United States Department of Agriculture

Agricultural Research Service

ARS-89

June 1991

Sustainable Agriculture for the Great Plains, Symposium Proceedings

Muit Copy 89-469-A

Fort Collins, Colorado January 19-20, 1989

Edited by: Jon D. Hanson Marvin J. Shaffer Dan A. Ball C. Vern Cole Hanson, Jon D., Marvin J. Shaffer, Dan A. Ball, and C. Vern Cole. 1991. Sustainable Agriculture for the Great Plains, Symposium Proceedings. U.S. Department of Agriculture, Agricultural Research Service, ARS-89, 263 pp.

The papers in this report are reproduced essentially as they were supplied by the authors. The opinions expressed are their own and do not necessarily reflect the views of the U.S. Department of Agriculture.

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Sales Information

Copies of this publication may be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

ARS has no additional copies for free distribution.

Wind in the Great Plains: Speed and Direction Distributions by Month

E.L. Skidmore and John Tatarko, Agricultural Research Service and Kansas Agricultural Experiment Station, Manhattan, Kansas.

Skidmore, E.L. and J. Tatarko, 1991. Wind in the Great Plains: Speed and Direction Distributions by Month. Pages 245-263 in: J.D. Hanson, M.J. Shaffer, D.A. Ball, and C.V. Cole (eds.), Sustainable Agriculture for the Great Plains, Symposium Proceedings. USDA, ARS, ARS-89, 255 pp.

ABSTRACT

Wind erosion and drought threaten the sustainability of agriculture in the Great Plains. Strong winds constrain crop production by blowing snow off the fields, increasing potential evaporation, and eroding soil. To better cope with the wind in the Great Plains, we have developed a detailed data base. We used Wind Energy Resource Information System (WERIS) data obtained from the National Climatic Data Center for 208 locations in the Great Plains. We analyzed the WERIS data to determine scale and shape parameters of the Weibull distribution for each of the 16 cardinal directions for each month at each location. We also summarized wind direction distributions by month for each of the 16-cardinal direction summaries give the probability of wind from each of the 16-cardinal directions plus calm periods. Additionally, the monthly average ratio of daily maximum to minimum hourly wind speed, hour of maximum wind speed, and air density are given. These data indicate not only wind speed and wind direction probabilities by month but also provide additional information for calculating wind power and diurnal and hourly wind speed variations.

INTRODUCTION

The wind is of interest to many people. Wind energy developers, hydrologists, meteorologists, climatologists, farmers, ranchers, sportsmen, environmentalists, conservationists, agricultural pest managers, housewives, and others all have reasons to know about the wind.

This need to know about the wind has prompted several studies, particularly by those interested in wind as a source of energy (Hagen et al. 1980, Reed 1975, Elliot et al. 1987) and those concerned with erosion of soil by wind (Lyles 1976, Lyles 1983, Zingg 1949, Skidmore 1965, Skidmore 1987).

Skidmore (1965) computed wind erosion force vectors from frequency of occurrence of direction by wind speed groups. The wind erosion force vectors were used to compute monthly magnitudes of wind erosion forces, prevailing wind erosion direction, and preponderance of wind erosion forces in the prevailing wind erosion direction. These factors, which indicate, respectively, potential need for wind erosion protection, proper orientation of erosion control measures, and relative merits of proper orientation of the control methods, were furnished by month for 212locations throughout the United States (Skidmore and Woodruff 1968). The resulting handbook since has been used for conservation planning and wind erosion prediction. The prevailing wind erosion direction and preponderance data are included in the recent SCS National Agronomy Manual (1988). In that manual, magnitude of wind erosion forces was presented in an erosive wind energy distribution format, as developed by Bondy et al. (1980) and Lyles (1983).

Although these wind analyses were essential for conservation planning and wind erosion prediction with the wind erosion equation of Woodruff and Siddoway (1965), they are not adequate for the evolving wind erosion technology (Hagen 1988). The purpose of this research was to develop a wind data base suitable for use in the stochastic approaches in the current wind erosion modelling effort. The same data should benefit other scientists and resource managers needing wind data.

METHODS

We obtained the Wind Energy Resource Information System (WERIS) data base from the National Climatic Data Center on digital 9-track tape in ASCII format. This data base contains information for more than 900-locations in the U.S. and 208-locations in the Great Plains (Fig. 1). The data base was prepared by the Pacific Northwest Battelle Laboratory for the U.S. Department of Energy (Elliot et al. 1987). During 1981 and 1982, the WERIS data base was integrated into a computerized data base and transferred to the National Climatic Data Center, Ashville, North Carolina (NCC TD 9793).

Each location in the WERIS data base is identified by a unique Weather-Bureau-Army-Navy (WBAN) station number. WERIS includes data for various periods of record during 1947 through 1978 for which the anemometer height, anemometer location, and frequency of observation remained constant.

WERIS consists of 19-tables of wind statistics for each location (Table 1). Data were extracted from these tables and, in some cases, analyzed further to create a database suitable for our needs.

Figure 1. Locations in the Great Plains for which wind data are summarized.

From WERIS Table 5, we obtained a ratio of maximum/minimum mean hourly wind speed and hour of maximum wind speed by month. From WERIS Table 10, we obtained monthly mean air density and occurrences of blowing dust. Air density is used to calculate wind power and wind shear stress. Although we are not using occurrence of blowing dust in our current modelling effort, we thought it important to archive in our data base for future studies.

