

Universal Library�

Function Reference

Document Revision 6.5, July, 2005

© Copyright 2005, Measurement Computing Corporation

Your new Measurement Computing product comes with a fantastic extra �

Management committed to your satisfaction!
Refer to www.mccdaq.com/execteam.html for the names, titles, and contact information of each key executive at
Measurement Computing.

Thank you for choosing a Measurement Computing product�and congratulations! You own the finest, and
you can now enjoy the protection of the most comprehensive warranties and unmatched phone tech support.
It�s the embodiment of our two missions:

! To offer the highest-quality, computer-based data acquisition, control, and GPIB hardware and software
available�at the best possible price.

! To offer our customers superior post-sale support�FREE. Whether providing unrivaled telephone
technical and sales support on our latest product offerings, or continuing that same first-rate support on
older products and operating systems, we�re committed to you!

30 Day Money Back Guarantee: You may return any Measurement Computing Corporation product within
30 days of purchase for a full refund of the price paid for the product being returned. If you are not satisfied,
or chose the wrong product by mistake, you do not have to keep it. Please call for an RMA number first. No
credits or returns accepted without a copy of the original invoice. Some software products are subject to a
repackaging fee.

http://www.mccdaq.com/execteam.html

Universal Library Function Reference

ii

These warranties are in lieu of all other warranties, expressed or implied, including any implied warranty of
merchantability or fitness for a particular application. The remedies provided herein are the buyer�s sole and exclusive
remedies. Neither Measurement Computing Corp., nor its employees shall be liable for any direct or indirect, special,
incidental or consequential damage arising from the use of its products, even if Measurement Computing Corp. has been
notified in advance of the possibility of such damages.
Licensing Information
Each original copy of Universal Library is licensed for development use on one CPU at a time. It is theft to make copies of
this program for simultaneous program development. If a customer creates an application using the Universal Library,
they may distribute the necessary runtime files (Universal Library driver files) with their application royalty free. They
may not distribute any files that give their customer the ability to develop applications using the Universal Library.
Trademark, and Copyright Information
MEGA-FIFO, the CIO prefix to data acquisition board model numbers, the PCM prefix to data acquisition board model
numbers, PCM-DAS08, PCM-DAC02, PCM-COM422, PCM-COM485, PCM-DAS16D/12, PCI-DAS6402/16, Universal
Library, InstaCal, Measurement Computing Corporation, and the Measurement Computing logo are either trademarks or
registered trademarks of Measurement Computing Corp.

SoftWIRE and the SoftWIRE logo are registered trademarks of SoftWIRE Technology.

Pentium is a trademark of Intel Corp.

PC is a trademark of International Business Machines Corp.

Microsoft, MS-DOS, Visual Basic, Visual C#, Visual Studio .NET, Windows, and Windows NT are trademarks of
Microsoft Corp.

All other trademarks are the property of their respective owners.

Information furnished by Measurement Computing Corp. is believed to be accurate and reliable. However, no
responsibility is assumed by Measurement Computing Corp. neither for its use; nor for any infringements of patents or
other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any
patent or copyrights of Measurement Computing Corp.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
by any means, electronic, mechanical, by photocopying, recording or otherwise without the prior written permission of
Measurement Computing Corp.

Notice
Measurement Computing Corporation does not authorize any Measurement Computing Corporation product
for use in life support systems and/or devices without the written approval of the CEO of Measurement
Computing Corporation. Life support devices/systems are devices or systems which, a) are intended for
surgical implantation into the body, or b) support or sustain life and whose failure to perform can be
reasonably expected to result in injury. Measurement Computing Corp. products are not designed with the
components required, and are not subject to the testing required to ensure a level of reliability suitable for the
treatment and diagnosis of people.

iii

Table of Contents

Universal Library Functions (16-bit and 32-bit)

1 Overview � Universal Library (16-bit and 32-bit)1
Introduction ... 1
DOS vs. Windows libraries.. 1
Analog I/O functions.. 2
Configuration functions ... 3
Counter functions.. 3
Digital I/O functions... 4
Error handling functions .. 4
Memory board functions ... 4
Revision control functions ... 5
Streamer file functions .. 5
Temperature input functions ... 5
Windows memory management functions .. 5
Miscellaneous functions.. 6
Universal Library example programs .. 6

2 Analog I/O Functions ...13
Introduction ... 13
cbAConvertData() ... 14
cbAConvertPretrigData()... 16
cbACalibrateData() ... 18
cbAIn() .. 19
cbAInScan() .. 20
cbALoadQueue()... 25
cbAOut().. 26
cbAOutScan() ... 27
cbAPretrig()... 29
cbATrig() ... 32

3 Configuration Functions..33
Introduction ... 33
cbGetConfig().. 34
cbGetSignal() .. 38
cbSelectSignal().. 40
cbSetConfig() .. 44
cbSetTrigger() ... 47

4 Counter Functions ...51
Introduction ... 51
cbC7266Config() (32-bit UL only) ... 52
cbC8254Config()... 54
cbC8536Config()... 56
cbC9513Config()... 57
cbC8536Init() .. 60
cbC9513Init() .. 61
cbCFreqIn()... 63
cbCIn() .. 65
cbCIn32() � (32-bit UL Only) ... 66
cbCLoad() ... 67
cbCLoad32()� (32-bit UL Only) ... 69
cbCStatus() � (32-bit UL Only).. 70
cbCStoreOnInt().. 71

5 Digital I/O Functions...73
Introduction ... 73
cbDBitIn() .. 74

Universal Library Function Reference

iv

cbDBitOut() ..75
cbDConfigBit() ...76
cbDConfigPort() ...77
cbDIn()...78
cbDInScan()...79
cbDOut() ..81
cbDOutScan() ..82

6 Error Handling Functions..85
Introduction..85
cbErrHandling()..86
cbGetErrMsg() ...88

7 Memory Board Functions..89
Introduction..89
cbMemRead() ..90
cbMemReadPretrig() ...91
cbMemReset() ...92
cbMemSetDTMode() ...93
cbMemWrite() ..94

8 Revision Control Functions ..95
Introduction..95
cbDeclareRevision() ..96
cbGetRevision() ...98

9 Streamer File Functions ..99
Introduction..99
cbFileAInScan() ...100
cbFileGetInfo() ...102
cbFilePretrig() ..103
cbFileRead() ..105

10 Temperature Input Functions..107
Introduction..107
cbTIn() ...108
cbTInScan() ...110

11 Windows Memory Management Functions..113
Introduction..113
cbWinBufAlloc() ...114
cbWinBufFree()..115
cbWinArrayToBuf() ..116
cbWinBufToArray() ..117

12 Miscellaneous Functions...119
Introduction..119
cbDisableEvent()� (32-bit UL Only) ...120
cbEnableEvent()� (32-bit UL Only) ..121
User Callback function (32-bit UL only) ...123
cbFlashLED()...124
cbFromEngUnits()..125
cbGetBoardName()..126
cbGetStatus() ..127
cbInByte() ..129
cbInWord() ...130
cbOutByte() ...131
cbOutWord() ..132
cbRS485() ...133
cbStopBackground() ..134
cbToEngUnits()..135

Universal Library Function Reference

v

Universal Library for .NET Classes, Methods, and Properties

13 UL for .NET Class Library Overview ...139
MccDaq namespace ... 139
MccDaq classes.. 139

MccBoard class... 139
ErrorInfo class... 140

MccService class .. 141
GlobalConfig class .. 141

Analog I/O methods .. 141
Configuration methods and properties .. 142
Counter methods .. 145
Digital I/O methods ... 146
Error Handling methods and properties .. 146
Memory board methods .. 146
Revision control methods and properties .. 147
Streamer file methods... 147
Temperature input methods .. 147
Windows memory management methods ... 147
Miscellaneous methods, properties, and delegates .. 148
Universal Library for .NET example programs .. 148

14 Analog I/O Methods..155
Introduction ... 155
AConvertData() ... 156
AConvertPretrigData() .. 157
ACalibrateData() ... 159
AIn() .. 160
AInScan() .. 161
ALoadQueue() .. 165
AOut() ... 166
AOutScan() ... 167
APretrig()... 169
ATrig() ... 172

15 Configuration Methods and Properties ..173
Introduction ... 173
BoardConfig property.. 174

BoardConfig.DACUpdate().. 174
BoardConfig.GetBaseAdr() ... 174
BoardConfig.GetBoardType().. 175
BoardConfig.GetCiNumDevs() .. 175
BoardConfig.GetClock() .. 175
BoardConfig.GetDACStartup() .. 176
BoardConfig.GetDACUpdateMode() ... 176
BoardConfig.GetDiNumDevs() .. 177
BoardConfig.GetDmaChan() ... 177
BoardConfig.GetDtBoard() .. 177
BoardConfig.GetIntLevel()... 178
BoardConfig.GetNumAdChans() ... 178
BoardConfig.GetNumDaChans()... 178
BoardConfig.GetNumExps().. 179
BoardConfig.GetNumIoPorts() .. 179
BoardConfig.GetRange()... 179
BoardConfig.GetUsesExps() ... 180
BoardConfig.GetWaitState().. 180
BoardConfig.SetBaseAdr().. 180
BoardConfig.SetClock()... 181
BoardConfig.SetDmaChan() ... 181
BoardConfig.SetDACStartup() .. 181
BoardConfig.SetDACUpdateMode().. 182
BoardConfig.SetIntLevel() ... 183

Universal Library Function Reference

vi

BoardConfig.SetNumAdChans() ..183
BoardConfig.SetRange()..183
BoardConfig.SetWaitState()...184

BoardNum property ...185
CtrConfig property ...186

CtrConfig.GetCtrType() ..186
DioConfig property...187

DioConfig.GetDInMask() ..187
DioConfig.GetDOutMask() ...188
DioConfig.GetConfig()..188
DioConfig.GetCurVal() ...189
DioConfig.GetDevType()..189
DioConfig.GetNumBits() ..189

ExpansionConfig property ...191
ExpansionConfig.GetBoardType() ...191
ExpansionConfig.GetCjcChan() ...192
ExpansionConfig.GetMuxAdChan1() ...192
ExpansionConfig.GetMuxAdChan2() ...192
ExpansionConfig.GetNumExpChans()...193
ExpansionConfig.GetRange1() ..193
ExpansionConfig.GetRange2() ..194
ExpansionConfig.GetThermType() ..194
ExpansionConfig.SetCjcChan() ...194
ExpansionConfig.SetMuxAdChan1() ...195
ExpansionConfig.SetMuxAdChan2() ...195
ExpansionConfig.SetRange1()...196
ExpansionConfig.SetRange2()...196
ExpansionConfig.SetThermType()...196

GetSignal() ..198
NumBoards property..200
NumExpBoards property ...200
SelectSignal() ..201
SetTrigger() ...205
Version property ..208

16 Counter Methods..209
Introduction..209
C7266Config() ...210
C8254Config() ...212
C8536Config() ...213
C8536Init() ...214
C9513Config() ...215
C9513Init() ...218
CFreqIn() ...220
CIn()...222
CIn32()...223
CLoad()..224
CLoad32()..226
CStatus() ...228
CStoreOnInt() ..229

17 Digital I/O Methods...231
Introduction..231
DBitIn() ..232
DBitOut()..233
DConfigBit() ...234
DConfigPort()...235
DIn()...236
DInScan() ..237
DOut()..239
DOutScan()..240

Universal Library Function Reference

vii

18 Error Handling Methods and Properties...243
Introduction ... 243
ErrHandling()... 244
Message property ... 246
Value property... 247

19 Memory Board Methods...249
MemRead() ... 250
MemReadPretrig() .. 251
MemReset() .. 252
MemSetDTMode() .. 253
MemWrite() ... 254

20 Revision Control Methods and Properties ...255
Introduction ... 255
DeclareRevision() ... 256
GetRevision() .. 257

21 Streamer File Methods...259
Introduction ... 259
FileAInScan() .. 260
FileGetInfo() .. 262
FilePretrig() ... 263
FileRead() ... 265

22 Temperature Input Methods ..267
Introduction ... 267
TIn() .. 268
TInScan() .. 271

23 Windows Memory Management Methods ..275
Introduction ... 275
WinBufAlloc() .. 276
WinBufFree()... 277
WinArrayToBuf() ... 278
WinBufToArray() ... 279

24 Miscellaneous Methods, Properties, and Delegates281
Introduction ... 281
BoardName property... 282
DisableEvent() .. 283
EnableEvent() ... 284
EventCallback delegate .. 286
FlashLED().. 287
FromEngUnits()... 288
GetBoardName()... 289
GetStatus().. 290
InByte() ... 292
InWord() .. 293
OutByte()... 294
OutWord() ... 295
RS485() .. 296
StopBackground() ... 297
ToEngUnits()... 298

Appendix

Error Codes...301

Universal Library Functions
(16-bit and 32-bit)

1

1
Overview � Universal Library (16-bit and 32-bit)

Introduction
This section contains a complete, detailed explanation of all Universal Library functions. This chapter briefly
explains each function, and provides you with a general idea of the capability of the Universal Library. We
highly recommend that you refer to one of the many example programs provided. These programs present a
"hands-on" explanation of the various functions, as well as providing you with a starting point from which to
write your own programs.

DOS vs. Windows libraries
The function prototypes shown in this manual are those used in a 32 bit Windows application. The form of
these prototypes follows very closely to that of the DOS prototypes. The most noticeable difference is the use
of the memory handle argument (MemHandle) in place of the array argument (ADData() for example) seen in
the DOS prototypes.

If you are using a DOS platform, use the header files and example programs provided for the DOS language
you are using as a guide for the library syntax.

16-bit vs. 32-bit libraries

Universal Library is available in 16- and 32-bit versions. Unless you have a specific reason for using the 16-
bit library (such as required compatibility with Windows 3.x or DOS), use the 32-bit library. The two versions
are nearly identical, but there are important differences. An explanation of the major differences between the
two follows:

! The 32-bit library is compatible with the latest operating systems. Operating systems such as
Windows NT and Windows 2000 require the 32-bit interface provided by the 32-bit version of the
Universal Library.

! Although most UL functions are supported in both versions of the Universal Library, the 32-bit version
has additional features not found in the 16-bit library. Those few functions that are not supported in the
16-bit version of UL are identified in this manual.

! Most UL functions reference a board number. This number is limited to 0 to 9 in the 16-bit version. The
32-bit version of UL supports board numbers from 0 to 99.

! There may be differences in the data types for the 16- and 32-bit versions of a function. For C++
programmers, the majority of the data type differences are handled by the programming environment and
no action is required by the user. The differences are more pronounced using Visual Basic. If you are
using the 16-bit version of the library, refer to the header files for the language you are using to determine
the appropriate data types.

