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ABSTRACT 
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Rates 

T HE mass flow rate equation for a convex-shaped 
field surface subjected to wind erosion is derived by 

the application of the steady state continuity equation. It 
is assumed and justified that the soil flow can be 
idealized as a flux. 

The resultant equation, predicted on the availability of 
line-intensity functions (q) developed from wind tunnel 
studies, is the line integral of the q's around the 
perimeter of the field at the saltation height. The shape 
of the field is limited at present to only convex shapes. 
Fortunately, a typical agricultural field is rectangular. 

The assumptions implied by this method are stressed 
and two examples are presented that deal with 
nonhomogeneous surfaces and both erodible and 
nonerodible boundaries. 

INTRODUCTION 

MEMBER 
ASAE 

TABLE 1. NOTATION. M, L, AND T AS DIMENSIONS 
REFER TO MASS, LENGTH, AND TIME. 

In the development of any equation or method for 
computing wind erosion soil loss from a field, one is 
immediately faced with the enormity of the task. This is 
due primarily to one's ability to see more details of the 
erosion process than can be dealt with. Consequently, 
the use of a simplifying model is just as desirable here as 
in any other scientific field. Early researchers (Bagnold, 
1941 ; Chepil, 1959) surely recognized this problem, and 
although they may not have specified their simplifying 
assumptions, these were implied and were necessary to 
handle the prediction problem. 

One important assumption is that a wind tunnel can 
simulate the wind erosion process adequately so that soil 
loss can be related to many of the important variables 
that influence it. Obviously, the surface of the wind 
tunnel does not represent the total field surface that is of 
interest. Furthermore, due to the small size of the soil 
sample and the lack of soil abrasion, the time duration is 
rather short, i.e., minutes as compared to hours on a 
field. As a consequence of the small sample, there has 
been a difference in the measured dependent variable 
between tunnel and field. As Chepil(1959) indicated, the 
mass, m, was the tunnel variable whereas the variable in 
the field was q. (All symbols are identified in Table 1.) 
We see, therefore, that only a partial or incomplete 
model of the field erosion process can be formulated 
from tunnel data and, at most, the data would be 
representative of a small line segment of a large field. 

Chepil realized the limitations of his initial tunnel- 
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Symbol Definition and dimension 

area of a surface, La 
the perimeter of S, or S, , L 
potential average annual soil loss, M L ' ~  T-' 
soil flux vector in r, u, z coordinates, M L ' ~  T-' 
soil flux vector in R, u, z coordinates, M L ' ~  T" 
distance from soil surface to top of the control volume, 
see Fig. 1. This also may be considered the saltation 
height, L. 
soil erodibility, M L-, T-' 
The set of surface conditions indicated in equation 121 or 
the i-th region for application Case I and 11. 
soil ridge roughness, dimensionless 
length. The longer dimension of a rectangular field, speci- 
fied along the y axis, L. 
Soil moisture, dimensions unknown 
the soil mass that has flowed through a specified surface 
for a given interval of time, see Table 2, M 
soil surface density, see Table 2, M L ' ~  
the soil mass flow rate through a specified surface, see 
Table 2, M T-' 
line intensity, the soil flow rate per unit width. When 
subscripted, i t  implies a specific direction of integration 
of a normal flux vector. See for example equations [5] 
and 163 ; M L-' T-' . 
same as q but with respect to the R, z axis, M L-' T-' 
A general functional form, unknown. 
distance along the r axis, L 
distance along the R axis, L 
surface area of the i-th surface of the control volume, L2 
arc length of perimeter C, L 
a time interval, T 
time, T 
windspeed, L T-' 
distance along the u axis, L 
equivalent quantity of vegetative cover, MIL,, or volume 
of the control volume, L3 
width. The narrower dimension of a rectangular field, 
specified along the x axis;L. 
distance along the x axis, L 
distance along the y axis, L 
distance along the z axis. L 
field angle, the angle of the positive y axis relative to 
north, clockwise positive, see Fig. 2, dimensionless 
wind angle, the angle of the wind relative to the positive x 
axis, counterclockwise positive, see Fig. 2, dimensionless 
defined by equation 1473 , dimensionless 
The path of intergration around the perimeter of an R, z 
plane of the control volume of Fig. 1. 
difference operator, dimensionless 
soil density, M L ' ~  
wind angle, the angle of the wind vector relative to  north, 
clockwise positive, see Fig. 2, dimensionless 
3.14159 . . . , dimensionless 
The inverse function of qr(r. z) 

