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ABSTRACT. A crop growth submodel (dubbed CROP) is being developedfor the wind erosion prediction system (WEPS). 
One of the requirements of CROP is to estimate leaf and stem growth on a daily mass basis and supply these values to the 
appropriate subroutines. The separate effects of leaves and stems on the processes of wind erosion then can be taken into 
account in the model. We developed a procedure for calculating leaf and stem growth separately for six crops: corn 
(Zea mays L,), grain sorghum [Sorghum bicolor (L.) Moench)], soybean [Glycine max (L.) Merr.], winter wheat 
(Triticum aestivum L,J,  oat (Avena sativa L,), and rice (Oryza sativa L.). Above ground biomass was regressed on relative 
growing degree days (which is a ratio of the growing degree days from planting to any day, to the growing degree days 
from planting to physiological maturity), or relative growing days where temperature data were not available. Stem mass 
was regressed on above ground biomass. In both cases, the logistic (sigmoid) model was used. Differentiation of the stem 
mass equation in conjunction with the biomass equation enabled us to calculate the partitioning ratios of leaf, stem, and 
reproductive plant parts, as functions of relative growing degree days (or relative growing days). The partitioning 
equations were incorporated into CROP. Overall, CROP predicted leaf, stem, reproductive, and above ground masses 
agreed fairly well with measured data (r2 rangedfrom 0.60 to 0.92, slopesfrom 0.65 lo 1.18 and intercepts from -0.15 to 
0.96 t h d ) .  Keywords. WEPS, Modeling, Biomass, Partioning of biomass. 

new wind erosion prediction system (WEPS), 
intended to replace the wind erosion equation of 
Woodruff and Siddoway (1965). is being A developed (Hagen, 1991). WEPS consists of 

submodels that simulate important processes related to 
wind erosion that occur in nature. The cover provided by 
crop residue and the silhouette area of growing crops and 
their residues are important factors that determine the 
amount of soil that may be eroded by wind. However, not 
all plant parts provide equal protection. It is estimated that 
on a per-unit-area basis, stems of young seedlings are about 
10 to 20 times more effective than leaves in depleting wind 
energy, but the effectiveness of leaves increases as the crop 
develops (Hagen, 1991; Armbrnst and Bilbro, 1995). 
Damage caused by wind and wind-blown soil particles 
affects leaves and stems differently (Armbrust, 1982; 
Fryrear, 1971). Additionally, future improvements in the 
WEPS residue decomposition submodel will include 
calculation of decomposition rates of leaves and stems. In 
order to account for the separate effects of leaves and stems 
of growing plants on the processes of wind erosion, the 
WEPS crop growth submodel (CROP) is required to 
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estimate leaf, stem, and reproductive growth state variables 
and supply these values to the EROSION and other 
submodels. Thus, the CROP submodel needs to have the 
capability to partition aboveground biomass into leaf, stem, 
and reproductive masses. 

Partitioning of aboveground biomass into leaf, stem, and 
reproductive parts is one of the areas in crop modeling that 
is least understood (Whisler et al., 1986). The influences of 
environmental factors such as soil temperature, water 
stress, excess nitrogen supply, source-sink imbalances, etc., 
on partitioning of newly formed assimilates is difficult to 
account in a direct and simple way. Consequently, many 
crop models use empirical methods to perform partitioning 
of aboveground biomass into the different plant parts. In a 
number of models, leaf area is calculated independently of 
biomass [CERES-Maize: Jones and Kiniry, 1986; 
SORKAM: Rosenthal etal., 1989 (except in periods of 
stress): EPIC: Williams et al., 19891. In CERES-Maize, 
leaf mass is calculated as a function of leaf area, and stem 
mass as a function of leaf mass. Other models use 
partitioning fractions that remain constant during a given 
stage of growth, but may change at other stages of growth, 
to partition aboveground biomass into different plant parts 
(Vanderlip and Arkin, 1977; Wilkerson et al., 1983). The 
method of using constant [within a given stage(s) of 
growth] partitioning ratios is simple and convenient for 
single crop models. However, for multinop models, such 
as CROP, partitioning fractions are needed for a wide range 
of crop and noncrop plants. Data to evaluate such 
parameters may not be readily available. 