Either the 16-bit or the 32-bit version may be used in Windows 95 and 98 systems. However, Windows 3.x
and DOS systems are limited to the 16-bit version.

Again, unless you have specific reasons for using the 16-bit version, we strongly recommend using the 32-bit
version.

Overview � Universal Library (16-bit and 32-bit) Analog I/O functions

2

Analog I/O functions
These functions perform analog input or analog output.

Most PCI boards that support analog input and output scanning allow for simultaneous analog input and
output scans (32-bit UL only). However, for most older boards, analog input scans (cbAInScan() and
cbAPretrig()) cannot operate while an analog output scan (cbAOutScan()) is active.

! cbAIn() - Takes a single reading from an analog input channel (A/D).

! cbAInScan() - Repeatedly scans a range of analog input (A/D) channels. You can specify the channel
range, the number of iterations, the sampling rate, and the A/D range. The data that is collected is stored
in an array.

! cbALoadQueue() - Loads a series of chan/gain pairs into A/D board's queue. These chan/gains are used
with all subsequent analog input functions.

! cbAOut() - Outputs a single value to an analog output (D/A).

! cbAOutScan() - Repeatedly scans a range of analog output (D/A) channels. You can specify the channel
range, the number of iterations, and the rate. The data values from consecutive elements of an array are
sent to each D/A channel in the scan.

! cbAPretrig() - Repeatedly scans a range of analog input (A/D) channels waiting for a trigger signal.
When a trigger occurs, it returns the specified number of samples and points before the trigger occurred.
You can specify the channel range, the sampling rate, and the A/D range. All of the data that is collected
is stored in an array.

! cbATrig() - Reads the analog input and waits until it goes above or below a specified threshold. When the
trigger condition is met, the current sample is returned.

! cbAConvertData() - Converts raw analog data into 12-bit A/D values. Each raw sample from analog
input is a 16-bit value. For many 12-bit A/D boards, the raw data is a 16-bit value that contains a 12-bit
A/D value and a 4-bit channel tag. This function is not intended for use with 16-bit A/D boards.

This conversion is handled automatically by the cbAIn() function. It can also be done automatically by
the cbAInScan() function with the CONVERTDATA option. In some cases though, it may be useful or
necessary to collect the data and then do the conversion sometime later. The cbAConvertData()
function takes a buffer full of unconverted data and converts it.

! cbACalibrateData() - Calibrates analog data. Each raw sample from a board with software calibration
factors that must be applied to the sample may be acquired and calibrated, then passed to an array.
Alternatively, they can be acquired then passed to the array without calibration. When this second method
is used, cbACalibrateData() may be used to apply the calibration factors to an array of data after the
acquisition is complete. The only case where you would withhold calibration until after the acquisition
run was complete is on slower CPUs, or when the processing time is at a premium. Applying calibration
factors in real time on a per sample basis does eat up machine cycles.

To disable the automatic calibration so that you may apply the calibration later, specify the
NOCALIBRATEDATA option when collecting data with cbAInScan().

! cbAConvertPretrigData() - Converts and re-orders pre-trigger data from data plus channel tags to
separate the data and channel tags.

When data is collected with the cbAPretrig() function, the same data conversion needs to be done as is
performed by the cbAConvertData() function. There is a further complication because cbAPretrig()
collects analog data into an array. It treats the array like a circular buffer. While it is waiting for the
trigger to occur, it fills the array. When it gets to the end it resets to the start and begins again. When the
trigger signal occurs it continues collecting data into the circular buffer until the requested number of
samples have been collected.

Overview � Universal Library (16-bit and 32-bit) Configuration functions

3

When the data acquisition is complete, all of the data is in the array but it is in the wrong order. The first
element of the array does not contain the first data point. The data has to be rotated in the correct order.

This conversion can be done automatically by the cbAPretrig() function with the CONVERTDATA option.
In some cases though, it may be useful or necessary to collect the data and then do the conversion
sometime later. The cbAConvertPretrigData() function takes a buffer full of unconverted data,
converts it, and arranges the data in the correct order.

Configuration functions
The configuration information for all boards is stored in the configuration file CB.CFG. This information is
loaded from CB.CFG by all programs that use the library. The library includes the following functions to
retrieve or change configuration options:

! cbGetConfig() - Returns the current value for a specified configuration option.

! cbSetConfig() - Sets the current value for a specified configuration option.

! cbGetSignal() - Retrieves the configured auxiliary or DAQ Sync connection and polarity for the
specified timing and control signal. This function is intended for advanced users.

! cbSelectSignal() - Configures timing and control signals to use specific auxiliary or DAQ Sync
connections as a source or destination. This function is intended for advanced users.

! cbSetTrigger() - Sets up trigger parameters used with the EXTTRIGGER option for cbAInScan().

Counter functions

Counter functions load, read, and configure counters. There are five types of counter chips used in MCC
counter boards: 8254's, 8536's, 7266's, 9513's, and generic event counters. Some of the counter commands
only apply to one type of counter.

! cbC7266Config() - Selects the operating mode of an LS7266 counter. (Not available in 16 bit version of
library.)

! cbC8254Config() - Selects the operating mode of the 8254 counter.

! cbC8536Config() - Selects the operating mode of the 8536 counter.

! cbC8536Init() - Initializes and selects all of the chip-level features for a 8536 counter board. The options
set by this command are associated with each counter chip, not the individual counters within it.

! cbC9513Config() - Sets the operating mode of the 9513 counter. This function sets all of the
programmable options that are associated with a 9513 counter. It is similar in purpose to
cbC8254Config() except that it is used with a 9513 counter.

! cbC9513Init() - Initializes and selects all of the chip level features for a 9513 counter board. The options
set by this command are associated with each counter chip, not the individual counters within it.

! cbCFreqIn() - Measures the frequency of a signal by counting it for a specified period of time
(GateInterval), and then converting the count to count/sec (Hz). This function only works with 9513
counters.

! cbCIn() - Reads a counter's current value.

! cbCIn32() - Reads a counter's current value as a 32-bit integer. Used primarily with LS7266 counters.

! cbCLoad() - Loads a counter with an initial count value.

! cbCLoad32() -Loads a counter with a 32-bit integer initial value. Used primarily with LS7266 counters.

Overview � Universal Library (16-bit and 32-bit) Digital I/O functions

4

! cbCStatus() - Read the counter status of a counter. Returns various bits that indicate the current state of a
counter. (Not available in 16 bit library - currently only applies to LS7266 counters).

! cbCStoreOnInt() - Installs an interrupt handler that stores the current count whenever an interrupt occurs.
This function only works with 9513 counters.

Digital I/O functions
The digital I/O functions perform digital input and output operations on various types of digital I/O ports.

! cbDBitIn() - Reads a single bit from a digital input port.

! cbDBitOut() - Sets a single bit on a digital output port.

! cbDConfigBit() - Configures a specific digital bit as input or output.

! cbDConfigPort() - Selects whether a digital port is an input or an output.

! cbDIn() - Reads a specified digital input port.

! cbDInScan() - Reads a specified number of bytes or words from a digital input port at a specified rate.

! cbDOut() - Writes a byte to a digital output port.

! cbDOutScan() - Writes a series of bytes or words to a digital output port at a specified rate.

Error handling functions

All library functions return error codes. The Universal Library includes two functions for handling errors. The
different methods built into the functions for handling errors include stopping the program when an error
occurs, and printing error messages versus error codes.

! cbErrHandling() - Sets the method of reporting and handling errors for all function calls.

! cbGetErrMsg() - Returns the error message associated with a specific error code.

Memory board functions
The memory board functions read and write data to and from a memory board, and also set modes that control
memory boards (MEGA-FIFO).

The most common use for the memory boards is to store large amounts of data from an A/D board via a DT-
Connect cable between the two boards. To do this, use the EXTMEMORY option with cbAInScan() or
cbAPretrig().

Once the data has been transferred to the memory board, you can use the memory functions to retrieve it.

! cbMemSetDTMode() - Sets DT-Connect mode on a memory board. Memory boards have a DT-Connect
interface which can be used to transfer data through a cable between two boards rather than through the
PC's system memory. The DT-Connect port on the memory board can be configured as either an input
(from an A/D) or as an output (to a D/A). This function configures the port to one of these settings.

! cbMemReset() - Resets the memory board address. The memory board is organized as a sequential
device. When data is transferred to the memory board, it is automatically put in the next address location.
This function resets the current address to the location 0.

! cbMemRead() - Reads a specified number of points from a memory board starting at a specified address.

! cbMemWrite() - Writes a specified number of points to a memory board starting at a specified address.

Overview � Universal Library (16-bit and 32-bit) Revision control functions

5

! cbMemReadPretrig() - Reads data collected with cbAPretrig(). The cbAPretrig() function writes the
pre-triggered data to the memory board in a scrambled order. This function unscrambles the data and
returns it in the correct order.

Revision control functions
As new revisions of the library are released, bugs from previous revisions are fixed and occasionally new
functions are added. It is the manufacturers goal to preserve existing programs you have written and therefore
to never change the order or number of arguments in a function. However, sometimes it is not possible to
achieve this goal.

The revision control function initializes the DLL so that the functions are interpreted according to the format
of the revision you wrote and compiled your program in.

! cbDeclareRevision() - Declares the revision # of the Universal Library that your program was written
with.

! cbGetRevision() - Returns the version number of the installed Universal Library.

Streamer file functions

The streamer file functions explained below create, fill, and read streamer files.

! cbFileAInScan() - Transfer analog input data directly to file. Very similar to cbAInScan() except that the
data is stored in a file instead of an array.

! cbFilePretrig() - Pre-triggered analog input to a file. Very similar to cbAPretrig() except that the data is
stored in a file instead of an array.

! cbFileGetInfo() - Reads streamer file information on how much data is in the file, and the conditions
under which it was collected (sampling rate, channels, etc.).

! cbFileRead() - Reads a selected number of data points from a streamer file into an array.

Temperature input functions

The temperature sensor functions convert a raw analog input from an EXP or other temperature sensor board
to temperature.

! cbTIn() - Reads a channel from a digital input board, filters it (if specified), determines the cold junction
compensation, linearizes and converts it to temperature.

! cbTInScan() - Scans a range of temperature inputs. Reads input temperatures from a range of channels,
and returns the temperature values in an array.

Windows memory management functions
The Windows memory management functions are only available and needed in the Windows version of the
library. These functions take care of allocating, freeing and copying to/from Windows global memory buffers.
These functions are not used in VEE since VEE handles memory allocation. For customers wishing to
customize memory management under VEE, the source code to CBV.DLL and CBV32.DLL is available.
Please call technical support and request it.

! cbWinBufAlloc() - Allocates a Windows memory buffer.

! cbWinBufFree() - Frees a Windows buffer.

! cbWinArrayToBuf() - Copies data from an array to a Windows buffer.

Overview � Universal Library (16-bit and 32-bit) Miscellaneous functions

6

! cbWinBufToArray() - Copies data from a Windows buffer to an array.

Miscellaneous functions

These functions do not as a group fit into a single category. They get and set board information, convert units,
manage events and background operations, and perform serial communication operations.

! cbDisableEvent() - Disables one or more events set up with cbEnableEvent() and disconnects their user-
defined handlers.

! cbEnableEvent() - Binds one or more event conditions to a user-defined callback function.

! User Callback Function � Defines the prototype for the user function for cbEnableEvent(). This defines
the format for the user-defined handlers to be called when the events set up using cbEnableEvent()
occurs.

! cbFlashLED() - Causes the LED on a USB to flash.

! cbFromEngUnits() - Converts a voltage (or current) to a D/A count value.

! cbGetBoardName() - Returns the name of a specified board.

! cbGetStatus() - Returns the status of a background operation. Once a background operation starts, your
program needs to periodically check on its progress. This function returns the current status of the
process.

! cbInByte() - Reads a byte from a hardware register on a board.

! cbInWord() - Reads a word from a hardware register on a board.

! cbOutByte() - Writes a byte to a hardware register on a board.

! cbOutWord() - Writes a word to a hardware register on a board.

! cbRS485() - Sets the transmit and receive buffers on an RS485 port.

! cbStopBackground() - Stop a background process. It is sometimes necessary to stop a background
process even though the process has been set up to run continuously. This function stops a background
process that is running. cbStopBackground()should be executed after normal termination of all
background functions in order to clear variables and flags.

! cbToEngUnits() - Converts a count value from an A/D to voltage (or current).

Universal Library example programs
Universal Library contains many example programs to aid the user in learning and applying UL functions. We
strongly recommend running appropriate example programs before attempting to use the functions.

Table 1-1 lists Universal Library example programs sorted by the program name. It includes their featured
function calls, special aspects, and other function calls included in the program. All example programs include
cbDeclareRevision() and cbErrHandling() functions. Table 1-2 lists the Universal Library example
programs sorted by the function name.

CWIN sample programs
The CWIN sample program directory contains programs A101, A102 and A103 only.