Subscripts 
i 

i index, 1, 2, 3 . . . various sukfaces and or arc lengths 
n normal component, or uppqr limit of an index 
R R component 
r r component 
z z component 
u u component 

Superscripts and other symbols 

N the variable may change in time 
V Del, see equation 1211 
<>A, an average of the function W h i n  the brackets with re- 

spect to  an interval that is s own here as Ax. If the inter- 
val is unambiguous, i t  is omitgd. 4 defined 

A see equations [431 and 1441 
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derived wind erosion equations to preeict the field soil 
loss over an extended period of time. One of his early 
equations (Chepil, 1959), which was based on wind 
tunnel experiments and some field experiments (Chepil, 
1957), predicted what he called a relative soil loss. In 
order to overcome this nondimensional soil loss 
representation, he performed soil loss measurements on 
69 fields for 3 yr near Garden City, Kansas (Chepil, 
1960). In that paper he correlated the result of his 
measured soil loss density, m u ,  with the dimensionless 
predicted values, and he developed a functional 
relationship which, in conjunction with his dimensionless 
tunnel equation, allowed him to predict field losses. As 
pointed out by Cole et al. (1982), this new equation 
represented the equivalent of a time and space average of 
a surface soil loss flux function. Chepil later extended his 
"3-yr equation" to a long-time average (40 yr) by using a 
climatic factor and a multiplicative factor of 1/3. The 
latter was to compensate for the fact that the 3-yr period 
had a higher than average climatic factor and, 
consequently, it was assumed higher than average soil 
loss fluxes (Chepil et al., 1962). 

From the preceding discussion, we can see the 
difficulties that Chepil experienced in order to 
accomplish the conversion of the wind-tunnel-derived 
function for use in field predictions. Furthermore, it 
illustrates the problems that must be faced at present to 
apply a wind-tunnel-derived equation to a field situation. 

The method presented here considers a flux equation 
or its first integral, q, which is derived from wind tunnel 
data. This function is then integrated across the field 
(and in time) to produce the soil loss mass. The 
integration is based on the conservation of mass principle 
and does not involve the concept of relative field 
erodibility that was used previously. The continuity 
equation, while not used previously for wind erosion, has 
been used for water erosion (Foster and Meyer, 1972; 
Scoging, 1978). 

The research reported here is part of a program whose 
objective is to develop a method for predicting soil loss 
from a field for a single windstorm. The main difference 
between this and the existing wind erosion equation is 
the time duration over which the erosion process is 
averaged, i.e., 6 hours vs. 40 years. The basic conversion 
problem, i.e., integration, remains the same. 

In order to view the complete integration process and 
to see where this particular study fits in, it is convenient 

to formulate the surface soil loss process as the time and 
space average of the normal component of the surface 
flux vector, i.e., 

where 

- - 
fz  = fz (J(t), R,  u, 0 ) and 

A N N N N N  

J = ( I . K . v . u , M . ? \  . . . . . . . . . . . . . . . . . . . . . .  121 

(The use of the tilde above the independent variables 
indicates that they may vary in time.) The independent 
varible, E, of equation [I] is dimensionally identical to 
the E of the wind erosion equation (Woodruff and 
Siddoway, 1965). This is to facilitate any possible future 
comparisons of the two computational methods. 

From equation [2], two tasks are evident. First, the 
development of the flux function from wind tunnel and 
perhaps limited size field experiments. Second, the 
description of how the independent variables vary in 
time. Equat i~n  [I] illustrates the third task, i.e., 
conversion off  by integration over a specified area and in 
time. It  is the method and problems associated with the 
spacial integration that are discussed here, along with 
the required coordinate systems and the model 
assumptions. It is assumed that equation [2] would be 
available to allow the integration. As shown later, this is 
a reasonable assumption. 