Where experimental data of leaf, stem, and other plant 
component masses, measured over sufficiently short 
intends of time (usually once a week) during the entire 
growing season, are available, relationships can be derived 
that can be used to implement partitioning of biomass into 
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different plant parts. The change in dry weight of a plant 
part between successive harvests is related to cumulative 
time of growth. However, the variability of such data can 
be so high that obtaining relationships that are reasonably 
reliable (have acceptable levels of correlation) may be 
difficult (van Keulen, 1986). Even if reasonably good fits 
can be obtained, different crops or different organs for the 
same crop may fit different types of models, which 
increases program complexity and unreliability. Ideally, a 
single model that fits partitioning data of different plant 
parts and all crops would greatly simplify coding of 
partitioning algorithms for a variety of crop and noncrop 
plants that have to be dealt with by the CROP submodel of 
WEPS. The parameters for such a model, of course, would 
be crop and organ dependent. 
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The logistic (sigmoid or S-curve) function has been --oat 

----wheat used widely in modeling plant growth (Richards, 1969; 
Hunt, 1981). This function is well suited to mimic growth 
of plant components, which is characterized by periods of 
slow, rapid, declining, and zero rates of growth. The 
objective of this study was to develop regression Relat ive GDD 
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Figure ]-Values of (1 - dSMldBMl for several crops. parameters of the logistic model for partitioning of 
abovemound biomass into leaf. stem. and reoroductive - 
parts for soybean, corn, grain sorghum, winter wheat, and 
oats. leaves, stems, reproductive organs, and total aboveground 

biomass, sampled every five days from emergence to 

MATERIALS AND METHODS 
FIELD DATA 

Field plots for corn (1988 dryland, and 1990 under 
irrigation), sorghum (1987 dryland), soybean (1988 and 
1990, dryland), winter wheat (1988 and 1989, dryland), 
and oat (1989 and 1990, dryland) were established in 
Manhattan, Kansas. Each crop was grown in a plot (15 x 
65 m) that was divided into three sampling sites. Each crop 
was grown separately, and no statistical design was used. 
Ten adjacent plants were sampled destructively every week 
from randomly selected strips within a plant row. Leaf, 
stem, and reproductive masses were determined for each 
plant. Detailed descriptions of site and growth conditions 
for each crop are reported elsewhere (Retta and Armbrust, 
1995). Data for all plants (up to 30) were averaged by 
sampling date and the means were used to derive 
partitioning parameters for each crop. Where data from 
multiple years for a crop were available, partitioning 
parameters were obtained using data from the year that had 
the most rainfall during the growing season (i.e., suffered 
the least water stress). This was done to minimize the 
influence of water stress on partitioning ratios. 

Our grain sorghum data were limited to one year. We 
used this data to derive partitioning ratios for grain 
sorghum. For validation we obtained Reeves’ (1971) grain 
sorghum growth data, which consisted of dry weights of 

Table 1. Base temperatures used for calculating GDD (left part 
of table); and linear regression parameters of simulated 

on measured plant component masses (right side of table) 

Crop Tb,,(“C) PlantPart Slope Intercept (tlha) r2 n 

soybean I O  Leafmass 1.18 -0.15 0.62 192 
Corn 8 Sternmass 0.65 0.61 0.73 192 
Sorghum 10 Rep.rnass 0.74 0.74 0.74 103 
Wheat 0 Abg.rnass 0.86 0.70 0.92 192 
oat n 

physiological maturity. Data were obtained for three grain 
sorghum hybrids (representing three maturity groups) over 
a two-year period. 

In order to test the applicability of the hypothesized 
method on other crops and climatic conditions, Erdman’s 
(1972) rice data as reported by van Keulen (1986) were 
included in the analysis. Because that report did not include 
data after anthesis, an estimated data pair for biomass and 
stem mass were added for that period (aboveground 
biomass at 0.8 RGD was assumed to be twice the amount 
measured at anthesis). 
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Figure 2-An example illuslrating how partitioning ratios for leaf 
(solid line) and reproductive (dashed line) parts were obtained from 
“data” calculated using equations 2 and 4. 
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PARTITIONING METHOD 
For each crop (except rice) the relative growing degree 

day (GDD,) was calculated as a ratio of the growing degree 
day (GDD) accumulation at any time to the total GDD 
needed to grow the crop to physiological maturity (eq. I) :  

where 
T,, = daily average air temperature ("C) 

