subroutine sgbsl (abd, lda, n, ml, mu, ipvt, b, job) C***BEGIN PROLOGUE SGBSL C***PURPOSE Solve the real band system A*X=B or TRANS(A)*X=B using C the factors computed by SGBCO or SGBFA. C***CATEGORY D2A2 C***TYPE SINGLE PRECISION (SGBSL-S, DGBSL-D, CGBSL-C) C***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE C***AUTHOR Moler, C. B., (U. of New Mexico) C***DESCRIPTION C C SGBSL solves the real band system C A * X = B or TRANS(A) * X = B C using the factors computed by SBGCO or SGBFA. C C On Entry C c abd real(lda, n) c the output from sbgco or sgbfa. c c lda integer c the leading dimension of the array abd . c c n integer c the order of the original matrix. c c ml integer c number of diagonals below the main diagonal. c c mu integer c number of diagonals above the main diagonal. c c ipvt integer(n) c the pivot vector from sbgco or sgbfa. c c b real(n) c the right hand side vector. c c job integer c = 0 to solve a*x = b , c = nonzero to solve trans(a)*x = b , where c trans(a) is the transpose. C C On Return C c b the solution vector x . C C Error Condition C C A division by zero will occur if the input factor contains a C zero on the diagonal. Technically, this indicates singularity, C but it is often caused by improper arguments or improper C setting of LDA . It will not occur if the subroutines are C called correctly and if SBGCO has set RCOND .GT. 0.0 C or SGBFA has set INFO .EQ. 0 . C C To compute INVERSE(A) * C where C is a matrix C with P columns C CALL SBGCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z) C If (RCOND is too small) GO TO ... C DO 10 J = 1, P C CALL SGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0) C 10 CONTINUE C C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. C Stewart, LINPACK Users' Guide, SIAM, 1979. C***ROUTINES CALLED SAXPY, SDOT C***REVISION HISTORY (YYMMDD) C 780814 DATE WRITTEN C 890531 Changed all specific intrinsics to generic. (WRB) C 890831 Modified array declarations. (WRB) C 890831 REVISION DATE from Version 3.2 C 891214 Prologue converted to Version 4.0 format. (BAB) C 900326 Removed duplicate information from DESCRIPTION section. C (WRB) C 920501 Reformatted the REFERENCES section. (WRB) C***END PROLOGUE SGBSL integer lda,n,ml,mu,ipvt(*),job real abd(lda,*),b(*) c real sdot,t integer k,kb,l,la,lb,lm,m,nm1 c***first executable statement sgbsl m = mu + ml + 1 nm1 = n - 1 if (job .ne. 0) go to 50 c c job = 0 , solve a * x = b c first solve l*y = b c if (ml .eq. 0) go to 30 if (nm1 .lt. 1) go to 30 do 20 k = 1, nm1 lm = min(ml,n-k) l = ipvt(k) t = b(l) if (l .eq. k) go to 10 b(l) = b(k) b(k) = t 10 continue call saxpy(lm,t,abd(m+1,k),1,b(k+1),1) 20 continue 30 continue c c now solve u*x = y c do 40 kb = 1, n k = n + 1 - kb b(k) = b(k)/abd(m,k) lm = min(k,m) - 1 la = m - lm lb = k - lm t = -b(k) call saxpy(lm,t,abd(la,k),1,b(lb),1) 40 continue go to 100 50 continue c c job = nonzero, solve trans(a) * x = b c first solve trans(u)*y = b c do 60 k = 1, n lm = min(k,m) - 1 la = m - lm lb = k - lm t = sdot(lm,abd(la,k),1,b(lb),1) b(k) = (b(k) - t)/abd(m,k) 60 continue c c now solve trans(l)*x = y c if (ml .eq. 0) go to 90 if (nm1 .lt. 1) go to 90 do 80 kb = 1, nm1 k = n - kb lm = min(ml,n-k) b(k) = b(k) + sdot(lm,abd(m+1,k),1,b(k+1),1) l = ipvt(k) if (l .eq. k) go to 70 t = b(l) b(l) = b(k) b(k) = t 70 continue 80 continue 90 continue 100 continue return end