximum indexes at these spacings are 8.8 and 3.2 for $\therefore 0$ and 75 poreent reduction, respectively. Increased spacing from these values show a decrease in effectiveness. The spacing required to maintain a 50 percent reduction between the principal and first supplemental belt is approximately 1.46 times greater than that required for a 75 percent reduction.

Flo. 3.-Perentage reduction in volocity obtained in vicinity of a 7 -row principal belt with a 2 -row supplemental belt placed at $11.7-1.7 .7$, amd 84.3 spacing intervals. Lower two figures show "hest"' spacing interval for 75 and ho percent reductions in velocity. Spacingeffectiveness curves are shown in upper right comer.

The spacing between the principal and first supplemental belt is 1.74 times greater than the spacing between the first and second supplemental for a 50 percent reduction, and 2.2 times greater for a 75 percent reduction.

It also should be noted that this combination of belts maintains at least a 25 pereent reduction in velocity for the longest, or $24 H$, spacing tested.

7 -row principal belt with 2-row supplemental.-Figure 3 shows data obtained on the 7 -row principal and 2 -row supplemental combinations of belts. The general shape of the reduction contours is nearly the same as the 7 -row plus 1-row combination deseribed above.

The approximate equation, derivative, and critical maximum for the sparing-affectiveness curves basel on 11.7. 17.7, and 24.3 I sparing was:

50 perecnt reduction curve
$I=7.95+0.41 S-0.0012 e^{0.32 S}$ $y^{\prime}=0.41-0.0004 c^{0.32 S}$
critical maximum $=21.7$
75 percent reduction curve Not determined
The final curve (upper right corner) shows the best spacing for a 50 pereont reduction to be at 22 $I I$ with an index of 9.5 , which is higher than the 7 - plas 1 -row combination. Best 75 pereent reduetion ocerurs with a spacing of 14Π and an index of 3.7. The spacing required to maintain a 50 pereent reduction hotween the first two belts is approximately 1.57 times greater than that required for a 75 pereent reduction. The spacing between the principal and first supplemental helt is approximately 1.6 times ereater than the spacing hetween the first and second supplenentals for a 50 pereent reduction and 2.0 times greater for a 75 per. cont reduction.

This combination of belts also shows at least a 25 pereent redue-

4
Fig. 4.-Poremtage redurtion in velocity ohtained in vicinity of a 7 row principal beft with a 3 row supplemental belt placed at 12.18 , and $64-11$ spacing in tervals: Lower two ligures show "hest" spacing interal for 7.5 and 50 peremt reduetions in velority. Sparing effertiveness curves are shown in upper right corner.
tion in velocity for the longest, or 24.3 H, spacing tested.

7-row principal belt with 3-row supplemental. -..- Figure 4 shows data obtained on the 7-row prineipal and 3-row supplemental combinations of belts. The general shape of velocity contours and of the spacing effectiveness curves is very nearly the same as the 7-plus 1 -row combination.
The approximate equation, derivative, and critical maximum for the spacing-effectiveness curves based on 12, 18, and $24 I I$ spacing was:

50 percent reduction curve $I=2.80+0.38 S$
$-0.0000128 e^{0.53} s$
$y^{\prime}=0.38-0.0000068 e^{0.53 S}$
critical maximum $=20.6$
75 percent reduction curve
$I=4.03-0.056 \mathrm{~S}-220 e^{-0.59 \mathrm{~S}}$ $y^{\prime}=1.30 e^{-0.59 S}-0.056$
critical maximum $=13.1$
The final curve (upper right corner) indicates the best spacing for a 50 percent reduction in velocity is 20π with an index of 9.8 , slightly higher than 7 - plus 2 - and 7- plus 1-row combinations. Best spacing for 75 percent reduction is 13.5 II with an index of 3.2. The spacing required to maintain a 50 percent reduction between the principal and first supplemental belts is approximately 1.48 times greater than that required for a 75 percent reduction. The spacing between the principal and first supplemental belt is approximately 1.7 times greater than the spacing between the first and second supplementals for a 50 pereent reduction and 2.2 times greater for a 75 percent reduction.
It will be noted in connection with this combination that it was not possible to maintain a 75 percent reduction throughout the entire distance between the first and second supplemental belt. Apparently, the location and porosity of the 3 -row supplemental was such that leakage of air through the first supplemental permitted only 50 to 70 percent reduction immediately aft of the belt.
3-row principal with 1-row sup-plemental.--Figure 5 shows data obtained on the 3 -row principal