ANALYSIS 

The loss of soil, no matter how it is quantified, i.e., 
soil loss (m), soil loss surface density (m"), soil loss flow 
rate (in), soil loss line intensity (q), or soil loss flux (0 
(see Table 2 for relationships between these forms) is 
basically a flow problem analogous to the fluid flow 
problems of fluid mechanics. In fact, what is apparent is 
that we have essentially two interacting flows, i.e., a 
multiphase flow. The concepts of mass, energy, and 
momentum conservation are therefore applicable. 

Using these basic principles implies that the airborne 
soil particles behave as a fluid, i.e., they are a 
continuum. Crowe and Smoot (1979) dealt with this 
problem when developing the conservation equations for 

TABLE 2. SOIL FLOW TERMS, DEFINED FOR A u,z PLANE OF AREA A IN THE R,  u,z COORDINATE SYSTEM,* 

Name Functional form Dimensions Independent variables 

Normal_component of the soil flux 
vector f 

Soil mass 

Soil flow rate 

Soil surface density 

Soil line intensities 

A point in time and space 

Area and time interval 

Area 

Time interval 

A length interval 

A length interval 

~~~~~ - - -- - - 

* If the soil flow constitutes a loss from a surface, then the word loss may be appended to the word soil, if such clarification is needed. 
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Fig. 1-A control volume for a general convex 
cylindrical shape showing the three sides and 
the height. 

Fig. 2-A plan view of the control volume 
with its four required coordinate systems at 
z=h and the associated angles. 

gas-particle mixtures related to coal combustion. 
The continuum assumption, while generally not 

applicable for finite size particles such as soil, is felt to be 
reasonable since we are not interested in the flow of 
particles through small regions relative to the size of the 
particles. In the wind tunnel, the volume of interest is 
about 0.33 m X 2 m X 1 m, and in the field even this 
volume approximates a point. As will be noted later, the 
wind tunnel data approximates a line segment (i.e., Aq) 
rather than a point (i.e., f) and, as noted in Table 2, q is 
the first (required) integral off .  

The reference frame used here for the soil flow is 
Eulerian (Crowe and Smoot, 1979) as opposed to 
LaGrangian. (The Eulerian is the standard reference 
frame for conventional fluid flow problems.) Crowe and 
Smoot (1979) review the advantages of each reference 
frame. In Crowe's Particle-Source-In Cell model (Crowe 
et al., 1977), he uses the LaGrangian reference for the 
particles and an Eulerian reference for the airflow. The 
added complexity of two different reference frames is not 
needed here. 

Model 
The model boundaries consist of a general cylindrical- 

shaped control volume (Fig. I) ,  whose plan view is 
depicted in Fig. 2 along with the four required 
coordinate systems: (a) North,East; (b) x,y,z; (c) R,u,z; 
(d) r,z, and various angles. The coordinate systems are 
needed to handle the following requirements. 

The North,East system is required since available wind 
data summaries have tabulated the horizontal wind 
vector component and its angle relative to North. 

The description of the field surface S, must be given in 
terms of a fixed coordinate system, x,y,z. Granted, 
North,East could be used, but a rectangular field would 
not always be so oriented, hence the field angle a is 
required. The R,u,z coordinate system is oriented to the 
wind vector as shown in Fig. 2. Integration o f f  in this 
coordinate system is simpler in that the data describing 
the integration of f in the R direction (i.e., ij) is almost 
completely provided from wind tunnel data ( e . ,  q), 
except for an axis shift along R. The final set of 
coordinates, i.e., r,z, refer to the two-dimensional 
coordinate system utilized to develop the q functions 
from tunnel data. 

The angles 13 and 8 are wind vector angles referred to 
two different coordinate systems. is required for 
calculations and 8 is the angle used in the available wind 
data. The angles are related as 

The portion of equation [I] representing the 
mathematical portion of the model that we are interested 
in here is 

which describes the soil loss rate from the eroding earth 
surface, S, (see Fig. 1). Since we do not know f at S,, the 
soil loss flow rate in, will be derived by the spacial 