Overview � Universal Library (16-bit and 32-bit) Universal Library example programs

7

Table 1-1. UL Example Programs � Sorted By Program Name
Program
Name

Featured UL Function
Call

Notes Other UL Function
Calls

ULAI01 cbAIn cbToEngUnits()
ULAI02 cbAInScan FOREGROUND mode cbWinBufToArray()

cbWinBufFree()
cbWinBufAlloc()

ULAI03 cbAInScan BACKGROUND mode cbGetStatus()
cbStopBackground()
cbWinBufToArray()
cbWinBufFree()
cbWinBufAlloc()

ULAI04 cbAConvertData cbAInScan()
cbGetStatus()
cbStopBackground()
cbWinBufToArray()
cbWinBufFree()
cbWinBufAlloc()

ULAI05 cbAInScan with manual data conversion cbGetStatus()
cbStopBackground()
cbWinBufToArray()
cbWinBufFree()
cbWinBufAlloc()()

ULAI06 cbAInScan CONTINUOUS
BACKGROUND mode

cbAConvertData
cbGetStatus()
cbStopBackground()
cbWinBufToArray()
cbWinBufFree()
cbWinBufAlloc()

ULAI07 cbATrig cbFromEngUnits()
ULAI08 cbAPretrig cbWinBufToArray()

cbWinBufFree()
cbWinBufAlloc()

ULAI09 cbAConvertPretrigData BACKGROUND cbAPretrig()
cbGetStatus()
cbStopBackground()
cbWinBufToArray()
cbWinBufFree()
cbWinBufAlloc()

ULAI10 cbALoadQueue cbAInScan()
cbWinBufToArray()
cbWinBufFree()
cbWinBufAlloc()

ULAI11 cbToEngUnits cbAIn()
ULAI12 cbAInScan EXTCLOCK mode cbWinBufToArray()

cbWinBufFree()
cbWinBufAlloc()

ULAI13 cbAInScan Various sampling mode options cbWinBufToArray()
cbWinBufFree()
cbWinBufAlloc()

Overview � Universal Library (16-bit and 32-bit) Universal Library example programs

8

Program
Name

Featured UL Function
Call

Notes Other UL Function
Calls

ULAI14 cbSetTrigger with EXTTRIGGER selected cbAInScan()
cbFromEngUnits()
cbWinBufToArray()
cbWinBufFree()
cbWinBufAlloc()

ULAIO01 cbAInScan
cbAOutScan

Concurrent analog input and analog output
scans

cbGetStatus ()
cbStopBackground()
cbWinArraytoBuf()
cbWinBufToArray()
cbWinBufFree()
cbWinBuftoAlloc()

ULAO01 cbAOut cbFromEngUnits()
ULAO02 cbAOutScan cbWinBufToArray()

cbWinBufFree()
cbWinBufAlloc()

ULAO03 cbAOut
cbSetConfig

Demonstrates the difference between
BIDACUPDATEMODE settings of
UPDATEIMMEDIATE and UPDATEONCOMMAND.
Board 0 must support BIDACUPDATEMODE
settings, such as the PCI-DAC6700 Series
boards.

cbFromEngUnits()

ULCT01 cbC8254Config cbCLoad()
cbCIn()

ULCT02 cbC9513Init
cbC9513Config

 cbCLoad()
cbCIn()()

ULCT03 cbCStoreOnInt cbC9513Init
cbC9513Config()
cbCLoad()
cbCIn()

ULCT04 cbCFreqIn cbC9513Init()
ULCT05 cbC8536Init

cbC8536Config
 cbCLoad()

cbCIn()
ULCT06 cbC7266Config cbCLoad32 ()

cbCIn32()
cbCStatus()

ULDI01 cbDIn cbDConfigPort()
ULDI02 cbDBitIn cbDConfigPort()
ULDI03 cbDInScan cbDConfigPort()

cbGetStatus()
cbStopBackground()
cbWinBufToArray()
cbWinBufFree()
cbWinBufAlloc()

ULDI04 cbDIn using the AUXPORT
ULDI05 cbDBitIn using the AUXPORT
ULDI06 cbDConfigBit cbDBitIn()
ULDO01 cbDOut cbDConfigPort()
ULDO02 cbDBitOut cbDOut()

cbDConfigPort()
ULDO04 cbDOut using the AUXPORT
ULDO05 cbDBitOut using the AUXPORT cbDOut()
ULEV01* cbEnableEvent using ONEXTERNALINTERRUPT cbDisableEvent()

cbDConfigPort()
cbDIn()

Overview � Universal Library (16-bit and 32-bit) Universal Library example programs

9

Program
Name

Featured UL Function
Call

Notes Other UL Function
Calls

ULEV02* cbEnableEvent using ON_SCAN_ERROR,
ON_DATA_AVAILABLE and
ON_END_OF_AI_SCAN

cbAInScan()
cbStopBackground()
cbToEngUnits()
cbWinBufAlloc()
cbWinBufFree()
cbWinBufToArray()

ULEV03* cbEnableEvent using
ON_SCAN_ERROR,ON_PRETRIGGER, and
ON_END_OF_AI_SCAN

cbAPretrig()
cbAConvertPretrigData
cbDConfigPort()
cbDOut()
cbStopBackground()
cbToEngUnits()
cbWinBufAlloc()
cbWinBufFree()
cbWinBufToArray()

ULEV04* cbEnableEvent() using ON_END_OF_AO_SCAN cbAOutScan()
cbDConfigPort()
cbDOut()
cbFromEngUnits()
cbStopBackground()
cbWinBufAlloc()
cbWinBufFree()
cbWinBufToArray()

ULFI01 cbFileAInScan() cbFileGetInfo()
ULFI02 cbFileRead() cbFileAInScan()

cbFileGetInfo()
ULFI03 cbFilePretrig() cbFileGetInfo()

cbFileRead()
ULGT01 cbGetErrMsg() cbAIn()
ULGT03 cbGetConfig() cbGetBoardName()
ULGT04 cbGetBoardName() cbGetConfig()
ULMBDI01 cbDIn() Reads a digital input port on a MetraBus card
ULMBDI02 cbDBitIn() Reads the status of a single digital input bit

from a MetraBus card

ULMBDO01 cbDOut() Writes a byte to a digital output port on a
MetraBus card

ULMBDO02 cbDBitOut() Sets the state of a single digital output bit for a
MetraBus card

ULMM01 cbMemReadPretrig() cbAPretrig()
ULMM02 cbMemRead()

cbMemWrite()

ULMM03 cbAInScan() With the EXTMEMORY option cbMemReset()
cbMemRead()

ULTI01 cbTIn() cbGetConfig()
ULTI02 cbTInScan() cbGetConfig()
*Sample programs ULEV01, ULEV02, ULEV03 and ULEV04 are not available for the C Console.

Overview � Universal Library (16-bit and 32-bit) Universal Library example programs

10

Table 1-2. UL Example Programs � Sorted By Function
UL Function Call UL Example

Program Name
Special Features / Notes

cbAConvertData() ULAI04
ULA106

cbAConvertPretrigData() ULAI09
ULEV03*

cbACalibrateData() None No example programs at this time
cbAIn() ULAI01 ULGT01

ULAI11

cbAInScan() ULAI02 ULAI10
ULAI03 ULAI12
ULAI04 ULAI13
ULAI05 ULAI14
ULAI06 ULMM03
ULEV02*

FOREGROUND, BACKGROUND mode with manual data conversion
CONTINUOUS BACKGROUND mode
EXTCLOCK mode
Various sampling mode options

cbALoadQueue() ULAI10
cbAOut() ULAO01

ULAO03
ULAO03 demonstrates the difference between
BIDACUPDATEMODE settings of UPDATEIMMEDIATE and
UPDATEONCOMMAND. Board 0 must support BIDACUPDATEMODE
settings, such as the PCI-DAC6700 Series.

cbAOutScan() ULAO02
ULAIO01
ULEV04*

cbAPretrig() ULAI08 ULEV03*
ULAI09 ULMM01
ULFI03

cbATrig() ULAI07
ULMM01

cbC7266Config() ULCT06
cbC8254Config() ULCT01
cbC8536Config() ULCT05
cbC8536Init() ULCT05
cbC9513Config() ULCT02

ULCT03

cbC9513Init() ULCT02 ULCT04
ULCT03

cbCFreqIn() ULCT04
cbCIn() ULCT01 ULCT05

ULCT02

cbCIn32() ULCT06
cbCLoad() ULCT01 ULCT03

ULCT02 ULCT05

cbCLoad32() ULCT06
cbCStoreOnInt() ULCT03
cbCStatus() ULCT06
cbDBitIn() ULDI02 ULDI06

ULDI05
ULMBDI02

cbDBitOut() ULDO02
ULDO05
ULMBDO02

Overview � Universal Library (16-bit and 32-bit) Universal Library example programs

11

UL Function Call UL Example
Program Name

Special Features / Notes

cbDConfigBit() ULDI06
cbDConfigPort() ULDI01 ULDO01

ULDI02 ULDO02
ULDI03 ULDO05
ULEV01* ULEV04*
ULEV03*

cbDIn() ULDI01 ULDI04
ULDI03
ULMBDI01
ULEV04*

cbDInScan() ULDI03
cbDOut() ULDO01 ULDO05

ULDO02
ULMBDO01
ULDO04
ULMBDO02
ULEV03* ULEV04*

cbDOutScan() None No example programs at this time
cbEnableEvent()
cbDisableEvent()

ULEV01* ULEV03*
ULEV02* ULEV04*

ON_EXTERNAL_INTERRUPT
ON_DATA_AVAILABLE
ON_PRETRIGGER
ON_END_OF_AO_SCAN
ON_SCAN_ERROR
ON_END_OF_AI_SCAN

cbMemRead() ULMM01 ULMM03
ULMM02

cbMemReadPretrig() ULMM01
cbMemReset() ULMM03
cbMemSetDTMode() None No example programs at this time
cbMemWrite() ULMM02
cbRS485() None No example programs at this time
cbGetBoardName() ULGT03

ULGT04

cbErrHandling() All Samples All example programs use this function
cbGetErrMsg() ULGT01
cbGetStatus() ULAI03 ULAI06

ULAI04 ULAI09
ULAI05 ULCT03
ULAIO01
ULDI03

cbInByte() None No example programs at this time
cbInWord() None No example programs at this time
cbOutByte() None No example programs at this time
cbOutWord() None No example programs at this time
cbGetConfig() ULGT03 ULTI01

ULGT04 ULTI02

cbSetConfig() ULAO03 Demonstrates the difference between BIDACUPDATEMODE
settings of UPDATEIMMEDIATE and UPDATEONCOMMAND.
Board 0 must support BIDACUPDATEMODE settings, such as the
PCI-DAC6700 Series boards.

cbSetTrigger() ULAI14

Overview � Universal Library (16-bit and 32-bit) Universal Library example programs

12

UL Function Call UL Example
Program Name

Special Features / Notes

cbStopBackground() ULAI03 ULAI06
ULAI04 ULAI09
ULAI05 ULCT03
ULAIO01 ULDI03
ULEV02* ULEV03*
ULEV04*

Concurrent cbAInScan() and cbAOutScan()

cbToEngUnits() ULAI01 ULAI11
ULAI07 ULEV02*
ULEV03*

cbFromEngUnits() ULAI01 ULAO03
ULAI07 ULEV04*
ULAI14

cbDeclareRevision() All Samples All example programs use this function
cbGetRevision() None No example programs at this time
cbFileAInScan() ULFI01

ULFI02

cbFilePretrig() ULFI03
cbFileRead() ULFI02

ULFI03

cbTIn() ULTI01
cbTInScan() ULTI02
cbWinBufAlloc()
cbWinBufFree()
cbWinBufToArray()

ULAI01 ULAI10
ULAI02 ULAI12
ULAI03 ULAI13
ULAI04 ULAI14
ULAI05
ULAI06 ULAO02
ULAI08 ULCT03
ULAI09 ULDI03
ULEV02* ULEV03*

ULEV04*

(cbWinBufAlloc()
and
cbWinBufFree()
only)

cbWinArrayToBuf() ULAI01
ULAO02
ULEV04*

*Sample programs ULEV01, ULEV02, ULEV03 and ULEV04 are not available for the C Console.

13

2
Analog I/O Functions

Introduction
The functions explained in this chapter handle analog input, analog output and analog data manipulation. To
determine which of these functions are compatible with your hardware, refer to the Universal Library User�s
Guide (available in PDF format on our website at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

Most of the functions in this section provide options that may not be compatible with your hardware. Again,
you should refer to the Universal Library User�s Guide to determine if the options you are considering using
with a particular function are compatible with your hardware.

Table 2-1 below lists the constants you can use in the Range argument found in most of the functions
explained in this chapter. These values are also used in the cbALoadQueue() function's GainArray
argument. Valid ranges for your hardware are listed in the Universal Library User�s Guide.

Table 2-1. Range constants
UL settings Value UL settings Value
BIP20VOLTS ±20 volts (V) UNI10VOLTS 0 to 10 V
BIP10VOLTS ±10 V UNI5VOLTS 0 to 5 V
BIP5VOLTS ±5 V UNI2PT5VOLTS 0 to 2.5 V
BIP4VOLTS ±4 V UNI2VOLTS 0 to 2 V
BIP2PT5VOLTS ±2.5 V UNI1PT25VOLTS 0 to 1.25 V
BIP2VOLTS ±2 V UNI1PT67VOLTS 0 to 1.67 V
BIP1PT25VOLTS ±1.25 V UNI1VOLTS 0 to 1 V
BIP1VOLTS ±1 V UNIPT5VOLTS 0 to 0.5 V
BIP1PT67VOLTS ±1.67 V UNIPT25VOLTS 0 to 0.25 V
BIPPT625VOLTS ±0.625 V UNIPT2VOLTS 0 to 0.2 V
BIPPT5VOLTS ±0.5 V UNIPT1VOLTS 0 to 0.1 V
BIPPT25VOLTS ±0.25 V UNIPT01VOLTS 0 to 0.01 V
BIPPT2VOLTS ±0.2 V UNIPT02VOLTS 0 to 0.02 V
BIPPT1VOLTS ±0.1 V MA4TO20 4 to 20 milliamperes (mA)
BIPPT05VOLTS ±0.05 V MA2TO10 2 to 10 mA
BIPPT01VOLTS ±0.01 V MA1TO5 1 to 5 mA
BIPPT005VOLTS ±0.005 V MAPT5TO2PT5 0.5 to 2.5 mA
 MA0TO20 0 to 20 mA

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Analog I/O Functions cbAConvertData()

14

cbAConvertData()
Changed R3.3 RW

Converts the raw data collected by cbAInScan() into 12-bit A/D values. The cbAInScan() function can
return either raw A/D data or converted data, depending on whether or not the CONVERTDATA option is used.
For many 12-bit A/D boards, the raw data is a 16-bit value that contains a 12-bit A/D value and a 4 bit
channel tag (refer to the board-specific information or the board's user manual). The converted data consists of
just the 12-bit A/D value.

Function prototype:

C/C++: int cbAConvertData (int BoardNum, long NumPoints, unsigned short
ADData[], unsigned short ChanTags[])

Visual Basic: Function cbAConvertData(ByVal BoardNum&, ByVal NumPoints&, ADData%,
ChanTags%) As Long

Delphi: function cbAConvertData (BoardNum:Integer; NumPoints:Longint; var
ADData:Word; var ChanTags:Word):Integer;

Arguments:

BoardNum The board number used to collect the data. BoardNum may be 0 to 99 (0 to 9 for 16-
bit version of Universal Library). Refers to the number associated with the board
used to collect the data when it was installed with the InstaCal® configuration
program.

NumPoints Number of samples to convert

ADData Pointer or reference to start of data array

ChanTags Pointer or reference to start of channel tag array

Returns:
Error code or 0 if no errors.

ADData - converted data.

ChanTags - channel tags if available.

When collecting data using cbAInScan() without the CONVERTDATA option, use this function to convert the
data after it has been collected. There are cases where the CONVERTDATA option is not allowed. For example - if
you are using both the DMAIO and BACKGROUND option with cbAInScan(). In those cases this function
should be used to convert the data after the data collection is complete.

For some boards, each raw data point consists of a 12-bit A/D value with a 4-bit channel number. This
function pulls each data point apart and puts the A/D value into the ADData array and the channel number into
the ChanTags array.

Notes:

12-bit A/D boards

! Name of the array must match that used in cbAInScan()or cbWinBufToArray().

! Upon returning from cbAConvertData(), ADData array contains only 12-bit A/D data.