Tb, =base temperature ("C) 
GDDp =total GDD from planting to physiological 

maturity ("C d) 
GDD, = ratio of GDD from planting to any day during 

the growing season, to the GDD at  
physiological maturity 

k 
Growing degree days will accumulate if T,, > Tbar In 

the case of the rice data relative growing days (RGD), 
which is the ratio of days from transplanting to an 
estimated number of days to physiological maturity, were 
used instead of GDD, because no temperature data were 
available to calculate GDD. Base temperature data for each 

= number of days since planting 
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Figure &Logistic madel fit (curve) for biomass and stem mas data of several crops. For rice the last data pair for both stem and biomass were 
estimated. 
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crop were obtained from EPIC (Williams et al., 1990b) 
(table 1).  

Aboveground biomass data during the season were 
fitted to the logistic function for each crop (eq. 2). The 
independent variable was GDD,: 

B M =  a b +  bb (2) 

where 
BM = aboveground biomass (g/plant) 
ab 

(bb + ab) = maximum value of the S-curve 
cb 

=the line which is asymptotic to one side of 
the S-curve 

- value of GDD, at the inflection point 
=inverse of the basic rate of increase (or 

decrease) in the S-curve 
db  

Stem dly weight data were f i t  to the logistic function 
(eq. 3) with aboveground biomass as the independent 
variable: 

where SM is the stem mass (giplant) and s, b,, cs, d, are 
regression coefficients. 

Equation 3 is differentiated to yield equation 4 
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Figure Uomparison among partitioning ratios calculated using the regression models (curves), and calculated fmm measured data (scatter 
points). Top to bottom: soybean, corn, and sorghum; left to right: leaf, stem, and repmductive masses. Measured ratios greater than 1.5 or less 
than -0.5 are not shown in the graphs. 
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where dSM and dBM are increments in stem and 
aboveground biomass. 

Regression equations 2 and 4 were used to calculate the 
stem partitioning ratio (dSMidBM) over small increments 
in GDD,. The values of (1 - dSM/dBM) then were 
calculated for each crop. The results are shown in figure 1. 
The values of (1  - dSMldBM) from 0 GDD, to about the 
time when the minimum value is reached were assigned as 
leaf partitioning ratios, and the values of (1 - dSM/dBM) 
after the minimum were assigned as reproductive 
partitioning ratios. This procedure assumes that during the 
leaf growth period, all newly produced aboveground 
biomass was allocated to stems and leaves and after the end 
of the leaf growth period, to stems and reproductive organs. 
It was also assumed that leaf growth essentially ended 
where the value of (1 - dSM/dBM) was the minimum. 
This assumption may be questionable for indeterminate 
crops. The leaf and reproductive pdt ioning  ratios were 
then fit to the logistic function with GDD, as the 
independent variable. An example of such a fit is shown in 
figure 2.  Regression parameters for partitioning of 
aboveground biomass into leaf and reproductive masses 

were calculated for different crops using the mathematical 
software “TableCurve” (Jandel Scientific, 1991). The 
resulting equations can be used to estimate partitioning of 
newly formed aboveground biomass into leaf, stem, and 
reproductive parts at any time (expressed as GDD, or 
RGD) during the growing season. 

The CROP submodel calculates daily biomass 
production as a function of absorbed photosynthetically 
active radiation, crop radiation use efficiency, leaf area 
index, and an environmental stress factor. Parameters 
developed for the logistic curve were incorporated into 
CROP to partition simulated aboveground biomass into 
leaf, stem, and reproductive masses. Validation data sets 
not involved in deriving the partitioning parameters were 
then used to compare simulated and measured leaf, stem, 
reproductive, and total aboveground masses. 

RESULTS AND DISCUSSION 
The stem and aboveground biomass data that were fit to 

the logistic model for each crop and were the basis for 
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Figure SComparison among partitioning ratios calculated using the regression models (curves), and calculated from measured data (scatter 
pints). Top to bottom: winter wheat, oat, and nee; left to right: leaf, stem, and reproductive masses. Measured ratios gmater than 1.5 or less 
than -0.5 are not shown in the graphs, 
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deriving partitioning functions arc shown in figure 3. In all 
cases, the fit is good with r2 ranging from 0.947 to 0.996. 