integration of the continuity equation within the control 
volume and will result in two line integrals around the 
circumference of S2, in terms of q. 

The model is limited to a field whose plan view, S1 or 
S2, is restricted to a convex region, i.e., a region whose 
circumference would be "cut" by a straight line at no 
more than two points (Courant, 1936, pp. 100, 362). 
This restriction implies that soil, once it has left the field, 
will not return to the field unless the velocity vector 
changes direction. While it appears theoretically possible 
to handle a nonconvex region by the methods described 
later, it is not clear how this could be done considering 
the changing wind vector angle. Fortunately, most 
agricultural fields are convex, i.e., rectangles. The 
convex assumption is dictated by the assumption that the 
wind velocity vector does not vary along the top plane of 
the control volume. 

From Fig. 1 we note that the height of the control 
volume is h. This represents the height wherein all soil 
that leaves S2 is essentially the suspended portion and 
soil that leaves or enters S3 is due to saltation and creep. 
It is further assumed that h is constant during the 
erosion process, i.e., the change in h due to soil loss is 
negligible compared to h. While this is not absolutely 
essential, it simplifies the analysis with very little loss in 
generality. 

The model allows for the S3 surface to have an inflow 
of soil in the upwind direction and an outflow in the 
downwind. This, in conjunction with the general convex 
shape, will allow the model to handle field boundaries 
that are both erodible and nonerodible and, obviously, 
nonrectangular fields. 

Equation Derivation 
The objective is to obtain an expression in q, since q 

would be available from tunnel data. The derivation 
proceeds from the application of the continuity equation 
in R,u,z coordinates with a translation of R to r. Then, 
since most fields will be described in the x,y coordinate 
frame, we transform the results to that system. Finally, 
to emphasize the fact that the resulting line integrals are 
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I.] r. 1 

Fig. 3-A typical line-intensity function 
depicted with three different horizontal axes. 

around a closed path, we then transform the x and y to 
functions of arc length s. 

A typical q, curve, which is depicted in Fig. 3, could 
also be determined experimentally in the field by placing 
Bagnold-type catchers at various r values downwind from 
a nonerodible boundary. The line intensity function for 
Fig. 3 is 

A h  . . . . . . . . . . . . . . . . . . . . . .  qr(r, h) = J fr(r, z)dz. 151 
0 

(For simplicity, the J(t) independent variable will be 
suppressed unless needed for clarity.) Equation [5] 
expresses the fact that a catcher catches all the soil up to 
some height h at various values of r and that if the time 
interval of sampling is small, the amount of soil divided 
by the time interval and the width of the catcher 
approximates q,, the integral of the horizontal 
component of the soil flux in the downwind direction. A 
similar definition describes the integral along a line on S2 
in the r direction, i.e., 

A . . . . . . . . . . . . . . . . . . . . . .  qz(r, h) = fz(r, h)dr 161 
0 

Here we are integrating the vertical component of the soil 
flux vector that exists on S2, i.e., essentially the 
suspension component. 

In the r,z coordinate system, the soil flux vector is 
expressed as 

Fig. 4-A plan view of the control volume 
illustrating the limits of integration on S, in 
the R,u,z coordinate system, z=h. 

where 

when integrated for a steady state condition in the R,u,z 
system becomes 

Figs. 1 and 4 illustrate the limits of integration for 
equation [13]. To integrate equation [13], we shall 
invoke Green's theorem, but first we must develop the 
functional relationships between r and R and q, and qR, 
which will be needed later. 

Fig. 3 depicts the relationship of q, and . The 
relationship depicted implies that along the upwind edge 
of the control volume, i.e., Rl(u) (Fig. 4), there exists an 
inflow qR ( R ) .  This inflow, which came from a region 
below R,(u), is known before the integration for S2 
commences. This inflow essentially selects an r, and 
clamps the q, and clamps the q, curve to the R axis at R,. 