Analog I/O Functions cbAConvertData()

15

16-bit A/D boards

This function is not for use with 16-bit A/D boards because 16-bit boards do not have channel tags. The
argument BoardNum was added in revision 3.3 to prevent applying this function to 16-bit data. If you wrote
your program for a 12-bit board then later upgrade to a 16-bit board all you need change is the InstaCal
configuration file. If this function is called for a 16-bit board, it is simply ignored. No errors are generated.

Analog I/O Functions cbAConvertPretrigData()

16

cbAConvertPretrigData()
Changed R3.3 RW

Converts the raw data collected by cbAPretrig(). The cbAPretrig() function can return either raw
A/D data or converted data, depending on whether or not the CONVERTDATA option was used. The raw data as it
is collected is not in the correct order. After the data collection is completed it must be rearranged into the
correct order. This function correctly orders the data also, starting with the first pretrigger data point and
ending with the last post-trigger point.

Change at revision 3.3 is to support multiple background tasks. It is now possible to run two boards with
DMA or REP-INSW background convert-and-transfer features active, therefore, the convert function must
know which board the data came from. The data value assigned to BoardNum should be assigned in the header
file so it will be easy to locate if a change is needed.

Function prototype:

C/C++: int cbAConvertPretrigData(int BoardNum, long PretrigCount, long
TotalCount, unsigned short ADData[], unsigned short ChanTags[])

Visual Basic: Function cbAConvertPretrigData(ByVal BoardNum&, ByVal
PretrigCount&, ByVal TotalCount&, ADData%, ChanTags%) As Long

Delphi: function cbAConvertPretrigData (BoardNum:Integer;
PretrigCount:Longint; TotalCount:Longint; var ADData:Word; var
ChanTags:Word):Integer;

Arguments:

BoardNum The board number used to collect the data. BoardNum may be 0 to 99 (0 to 9 for the
16-bit version of Universal Library). Refers to the number associated with the
board used to collect the data when it was installed with the InstaCal®
configuration program.

PretrigCount Number of pre-trigger samples (this value must match the value returned by the
PretrigCount argument in the cbAPretrig() function)

TotalCount Total number of samples that were collected

ADData Pointer to data array (must match array name used in cbAPretrig() function)

ChanTags Pointer to channel tag array or a NULL pointer may be passed if using 16-bit
boards or if channel tags are not desired (see the note regarding 16-bit boards on
page 17).

Returns:
Error code or 0 if no errors.

ADData - converted data.

When you collect data with cbAPretrig() and you don't use the CONVERTDATA option, you must use this
function to convert the data after it is collected. There are cases where the CONVERTDATA option is not allowed:
for example, if you use the BACKGROUND option with cbAPretrig(). In those cases this function should be
used to convert the data after the data collection is complete.

Notes:

12-bit A/D boards:

! On some 12-bit boards, each raw data point consists of a 12-bit A/D value with a 4-bit channel number.
This function pulls each data point apart and puts the A/D value into the ADData and the channel number
into the ChanTags array.

Analog I/O Functions cbAConvertPretrigData()

17

! Name of the ADData array must match that used in cbAInScan() or cbWinBufToArray().

! Upon returning from cbAConvertPretrigData(), ADData array contains only 12-bit A/D data.

16-bit A/D boards:

This function is for use with 16-bit A/D boards only insofar as ordering the data. No channel tags are returned.

Visual Basic programmers:

After the data is collected with cbAPretrig() it must be copied to an array with cbWinBufToArray().

IMPORTANT
The entire array must be copied. This array includes the extra 512 samples needed by cbAPretrig().
Example code is given below.
Count& = 10000

Dim ADData% (Count& + 512)
Dim ChanTags% (Count& + 512)

cbAPretrig%(BoardNum, LowChan, HighChan, PretrigCount&, Count&...)
cbWinBufToArray%(MemHandle%, ADData%, Count& + 512)
cbAConvertPretrigData%(PretrigCount&, Count&, ADData%, ChanTags%)

Analog I/O Functions cbACalibrateData()

18

cbACalibrateData()
New R3.3

Calibrates the raw data collected by cbAInScan() from boards with real time software calibration when the
real time calibration has been turned off. The cbAInScan() function can return either raw A/D data or
calibrated data, depending on whether or not the NOCALIBRATEDATA option was used.

Function prototype:

C/C++: int cbACalibrateData (int BoardNum, long NumPoints, int Range,
unsigned ADData[])

Visual Basic: Function cbACalibrateData(ByVal BoardNum&, ByVal NumPoints&, ByVal
Range&, ADData%) As Long

Delphi: function cbACalibrateData (BoardNum:Integer; var NumPoints:Longint;
Range:Integer; var ADData:Word):Integer;

Arguments:

BoardNum May be 0 to 99 (0 to 9 for 16-bit version of Universal Library). Number associated
with the board when it was installed using InstaCal®.

NumPoints Number of samples to convert

Range The programmable gain/range used when the data was collected. See Table 2- on
page 13 for valid values.

ADData Pointer to data array.

Returns:
Error code or 0 if no errors.

ADData - converted data.

Notes:

When collecting data using cbAInScan() with the NOCALIBRATEDATA option, use this function to calibrate the
data once collected.

! The name of the array must match that used in cbAInScan() or cbWinBufToArray().

! Applying software calibration factors in real time on a per sample basis eats up machine cycles. If your
CPU is slow, or if processing time is at a premium, do not calibrate until the acquisition run finishes.
Turn off real time software calibration to save CPU time during high speed acquisitions by using the
NOCALIBRATEDATA option to a turn off real-time software calibration. After the acquisition is run, calibrate
the data with cbACalibrateData().

Analog I/O Functions cbAIn()

19

cbAIn()
Reads an A/D input channel. This function reads the specified A/D channel from the specified board. If the
specified A/D board has programmable gain then it sets the gain to the specified range. The raw A/D value is
converted to an A/D value and returned to DataValue.

Function prototype:

C/C++: int cbAIn(int BoardNum, int Channel, int Range, unsigned short
*DataValue);

Visual Basic: Function cbAIn(ByVal BoardNum&, ByVal Channel&, ByVal Range&,
DataValue%) As Long

Delphi: function cbAIn (BoardNum:Integer; Channel:Integer; Range:Integer;
var DataValue:Word):Integer;

Arguments:

BoardNum The board number used to collect the data. BoardNum may be 0 to 99 (0 to 9 for 16-
bit version of Universal Library). Refers to the number associated with the board
used to collect the data when it was installed with the InstaCal® configuration
program. The specified board must have an A/D.

Channel A/D channel number. The maximum allowable channel depends on which type of
A/D board is being used. For boards with both single ended and differential inputs,
the maximum allowable channel number also depends on how the board is
configured. For example, a CIO-DAS1600 has 8 channels for differential, 16 for
single ended. Expansion boards are also supported by this function, so this
argument can contain values up to 272. See board specific information for EXP
boards if you are using an expansion board.

Range A/D range code. If the selected A/D board does not have a programmable gain
feature, this argument is ignored. If the A/D board does have programmable gain,
set the Range argument to the desired A/D range. See Table 2- on page 13 for valid
values.

DataValue Pointer or reference to the data value.

Returns:
Error code or 0 if no errors.

DataValue - Returns the value of the A/D sample.

Analog I/O Functions cbAInScan()

20

cbAInScan()
Changed R3.3 ID

Scans a range of A/D channels and stores the samples in an array. cbAInScan() reads the specified number of
A/D samples at the specified sampling rate from the specified range of A/D channels from the specified board.
If the A/D board has programmable gain, then it sets the gain to the specified range. The collected data is
returned to the data array.

Changes: Revision 3.3 added a 'no real time calibration' option.

Function prototype:

C/C++: int cbAInScan (int BoardNum, int LowChan, int HighChan, long Count,
long *Rate, int Range, int MemHandle, int Options)

Visual Basic: Function cbAInScan(ByVal BoardNum&, ByVal LowChan&, ByVal HighChan&,
ByVal Count&, Rate&, ByVal Range&, ByVal MemHandle&, ByVal Options&)
As Long

Delphi: function cbAInScan (BoardNum:Integer; LowChan:Integer;
HighChan:Integer; Count:Longint; var Rate:Longint; Range:Integer;
MemHandle:Integer; Options:Integer) : Integer;

Arguments:

BoardNum The board number used to collect the data. BoardNum may be 0 to 99 (0 to 9 for 16-
bit version of Universal Library). Refers to the number associated with the board
used to collect the data when it was installed with the InstaCal® configuration
program. The specified board must have an A/D.

LowChan The first A/D channel of scan. When cbALoadQueue() is used, the channel count is
determined by the total number of entries in the channel gain queue. LowChan is
ignored.

HighChan The last A/D channel of scan. When cbALoadQueue() is used, the channel count is
determined by the total number of entries in the channel gain queue. HighChan is
ignored.
Low / High Channel # - The maximum allowable channel depends on which type
of A/D board is being used. For boards that have both single ended and differential
inputs the maximum allowable channel number also depends on how the board is
configured. For example, a CIO-DAS1600 has 8 channels for differential, 16 for
single ended.

Count Number of A/D samples to collect. Specifies the total number of A/D samples that
will be collected. If more than one channel is being sampled then the number of
samples collected per channel is equal to
Count / (HighChan � LowChan + 1).

Rate The sample rate at which acquisitions are triggered, in samples per second per
channel.
For example, if you sample four channels, 0-3, at a rate of 10,000 scans per second
(10 kHz), the resulting A/D converter rate is 40 kHz: four channels at 10,000
samples per channel per second. This is different from some software where you
specify the total A/D chip rate. In those systems, the per channel rate is equal to the
A/D rate divided by the number of channels in a scan.
The channel count is determined by the LowChan and HighChan parameters.
Channel Count = (HighChan - LowChan + 1).
When cbALoadQueue is used, the channel count is determined by the total number
of entries in the channel gain queue. LowChan and HighChan are ignored.

Analog I/O Functions cbAInScan()

21

Rate also returns the value of the actual rate set, which may be different from the
requested rate because of pacer limitations.

Range A/D range code. If the selected A/D board does not have a programmable range
feature, this argument is ignored. Otherwise, set the Range argument to any range
that is supported by the selected A/D board. See Table 2- on page 13 for valid
values.

MemHandle Handle for Windows buffer to store data in (Windows). This buffer must have been
previously allocated with the cbWinBufAlloc() function. In HP VEE this
panel is called Data Array. Refer to HP VEE specific information for more details.

Options Bit fields that control various options. This field may contain any combination of
non-contradictory choices from the values listed in the "Options argument values"
section below.

Returns:
Error code or 0 if no errors.

Rate - actual sampling rate used.

MemHandle - collected A/D data returned via the Windows buffer.

Options argument values:

Transfer method options: The following four options determine how data is transferred from the board to PC
memory. If none of these four options are specified (recommended), the optimum sampling mode is
automatically chosen based on board type and sampling speed.

SINGLEIO A/D transfers to memory are initiated by an interrupt. One interrupt per
conversion.

DMAIO A/D transfers are initiated by a DMA request.
BLOCKIO A/D transfers are handled in blocks (by REP-INSW for example).
 BLOCKIO is not recommended for slow acquisition rates: If the rate

of acquisition is very slow (say less than 200 Hz) BLOCKIO is probably not
the best choice for transfer mode. The reason for this is that status for the
operation is not available until one packet of data has been collected
(typically 512 samples). The implication is that if acquiring 100 samples
at 100 Hz using BLOCKIO, the operation will not complete until 5.12
seconds has elapsed.

BURSTIO Allows higher sampling rates for sample counts up to full FIFO. Data is
collected into the local FIFO. Data transfers to the PC are held off until
after the scan is complete. For BACKGROUND scans, the count and index
returned by cbGetStatus() remain 0 and the status equals RUNNING
until the scan finishes. When the scan is complete and the data is
retrieved, the count and index are updated and the status equals IDLE.

 BURSTIO is the default mode for non-CONTINUOUS fast scans (aggregate
sample rates above 1000 Hz) with sample counts up to full FIFO. To
avoid the BURSTIO default, specify BLOCKIO. Non-BURSTIO scans are
limited to a maximum of 1200 Hz.

BURSTMODE Enables burst mode sampling. Scans from LowChan to HighChan are clocked at the
maximum A/D rate in order to minimize channel to channel skew. Scans are
initiated at the rate specified by Rate.
BURSTMODE is not recommended for use with the SINGLEIO option. If this
combination is used, the Count value should be set as low as possible, preferably to
the number of channels in the scan. Otherwise, overruns may occur.

Analog I/O Functions cbAInScan()

22

CONVERTDATA If the CONVERTDATA option is used for 12-bit boards then the data that is returned to
the buffer will automatically be converted to 12-bit A/D values. If CONVERTDATA is
not used then the data from 12-bit A/D boards will be return unmodified (which,
for some boards is 16-bit values that contain both a 12-bit A/D value and a 4 bit
channel number). After the data collection is complete you can call
cbAConvertData() to convert the data after the fact. CONVERTDATA may not be
specified if you are using the BACKGROUND option and DMA transfers. This option
is ignored for the 16-bit boards.

BACKGROUND If the BACKGROUND option is not used then the cbAInScan() function will not return
to your program until all of the requested data has been collected and returned to
the buffer. When the BACKGROUND option is used, control will return immediately to
the next line in your program and the data collection from the A/D into the buffer
will continue in the background. Use cbGetStatus() to check on the status of
the background operation. Alternatively, some boards support
cbEnableEvent() for event notification of changes in status of BACKGROUND
scans. Use cbStopBackground() to terminate the background process before
it has completed. cbStopBackground() should be executed after normal
termination of all background functions in order to clear variables and flags.

CONTINUOUS This option puts the function in an endless loop. Once it collects the required
number of samples, it resets to the start of the buffer and begins again. The only
way to stop this operation is with cbStopBackground(). Normally this option
should be used in combination with BACKGROUND so that your program will regain
control.

 Count argument settings in CONTINUOUS mode: For some DAQ hardware,
Count must be an integer multiple of the packet size. Packet size is the amount of
data that a DAQ device transmits back to the PC�s memory buffer during each data
transfer. Packet size can differ among DAQ hardware, and can even differ on the
same DAQ product depending on the transfer method.

 In some cases, the minimum value for the Count argument may change when the
CONTINUOUS option is used. This can occur for several reasons; the most
common is that in order to trigger an interrupt on boards with FIFOs, the circular
buffer must occupy at least half the FIFO. Typical half-FIFO sizes are 256, 512
and 1024.

 Another reason for a minimum Count value is that the buffer in memory must be
periodically transferred to the user buffer. If the buffer is too small, data will be
overwritten during the transfer resulting in garbled data.

 Refer board-specific section of the Universal Library User's Guide (available on
our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) for packet
size information for your particular DAQ hardware.