We used data from WERIS Table 12 A-L, joint wind speed/direction frequency by month (Table 2), to calculate scale and shape parameters of the Weibull distribution function for each of the 16 cardinal wind directions by month. The cumulative Weibull distribution function F(u) and the probability density function f(u) are defined by:

$$F(u) = 1 - \exp(-(u/c)k)$$

and

 $f(u) = dF(u)/du = (k/c)(u/c)^{k-1} \cdot exp(-(u/c)^k)$

where u is wind speed, c is scale parameter (units of velocity), and k is shape parameter (dimensionless) (Weibull 1951, Apt 1976). Since anemometer heights varied from location to location, all wind speeds (Column 1, Table 2) were adjusted to a 10-m reference height according to the following:

$$u_2 = u_1(z_2/z_1)^{1/7}$$

(3)

(1)

(2)

where u1 and u2 are wind speeds at heights z1 and z2, respectively, (Elliot 1979).

Table	Description	o. of Pages
01	Hourly Mean Speed and Frequency by Month	12
02	Annual Hourly Mean Speed and Frequency	1
03	Annual hourly Speed Duration	1
04	Average Wind Speed and Wind Power (Hr, Month, Season	n) 1
05	Maximum and Minimum Mean Hourly Wind Speed by Me	onth 1
06	Average Wind Speed and Power (Month, Year)	1
07	Standard Deviation of Speed and Power (Month, Year)	1
08	Wind Speed Pattern Factor (Month, Year)	1
09	Number of Observations (Month, Year)	1
10	Significant Weather Parameters and Events by Month	1
11	Monthly Wind Speed Frequency	1
12	Joint Wind Speed/Direction Frequency by Month	12
13	Annual Joint Wind Speed/Direction	1
14	Annual Joint Wind Power/Direction Frequency	1
15	Wind Speed Duration by Direction by Month	12
16	Annual Wind Speed Duration by Direction	1
17	Annual Wind Power Duration by Direction	1
18	Wind Speed Persistence above Speed Threshold	1
19	Wind Direction Constancy by Direction	1
	Total No. of Pages	52

Table 1.Summary of statistics in the Wind Energy Resource InformationSystem (WERIS) (Elliot et al. 1987).

The calm periods were eliminated, and the frequency of wind in each speed group was normalized to give a total of 1.0 for each of the 16-cardinal directions. Thus,

$$F_1(u) = ((F(u) - F_0)/(1 - F_0)) = 1 - \exp(-(u/c)^k)$$
(4)

where $F_1(u)$ is the cumulative distribution with the calm periods eliminated. and F_0 is the frequency of the calm periods. The scale and shape parameters were calculated by the method of least squares applied to the cumulative distribution function, Equation (4). Equation (4) was rewritten as

$$1 - F_1(u) = \exp(-(u/c)^k).$$

·(5)

(6)

(7)

Then by taking the logarithm twice, this becomes

 $\ln(-\ln(1 - F_1(u))) = -k \cdot \ln(c) + k \cdot \ln(u).$

If we let $y = \ln(-\ln(1 - F_1(u)))$, $a = -k \cdot \ln(c)$, b = k, and $x = \ln(u)$, Equation (6) may be rewritten as

y = a + bx.

F1(u) was calculated from information in tables like Table 2 for each wind speed

group, to determine y and x in Equation (7). This gave the information needed to use a standard method of least squares to determine the Weibull scale and shape parameters. To recover the real distribution, one can rewrite Equation (4) as

$$F_1(u) = F_0 + (1 - F_0)\{1 - \exp(-(u/c)^k)\}.$$

(8)

Wind direction distribution was summarized by month from the "total" row in Table 2 for each location.

Other pertinent data, obtained from the Wind Energy Resource Atlas of the United States (Elliot et al. 1987), included latitude, longitude, city, state, location name, WBAN number, period of record, anemometer height, and number of observations per 24-hour period.

We eliminated WERIS sites if they represented less than 5-years of data, the anemometer height was not known, or fewer than twelve observations were taken per day. This process of elimination reduced the number of Great Plains sites from 208 (WERIS) to 161 (Appendix A). Where more than one observation site/period remains in a metropolis area, one may pick the site with the best combination of the following:

- maximum number of hours per day observations were taken,
- longest period of record,
- one-hourly versus three-hourly observations, and
- best location of anemometer (ground mast > beacon tower > roof top > unknown location).

RESULTS

Tables 3, 4, 5, and 6 give examples of wind information we compiled for 161 Great Plains locations (Appendix A). The data are stored in computer files in ASCII format and require approximately 600 kilobytes.

The scale and shape parameters (Tables 4 and 5) are used in Equations (1) and (2) to define the wind speed probability distribution functions and have much utility for describing the wind speed regime. Equation (2) can be used to calculate the probability of wind for any specified speed. The integrated form of Equation (1) can be used to calculate the probability of wind speeds being greater than, less than, or between specified values. The mean wind speed of the observation period from which the distribution parameters were calculated is very nearly 0.9 times the scale parameter (Johnson 1978).

An example of wind speed distributions with various scale and shape parameters is presented in both bar graph and xy plot in Figure 2. The bar graph was produced from original data as in Table 2. The wind speed data were corrected to an anemometer height of 10 m and normalized to 1.0 for total in each cardinal direction before plotting. The continuous curve (xy plot) was calculated from Equation (2); scale and shape parameters were obtained from Tables 4 and 5, respectively, corresponding to specified month and wind direction. Scale parameter of Figure 2a is located in Table 4, month 12, and direction 6; likewise, shape parameter of Figure 2a is located in Table 5, month 12, and direction 6. Weibull scale and shape parameters were used to calculate the wind speed distributions illustrated by Figure 3.