In Fig. 3, this is depicted by the dashed arrow line. To 
find the q at any other R involves adding the difference in 
R to r, and reentering the q, curve. This is expressed as 
the transformation between r and R, i.e., 

where r = R - R, (u) + r, . . . . . . . . . . . . . . . . . . . . . . . . .  [I41 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  f u =  0 .  181 
where 

. . . . . . . . . . . . . . . . . . . . . . . . .  That is, there is no crosswind component. This is tacitly , l(GR(R, )) .[15] 
assumed by the fact that one utilizes wind tunnel 
experimental data. The other components are expressed Equation [IS] is derived by solving 
as functions, i.e., 

and 

. . . . . . . . . . . . . . . . . . . . . .  f Z  = fz(r, z). 

for the inverse of q,, i.e., y. This shifting scheme is 
predicated on the assumption that the inflow of soil from 

l l o l  one surface can be combined as indicated, i.e., the curve 
does not change because the soil entering came from a 
potentially difFerent surface. If S2 is contained within a 

where it be noted that the flux does not On larger eroding of the same type, there obviously 
the u direction. This assumption in conjunction with the 
u component of flux being assumed zero, i.e., equation would be no question. 

[8], implies that the flow in adjacent r,z planes does not Now equation [14] can be represented as 

interact. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  r = r(R, U) .[I71 
The continuity equation (Bird et al., 1960, p. 75) 
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and when equation 1171 is substituted in equation [16], Now from the definition of a line integral (Kaplan, 1952, 
we have p. 240), we note that equation [26] becomes 

To integrate equation [13], we evoke Green's theorem where the path C is the circumference of S,. 
(Kaplan, 1952, p. 242, 239) for the integration in R,z, By defining 
l.e., - A -  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  q = QR +qZ [28] 

R, (u) h 
J J (V T ) ~ R  dz = $ Tn ds = $ TR dz - $ fz dR . . . . . a  [I91 
Rl (u) 0 Y Y Y and substituting this in equation [27], we get 

where for our rectangular surface the line integrals = - 9 G(R(U), U, h) du . . . . . . . . . . . . . . . . . . . . .  [29] 
become c 

h o Now it remains to convert the a into q in terms of the r,z . $ f~ dz = J TR(R~. U, z)dz + I TR (RI U. z)dz. . . . . . . .  -[20] coordinate system. This is done by noting the 
Y o h equivalency of the q terms as shown in equation [18]. A 

similar equation exists for the z "component" of q. Upon 
and making the appropriate substitutions into equations [28] 

R2 R 1 
and [29], we have 

. . . . . .  $ i z d ~ =  J F z ( ~ , u . o ) d ~ +  J F , ( R , ~ , ~ ) ~ R .  .[211 . . . . . . . . . . . . . . . . . . .  Y R 1 R2 & = - $ q(r(R(u). u), h) du [301 
C 

It is important to note from the definition of line 
intensities (Table 2 and equations [5] and [6]) that the 
central term of equation [19] can be represented as 

and, therefore, a more general concept of q is obtained. 
That is, q is the line integral of the normal component of 
the soil flux vector along any prescribed path. In our 
defining equations we imply a straight path along an 
axis, but because of equation [22], this is not a necessary 
condition. This more general definition will allow for the 
integration of the surface soil flux along a rough surface! 

Substitution of the appropriate qi function into 
equation [20] yields 

Equation [30] implies that the tunnel-derived q 
functions, when integrated around the circumference of 
S2 or C, yields the soil loss flow rate from S,, the field! 
While equation [30] represents a usable form for 
determining the soil loss rate, it does not explicitly show 
the dependence on the wind angle, fl, or the field 
perimeter in the nonrotating coordinates of x and y. In 
addition, it is advantageous, if one wants to develop a 
machine solution for in,, to have the independent 
variable as the arc length around C. Furthermore, for the 
use of the transformation equation, shown later as 
equation [31], the relationship between u and its 
transformed variable must be single-valued. This 
condition is guaranteed by relating u to the arc length, s. 

All three of these conditions are accomplished by a 
change of the variable of integration u to s in the 