EXTCLOCK If this option is used then conversions will be controlled by the signal on the
external clock input rather than by the internal pacer clock. Each conversion will
be triggered on the appropriate edge of the clock input signal (see board specific
info). When this option is used the Rate argument is ignored. The sampling rate is
dependent on the clock signal. Options for the board will default to a transfer
mode that will allow the maximum conversion rate to be attained unless otherwise
specified.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Analog I/O Functions cbAInScan()

23

SINGLEIO is recommended for slow external clock rates: If the rate of the
external clock is very slow (say less than 200 Hz) and the board you are using
supports BLOCKIO, you may want to include the SINGLEIO option. The reason for
this is that the status for the operation is not available until one packet of data has
been collected (typically 512 samples). The implication is that, if acquiring 100
samples at 100 Hz using BLOCKIO (the default for boards that support it if EXTCLOCK
is used), the operation will not complete until 5.12 seconds has elapsed.

EXTMEMORY Causes the command to send the data to a connected memory board via the DT-
Connect interface rather than returning the data to the buffer. Data for each call to
this function will be appended unless cbMemReset() is called. The data should
be unloaded with the cbMemRead() function before collecting new data. When
EXTMEMORY option is used, the MemHandle argument can be set to null or 0.
CONTINUOUS option cannot be used with EXTMEMORY. Do not use EXTMEMORY and
DTCONNECT together. The transfer modes DMAIO, SINGLEIO, BLOCKIO and BURSTIO
have no meaning when used with this option.

EXTTRIGGER If this option is specified the sampling will not begin until the trigger condition is
met. On many boards, this trigger condition is programmable (see
cbSetTrigger() on page 44 and board-specific information for details) and
can be programmed for rising or falling edge or an analog level.
On other boards, only 'polled gate' triggering is supported. In this case, assuming
active high operation, data acquisition will commence immediately if the trigger
input is high. If the trigger input is low, acquisition will be held off unit it goes
high. Acquisition will then continue until NumPoints& samples have been taken
regardless of the state of the trigger input. For �polled gate� triggering, this option
is most useful if the signal is a pulse with a very low duty cycle (trigger signal in
TTL low state most of the time) so that triggering will be held off until the
occurrence of the pulse.

NOTODINTS If this option is specified, the system's time-of-day interrupts are disabled for the
duration of the scan. These interrupts are used to update the systems real time
clock and are also used by various other programs. These interrupts can limit the
maximum sampling speed of some boards - particularly the PCM-DAS08. If the
interrupts are turned off using this option then the real time clock will fall behind
by the length of time that the scan takes.

NOCALIBRATEDATA Turns off real-time software calibration for boards which are software calibrated,
by applying calibration factors to the data on a sample by sample basis as it is
acquired. Examples are the PCM-DAS16/330 and PCM-DAS16x/12. Turning off
software calibration saves CPU time during a high speed acquisition run. This may
be required if your processor is less than a 150 MHz Pentium and you desire an
acquisition speed in excess of 200 kHz. These numbers may not apply to your
system. Only trial will tell for sure. DO NOT use this option if you do not have to.
If this option is used, the data must be calibrated after the acquisition run with the
cbACalibrateData() function.

DTCONNECT All A/D values will be sent to the A/D board's DT-Connect port. This option is
incorporated into the EXTMEMORY option. Use DTCONNECT only if the external board
is not supported by Universal Library.

Notes:

In HP VEE, this panel is called Data Array. See cbvGetAInData() information in the Universal Library Help
for HP VEE for more details.

Analog I/O Functions cbAInScan()

24

Caution! You will generate an error if you specify a total A/D rate beyond the capability of the board.
For example; if you specify rate LowChan = 0, HighChan = 7 (8 channels total) and Rate =
20,000 and you are using a CIO-DAS16/JR, you will get an error. You have specified a total
rate of 8*20,000 = 160,000. The CIO-DAS16/JR is capable of converting 120,000 samples
per second. The maximum sampling rate depends on the A/D board that is being used. It is
also dependent on the sampling mode options.

Important
In order to understand the functions, you must read the board-specific information found in the Universal
Library User's Guide (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).
The example programs should be examined and run prior to attempting any programming of your own.
Following this advice will save you hours of frustration, and possibly time wasted holding for technical
support.

This note, which appears elsewhere, is especially applicable to this function. Now is the time to read the board
specific information for your board (see the Universal Library User's Guide). We suggest that you make a
copy of that page to refer to as you read this manual and examine the example programs.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Analog I/O Functions cbALoadQueue()

25

cbALoadQueue()
Loads the A/D board's channel/gain queue. This function only works with A/D boards that have channel/gain
queue hardware.

Some products do not support channel / gain queue, and some that do support it are limited on the order of
elements, number of elements, and gain values that can be included, etc. Please refer to the device-specific
information in the Universal Library User's Guide (available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) to find details for your particular product.

Function prototype:

C/C++: int cbALoadQueue(int BoardNum, short ChanArray[], short
GainArray[], int Count)

Visual Basic: Function cbALoadQueue(ByVal BoardNum&, ChanArray%, GainArray%,
ByVal Count&) As Long

Delphi: function cbALoadQueue (BoardNum:Integer; var ChanArray:SmallInt; var
GainArray:SmallInt; Count:LongInt):Integer;

Arguments:

BoardNum The board number used to collect the data. BoardNum may be 0 to 99 (0 to 9 for 16-
bit version of Universal Library). Refers to the number associated with the board
used to collect the data when it was installed with the InstaCal® configuration
program. The specified board must have an A/D and a channel/gain queue.

ChanArray Array containing channel values. This array should contain all of the channels that
will be loaded into the channel gain queue.

GainArray Array containing A/D range values. This array should contain each of the A/D
ranges that will be loaded into the channel gain queue.

Count Number of elements in ChanArray and GainArray or 0 to disable channel/gain
queue. Specifies the total number of channel/gain pairs that will be loaded into the
queue. ChanArray and GainArray should contain at least Count elements. Set
Count = 0 to disable the board's channel/gain queue. The maximum value is
specific to the queue size of the A/D boards channel gain queue.

Returns:
Error code or 0 if no errors.

Notes:

Normally the cbAInScan() function scans a fixed range of channels (from LowChan to HighChan) at a fixed
A/D range. If you load the channel gain queue with this function then all subsequent calls to cbAInScan()
will cycle through the channel/range pairs that you have loaded into the queue.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Analog I/O Functions cbAOut()

26

cbAOut()
Sets the value of a D/A output.

Function prototype:

C/C++: int cbAOut(int BoardNum, int Channel, int Range, unsigned short
DataValue)

Visual Basic: Function cbAOut(ByVal BoardNum&, ByVal Channel&, ByVal Range&,
ByVal DataValue%) As Long

Delphi: function cbAOut(BoardNum:Integer; Channel:Integer; Range:Integer;
DataValue:Word):Integer;

Arguments:

BoardNum The board number used to collect the data. BoardNum may be 0 to 99 (0 to 9 for 16-
bit version of Universal Library). Refers to the number associated with the board
used to collect the data when it was installed with the InstaCal® configuration
program. The specified board must have a D/A.

Channel D/A channel number. The maximum allowable channel depends on which type of
D/A board is being used.

Range D/A range code. The output range of the D/A channel can be set to any of those
supported by the board. If the D/A board does not have programmable ranges then
this argument will be ignored. See Table 2- on page 13 for valid values.

DataValue Value to set D/A to. Must be in the range 0 - N where N is the value 2Resolution - 1 of
the converter
Exception: Using 16-bit boards with Basic range is -32768 to 32767. Refer to the
discussion of Basic signed integers in the "16-bit values using a signed integer data
type" section in the "Universal Library Description & Use" chapter of the
Universal Library User's Guide (available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

Returns:
Error code or 0 if no errors

Notes:

"Simultaneous Update" or "Zero Power-Up" boards: If you set the simultaneous update jumper for
simultaneous operation, use cbAOutScan() for simultaneous update of multiple channels. cbAOut()
always writes the D/A data then reads the D/A, which causes the D/A output to be updated.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Analog I/O Functions cbAOutScan()

27

cbAOutScan()
Outputs values to a range of D/A channels. This function can be used for paced analog output on hardware
that supports paced output. It can also be used to update all analog outputs at the same time when the
SIMULTANEOUS option is used.

Function prototype:

C/C++: int cbAOutScan (int BoardNum, int LowChan, int HighChan, long Count,
long *Rate, int Range, int MemHandle, int Options)

Visual Basic: Function cbAOutScan(ByVal BoardNum&, ByVal LowChan&, ByVal
HighChan&, ByVal Count&, Rate&, ByVal Range&, ByVal MemHandle&,
ByVal Options&) As Long

Delphi: function cbAOutScan (BoardNum:Integer; LowChan:Integer;
HighChan:Integer; Count:Longint; var Rate:Longint; Range:Integer;
MemHandle:Integer; Options:Integer):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with
the configuration program. The specified board must have a D/A. BoardNum may
be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

LowChan First D/A channel of scan.

HighChan Last D/A channel of scan.
LowChan/HighChan - The maximum allowable channel depends on which type of
D/A board is being used.

Count Number of D/A values to output. Specifies the total number of D/A values that will
be output. Most D/A boards do not support timed outputs. For these boards, set the
count to the number of channels in the scan.

Rate Sample rate in scans per second. For many D/A boards the Rate is ignored and can
be set to NOTUSED. For D/A boards with trigger and transfer methods which allow
fast output rates, such as the CIO-DAC04/12-HS, Rate should be set to the D/A
output rate (in scans/sec). This argument also returns the value of the actual rate
set. This value may be different from the user specified rate because of pacer
limitations.
If supported, this is the rate at which scans are triggered. If you are updating 4
channels, 0-3, then specifying a rate of 10,000 scans per second (10 kHz) will
result in the D/A converter rates of 10 kHz: (one D/A per channel). The data
transfer rate will be 40,000 words per second; 4 channels * 10,000 updates per
scan.
The maximum update rate depends on the D/A board that is being used. It is also
dependent on the sampling mode options.

Range D/A range code. The output range of the D/A channel can be set to any of those
supported by the board. If the D/A board does not have a programmable then this
argument will be ignored. See Table 2- on page 13 for valid values.

MemHandle Handle for Windows buffer from which data will be output. This buffer must have
been previously allocated with the cbWinBufAlloc() function and data values
loaded (perhaps using cbWinArrayToBuf().

Options Bit fields that control various options. This field may contain any combination of
non-contradictory choices from the values listed in the "Options argument values"
section on page 28.

Analog I/O Functions cbAOutScan()

28

Returns:
Error code or 0 if no errors.

Rate - actual sampling rate used.

Options argument values:

CONTINUOUS This option may only be used with boards which support interrupt, DMA or REP-
INSW transfer methods. This option puts the function in an endless loop. Once it
outputs the specified (by Count) number of D/A values, it resets to the start of the
buffer and begins again. The only way to stop this operation is with
cbStopBackground(). This option should only be used in combination with
BACKGROUND so that your program can regain control.

BACKGROUND This option may only be used with boards which support interrupt, DMA or REP-
INSW transfer methods. When this option is used the D/A operations will begin
running in the background and control will immediately return to the next line of
your program. Use cbGetStatus() to check the status of background
operation. Alternatively, some boards support EnableEvent() for event
notification of changes in status of BACKGROUND scans. Use
cbStopBackground() to terminate background operations before they are
completed. cbStopBackground() should be executed after normal termination of
all background functions in order to clear variables and flags.

SIMULTANEOUS When this option is used (if the board supports it and the appropriate switches are
set on the board) all of the D/A voltages will be updated simultaneously when the
last D/A in the scan is updated. This generally means that all the D/A values will
be written to the board, then a read of a D/A address causes all D/As to be updated
with new values simultaneously.

EXTCLOCK If this option is used then conversions will be paced by the signal on the external
clock input rather than by the internal pacer clock. Each conversion will be
triggered on the appropriate edge of the clock input signal (see board specific info).
When this option is used the Rate argument is ignored. The sampling rate is
dependent on the clock signal. Options for the board will default to transfer types
that allow the maximum conversion rate to be attained unless otherwise specified.

EXTTRIGGER If this option is specified, the sampling will not begin until the trigger condition is
met. On many boards, this trigger condition is programmable (see
cbSetTrigger() on page 44 and board-specific information for details).

Notes:

In VEE this panel is called Data Array. Refer to the cbvAOutSetData() function in the Universal Library
Help for HP VEE. for more information.

Caution! You will generate an error if you specify a total D/A rate beyond the capability of the board.
For example: If you specify LowChan = 0 and HighChan = 3 (4 channels total) and Rate =
100,000, and you are using a cSBX-DDA04, you will get an error. You have specified a total
rate of 4*100,000 = 400,000. The cSBX-DDA04 is rated to 330,000 updates per second. The
maximum update rate depends on the D/A board that is being used. It is also dependent on the
sampling mode options.

Analog I/O Functions cbAPretrig()

29

cbAPretrig()
Waits for a trigger to occur and then returns a specified number of analog samples before and after the trigger
occurred. If only 'polled gate' triggering is supported, the trigger input line (refer to the user's manual for the
board) must be at TTL low before this function is called, or a TRIGSTATE error will occur. The trigger occurs
when the trigger condition is met. Refer to cbSetTrigger() on page 44 for details.

Function prototype:

C/C++: int cbAPretrig (int BoardNum, int LowChan, int HighChan, long
*PretrigCount, long *TotalCount, long *Rate, int Range, int
MemHandle, int Options)

Visual Basic: Function cbAPretrig(ByVal BoardNum&, ByVal LowChan&, ByVal
HighChan&, PretrigCount&, TotalCount&, Rate&, ByVal Range&, ByVal
MemHandle&, ByVal Options&) As Long

Delphi: function cbAPretrig (BoardNum:Integer; LowChan:Integer;
HighChan:Integer; var PretrigCount:Longint; var TotalCount:Longint;
var Rate:Longint; Range:Integer; MemHandle:Integer;
Options:Integer):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with
the configuration program. The specified board must have an A/D. BoardNum may
be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

LowChan First A/D channel of scan.

HighChan Last A/D channel of scan.
LowChan/HighChan: The maximum allowable channel depends on which type of
A/D board is being used. For boards with both single ended and differential inputs,
the maximum allowable channel number also depends on how the board is
configured (e.g., 8 channels for differential inputs, 16 for single ended inputs).

PretrigCount Number of pre-trigger A/D samples to collect. Specifies the number of samples to
collect before the trigger occurs. PretrigCount must be less than (TotalCount -
512).
If the trigger occurs too early, fewer than the requested number of pre-trigger
samples will be collected, and a TOOFEW error will occur. The PretrigCount will
be set to indicate how many samples were actually collected. The post trigger
samples will still be collected.