									IN	IID ON	RECTI	NO						
SPEED (m sec ⁻¹	N (NNE	NE	ENE	ы	ESE	SE	SSE	S	ASS	MS	MSM	D	MNM	MN	NNN	CALM	TOTA
CALM	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	1.7	1.7
1	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
2		.1	.1	0.	.1	.1	.2	.1	с.	.1	s.	·.5	9.	.4	<u>د</u>	.2	0.	4.1
e	2.	e.	S.	4.	6.	.4	9.	ŝ.	6.	.4	1.1	1.1	1.5		.7	ر .	0.	11.1
4	1.0	9.	8.	.4	1.1	6.	1.0	œ.	1.9	9.	8.	1.2	1.6	1.2	.7	s.	0.	15.1
2	6.	.6	8.	ς.	6.	6.	1.0	1.3	2.1	6.	1.2	1.2	1.6	·.5	4.	S.	0.	15.4
9	1.	.7	9.	4.	9.	s.	6.	9.	1.6	1.0	1.1	1.2	.7	9.	د .	S.	0.	12.2
2	1.0	9.	9.	4.	.2	<u>د</u> ،	.4	ŝ	1.6	1.0	1.4	8.	2.	5.	e.	.2	0.	10.0
8	1.0	9.	8.	.2	<u>ې</u>	e.	9.	د .	1.4	1.2	1.0	9.	.7	.4	4.	.2	0.	10.1
6	8.	.4	9.	.2	÷.	.1	.2	4.	1.0	8.	.7	9.	.6	.4	.2	ę.	0.	7.6
10	e.	.4	.2	.2	.1	0.	.1	.2	8.	4.	.2	÷.	.4	e.	.1	.1	0.	4.3
11	б.	.4	.1	.1	0.	0.	.1	.1	·.	.2	с.	e.	·.5	.1		.1	0.	3.1
12	.2	.1	0.	0.	0.	0.	0.	.1	0.	.1	.1	.2	.4	.1	.1	0.	0.	1.6
13	.2	.1	0.	0.	0.	0.	0.	0.	0.	∞.	.2	.1	÷.	.2	.1	.1	0.	1.3
14	.1	0.	0.	0.	0.	0.	0.	0.	0.	0.		.1	.2	.1	.1	0.	0.	.7
15	.1	0.	0.	0.	0.	0.	0.	0.	0.	0.	.1	.1	0.	0.	0.	0.	0.	S.
16	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	.1	.1	0.	0.	0.	0.	.2
17	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	.1	0.	0.	0.	0.	.1
18	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	.1
19	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	.1
20	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
21-25	0.	0.	0.	0.	0.	0.	0	0	0	0.	0.	0.	0.	0.	0	0	0	0.

Table 2. Continued.

TOTAL	.0 .0 .0 .0 100.0 6.1	rt mumic
CALM	.0 .0 1.7	2.0 246
MNN		Month
NN		÷
MNM	.0 .0 5.7 6.2	81 9.
3	.0 .0 9.9	81.1 TU 82 Li
NSN	.0 .0 8.5 .0	
SW	.0 .0 8.9	
D DIF SSW	.0 .0 6.8 6.7	1.1 -2 -0 0 10 -10 -00
NIN	6.2 6.2	
SSE	.0 .0 .0 5.9 1	
SE	5 . 1 5 . 1 5 . 5	
ESE	2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
ы		
ENE	6.0 2.9	8.01
NE		
NNE	 7.0 7.0	
N (.0 .0 .0 7.8 6.9	
SPEED (m sec ⁻¹	26-30 31-35 36-40 41-up Total Åvg.	

251

8.8 . 7.3

Table 3. Ratio of maximum to minimum hourly wind speed, hour of maximum wind speed, air density, and occurrences of blowing dust, Lubbock, Texas.

					M	onth						
	1	2	3	4	5	6	7	8	9	10	11	12
Max/Min	1.5	1.5	1.6	1.6	1.6	1.6	1.6	1.7	1.5	1.6	1.6	1.5
Hr. Max	15	12	15	15	18	18	18	15	15	15	12	15
Air Den.	1.14	1.13	1.11	1.09	1.07	1.06	1.05	1.06	1.07	1.09	1.12	1.13
Dust	43	56	122	119	41	28	3	3	1	4	25	49

Table 4.	Weibull scale parameters (m s-1) by month and direction. Wind speed	ł
	was adjusted to a height of 10-meters, Lubbock, Texas.	