Fig. 5.--Pereentage reduction in velocity ohtained in vieinity of a 3 -row prineipal belt with a 1 -row supplecental belt placed at 11 , 17.6 - and -4.15 spacing intervals. Lower figure shows "best" spacing for a 40 pereent reduction in velocity. Spacing. effectiveness curves are shown in upper right corner.
and 1-row supplemental combination of belts. The 3 -row principal belt was not so effective as the 7 row belt. This belt did not provide a uniform 50 percent reduction betwech itself and the first supplemental helt. It was also impossible to obtain a continuous 75 percent reduction in velocity with this combination. A 40 percent velocity reduction was used, therefore, as the criterion of spacing.
The approximate equation, derivative, and critical maximum for the spacing-effectiveness curve based on 11, 17.6, and $24 H$ spacing was:
to percent reduction curve $I=5.8-0.05 s-278 e^{-0.025 s}$
$y^{\prime}=174 e^{-0.025 S}-0.05$
critical maximum $=13.0$
The final spacing effectiveness curves (upper right corner) indicate that the best spacing to maintain a 40 percent reduction is about 12 I . The effectiveness index associated with this spacing is 5.2. Both this index and the spacing interval are considerably below the values obtained with the 7-row principal helt.
While this 3-row principal did not produce a continuous 50 percent reduction between the first two belts, it did reduce the wind sufficiently to maintain a 50 percent reduction between the first and second supplemental at a $12 H$ spacing.
Single-row princtpal with 1 -row supplemental. - Figure 6 shows

Fio. 6.- Pereentage reduction in veloeity obtained an vicinity of a single row prineipal belt with a 1 -row supplemental belt placed at $1 \underset{\sim}{2}$. 1 s. and $2+$ Il spacing intervals. Lower figure shows "host" spacing interal for a in pereent robuction iu volocity. Spacing effectiveness eurves are shown in upper right eormer.
data obtained on the "narrow" single-row plantings. V'elocity patterns immediately to the leeward of the principal belt are similar to those obtained with the 3-row prineipal. The jetting of air throngh the narrow, porons belts caused rather low velocity reductions immediately to the leeward. This combination of belts was, however, more effective than the 3-row principal because it was possible to maintain a continuous 50 percent reduction between the belts.

The spacing-effectiveness curves, as determined by trial and error methods, show the best spacing to he about $17 I I$ with an index value of 4.6 . 175 pereent reduction curve is also shown, but zones having this much reduction in velocity were relatively small pools immediately aft of the first belt and did not reach the ground level at any location between the belts. The best spacing between the first and second supplemental is 13 H , or about 25 percent less than the spacing between the principal and first supplemental.

Discussion and Conclusions

Evaluation and comparison of the effectiveness of the different systems of belts tested in the experiment can best be made in terms that consider both the level of relocity reduction and the type of protection afforded by a given system of belts. The spacing-effectiveness curves shown on the figures were of considerable value in determining the sparing interval; however, they do not provide sufficient information to give a true cvaluation of the merits of a given belt system. A better method is one that considers the desired level of velocity reduction, the location and the net size and extent of the pro. tected area. The level of velocity reduction previously has been chosen as 50 or 75 perrent in this study. The size of the protected areas can be evaluated, therefore. in relative terms by determining the areas on the profile maps between belts and under the 50 or 75 percent reduction curves. The extent of protection can be deter-
mined in terms of the net distances ${ }^{3}$ along the ground between belts having at least 50 or 75 per(ent reductions in velocity.
Table 1 summarizes the information obtained on all the shelterhelt combinations tested. The data is presented in terms of "best" spacing intervals, areas of protection, and extent of protection.

Table 1 indicates that a 50 perrent reduction is obtained for 77.4 pereent of the total area between the 7 -row primeipal and two 1 -row supplementals. This area is approximately 8 perent greater than the next best combination and ahout 4 pereent greater than the poorest combination, the 3 -row principal with 1 -row supplementals, The 7 -row plus 1 -row also has 46.9 pereent of the area with a roductiom of at least 7 an perecnt or 2.7 pereent more than the 7 -row with $2-$ row supplementals. The 7 row plus 1 -row areas. however, are shighty smaller in actual size than the 7 -row plas 2 -row areas. (cols, 6 and 8 .) Sime the sparing imteral is shorter for the 7 - plus 1-row, this indieates that the zo pereent velocity reductions extend to greater heights above the ground for this combination than the 7 phes $\underline{\text { Prow. Choies between these }}$ two belts would depend. therefore, on whether surface protection or protection to some height above the ground was desired. Other belts would be ranked in the order in which they are listed in the table.