following manner. From Kaplan (1952, p. 199) we have 
for equation [30] 

and into equation [21] yields au 
$&(u ,h)du=$&(u(~)~h) -ds .  . . . . . . . . . . . . . .  .I311 
c c as 

$ Tz d~ = 5 Z ( ~ 2 ,  u. 01 -Zz(Rl , u, 0) + &(R,. u, h) From Fig. 2 we see that the transformation equations 
Y from x,y,z to R,u,z are 

- 5 , , h) . . . . . . . . . . . . . . . . . . . . . . .  .I241 
u = - x s i n p + y  cosp 

. . . . . . . . . . . . . . . . . . . . . .  The integration of equation [13] is completed by R = x cos 0 + Y sin P .[321 

integrating equations [23] and 1241 with respect to u and 
noting that these new integrals represent the mass flow Furthermore, if one defines any point in x and y in terms 
rate from the various surfaces of the control volume, of the arc length s around C, we see that 
e.g., for S, we have from the q,(R,u,O) components in 

. . . . . . . . . . . . . . . . . . . . . . . .  equation [24] x = x(s), Y = Y(S) .[331 

u2 . = J q , ( ~ ,  u, 0) - Z,(R,, U, O) CIU . . . . . . . . . . . .  1251 which upon inclusion in equation [32] yields 
u1 

From equation [13] we note that the integral is zero; U(S) = ~ ( s .  p )  = - X(S) sin 0 + Y(s) (20s p . . . . . . . . . . . .  .I341 

therefore, we can solve the integrated form of equations 
[23] and [24] for in, and obtain equation [26], i.e., with a similar equation for R. In order to apply equation 

[31] to equation [30] requires an expression for the 
u2 

m1 = TR(R, (u), u. h) -qR(R1 (u), u, h) du 
derivative of u. From equation [34] we see that 

U .  
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The final result of applying equation [35] and [31] to [30] 
yields 

where now we can see the dependence of m1 on: (a) P, the 
wind angle; (b) the field perimeter, C, expressed in terms 
of s, and (c) the field surface conditions, J. Previously, q 
has been referred to as a function that would be derivable 
from wind tunnel experimental data. We clarify this 
point in the following section. 

Tunnel-derived q Functions 
From equation [36) it is seen that the tunnel-derived 

line-intensity function, q, is used to determine the net 
soil loss rate from S,. The significance of this can be seen 
by reference to Fig. 3 where a typical q, curve is shown. 
An example of such a curve is used by Chepil (1957) to 
describe the avalanching phenomenon. While no such 
curve has been derived from wind tunnel data, it is 
theoretically possible to do so by feeding in a prescribed 
q, at the inlet to the tunnel and measuring q at the outlet 
(Hagen, 1982). (q, and qR would then be computed, 
based on the size distribution of the sampled particles.) 
By varying the level of the input q,, data would be 
obtained that would descibe a finite difference equation, 
e.g. 

where Ar is the length of the soil sample, i and i+ 1 
represent the input and output, respectively, for the i-th 
distance, and g is some unknown functional relationship, 
depending on q,,i and all the factors implied by J. The 
solution to equation [37] is a sequence which, when 
plotted, wou?d represent points on the q, curve depicted 
in Fig. 3. If Ar is small compared to the expected range of 
R, then equation [37] can be approximated as a 
differential equation, i.e., 

NON ERODIBLE 
BOUNDARY 

Fig. 5-A plan view of the earth surface area 
of Case I. 

both the surface condition and the region.) Intuitatively 
one "sees" at least three applications of equation [36], 
unless the field boundary conditions implied in equation 
[IS] can be supplied. This is not too likely, hence they 
must be determined by an application of only the q, 
portion of equation [36] to that edge of J3 that is upwind 
from the field (Fig. 5). Here it should be noted that the 
only application of equation [36] is for the J1 and J2 
regions, i.e., the field for which in1 is required. 

Now the sequence of calculation using multiple 
applications of equqtion [36] and q, is dependent on P! 
For the case depicted in Fig. 5, we note first a solution of 
q, along the common boundary of J1 ,J3 and J2,J3. Then, a 
line integral around J,, and finally a line integral around 
J1. The total m for the field is the sum of the J1 and J, line 
integrals. 

Obviously, this calculation scheme has increased in 
complexity over the simple case postulated by equation 
[36] due to the multiple application of q and in, plus the 