TotalCount Total number of A/D samples to collect. Specifies the total number of samples that
will be collected and stored in the buffer. TotalCount must be greater than or
equal to the PretrigCount + 512.
If the trigger occurs too early, fewer than the requested number of samples will be
collected, and a TOOFEW error will occur. The TotalCount will be set to indicate
how many samples were actually collected.
TotalCount must be evenly divisible by the number of channels being scanned. If
it is not, this function will adjust the number (down) to the next valid value and
return that value to the TotalCount argument.

Rate Sample rate in scans per second.

Range A/D Range code. If the selected A/D board does not have a programmable gain
feature, this argument is ignored. Otherwise, set to any range that is supported by
the selected A/D board. See Table 2- on page 13 for valid values.

Analog I/O Functions cbAPretrig()

30

MemHandle Handle for Windows buffer to store data in (Windows). This buffer must have been
previously allocated with the cbWinBufAlloc() function. See the "Notes"
section on page 31.

Options Bit fields that control various options. This field may contain any combination of
non-contradictory choices from the values listed in the "Options argument values"
section below.

Returns:
Error code or 0 if no errors

PretrigCount - Number of pre-trigger samples

TotalCount - Total number of samples collected

Rate - actual sampling rate

MemHandle - Collected A/D data returned via the Windows buffer

Options argument values:

CONVERTDATA The data is collected into a "circular" buffer. When the data collection is complete,
the data is in the wrong order. If you use the CONVERTDATA option, the data is
automatically rotated into the correct order (and converted to 12-bit values if
required) when the data acquisition is complete. Otherwise, call
cbAConvertPretrigData() to rotate the data. You cannot use the
CONVERTDATA option in combination with the BACKGROUND option for this function.

BACKGROUND If the BACKGROUND option is not used, the cbAPretrig() function will not return to
your program until all of the requested data has been collected and returned to the
buffer. When the BACKGROUND option is used, control returns immediately to the
next line in your program, and the data collection from the A/D into the buffer will
continue in the background. Use cbGetStatus() to check on the status of the
background operation. Alternatively, some boards support cbEnableEvent()
for event notification of changes in status of BACKGROUND scans. Use
cbStopBackground() to terminate the background process before it has
completed.
Call cbStopBackground() after normal termination of all background functions to
clear variables and flags. You cannot use the CONVERTDATA option in combination
with the BACKGROUND option for this function. To correctly order and parse the data,
use cbAConvertPretrigData() after the function completes.

EXTCLOCK This option is available only for boards that have separate inputs for external pacer
and external trigger. See your hardware manual or board-specific information.

EXTMEMORY Causes this function to send the data to a connected memory board via the DT-
Connect interface rather than returning the data to the buffer. If you use this option
to send the data to a MEGA-FIFO memory board, then you must use
cbMemReadPretrig() to later read the pre-trigger data from the memory
board. If you use cbMemRead(), the data will NOT be in the correct order.
Every time this option is used, it overwrites any data already stored in the memory
board. All data should be read from the board (with cbMemReadPretrig())
before collecting any new data. When this option is used, the MemHandle argument
is ignored. The MEGA-FIFO memory must be fully populated in order to use the
cbAPretrig() function with the EXTMEMORY option.

Analog I/O Functions cbAPretrig()

31

DTCONNECT When DTCONNECT option is used with this function the data from ALL A/D
conversions is sent out the DT-Connect interface. While this function is waiting for
a trigger to occur, it will send data out the DT-Connect interface continuously. If
you have a Measurement Computing memory board plugged into the DT-Connect
interface then you should use EXTMEMORY option rather than this option.

Notes:

IMPORTANT
The buffer referenced by MemHandle must be big enough to hold at least TotalCount + 512 integers.

Analog I/O Functions cbATrig()

32

cbATrig()
Waits for a specified analog input channel to go above or below a specified value. cbATrig continuously reads
the specified channel and compares its value to TrigValue. Depending on whether TrigType is set to
TRIGABOVE or TRIGBELOW, it waits for the first A/D sample that is above or below TrigValue. The first sample
that meets the trigger criteria is returned to DataValue.

Function prototype:

C/C++: int cbATrig (int BoardNum, int Channel, int TrigType, int
TrigValue, int Range, unsigned short *DataValue)

Visual Basic: Function cbATrig(ByVal BoardNum&, ByVal Channel&, ByVal TrigType&,
ByVal TrigValue%, ByVal Range&, DataValue%) As Long

Delphi: function cbATrig (BoardNum:Integer; Channel:Integer;
TrigType:Integer; TrigValue:Word; Range:Integer; var DataValue:Word
):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with
the configuration program. The specified board must have an A/D. BoardNum may
be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

Channel A/D channel number. The maximum allowable channel depends on which type of
A/D board is being used. For boards with both single ended and differential inputs,
the maximum allowable channel number also depends on how the board is
configured. For example a CIO-DAS1600 has 8 channels for differential inputs
and 16 channels for single ended inputs.

TrigType TRIGABOVE or TRIGBELOW. Specifies whether to wait for the analog input to be
ABOVE or BELOW the specified trigger value.

TrigValue The threshold value that all A/D values are compared to. Must be in the range 0 -
4095 for 12-bit A/D boards, or 0-65,535 for 16-bit A/D boards. Refer to your
BASIC manual for information on signed BASIC integer data types.

Range Gain code. If the selected A/D board does not have a programmable gain feature,
this argument is ignored. Otherwise, set to any range that is supported by the
selected A/D board. See Table 2- on page 13 for valid values.

DataValue Returns the value of the first A/D sample to meet the trigger criteria.

Returns:
Error code or 0 if no errors

DataValue - value of first A/D sample to match the trigger criteria.

Notes:

Pressing Ctrl-C will not terminate the wait for an analog trigger that meets the specified condition. There are
only two ways to terminate this call: satisfy the trigger condition or reset the computer.

Caution! Use caution when using this function in Windows programs. All active windows will lock on
the screen until the trigger condition is satisfied. The keyboard and mouse activity will also
lock until the trigger condition is satisfied.

33

3
Configuration Functions

Introduction
This section covers Universal Library functions that retrieve or change configuration options on a board. The
configuration information for all boards is stored in the configuration file CB.CFG. This information is loaded
from CB.CFG by all programs that use the library.

To determine which of these functions are compatible with your hardware, refer to the Universal Library
User�s Guide (available in PDF format on our website at www.mccdaq.com/PDFmanuals/sm-ul-user-
guide.pdf).

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf
http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Configuration Functions cbGetConfig()

34

cbGetConfig()
Returns a configuration option for a board. The configuration information for all boards is stored in the
CB.CFG file. This information is loaded from CB.CFG by all programs that use the library. You can change
the current configuration within a running program with the cbSetConfig() function. The cbGetConfig()
function returns the current configuration information.

Function prototype:

C/C++: int cbGetConfig (int InfoType, int BoardNum, int DevNum, int
ConfigItem, int *ConfigVal)

Visual Basic: Function cbGetConfig(ByVal InfoType&, ByVal BoardNum&, ByVal
DevNum&, ByVal ConfigItem&, ConfigVal&) As Long

Delphi: function cbGetConfig (InfoType:Integer; BoardNum:Integer;
DevNum:Integer; ConfigItem:Integer; var ConfigVal:Integer):Integer;

Arguments:

InfoType The configuration information for each board is grouped into different categories.
This argument specifies which category you want. Set it to one of the constants
listed in the "InfoType argument values" section below.

BoardNum Refers to the board number associated with a board when it was installed.
BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

DevNum Selects a particular device. If InfoType = DIGITALINFO, then DevNum specifies
which of the board's digital devices you want information on. If InfoType =
COUNTERINFO, then DevNum specifies which of the board's counter devices you
want info on.

ConfigItem Specifies which configuration item you wish to retrieve. Set it in conjunction with
the InfoType argument using the table in the "ConfigItem argument values"
section on page 35.

ConfigVal The specified configuration item is returned to this variable.

Returns:
Error code or 0 if no errors.

ConfigVal - returns the value of the specified configuration item here.

InfoType argument values:

GLOBALINFO Information about the configuration file.

BOARDINFO General information about a board.

DIGITALINFO Information about a digital device.

COUNTERINFO Information about a counter device.

EXPANSIONINFO Information about an expansion device.

MISCINFO One of the miscellaneous options for the board.

Configuration Functions cbGetConfig()

35

ConfigItem argument values:

Valid ConfigItem constant settings for each InfoType constant are as follows:

InfoType ConfigItem Description
GIVERSION CB.CFG file format - used by the library to determine compatibility.
GINUMBOARDS Maximum number of installable boards

GLOBALINFO

GINUMEXPBOARDS Maximum number of expansion boards allowed to be installed.
BIBASEADR Base address of board
BIBOARDTYPE Returns a unique number in the range of 0 to 8000 Hex describing the board

type installed.
BIINTLEVEL Interrupt level. 0 for none or 1 - 15
BIDMACHAN DMA channel. 0, 1 or 3
BIINITIALIZED True (non-zero) or False (0) (16-bit library only)
BICLOCK Clock frequency in MHz (40, 10, 8, 6, 5, 4, 3, 2, 1) or 0 for not supported.
BIRANGE Selected voltage range. For switch selectable gains only.

If the selected A/D board does not have a programmable gain feature, this
argument returns the range as defined by the installed InstaCal settings. If
InstaCal and the board are installed correctly, the returned range will
correspond to the input range as set via the switches on the board. Refer to
board specific information for a list of the A/D ranges supported by each
board.

BINUMADCHANS Number of A/D channels
BIUSESEXPS Supports expansion boards TRUE/FALSE
BIDINUMDEVS Number of digital devices
BIDIDEVNUM Index into digital information for the first device.
BICINUMDEVS Number of counter devices
BICIDEVNUM Index into counter information for the first device.
BINUMDACHANS Number of D/A channels
BIWAITSTATE Setting of Wait State jumper. 1 = enabled, 0 = disabled
BINUMIOPORTS Number of IO Ports used by board
BIPARENTBOARD Board number of parent board (16-bit library only)
BIDTBOARD Board number of connected DT board
BIDACUPDATEMODE Setting of the update mode for a digital-to-analog converter (DAC). Refer to

the "Notes" section on page 36 for more information.
BIDACSTARTUP Returns the setting of a DAC board's configuration register STARTUP bit.

Refer to the "Notes" section for the cbSetConfig() method on page 45 for
more information.

BOARDINFO

BISERIALNUM Returns the user serial number assigned to a USB device by InstaCal.
DIBASEADR Base address (16-bit library only)
DIINITIALIZED True (non-zero) or False (0) (16-bit library only)
DIDEVTYPE Device Type - AUXPORT, FIRSTPORTA etc.
DIMASK Bit mask for this port (16-bit library only)
DIREADWRITE Read required before True/False (16-bit library only)
DICONFIG Current configuration INPUT or OUTPUT
DINUMBITS Number of bits in port
DICURVAL Current value of outputs
DIINMASK Returns the bit configuration of the specified port. Any of the lower eight bits

that return a value of 1 are configured for input. Each of the upper eight bits
always return 0. Refer to the "Notes" section on page 36 for more information.

DIGITALINFO

DOUTMASK Returns the bit configuration of the specified port. Any of the lower eight bits
that return a value of 1 are configured for output. Each of the upper eight bits
always return 0. Refer to the "Notes" section on page 36 for more information.

Configuration Functions cbGetConfig()

36

InfoType ConfigItem Description
CIBASEADR Base address (16-bit library only)
CIINITIALIZED True (non-zero) or False (0) (16-bit library only)
CICTRTYPE Counter chip type.

where: 1 = 8254, 2 = 9513 , 3 = 8536, 4 = 7266 or 5 = event counter
CICTRNUM Which counter on chip (16-bit library only)

COUNTERINFO

CICONFIGBYTE Configuration Byte (16-bit library only)
XIBOARDTYPE Board type (refer to the "BoardType Codes" topic in the Universal Library

User's Guide)
XIMUXADCHAN1 A/D channel EXP board is connected to
XIMUXADCHAN2 2nd A/D channel EXP board is connected to
XIRANGE1 Range (gain) of low 16 channels
XIRANGE2 Range (gain) of high 16 channels
XICJCCHAN A/D channel that CJC is connected to
XITHERMTYPE Sensor type. Use one of the sensor types listed below:

J = 1
K = 2
T = 3
E = 4
R = 5
S = 6
B = 7
Platinum .00392 = 257
Platinum .00391 = 258
Platinum .00385 = 259
Copper .00427 = 260
Nickel/Iron .00581 = 261
Nickel/Iron .00527 = 262

XINUMEXPCHANS Number of channels on expansion board

EXPANSIONINFO

XIPARENTBOARD Board number of parent A/D board

Notes:

! Use the DIINMASK and DIOUTMASK options to determine if an AUXPORT is configurable. Execute
cbGetConfig() twice to the same port�once using DIINMASK and once using DIOUTMASK. If both of the
ConfigVal arguments returned have input and output bits that overlap, the port is not configurable.

You can determine overlapping bits by Anding both arguments: For example, the PCI-DAS08 has seven
bits of digital I/O (four outputs and three inputs). For this board, the ConfigVal returned by DIINMASK is
always 7 (0000 0111), while the ConfigVal argument returned by DIOUTMASK is always 15 (0000 1111).
When you And both ConfigVal arguments together, you get a non-zero number (7). Any non-zero
number indicates that input and output bits overlap for the specified port, and the port is a non-
configurable AUXPORT.

! Use the BIDACUPDATEMODE option to check the update mode for a DAC board.

With ConfigItem set to BIDACUPDATEMODE, if ConfigVal returns 0, the DAC update mode is immediate.
Values written with cbAOut() are automatically output by the DAC channels.
With ConfigItem set to BIDACUPDATEMODE, if ConfigVal returns 1, the DAC update mode is set to
on command. Values written with cbAOut() are not output by the DAC channels until a
cbSetConfig() call is made with its ConfigItem argument set to BIDACUPDATECMD.

! Use the BIDACSTARTUP option (ConfigItem argument) Returns 0 is if startup bit is disabled, or 1 to if
startup bit is enabled to determine if the DAC values before the board was last powered down are stored.

Refer to the "Notes" section for cbSetConfig() on page 45 for more information.

Configuration Functions cbGetConfig()

37

To store the current DAC values as start-up values, call cbSetConfig() with a value of 1 for the
BIDACSTARTUP value. Then, call cbAOut() or cbAOutScan() for each channel, and call
cbSetConfig() again with a value of 0 for the BIDACSTARTUP value.

Example:
cbSetConfig(BOARDINFO, boardNumber, 0, BIDACSTARTUP, 1);
for (int i =1; i <8; i++)
{
cbAOut(boardNumber, i, BIP5VOLTS, DACValue[i]);
}
cbSetConfig(BOARDINFO, boardNumber, 0, BIDACSTARTUP, 0);

To store the DAC's last settings, call cbSetConfig() with a BIDACSTARTUP value of 1. Leave this bit
turned on until the application exits. The next time the board is powered up, it restores the values last
written to the DACs.