Direction ¹					Μ	onth						
	1	2	3	4	5	6	7	8	9	10	11	12
1	8.0	8.2	8.8	8.3	8.0	7.6	5.8	5.0	6.4	7.5	7.5	7.9
2	8.2	9.2	9.0	8.6	8.3	7.6	6.0	5.7	7.3	7.5	6.7	8.1
3	6.6	7.8	8.0	8.3	7.9	7.2	5.8	5.8	5.9	7.0	6.5	6.8
4	6.5	6.5	7.8	6.9	7.3	6.3	5.9	5.2	5.3	6.2	5.7	6.3
5	6.0	6.3	6.7	6.4	6.6	6.3	5.2	4.8	4.6	5.2	5.0	5.0
6	5.3	6.4	6.8	7.1	7.1	6.2	5.3	5.0	5.2	5.1	5.1	4.2
7	5.5	6.4	7.2	7.2	7.4	6.8	6.0	5.5	5.5	5.3	4.8	5.2
8	5.9	6.1	7.5	8.5	8.0	7.5	6.3	5.8	5.9	6.2	5.8	5.2
9	6.2	7.0	7.9	8.5	8.1	8.0	6.8	6.5	6.5	6.6	6.2	6.5
10	7.2	7.2	8.7	8.5	8.1	7.7	6.9	6.5	6.9	6.9	6.9	7.4
11	7.3	7.6	8.2	8.4	7.6	6.9	6.1	5.9	6.1	6.2	6.5	6.9
12	6.5	7.0	8.0	8.6	7.8	7.0	5.4	5.0	5.2	5.9	6.4	6.0
13	6.7	6.8	8.3	8.8	7.2	6.4	4.9	4.4	5.3	5.1	6.3	6.4
14	7.1	7.2	7.8	8.1	7.0	5.6	4.3	4.2	4.6	5.1	6.0	6.9
15	6.1	6.1	7.2	7.2	7.1	5.3	4.6	4.5	4.4	4.9	6.4	6.5
16	7.1	7.7	7.7	8.3	6.6	5.7	4.8	3.9	4.9	6.4	7.1	7.2
17	6.8	7.3	8.1	8.2	7.7	7.3	6.3	5.8	5.9	6.3	6.4	6.7

¹ The directions are clockwise starting with 1 = north. Direction 17 is for total wind.

Direction ¹					M	onth						
	1	2	3	4	5	6	7	8	9	10	11	12
1	2.5	2.5	2.7	2.6	2.8	2.3	2.2	2.6	2.3	2.5	2.7	2.7
2	2.8	2.4	3.2	2.9	2.8	2.7	3.2	2.3	3.1	2.8	2.7	2.6
3	2.8	3.1	3.3	2.8	2.7	2.9	2.8	3.3	3.2	3.3	3.0	3.2
4	3.9	3.4	3.0	3.5	3.0	2.6	2.8	2.9	3.2	3.1	2.7	3.2
5	3.1	3.2	3.3	2.9	3.0	3.4	3.1	3.2	3.3	3.0	3.6	2.8
6	3.4	3.6	3.9	3.3	3.6	4.4	3.7	3.9	3.3	3.5	3.6	5.1
7	3.7	3.3	3.3	3.3	3.4	3.6	3.5	3.5	3.9	4.1	3.6	5.4
8	3.2	4.1	3.3	3.5	3.3	3.5	3.8	3.7	3.5	2.9	3.0	4.5
9	2.9	3.2	3.6	3.3	3.3	3.7	3.7	3.7	3.4	3.3	3.3	3.2
10	3.1	3.5	3.7	3.7	3.2	3.5	3.9	3.6	4.0	3.2	3.5	3.2
11	3.4	3.2	2.7	3.2	3.2	3.0	3.5	3.0	3.4	3.0	3.2	3.2
12	2.5	2.6	2.5	2.4	2.5	2.9	3.4	3.6	3.0	2.7	2.6	2.6
13	2.1	2.4	2.2	2.5	2.6	2.2	3.3	3.1	3.0	2.4	2.2	2.2
14	2.1	2.2	2.3	2.5	2.4	3.6	4.1	3.5	2.6	2.4	1.8	2.0
15	2.4	2.6	2.2	2.5	2.5	3.1	3.3	2.9	2.9	2.0	2.2	2.3
16	2.2	2.6	2.7	2.3	2.8	3.3	2.6	3.5	2.5	2.1	2.4	2.4
17	2.6	2.6	2.7	2.9	3.0	3.1	3.3	3.2	3.0	2.7	2.6	2.6

Table 5. Weibull shape parameters by month and direction, Lubbock, Texas.

¹ The directions are clockwise starting with 1 = north. Direction 17 is for total wind.

Figure 3 is intended to give a visual overview of wind speed distributions at a location. Each of the eight ridges in the figure is at 45 degree intervals and oriented in the direction of the wind it represents. For example, the two ridges that approach the axis at the left and right 0 are for wind speed distributions from the west and south, respectively. It is seen by comparing these ridges to their parallel wind speed scales that the westerly winds have a higher probability than southerly at high wind speeds but that southerly winds have a higher probability at medium wind speeds.

We determined the distribution of the coefficients of determination, r-squared, of the fit of the Weibull parameters to the wind speed data (direction and month) for four sites in each of the 10 Great Plains states; sample size equalled 7.680. The percentages of r-squared exceeding 0.98, 0.96, and 0.94 were 37, 67, and 82, respectively. In December, less than 2% of the wind was from ESE (Fig. 2a), whereas more than 27% was from the south in July (Fig. 2d). The corresponding r-squares were 0.90 and 0.99, respectively.