In terms of "best" spacing interval and extent of protection, the system of belts consisting of a 7 -row principal with 2 -row supplementals gives a spacing interval of 22- and $14-I I$ and 14 - and $7-I I$ for a 50 and 75 percent reduction, respectively. This system would utilize a total length of 39.0 heights for the best 50 pereent spacing; 34.6 heights, or 88.7 pereent of this

[^1]length, would have at least a 50 percent reduction. Similarly, the system would use 24 heights with Whe best 75 percent spacing and 18.4 H, or 76.6 percent of this length, would have a 75 percent reduction. In terms of net distance with a 50 percent reduction, this belt provides protection to a length approximately $6 H$ longer than the 7-plus 1 -row, $5 I I$ longer than the 7- plus 3-row combination, and 12 and $25 H$ longer than the 1 - plus 1 row and the 3 - plus 1 -row combinations. It also has a slight advantage over the other belts in terms of length having a 75 percent reduction. On a basis of information given by these data, then, the 7 -row principal with 2 -row supplementals would be the best combination, followed by the 7 - plus 1 -row, the 7 plus 3 -row, the 1 - plus 1 -row, and the 3 - plus 1 -row.

The so-called "narrow" plantines tested in this experiment were not so effective as the wider principal belts followed by supplementals. The 3 -row principal in particular did not show up well and probably should not be considered for most problems. It is apparent that the rather abrupt top design obtained when placing a shrub row and then two rows of much taller trees is not a good design for maintaining substantial reductions to
the lee of the belts. It is possible, however, that if a better arrangement of trees was made within the belts, some better protection could be obtained. The other narrow plantings tested, the single-row belts, were considerably better than the 3 -row belts. In terms of the ratio of protected length to total length utilized, the single-row system ranked very well. The spacing intervals for a 50 percent reduction, particularly aft of the first supplemental compared favorably with that obtained with the wider principal belts. A 75 percent reduction could not be maintained with this system. This combination could be used where field arrangements would permit growing of crops needing less protection between the principal and first supplemental. In these cases this system would also have considerable appeal because of the smaller number of trees needed and the consequent reduction in cost and labor reguired for establishing and maintaining the belt.

In conclusion, it appears that the 7 -row principal followed by a system of 1 -row supplementals probably would give the greatest proportion of protection at greater distances above the ground level. Possible application of this system would be protection for tall grow-
ing crops, orchards, homes, and livestock. On the other hand, the 7 -row principal followed by a system of 2 -row supplementals would give the best ground protection. Use of this system would be indicated for problems concerned with minimizing soil blowing. The 7 . row principal followed by a system of 3 -row supplementals would rank third in the group tested. The single-row system would be recommended for special problems with the reservations described in the previous paragraph. The 3 -row principal plus 1-row supplementals would not be recommended.

The above conclusions are based on the data obtained in this particular experiment. The study was concerned only with the mechanical reduction of wind velocity and, therefore, ignores the silvicultural problems associated with shelterbelts. Suffice to say that final selection of a shelterbelt system for a particular problem can only be made after careful consideration of both aspects of the problem.

Summary

Wind tumel studies were conducted to obtain information on the mechanical reduction of wind volocity and a system of shelterbelts consisting of a principal belt followed by supplemental belts.

Table 1.-Summary of Information and Comparison of Bflt Combinationg Tested. Indicated 50 and 75 Prectent Reduetions are Those Obtanted With "Bfst" 50 and "Best"' 75 Percent Spacings, Respectivimiy

Belt combination	"Best" spacing interval between				Area between belts with reduction of 50% 75%				$\begin{aligned} & \text { Total distance } \\ & \text { in } \text { system } \\ & 50 \% \quad 75 \% \end{aligned}$		Distance used by tree rows ${ }^{\text {a }}$	Net-distance protected and percentage of total with reduction of 50% 75%			
	$\begin{aligned} & \text { Prin. and } \\ & \text { 1st supp. } \\ & 50 \% \quad 75 \% \end{aligned}$		1st and 2nd supn. $50 \% 75 \%$												
7-row prin. plus two	II	II	H	II	H^{2}	\%	H^{2}	$\%$	H	H	H	H	$\%$	II	\%
	19	13	11	6	25.0	77.4	10.0	46.9	32.3	21.3	3.0	28.3	87.6	16.3	76.5
7-row prin. plus two	22	14	14	7	27.2	69.8	10.6	44.2	39.0	24.0	3.7	34.6	88.7	18.4	76.6
E-row supp. 7-row prin.											4.3	30.1	84.3	13.9	59.9
3 -row supp.															
1-row prin. plus two	17	1	13	-	17.0	56.1	-	-	30.3	-.----	1.0	22.1	73.0		
1 -row supp. 22.1															
3-row prin. plus two	12	1	12	-	8.4	33.6	-	-	25.0	-->.	1.7	9.3	37.2		
1 -row supp.										,			37.2		---