Configuration Functions cbGetSignal()

38

cbGetSignal()
Retrieves the configured Auxiliary or DAQ Sync connection and polarity for the specified timing and control
signal.

This function is intended for advanced users. Except for the SYNC_CLK input, you can easily view the
settings for the timing and control signals using InstaCal.

Note: This function is not supported by all board types.

Function prototype:
C/C++: int cbGetSignal (int BoardNum, int Direction, int Signal, int Index,

int* Connection, int* Polarity)

Visual Basic: Function cbGetSignal (ByVal BoardNum&, ByVal Direction&, ByVal
Signal&, ByVal Index&, ByRef Connection, ByRef Polarity) As Long

Delphi: function cbGetSignal (BoardNum:Integer; Direction:Integer;
Signal:Integer; Index:Integer; var Connection:Integer; var
Polarity:Integer):Integer;

Arguments:

BoardNum Refers to the board number associated with the A/D board when it was installed.
The specified board must have configurable signal inputs and outputs.

Direction Specifies whether retrieving the source (SIGNAL_IN) or destination (SIGNAL_OUT)
of the specified signal.

Signal Signal type whose connection is to be retrieved. See cbSelectSignal() on
page 40 for valid signal types.

Index Used to indicate which connection to reference when there is more than one
connection associated with the output Signal type. When querying output signals,
increment this value until BADINDEX is returned or 0 is returned via the Connection
parameter to determine all the output Connections for the specified output Signal.
The first Connection is indexed by 0.
For input signals (Direction=SIGNAL_IN), this should always be set to 0.

Connection The specified connection is returned through this variable. Note that this is set to 0
if no connection is associated with the Signal, or if the Index is set to an invalid
value.

Polarity Holds the polarity for the associated Signal and Connection.
For output Signals assigned an AUXOUT Connection, the return value is either
INVERTED or NONINVERTED.
For Signal settings of ADC_CONVERT, DAC_UPDATE, ADC_TB_SRC and DAC_TB_SRC
input signals, either POSITIVEEDGE or NEGATIVEEDGE are returned.
All other signals return 0.

Returns:
Error code or 0 if no errors.

Notes:

The above timing and control configuration information can also be viewed and edited inside InstaCal. To do
this:

1. Run InstaCal.

Configuration Functions cbGetSignal()

39

2. Click on the board and press the Configure... button or menu item.

If the board supports DAQ Sync and Auxiliary Input/Output signal connections, a button labeled
Advanced Timing & Control Configuration displays.

3. Press this button to open a display for viewing and modifying the above timing and control signals.

Configuration Functions cbSelectSignal()

40

cbSelectSignal()
Configures timing and control signals to use specific Auxiliary or DAQ Sync connections as a source or
destination.

This function is intended for advanced users. Except for the SYNC_CLK input, you can easily configure all
the timing and control signals using InstaCal.

Note: This function is not supported by all board types. Please refer to board specific information for details.

Function prototype:

C/C++: int cbSelectSignal (int BoardNum, int Direction, int Signal, int
Connection, int Polarity);

Visual Basic: Function cbSelectSignal (ByVal BoardNum&, ByVal Direction&, ByVal
Signal&, ByVal Connection&, ByVal Polarity&) as Long

Delphi: Function cbSelectSignal (BoardNum:Integer; Direction:Integer;
Signal:Integer; Connection:Integer; Polarity:Integer) : Integer;
StdCall;

Arguments:

BoardNum Refers to the board number associated with the A/D board when it was installed.
The specified board must have configurable signal inputs and outputs.

Direction Direction of the specified signal type to be assigned a connector pin. For most
signal types, this should be either SIGNAL_IN or SIGNAL_OUT. For the
SYNC_CLK , ADC_TB_SRC and DAC_TB_SRC signals, the external source can
also be disabled by specifying DISABLED(=0) such that it is neither input nor
output. Set it in conjunction with the Signal, Connection, and Polarity
arguments using the tables in the "Direction argument values" starting on page 41.

Signal Signal type to be associated with a connector pin. Set it to one of the constants
listed in the "Signal argument values" section below.

Connection Designates the connector pin to associate the signal type and direction. Since
individual pin selection is not allowed for the DAQ-Sync connectors, all DAQ-
Sync pin connections are referred to as DS_CONNECTOR. The AUXIN and
AUXOUT settings match their corresponding hardware pin names.

Polarity ADC_TB_SRC and DAC_TB_SRC input signals (SIGNAL_IN) can be set for either rising
edge (POSITIVEEDGE) or falling edge (NEGATIVEEDGE) signals. The AUXOUT
connections can be set to INVERTED or NONINVERTED from their internal polarity.

Returns:
Error code or 0 if no errors.

Signal argument values:

ADC_CONVERT A/D conversion pulse or clock.

ADC_GATE External gate for A/D conversions.

ADC_SCANCLK A/D channel scan signal.

ADC_SCAN_STOP A/D scan completion signal.

ADC_SSH A/D simultaneous sample and hold signal.

ADC_STARTSCAN Start of A/D channel-scan sequence signal.

ADC_START_TRIG A/D scan start trigger.

Configuration Functions cbSelectSignal()

41

ADC_STOP_TRIG A/D stop- or pre- trigger.

ADC_TB_SRC A/D pacer timebase source.

CTR1_CLK CTR1 clock source.

CTR2_CLK CTR2 clock source.

DAC_START_TRIG D/A start trigger.

DAC_TB_SRC D/A pacer timebase source.

DAC_UPDATE D/A update signal.

DGND Digital ground.

SYNC_CLK STC timebase signal.

Direction argument values:

Valid input (Direction=SIGNAL_IN) settings include:

Signal Connection Polarity
ADC_CONVERT AUXIN0..AUXIN5

DS_CONNECTOR
POSITIVEEDGE or NEGATIVEEDGE

ADC_GATE AUXIN0..AUXIN5 See cbSetTrigger().
ADC_START_TRIG AUXIN0..AUXIN5

DS_CONNECTOR
See cbSetTrigger().

ADC_STOP_TRIG AUXIN0..AUXIN5
DS_CONNECTOR

See cbSetTrigger()

ADC_TB_SRC AUXIN0..AUXIN5 POSITIVEEDGE or NEGATIVEEDGE
DAC_START_TRIG AUXIN0..AUXIN5

DS_CONNECTOR
Not assigned here.

DAC_TB_SRC AUXIN0..AUXIN5 POSITIVEEDGE or NEGATIVEEDGE
DAC_UPDATE AUXIN0..AUXIN5

DS_CONNECTOR
POSITIVEEDGE or NEGATIVEEDGE

SYNC_CLK DS_CONNECTOR Not assigned here.

Valid output (Direction=SIGNAL_OUT) settings include:

Signal Connection Polarity
ADC_CONVERT AUXOUT0..AUXOUT2

DS_CONNECTOR
ADC_SCANCLK AUXOUT0..AUXOUT2
ADC_SCAN_STOP AUXOUT0..AUXOUT2
ADC_SSH AUXOUT0..AUXOUT2
ADC_STARTSCAN AUXOUT0_AUXOUT2
ADC_START_TRIG AUXOUT0..AUXOUT2

DS_CONNECTOR
ADC_STOP_TRIG AUXOUT0..AUXOUT2

DS_CONNECTOR
CTR1_CLK AUXOUT0_AUXOUT2
CTR2_CLK AUXOUT0_AUXOUT2
DAC_START_TRIG AUXOUT0..AUXOUT2

DS_CONNECTOR
DAC_UPDATE AUXOUT0..AUXOUT2

DS_CONNECTOR

INVERTED* or NONINVERTED

DGND AUXOUT0_AUXOUT2 Not assigned here.
SYNC_CLK DS_CONNECTOR Not assigned here.

* INVERTED is only valid for Auxiliary Output (AUXOUT) connections.

Configuration Functions cbSelectSignal()

42

Valid disabled settings (Direction=DISABLED):

Signal Connection Polarity
ADC_TB_SRC
DAC_TB_SRC
SYNC_CLK

Not assigned here. Not assigned here.

Notes:

! You can view and edit the above timing and control configuration information from InstaCal. Open
InstaCal, click on the board, and press the "Configure..." button or menu item. If the board supports DAQ
Sync and Auxiliary Input/Output signal connections, a button labeled "Advanced Timing & Control
Configuration" displays. Press that button to open a display for viewing and modifying the above timing
and control signals.

! Except for the ADC_TB_SRC, DAC_TB_SRC and SYNC_CLK signals, selecting an input signal connection does
not necessarily activate it. However, assigning an output signal to a connection does activate the signal
upon performing the respective operation. For instance, when running an EXTCLOCK cbAInScan(),
ADC_CONVERT SIGNAL_IN selects the connection to use as an external clock to pace the A/D conversions;
if cbAInScan() is run without setting the EXTCLOCK option, however, the selected connection is not
activated and the signal at that connection is ignored. In both cases, the ADC_CONVERT signal is output via
the connection(s) selected for the ADC_CONVERT SIGNAL_OUT. Since there are no scan options for enabling
the Timebase Source and the SYNC_CLK, selecting an input for the A/D or D/A Timebase Source, or
SYNC_CLK does activate the input source for the next respective operations.

! Multiple input signals can be mapped to the same AUXINn connection by successive calls to
cbSelectSignal; however, only one connection can be mapped to each input signal. If another
connection had already been assigned to an input signal, the former selection is de-assigned and the new
connection is assigned.

! Only one output signal can be mapped to the same AUXOUTn connection; however, multiple connections
can be mapped to the same output signal by successive calls to cbSelectSignal. If an output signal had
already been assigned to a connection, then the former output signal is de-assigned and the new output
signal is assigned to the connection. Note that there are at most MAX_CONNECTIONS (=4) connections that
can be assigned to each output signal.

! When selecting DS_CONNECTOR for a signal, only one direction per signal type can be defined at a given
time. Attempting to assign both directions of a signal to the DS_CONNECTOR results in only the latest
selection being applied. If the signal type had formerly been assigned an input direction from the
DS_CONNECTOR, assigning the output direction for that signal type results in the input signal being
reassigned to its default connection.

Input signal Default connection
ADC_ CONVERT AUXIN0
ADC_ GATE AUXIN5
ADC_START_TRIG AUXIN1
ADC_STOP_TRIG AUXIN2
DAC_ UPDATE AUXIN3

Default Input Signal Connections

DAC_START_TRIG AUXIN3

! ADC_TB_SRC and DAC_TB_SRC are intended to synchronize the timebase of the analog input and output
pacers across two or more boards. Internal calculations of sampling and update rates assume that the
external timebase has the same frequency as its internal clock. Adjust sample rates to compensate for
differences in clock frequencies.

For instance, if the external timebase has a frequency of 10 MHz on a board that has a internal clock
frequency of 40 MHz, the scan function samples or updates at a rate of about 1/4 the rate entered. However,

Configuration Functions cbSelectSignal()

43

while compensating for differences in external timebase and internal clock frequency, if the rate entered
results in an invalid pacer count, the function returns a BADRATE error.

Configuration Functions cbSetConfig()

44

cbSetConfig()
Sets a configuration option for a board. The configuration information for all boards is stored in the CB.CFG
file. All programs that use the library read this file. You can use this function to override the configuration
information stored in the CB.CFG file.

Function prototype:

C/C++: int cbSetConfig(int InfoType, int BoardNum, int DevNum, int
ConfigItem, int ConfigVal)

Visual Basic: Function cbSetConfig(ByVal InfoType&, ByVal BoardNum&, ByVal
DevNum&, ByVal ConfigItem&, ByVal ConfigVal&) As Long

Delphi: function cbSetConfig(InfoType:Integer; BoardNum:Integer;
DevNum:Integer; ConfigItem:Integer; ConfigVal:Integer):Integer;

Arguments:

InfoType The configuration information for each board is grouped into different categories.
InfoType specifies which category you want. Set it to one of the constants listed in
the "InfoType " section below.

BoardNum Refers to the board number associated with a board when it was installed.
BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

DevNum Selects a particular device. If InfoType = DIGITALINFO, then DevNum specifies
which of the board's digital devices you want to set information on. If InfoType =
COUNTERINFO then DevNum specifies which of the board's counter devices you want
to set information on.

ConfigItem Specifies which configuration item you wish to set. Set it in conjunction with the
InfoType argument using the table under "ConfigItem argument values" on page
45.

ConfigVal The value to set the specified configuration item to.

Returns:
Error code or 0 if no errors.

InfoType argument values:

BOARDINFO General information about a board.

DIGITALINFO Information about a digital device.

COUNTERINFO Information about a counter device.

EXPANSIONINFO Information about an expansion device.

MISCINFO One of the miscellaneous options for the board.

Configuration Functions cbSetConfig()

45

ConfigItem argument values:

InfoType ConfigItem Description
BIBASEADR Base address of board
BIINTLEVEL Interrupt level
BIDMACHAN DMA channel
BICLOCK Clock frequency in MHz (1, 4, 6 or 10)
BIRANGE Selected voltage range
BINUMADCHANS Number of A/D channels
BIWAITSTATE Sets the Wait State jumper
BIDACUPDATEMODE Sets the update mode for a digital-to-analog converter (DAC). Use this

setting in conjunction with one of these ConfigVal settings:
UPDATEIMMEDIATE
UPDATEONCOMMAND
Refer to the "Notes" section below for more information.

BIDACUPDATECMD Updates all analog output channels.
When ConfigItem is set to BIDACUPDATECMD, the DevNum and
ConfigVal arguments are not used and can be set to 0.
Refer to the "Notes" section below for more information.

BIDACSTARTUP Sets the board�s configuration register STARTUP bit to 0 or 1 to
enable/disable the storing of digital-to-analog converter (DAC) startup
values. Each time the board is powered up, the stored values are
written to the DACs. Refer to the "Notes" section below for more
information.

BICALOUTPUT Sets the voltage for the CAL pin on supported USB devices.

BOARDINFO

BISRCADPACER Outputs the A/D pacer signal to the SYNC pin on supported USB
devices.

XIMUXADCHAN1 A/D channel board is connect to
XIMUXADCHAN2 2nd A/D channel board is connected to
XIRANGE1 Range (gain) of low 16 channels
XIRANGE2 Range (gain) of high 16 channels
XICJCCHAN A/D channel that CJC is connected to

EXPANSIONINFO

XITHERMTYPE Thermocouple type

Notes:

Use the BIDACSTARTUP option (ConfigItem argument) to store either the current DAC values, or the DAC
values before the board was last powered down.

! To store the current DAC values as start-up values, call cbSetConfig() with a value of 1 for the
BIDACSTARTUP value. Then, call cbAOut() or cbAOutScan() for each channel (), and call cbSetConfig()
again with a value of 0 for the BIDACSTARTUP value.