Direction ¹					N	Ionth						
	1	2	3	4	5	6	7	8	9	10	11	12
1	8.2	9.7	7.8	5.5	5.3	3.1	2.3	2.9	5.9	6.3	8.8	9.0
2	5.0	4.9	4.8	3.6	3.7	2.2	1.5	2.6	4.8	5.0	4.4	4.8
3	5.0	5.9	5.1	4.1	4.1	3.2	3.9	4.2	6.3	5.3	4.8	4.7
4	3.8	4.2	2.9	4.5	4.8	4.1	3.8	4.7	4.9	4.1	3.1	3.1
5	4.0	4.3	4.9	5.3	5.9	5.0	5.9	6.7	6.3	4.3	4.4	2.2
6	3.1	3.8	3.8	4.7	6.6	6.1	5.7	6.3	5.7	3.0	3.2	1.9
7	3.3	3.8	5.1	6.5	10.5	10.4	10.0	9.7	7.5	4.2	3.4	2.1
8	2.9	3.3	4.9	4.9	8.3	9.5	11.6	14.9	13.6	9.0	5.4	3.7
9	9.8	8.7	12.2	16.4	16.4	26.8	27.4	24.1	18.6	19.7	11.7	9.4
10	6.0	5.7	6.8	6.5	6.9	.9.2	8.8	7.2	7.9	9.6	7.5	7.4
11	9.6	8.5	8.9	7.7	7.3	5.9	5.9	5.1	6.2	8.2	9.9	10.1
12	9.6	9.3	8.5	7.9	4.7	3.4	2.4	2.8	3.5	6.0	9.0	9.8
13	12.3	10.8	9.9	6.7	5.1	3.3	2.0	1.7	3.5	6.1	9.0	11.8
14	6.3	6.2	5.74	.6	3.0	1.5	1.0	1.11	.7	3.2	5.1	7.7
15	4.7	4.9	4.0	3.4	2.6	1.6	0.8	1.1	2.0	3.0	4.3	5.3
16	3.8	3.4	3.0	3.0	1.8	1.1	0.6	1.1	2.1	2.9	3.0	4.0
17	2.7	2.7	1.7	1.4	1.8	1.5	3.15	.0	4.0	3.6	4.8	4.3

Table 6. Wind direction distribution (%) by month, Lubbock, Texas.

strongly southern in July.

Wind direction distribution data, as in Table 6, are plotted for February and July in Figure. 4. No strongly favored direction is apparent for February, but the winds are

¹ The directions are clockwise starting with 1 =north. Direction 17 represents calm periods.

SUMMARY

These data provide detailed wind statistics useful for many purposes. Wind speed and wind direction need to be known by natural resources scientists and managers. Our immediate use is for the wind component in potential evapotranspiration models and for modelling wind erosion prediction systems.

Figure 2. Wind speed distributions from summarized data (bar graph) compared to Weibull calculated distributions for various combinations of months and wind direction, Lubbock, Texas.

Figure 3. Wind speed probability distributions, Lubbock, Texas, March.

Figure 4. Wind direction probability distributions for Lubbock, Texas.

References

Apt, K.E. 1976. Applicability of the Weibull distribution to atmospheric radioactivity data. Atmospheric Envir. 10:777-782.

Bondy, E., L. Lyles, and W.A. Hayes. 1980. Computing soil erosion by periods using wind energy distributions. J. Soil and Water Conserv. 35:173-176.

Elliot, D.L. 1979. Adjustment and analysis of data for regional wind energy assessments. Paper presented at the Workshop on Wind Climate, Ashville, North Carolina, November 12-13 1979.

Elliot, D.L., C.G. Holladay, W.R. Barchet, H.P. Foote, and W.F. Sandusky. 1987. Wind energy resource atlas of the United States. DOE/CH 10093-4. Available from National Technical Information Service, Springfield, Virginia.

Hagen, L.J. 1988. New wind erosion model developments in the USDA. In Proceedings 1988 Wind Erosion Conference, Texas Tech. Univ., Lubbock, Texas, pp. 104-116.

Hagen, L.J., L. Lyles, and E.L. Skidmore. 1980. Application of wind energy to Great Plains irrigation pumping. Advances in Agricultural Technology, USDA-AAT-NC-4.

Johnson, G.L. 1978. Economic design of wind electric systems. IEEE Transactions on Power Apparatus Systems. PAS-97(2):554-562.

Lyles, L. 1976. Wind patterns and soil erosion in the Great Plains. In Proceedings of the Symposium "Shelterbelts on the Great Plains," Great Plains Agr. Council Pub. No. 78, pp. 22-30.

Lyles, L. 1983. Erosive wind energy distributions and climatic factors for the west. J. Soil and Water Conserv. 38:106-109.

Reed, J.W. 1975. Wind power climatology of the United Stated. SAND 74-0348. Sandia Lab., Albuquerque, New Mexico, 163 pp.

SCS, U.S. Department of Agriculture. 1988. National Agronomy Manual. Second Edition. 190-V Issue I (Part 500-509). SCS, USDA, Washington, DC.

Skidmore, E.L. 1965. Assessing wind erosion forces: direction and relative magnitudes. Soil Sci. Soc. Am. Proc. 29:587-590.

Skidmore, E.L. 1987. Wind-erosion direction factors as influenced by field shape and wind preponderance. Soil Sci. Soc. Am. J. 51:198-202.

Skidmore, E.L. and N.P. Woodruff. 1968. Wind erosion forces in the United States and their use in predicting soil loss. USDA, ARS, Agr. Handbook No. 346.

Weibull, W. 1951. A statistical distribution function of wide applicability. J. Appl. Mech. 18:293-297.

Woodruff, N. P. and F. Siddoway. 1965. A wind erosion equation. Soil Sci. Soc. Am. Proc. 29:602-608.

Zingg, A.W. 1949. A study of the movement of surface wind. Agr. Engin. 30:11-13 19.