determination of the region within J3 as a function of P. 
The latter requirement, plus the inability to be able to 
describe the boundaries of J1, J,, and J3 analytically, 
make a numerical solution mandatory. 

Case I1 
Fig. 6 depicts a rectangular homogeneous field of size 

1,w and surface conditions J1 oriented at some angle a. 
For this case, the field and nonerodible boundaries 

aqr  - = G(J, q r )  [381 
coincide, hence there is no inflow of soil and therefore as . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ar can be seen from Fig. 3, 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  and the curve of Fig. 3 is its solution for a given J. A r l  = Rl  = 
similar curve could be obtained for q,. 

APPLICATIONS 
and the two axes coincide and are therefore equal, i.e., 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Two applications of equation [36] will be illustrated. r = R .[401 

The first involves a "scaling up" in that multiple usage of 
the equation is required for a nonhomogeneous field. 
The details have not been determined, hence only the 
concepts are presented. 

The second application relates to the same class of 
fields to which the present wind erosion equation 
(Woodruff and Siddoway, 1965) applies, i.e., an 
isolated, homogeneous rectangular field, where isolated 
implies no soil flowing onto the field. 

The case for a circular, isolated homogeneous field has 
also been solved, but it is not illustrated here. 

Case I 
Fig. 5 illustrates a hypothetical case of a rectangular 

field with two different surface conditions, J1 and J,, 
surrounded by an erodible region, J3. (The Ji implies 

Fig. &A plan view of the field surface of 
Case 11. 
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Equation [36] requires: 
1 .  a description of C 
2. the q (r,h,J) functions 
3. r as a function of s and 13 
4. X(S) and y(s) and their derivatives. 

Items 1, 3, and 4 can be determined from Fig. 6, 
although item 3 presents some difficulty. Item 2 must be 
supplied for a J, surface condition. Now if one 
determines items 1, 3, and 4 and substitutes these into 
equation [36], one arrives finally, after much tedious 
work, at the following equations: 

. . . . . .  2w lsin PI <q>& - (w Isin 81 - Q Icon PI) q(G) [411 

. . . . .  2Q /con PI <q>$ + (w lsin 01 - Q lcos PI) q(Q). .[421 

where 

and the choice between equations [41] and [42] depends 
on 13 in the following manner. Select equation [42] if 13, < 

< TC-13, or n+P, < 13 < 2n-13,; otherwise, select equation 
[4 11 where 

. . . . . . . . . . . . . . . . . . . . . . . .  0, = tan'' (QIW).  .[461 

These equations and the decision logic have been 
programmed and tested with an assumed 

. . . . . . . . . . . . . . . . . . . . .  w = 10.0 and Q = 20.0 .[48] 

for a range of 38 13 angles within 0 to 27~. The program 
compiled on a WATFIV compiler in 0.12 s and it 
executed in 0.07 s. The results could not be checked 
absolutely but appeared reasonable. They repeated 
themselves in a symmetrical fashion with as expected. 
Values of m ranges between 10.26 and 17.59. Since no 
effort was made to maximize in, a value larger than the 
observed maximum may be possible. 

SUMMARY 
The application of the line integral of the tunnel- 

derived q functions around the boundary of a field can 
determine the mass flow rate from the field surface. 
Boundary flow conditions must be either prescribed or 
the boundary for the problem extended to a nonerodible 
boundary. The solution then involves multiple 
application of the line integral to each homogeneous 
region contained within the nonerodible boundary. 

The q functions required must be available from wind 
tunnel data that were obtained for the conditions existing 
on the field. 

The major assumptions implied by using this method 
are: (a) the soil flows in parallel flow planes that do not 
intereact to affect the q functions, (b) the velocity vector 
is uniform across the field, (c) q curves can be combined 
sequentially down the field, and (d) the field is convex in 
shape. 

The complete solution, i.e., the determination of soil 
loss, m, or E, the average flux, depends on integrating m 
with respect to time. That problem appears at present to 
be more difficult than the spacial integration covered 
here. 
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