The partitioning ratios obtained using the logistic 
regression equations were compared to ratios calculated 
from all measured data. The variability in the partitioning 
ratios derived from measured data was high, with some of 
the ratios being greater than 1.0 or less than 0.0 (figs. 4 
and 5). Although, by definition, partitioning ratios can not 
be greater than 1 or less than 0, the y-axis was plotted with 
a range of -0.5 to 1.5 to show the relative number of data 
points outside of 1 and 0. This illustrates the difficulty in 
calculating partitioning ratios from measured data, Thus it 
was necessary to resort to indirect methods to get 
partitioning equations that are useable. yet general enough 
to apply to different plant parts and different crops. 

Visual examination of figures 4 and 5 indicates that, 
overall, agreement between partitioning ratios derived from 
measured data and calculated from the logistic model is 
generally good. The logistic model represents the measured 
data that were not used in the development of the 
regression model with about the same accuracy as the data 
that were used to derive the regression model. This implies 
that the regression parameters arc relatively stable and do 
not have to be changed to fit data from different years, soil 
types, varieties, management types, etc. The possibility of 
using one set of parameters for a given crop under various 
environmental conditions is important, because CROP will 
he used to calculate parameters of crop cover that influence 

soil loss by wind erosion for disparate regions of the 
United States, and eventually the world. 

The potential for soil loss by wind erosion decreases as 
the amount of plant cover increases. At full canopy cover 
soil loss by wind erosion is negligible. To obtain accurate 
estimates of the protective value of growing plants, the 
model should estimate as accurately as possible leaf and 
stem mass growth during the early vegetative growth 
period. However, it is also necessary for the model to 
adequately estimate aboveground biomass growth 
throughout the growing period, because the accuracy of 
WEPS routines that model processes such as conversion of 
standing biomass to flat biomass, burying flat biomass, and 
decomposing new (and old) biomass, etc., will be 
dependent on the accuracy of biomass estimates made by 
the crop submodel. To test model accuracy, linear 
regressions of simulated on measured leaf, stem, 
reproductive, and aboveground masses were performed for 
five crops. No simulation was made for rice, because of 
lack of data on weather, soils, and management. 

There were statistically significant linear correlations 
between simulated and measured leaf, stem, and 
reproductive masses, with rz ranging from 0.62 to 0.92 
(table 1 ) .  Calculations using the regression of measured on 
simulated leaf mass showed that the model underestimated 
leaf mass below 0.8 tiha and overestimated leaf mass 
above 0.8 tiha. However, the divergence between the 
regression and the 1:1 lines is small for leaf mass values up 
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to about 2 t/ha which indicated that model estimates of leaf 
mass during the earlier part of the vegetative period was 
relatively good while leaf mass during the later part of the 
vegetative growing period was overestimated, particularly 
for wheat. Stem mass was overestimated early and 
underestimated during the later part of the vegetative 
growth period. As in the leaf mass, the divergence between 
the regression and the 1: 1 lines was small during the earlier 
growth period. Again the overestimation of stem mass 
during the later part of the growing season was more severe 
for wheat than for other crops. Agreement among model 
estimated and measured aboveground and reproductive 
masses was good throughout the growing season (fig. 6) .  
The above analysis indicates that overall, reasonably 
accurate estimates of leaf, stem, reproductive, and 
aboveground masses could be obtained for most crops 
using the ratio method, we derived, for partitioning 
aboveground biomass into its components. 

CONCLUSIONS 
Partitioning ratios derived using the logistic model with 

GDD, (or RGD if GDD data is lacking) as the independent 
variable can be used to obtain reasonable estimates of daily 
partitioning values for different plant parts of crops. We 
derived partitioning ratios for six crops and it appears the 
method is applicable to most crops, possibly excluding 
indeterminate crops. The partitioning values derived can be 
used to partition aboveground biomass (in the case of 
WEPS calculated daily by submodel CROP) into leaf, 
stem, and reproductive masses. 
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