APPENDIX A

Selected wind station data for the Great Plains States (WERIS).*

1		1																									
40	30	CO	200	CO	000	8 8	300	8 8	00	00	00	00	KS	KS	KS	KS	SX.	KS	KS	KS	KS	KS	KS	KS	KS	KS	TH
						Air.																					
Ctation Name	DIGITON NOME	Akron	Alamosa	Colorado Springs	Denver	Denver/Stap. Inter.	Eagle	Grand Junction	La Junta	Pueblo	Pueblo	Trinidad	Chanute	Concordia	Dodge City	Ft. Rilev	Goodland	Hutchinson	Olathe	Russell	Salina	Topeka	Topeka/Forbes	Vichita	Wichita	Wichita/McCon	Billings
Tuno	TYPE	-	A	M	N		£4		p.	M	M	4	24	M	M	A		N	N	4	A		A	-		•	-
URAN Codo		24015	23061	93037	93032	23062	23063	23066	23067	23068	93058	23070	13981	13984	13985	13947	3065	3905	3909	3997	3922	3996	3920	3928	3998	3923	4033
Inc														-	10	-	~	6	5	6	1	-	-	0	1	0	5
H+			0	0	-	-	-		24	84	9	B	8	9	9	9	R	R	5	R	9	5	9	9	a	R	5
s Anem	(m)	8.8	10.1	6.7	19.8	21.9	18.6	17.7	9.8	11.0	6.7	13.1	16.2	6.4	6.1	4.0	9.4	18.3	4.3	8.8	4.3	6.1	4.0	9.4	21.3	21.3	7.6
qo		A	U	А	υ	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
i od 1	End	541231	781231	781231	590331	600707	641231	640919	640409	540630	781231	640930	641231	781231	781231	701231	640322	580431	700131	641231	650531	781231	701231	641231	531130	701231	781231
Per	Start	480101	591020	670401	500801	531016	480101	500228	550607	480101	620319	570201	591201	620601	610421	610401	500609	521001	590915	530824	560401	640810	580401	540101	480101	600905	650101
Elev	(m)	1399	2298	1857	1697	1622	1982	1474	1278	1465	1421	1753	299	449	796	324	1112	479	328	568	392	269	324	404	432	414	.092
and		10	52	43	45	53	55	32	31	38	31	20	29	39	58	46	42]	54	53	49	38	38	40	25	16	16	32 1
F	ppp	103	105	104	104	104	106	108	103	104	104	104	95	67	66	96	101	97	94	98	97	95	95	97	97	97	108
	ш	07	27	49	42	46	39	02	03	14	17	15	40	33	46	03	22	55	50	52	48	04	57	39	38	37	48
Lat	dd I	40	37	38	39	39	39	39	38	38	38	37	37	39	37	39	39	37	38	38	38	39	38	37	37	37	45

Butte	Cut Bank	Dillon	Glasgow	Glasgow	Great Falls	Great Falls	Havre	Helena	Kalispell	Leviston	Livingston	Miles City	Missoula	Superior	Whitehall	Chadron	Grand Island	Lincoln	Norfolk	North Platte	Omaha	Omaha/Offutt	Scottsbluff	Sidney	Bismarck	Dickinson	Fargo	Grand Forks	James town	Minot	Minot	Villiston	Williston/Wbo	
24	24	24	M	A	A	M	M	M	M	24	24	24	A	A	24	64	M	M	A	A	B	A		24	M	24	M	M	M	24	A	M	M	
24135	24137	24138	94008	94010	24112	24143	94012	24144	24146	24036	24150	24037	24153	24159	24161	24017	14935	14939	14941	24012	14942	14949	24028	24030	24011	24012	14914	14916	14919	24013	94011	94014	24014	
R	IJ	R	IJ	U	IJ	R	IJ	Ċ	Ċ	R	B	IJ	IJ	B	U	8	IJ	IJ	R	IJ	IJ	IJ	IJ	R	C	R	IJ	R	R	IJ	5	U	R	
18.0	6.1	9.1	6.1	4.0	4.6	22.9	6.1	6.1	6.1	10.4	17.4	12.2	6.1	17.7	9.1	17.7	6.1	6.1	11.0	6.1	6.1	3.7	6.1	7.9	6.1	9.1	6.1	14.3	8.8	6.1	5.5	3.1	15.2	
A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	υ	A	A	A	A	A	A	A	A	A	A	A	A	A	υ	
601231	781231	631029	781231	680630	681130	590202	781231	781231	781231	620815	530704	641231	781231	531130	541231	541231	781231	781231	590909	781231	781231	701231	781231	541231	781231	640728	781231	581231	541231	781231	650228	781231	611231	
480101	591004	510619	680601	610608	580401	480101	670101	610920	640701	491221	480101	480101	650101	480101	480101	480101	611202	720901	480101	640812	630401	600501	640802	491221	611017	481201	610626	491105	481201	620629	600501	670823	500301	
1689	1174	1592	969	853	1056	1124	788	1188	908	1236	1399	802	980	823	1311	1046	567	364	472	848	304	312	1204	1231	507	792	278	259	456	526	504	581	578	
30	22	33	37	31	10	21	46	8	16	27	32	52	05	52	90	8	19	46	26	41	54	54	36	02	45	48	48	05	41	17	20	38	37	
112	112	112	106	106	111	111	109	112	114	109	110	105	114	114	112	103	86	96	67	100	95	95	103	103	100	102	96	67	98	101	101	103	103	
57	36	15	13	24	31	29	33	36	18	03	40	26	55	11	52	51	58	51	59	80	18	07	52	80	46	47	54	56	55	16	25	11	60	
45	48	45	48	48	47	47	48	46	48	47	45	46	46	47	45	42	40	40	41	41	41	41	41	41	46	46	46	47	46	48	48	48	48	