'Single and 3 -row principals did not produce a continuous 75 percent reduction; therefore, no "best" spacing interval tests were run.
${ }^{2}$ Total distance includes spacing between and within belts plas one-half of a row width added to the ontside of both the first and last belt in a system. One row width is the distance between rows and is equal to 0.33315.
"Sum of distance between rows in belts plus one half of a row width to cither side of a given belt. A 1 row, $3 \cdot$ row, 3 row and 7 row belt would, therefore, be $0.333 \mathrm{H}, 0.666 \mathrm{H}, 1.0 \mathrm{H}$, and 2.333 H wile respectively.

Models of $7-, 3-$, and 1 -row principal belts, and 1 -, 2 -, and 3 -row supplemental belts were used to obtain the information. Results are expressed in terms of percentage reductions of the open wind velocity. Information was obtained with several different spacings of the supplemental belts when used with a principal belt. Some results of tests on the so-called "narrow" plantings, i.e., single rows used without the benefit of a wide principal belt, are also given.

The degree of efficiency of a given system of belts depended somewhat upon the type of protection desired. Of the belts tested, a 7 -row principal followed by a system of 1 -row supplementals would give the greatest degree of protection extending to the greatest height above ground between belts. This system would be most applicable to problems of protection for tall crops, orchards, farm-
stands, and livestock. On the other hand, a 7 -row principal belt followed by a system of 2-row supplementals would permit the greatest spacing intervals between belts and would provide protection to the greatest length of ground. Use of this system would be indicated for problems concerned with minimizing soil blowing, A 7 -row principal belt followed by a system of 3-row supplemental belts would rank third in the group tested. Single rows of trees used without benefit of a wide principal belt would not reduce wind velocity as much as the wider belts. IIowever, at lower levels of velocity reduction, they would permit fairly lone spacing intervals and would provide a relalively high ratio of protected length to total length used by the system. They would be recommonded for special problems where less protection from wind is required and where the area used by
the belt would be an important factor. The 3 -row principal followed by 1 -row supplementals did not show up well in the tests ane would not be recommended.

Literature Cited

1. Bates, Carlos (i. 1044. The windbreak as a farm asset. U. S. Dept. Agrie. Farmers' Bul. 1405.
2. Cimpla, W. S. 1949. Wind erosion control with slielterbelts in North China. Agron. Jour. 41:127-129.
3. Woonmurf, N. P. 1954. Shelterbelt and surface barrier effects on wind velocities, evaporation, house heating, and snowdrifting. Kansas State College Exp. Sta., Tech. Bul. 77.
4. - and Λ. W. Zinge. 1952. Wind tumnel studies of fundamental problems related to windbreaks. U. S. Dept. Agric. Soil Conserv. Serv. SCSTP112.
5.

Wind Tund and 1953. Wind Tumnel studies of shelterbelt models. dour. Forestry 51:173-178.
6.-. 195π. A comparative analysis of wind tunnel and atmospheric airflow patterns ahout single and suecessive barriers. Trans., Amer. Geophy. Union 36:203. 208.
7. Zingg, A. W. and W. S. Chepil. 1950. Aerodynamics of wind erosion. Agric. Eng. 31:279-282, 284.

[^0]: ${ }^{1}$ Contribution 524, Departmont of Agronomy, Kansas Agricultural Experiment Station, Manhattan, and the U. S. Dept. Agri., Agricultural Researeh Serv ice, Soil and Water Conservation Research Branch. Cooperntive research in the mecharica of wind erosion.
 "Weatern Section of Soil and Water Munagement., Agricultural Rescareh Sorv. ice, T. 8. Dept. Agric. Kansas State College, Manhattan.

[^1]: ${ }^{3}$ Net distance is defined as the length of protected area after deductions for the length of ground used by the belta and for those areas immediately to the leeward of the belt where velocities do not reach the desired level of reduction because of the air jets.