St		WN	NN	HN	HN	HN	MN	HN	HN	HN	HN	MN	MN	HN	HN	MN	HN	WN	HN	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	SD	SD	SD	SD	SD	
Station Name		Alamogordo	Albuquerque	Carlsbad	Clovis	Columbus	Farmington	Gallup	Hobbs	Las Cruces	Las Vegas	Otto	Raton/Crews	Roswell	Roswell/Walk.	Santa Fe	Truth Or Con.	Tucumcari	Zuni	Altus	Ardmore	Clinton	Enid	Ft. Sill	Gage	Hobart	Oklahoma City	Oklahoma City	Ponca City	Tulsa	Aberdeen	Huron	Philip	Pierre	Rapid City	
Type		A	M	ſĿ.	A	Ē4	œ.	M	6 44	A	CL.	ČL.	M	M	A	6 44		64	M	A	64	A	A	A	24	M	A	M	24	M	M	M	64	64	Μ	
 WBAN Code		23002	23050	93033	23008	23058	23090	23081	93034	23039	23054	23056	23052	23043	23009	23049	93045	23048	93044	13902	13965	03932	13909	13945	13975	93986	13919	13967	13969	13968	14929	14936	24024	24025	24090	
LOC LOC		U	8	R	U	IJ	R	IJ	×	U	8	5	R	R	IJ	84	R	IJ	×	IJ	R	U	t	IJ	R	R	5	IJ	IJ	5	IJ	IJ	R	IJ	R	
Anem. HI	(m)	4.0	11.9	15.2	4.0	8.5	10.4	6.1	10.7	4.6	7.9	8.2	8.5	15.8	4.6	8.5	7.3	6.7	9.8	3.7	9.1	4.0	11.6	4.0	7.6	8.2	4.0	6.1	20.4	7.0	6.1	6.1	8.2	6.1	9.8	
 0bs		A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	
 i od 1	End	701231	781231	541231	691031	541231	641231	781231	541231	621231	641231	541231	530831	600730	630331	541231	641231	781231	721231	701231	541231	690331	590131	701231	641231	541231	701231	781231	541231	781231	781231	781231	541231	781231	641231	
Per	Start	590501	650316	480701	600701	480701	530323	730101	480701	570901	480701	480701	480701	510501	570401	480701	500601	590918	581014	560803	480701	580801	490101	600720	480701	490201	590401	651028	480701	601228	640701	620110	480101	620607	501101	
Elev	(E)	1241	1620	066	1305	1229	1677	1971	1123	1292	2092	1900	1945	1106	1110	1934	1471	1237	1965	414	264	588	393	369	699	474	384	391	309	204	396	392	673	525	996	
ong		05	37	16	19	28	14	47	12	29	60	01	30	32	32	05	16	36	48	16	90	12	54	24	46	03	23	36	90	54	26	13	36	17	04	
Ч	idd	106	106	104	103	107	108	108	103	106	105	106	104	104	104	106	107	103	108	66	97	66	97	98	66	66	97	67	67	95	98	98	101	100	103	
		51	03	20	23	49	45	31	41	22	39	05	45	24	18	37	14	11	90	39	18	22	20	39	18	8	25	24	44	12	27	23	03	23	03	
Lat	pp	32	35	32	34	31	36	35	32	32	35	35	36	33	33	35	33	35	35	34	34	35	36	34	36	35	35	35	36	36	45	44	44	44	44	

SD	SD	SD	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	
Rapid City	Sioux Falls	Watertown	Abilene	Abilene/Dyess	Alice	Amarillo	Austin	Austin/Bergs	Beeville	Big Spring	Brownsville	Bryan	Corpus Christi	Corpus Christi	Corpus Christi	Cotulla	Dalhart	Dallas	Dallas/Love	Del Rio	Del Rio/Laug	El Paso	El Paso/Biggs	Pt. Hood	Pt. Hood	Ft. Worth	Ft. Worth	Galveston	Houston	Hous ton/Hobby	Junction	Kingsville	Laredo	
A	M	M	M	A	64	A	A	A	N	A	A	A	A	N	N	24	P 4	N	A		A	-	A	A	A		A	A	A	24	24	N	A	
24006	14944	14946	13962	13910	12932	23047	13958	13904	12925	23005	12919	13905	12924	12926	12946	12947	93042	93901	13960	22010	22001	23044	23019	03902	03933	03927	13911	12923	12960	12918	13973	12928	12907	
G	U	R	Ċ	3	R	Ċ	Ċ	U	U	U	R	R	5	U	R	R	R	5	5	5	R	R	IJ	5	U	N	5	×	5	K	R	5	U	
4.0	5.2	7.6	6.1	4.0	8.2	7.0	6.1	5.2	4.3	4.6	17.1	7.3	7.0	3.7	26.2	8.2	19.2	4.6	6.1	7.0	12.2	25.9	4.0	3.0	5.5	25.9	4.0	14.0	6.1	26.5	7.3	6.1	6.1	
A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	υ	A	A	A	A	A	A	A	A	A	
701231	781231	541231	781231	701231	541231	781231	781231	701231	720228	701231	610120	580630	781231	720228	580331	541231	540914	781231	740131	781231	590326	610430	660430	700630	700630	630522	701231	581217	781231	600728	641231	781231	701231	
550721	611125	480909	600505	620501	480701	610503	610701	620906	620201	590507	480701	511001	600916	610713	490201	491001	481201	660814	580429	640301	530630	480701	560101	650101	650501	530501	570501	480701	690601	500621	500401	670201	650401	
980	437	527	537	542	55	1099	183	155	62	784	10	84	17	9	14	141	1217	143	159	314	327	1200	1196	312	280	175	188	8	37	16	521	18	154	
90	44	60	41	51	02	42	42	40	40	30	26	33	30	17	27	13	53	58	51	55	47	24	24	49	43	03	27	51	21	17	46	48	28	
103	96	67	66	66	98	101	67	67	67	101	67	96	67	26	26	66	102	96	96	100	100	106	106	67	67	26	67	94	95	95	66	26	66	
60	34	55	26	26	44	14	18	12	22	14	54	40	46	41	41	27	01	44	51	22	22	48	50	04	08	50	46	16	59	39	30	30	32	
44	43	44	32	32	27	35	30	30	28	32	25	30	27	27	27	28	36	32	32	29	29	31	31	31	31	32	32	29	29	29	30	27	27	

261

ł

St		TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	TX	ΛΛ	λň	YV	VV	N A	A.A.	VV	ΛΛ	ΔĂ	90		
Station Name		Laredo	Lubbock	Lubbock/Reese	Lufkin	Marfa	Midland	Mineral Vells	Palacios	Port Arthur	Port Isabell	San Angelo	San Antonio	San Antonio	San Antonio	San Antonio	San Marcos	Sherman	Tyler	Victoria	Victoria/Aloe	Vaco	Waco/Connally	Vichita Falls	Vink	Casper	Cheyenne	Douglas	Pt. Bridger	Lander	Laramie	Rawlins	Rock Springs	Sheridan	ALL COND		
Type	•	M	Δ	A	24	64	A	64	P	N	N	M	A	A	M	A	A	A	M	M		M	A	A	M	M	A	A	M	M	A	M	64	M	-		
WBAN Code		12920	23042	23021	93987	93035	23023	93985	12935	12917	12957	23034	12909	12911	12921	12931	12910	13923	13972	12912	12922	13959	13928	13966	23040	24089	24018	24019	24118	24021	24022	24057	24027	24029			
Loc		R	R	IJ	R	×	U	R	R	U	IJ	U	IJ	IJ	Ċ	R	R	IJ	R	IJ	R	U	U	IJ	R	IJ	U	B	n	R	n	R	U	5			
bs Anem. Ht	(ш)	11.9	20.7	3.0	7.9	17.1	6.7	8.5	8.5	6.1	4.0	6.1	4.0	4.0	7.0	21.6	7.9	4.3	21.6	6.1	11.6	7.0	4.0	6.4	9.1	6.1	10.1	17.7	18.3	9.8	19.5	8.5	6.1	6.1			
10		A	A	U	A	A	A	A	A	A	q	A	A	A	A	A	A	A	A	A	υ	A	A	A	A	A	A	A	A	A	A	A	A	A	- 2-		
Period ¹	End	610228	641231	701231	560330	541231	781231	641231	581231	781231	610531	781231	701231	701231	781231	600331	560831	701231	541231	781231	610530	781231	660731	781231	541231	781231	781231	541231	541231	730919	541231	641231	781231	781231	ICT INC		
	Start	470623	500628	641103	480901	480701	591204	480601	490401	601118	600725	610915	590116	600501	610901	530701	510501	570401	500504	640701	530828	640218	580501	610424	480701	640812	650101	480101	480101	620401	480101	550101	600727	640903	202082		
Elev	(w)	154	066	1015	89	1481	871	286	S	6	6	585	208	230	243	182	178	233	173	33	35	157	145	307	858	1622	1871	1486	2136	1697	2217	2067	2056	1203	1.50		
Long		28	50	03	45	53	12	04	15	01	20	30	34	17	28	27	52	40	24	55	05	13	04	29	12	28	49	22	25	44	41	12	04	58	18		
	dd	66	101	102	94	103	102	98	96	94	97	100	98	98	98	98	97	96	95	96	67	67	67	98	103	106	104	105	110	108	105	107	109	106		20	
	a d	32	39	36	14	15	56	47	43	57	10	22	23	32	32	21	53	43	22	51	47	37	38	58	47	55	60	45	24	49	19	48	36	46	18	12	
Lat	e pp	27	33	33	31	30	31	32	28	29	26	31	29	29	29	29	29	33	32	28	28	31	31	33	31	42	41	42	41	42	41	41	41	44		3	

Estimated Vind, No Anemometer The change in observation frequency from hourly to 3-hourly occured near the end of 1964, Unknown Location Stations are grouped alphabetically by state name. The WBAN station code is a unique R = Roof-Top G = Ground Mast B = Beacon Tover U = Unknown Locat E = Estimated Vinc ddd = degrees mm = minutes N = Navy V = Veather Service F = FAA identification code number for each station. Other codes are as follows: 1970, and 1972 for civilian agencies, Air Force, and Navy, respectively. = Air Force A = 24 B = 19-23 C = 12-18 LONG = Longitude LOC = Type of structure on which the anemometer was located V OBS = Number of hours/day observations were taken ELEV = Elevation above mean sea level in meters = Type of agency responsible for operation Format for PERIOD is yymmdd--year/month/day. mm = month yy = year = day pp dd = degrees mm = minutes PERIOD = Period of record LAT = Latitude NOTE: TYP * 1

ANEM. HT = Anemometer height above ground in meters

263