Example:

cbSetConfig(BOARDINFO, boardNumber, 0, BIDACSTARTUP, 1);
for (int i =1; i <8; i++)
{
cbAOut(boardNumber, i, BIP5VOLTS, DACValue[i]);

}
cbSetConfig(BOARDINFO, boardNumber, 0, BIDACSTARTUP, 0);

! To store the DAC's last settings, call cbSetConfig() with a BIDACSTARTUP value of 1. Leave this bit
turned on until the application exits. The next time the board is powered up, it restores the values last
written to the DACs.

Configuration Functions cbSetConfig()

46

Use the BIDACUPDATEMODE option (ConfigItem argument) to set the update mode for a DAC board.

! With ConfigItem set to BIDACUPDATEMODE, and ConfigVal set to 0, the DAC update mode is immediate.
Values written with cbAOut() or cbAOutScan() are automatically output by the DAC channels

! With ConfigItem set to BIDACUPDATEMODE and ConfigVal set to 1, the DAC update mode is on
command. Values written with cbAOut() or cbAOutScan() are not output by the DAC channels until
another cbSetConfig() call is made with ConfigItem set to BIDACUPDATECMD.

Configuration Functions cbSetTrigger()

47

cbSetTrigger()
Selects the trigger source and sets up its parameters. This trigger is used to initiate analog to digital
conversions using the following Universal Library functions:

! cbAInScan(), if the EXTTRIGGER option is selected.

! cbAPretrig()

! cbFilePretrig()

Function prototype:

C/C++: int cbSetTrigger (int BoardNum, int TrigType, unsigned short
LowThreshold, unsigned short HighThreshold);

Visual Basic: Function cbSetTrigger (ByVal BoardNum&, ByVal TrigType&, ByVal
LowThreshold%, ByVal HighThreshold%) As Long

Delphi: Function cbSetTrigger (BoardNum:Integer; TrigType:Integer;
LowThreshold:Word; HighThreshold:Word):Integer;

Arguments:

BoardNum Specifies the board number associated with the board when it was installed with
the configuration program. The board must have the software selectable triggering
source and/or options. BoardNum may be 0 to 99 (0 to 9 for the 16-bit version of the
Universal Library).

TrigType Specifies the type of triggering based on the external trigger source. Set it to one of
the constants in the "TrigType argument values" section on page 48.

LowThreshold Selects the low threshold used when the trigger input is analog. The range depends
upon the resolution of the trigger circuitry. Must be 0 to 255 for 8-bit trigger
circuits, 0 to 4095 for 12-bit trigger circuits, and 0 to 65535 for 16-bit trigger
circuits. Refer to the "Notes" section on page 48.

HighThreshold Selects the high threshold used when the trigger input is analog. The range depends
upon the resolution of the trigger circuitry. Must be 0 to 255 for 8-bit trigger
circuits, 0 to 4095 for 12-bit trigger circuits, and 0 to 65535 for 16-bit trigger
circuits. Refer to the "Notes" section on page 48.

Returns:
Error code or 0 if no errors.

Configuration Functions cbSetTrigger()

48

TrigType argument values:

Trigger
Source

TrigType Explanation

GATE_NEG_HYS AD conversions are enabled when the external analog trigger input is more
positive than HighThreshold. AD conversions are disabled when the external
analog trigger input more negative than Low/Threshold. Hysteresis is the level
between Low/Threshold and HighThreshold.

GATE_POS_HYS AD conversions are enabled when the external analog trigger input is more
negative than LowThreshold. AD conversions are disabled when the external
analog trigger input is more positive than HighThreshold. Hysteresis is the
level between LowThreshold and HighThreshold.

GATE_ABOVE AD conversions are enabled as long as the external analog trigger input is more
positive than HighThreshold.

GATE_BELOW AD conversions are enabled as long as the external analog trigger input is more
negative than LowThreshold.

TRIG_ABOVE AD conversions are enabled when the external analog trigger makes a
transition from below HighThreshold to above. Once conversions are enabled,
the external trigger is ignored.

TRIG_BELOW AD conversions are enabled when the external analog trigger input makes a
transition from above LowThreshold to below. Once conversions are enabled,
the external trigger is ignored.

GATE_IN_WINDOW AD conversions are enabled as long as the external analog trigger is inside the
region defined by LowThreshold and HighThreshold.

Analog

GATE_OUT_WINDOW AD conversions are enabled as long as the external analog trigger is outside the
region defined by LowThreshold and HighThreshold.

GATE_HIGH AD conversions are enabled as long as the external digital trigger input is 5 V
(logic HIGH or 1).

GATE_LOW AD conversions are enabled as long as the external digital trigger input is 0 V
(logic LOW or 0).

TRIG_HIGH AD conversions are enabled when the external digital trigger is 5 V (logic
HIGH or '1'). Once conversions are enabled, the external trigger is ignored.

TRIG_LOW AD conversions are enabled when the external digital trigger is 0 V (logic
LOW or '0'). Once conversions are enabled, the external trigger is ignored.

TRIG_POS_EDGE AD conversions are enabled when the external digital trigger makes a
transition from 0 V to 5 V (logic LOW to HIGH). Once conversions are
enabled, the external trigger is ignored.

Digital

TRIG_NEG_EDGE AD conversions are enabled when the external digital trigger makes a
transition from 5 V to 0 V (logic HIGH to LOW). Once conversions are
enabled, the external trigger is ignored.

Notes:

The threshold value must be within the range of the analog trigger circuit associated with the board. Refer to
the board-specific information in the Universal Library User's Guide. For example, on the PCI-DAS 1602/16,
the analog trigger circuit handles ±10 V. A value of 0 corresponds to -10 V, whereas a value of 65535
corresponds to +10 V.

Since Visual Basic does not support unsigned integer types, the thresholds range from -32768 to 32767 for 16-
bit boards, instead of from 0 to 65535. In this case, the unsigned value of 65535 corresponds to a value of -1,
65534 corresponds to -2, ..., 32768 corresponds to -32768.

For most boards that support analog triggering, you can pass the required trigger voltage level and the
appropriate Range to cbFromEngUnits/FromEngUnits to calculate the HighThreshold and LowThreshold
values.

For some boards (refer to the "Analog Input Boards" chapter in the Universal Library User's Guide), you
must manually calculate the threshold by first calculating the least significant bit (LSB) for a particular range

Configuration Functions cbSetTrigger()

49

for the trigger resolution of your hardware. You then use the LSB to find the threshold in counts based on an
analog voltage trigger threshold.

To calculate the threshold, do the following:

1. Calculate the LSB by dividing the full scale range (FSR) by 2resolution. FSR is the entire span from � FS to
+FS of your hardware for a particular range. For example, the full scale range of ±10 V is 20 V.

2. Calculate how many times you need to add the LSB calculate in step 1 to the negative full scale
(-FS) to reach the trigger threshold value.

The maximum threshold value is 2resolution - 1. The formula is shown here:

Abs (-FS - threshold in volts) ÷ (LSB) = threshold in counts

Here are two examples that use this formula�one for 8-bit trigger resolution and one for 12-bit trigger
resolution.

! 8-bit example using the ±10 V range with a -5 V threshold:

Calculate LSB: LSB = 20 ÷ 28 = 20 ÷ 256 = .078125
Calculate threshold: Abs(-10 - (-5)) ÷ .078125 = 5 ÷ .078125 = 64 (round this result if it is not an
integer). A count of 64 translates to a voltage threshold of -5.0 V.

! 12-bit example using the ±10 V range with a +1 V threshold:

Calculate LSB: LSB = 20 ÷ 212 = 20 ÷ 4096 = .00488
Calculate threshold: Abs(-10 - 1) ÷ .00488 = 11 ÷ .00488 = 2254 (rounded from 2254.1). A count of
2254 translates to a voltage threshold of 0.99952 V.

51

4
Counter Functions

Introduction
This section covers Universal Library functions that load, read, and configure counters. There are five types of
counter chips used in MCC counter boards: 8254s, 8536s, 7266s, 9513s and generic event counters. Some of
the counter commands only apply to one type of counter.

Counter Functions cbC7266Config() (32-bit UL only)

52

cbC7266Config() (32-bit UL only)
Configures 7266 counter for desired operation. This function can only be used with boards that contain a 7266
counter chip (Quadrature Encoder boards). For more information, refer to the LS7266R1 data sheet in the
accompanying ls7266r1.pdf file located in the Documents subdirectory where you installed UL (C:\MCC by
default).

This data sheet is also available on our web site at www.mccdaq.com/PDFmanuals/LS7266R1.pdf

Function prototype:

C/C++: int cbC7266Config(int BoardNum, int CounterNum, int Quadrature, int
CountingMode, int DataEncoding, int IndexMode, int InvertIndex, int
FlagPins, int Gating)

Visual Basic: Function cbC7266Config(ByVal BoardNum&, ByVal CounterNum&, ByVal
Quadrature&, ByVal CountingMode&, ByVal DataEncoding&, ByVal
IndexMode&, ByVal InvertIndex&, ByVal FlagPins&, ByVal Gating&) As
Long

Delphi: function cbC7266Config(BoardNum:Integer; CounterNum:Integer;
Quadrature:Integer; CountingMode:Integer; DataEncoding:Integer;
IndexMode:Integer; InvertIndex:Integer; FlagPins:Integer;
Gating:Integer):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with
the configuration program. The specified board must have an LS7266 counter.
BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

CounterNum Counter Number (1 - n), where n is the number of counters on the board.

Quadrature Selects the resolution multiplier for quadrature input, or disables quadrature input
(NO_QUAD) so that the counters can be used as standard TTL counters. NO_QUAD,
X1_QUAD, X2_QAUD or X4_QUAD.

CountingMode Selects operating mode for the counter. NORMAL_MODE, RANGE_LIMIT,
NO_RECYCLE, MODULO_N. Set it to one of the constants in the "CountingMode
argument values" section on page 53.

DataEncoding Selects the format of the data that is returned by the counter - either Binary or BCD
format. BCD_ENCODING, BINARY_ENCODING.

IndexMode Selects which action will be taken when the Index signal is received. The
IndexMode must be set to INDEX_DISABLED whenever a Quadrature is set to
NON_QUAD or when Gate is set to ENABLED. Set it to one of the constants in the
"IndexMode argument values" section on page 53.

InvertIndex Selects the polarity of the Index signal. If set to DISABLED the Index signal is
assumed to be positive polarity. If set to ENABLED the Index signal is assumed to be
negative polarity.

FlagPins Selects which signals will be routed to the FLG1 and FLG2 pins. Set it to one of
the constants in the "FlagPins argument values" section on page 53.

Gating If gating is set to ENABLED then the RCNTR pin will be used as a gating signal for
the counter. Whenever Gating=ENABLED the IndexMode must be set to
DISABLE_INDEX.

Returns:

Error code or 0 if no error occurs

http://www.measurementcomputing.com/PDFmanuals/LS7266R1.pdf

Counter Functions cbC7266Config() (32-bit UL only)

53

CountingMode argument values:

NORMAL_MODE Each counter operates as a 24-bit counter that rolls over to 0 when the maximum
count is reached.

RANGE_LIMIT In range limit count mode, an upper an lower limit is set, mimicking limit switches
in the mechanical counterpart. The upper limit is set by loading the PRESET
register with the cbCLoad() function after the counter has been configured. The
lower limit is always 0. When counting up, the counter freezes whenever the count
reaches the value that was loaded into the PRESET register. When counting down,
the counter freezes at 0. In either case the counting is resumed only when the count
direction is reversed.

NO_RECYCLE In non-recycle mode the counter is disabled whenever a count overflow or
underflow takes place. The counter is re-enabled when a reset or load operation is
performed on the counter.

MODULO_N In modulo-n mode, an upper limit is set by loading the PRESET register with a
maximum count. Whenever counting up, when the maximum count is reached, the
counter will roll-over to 0 and continue counting up. Likewise when counting
down, whenever the count reaches 0, it will roll over to the maximum count (in the
PRESET register) and continue counting down.

IndexMode argument values:

INDEX_DISABLED The Index signal is ignored.

LOAD_CTR The counter is loaded whenever the Index signal ON the LCNTR pin occurs.

LOAD_OUT_LATCH The current count is latched whenever the Index signal on the LCNTR pin occurs.
When this mode is selected, the cbCIn() function will return the same count
each time it is called until the Index signal occurs.

RESET_CTR The counter is reset to 0 whenever the Index signal on the RCNTR pin occurs.

FlagPins argument values:

CARRY_BORROW FLG1 pin is CARRY output, FLG2 is BORROW output.

COMPARE_BORROW FLG1 pin is COMPARE output, FLG2 is BORROW output.

CARRYBORROW_UPDOWN FLG1 pin is CARRY/BORROW output, FLG2 is UP/DOWN signal.

INDEX_ERROR FLG1 is INDEX output, FLG2 is error output.

Counter Functions cbC8254Config()

54

cbC8254Config()
Configures 8254 counter for desired operation. This function can only be used with 8254 counters. For more
information, refer to the 82C54 data sheet in the accompanying 82C54.pdf file located in the Documents
subdirectory where you installed UL (C:\MCC by default).

This data sheet is also available on our web site at www.mccdaq.com/PDFmanuals/82C54.pdf

Function prototype:

C/C++: int cbC8254Config(int BoardNum, int CounterNum, int Config)

Visual Basic: Function cbC8254Config(ByVal BoardNum&, ByVal CounterNum&, ByVal
Config&) As Long

Delphi: function cbC8254Config(BoardNum:Integer; CounterNum:Integer;
Config:Integer):Integer;

Arguments:

BoardNum Refers to the number associated with the board when it was installed with the
configuration program. Board must have an 82C54 installed. BoardNum may be 0
to 99 (0 to 9 for 16-bit version of Universal Library).

CounterNum Selects one of the counter channels. An 8254 has 3 counters. The value may be 1 -
n, where n is the number of 8254 counters on the board (see board-specific
information in the Universal Library User's Guide available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf, or in your hardware
manual).

Config Refer to the 8254 data sheet for a detailed description of each of the configurations.
Set it to one of the constants in the "Config " section below.

Returns:

Error code or 0 if no errors

Config argument values:

HIGHONLASTCOUNT Output of counter (OUT N) transitions from low to high on terminal count and
remains high until reset. See Mode 0 on 8254 data sheet in accompanying
82C54.pdf file located in the Documents subdirectory where you installed UL
(C:\MCC by default).

ONESHOT Output of counter (OUT N) transitions from high to low on rising edge of GATE
N, then back to high on terminal count. See mode 1 on 8254 data sheet in
accompanying 82C54.pdf file located in the Documents subdirectory where you
installed UL (C:\MCC by default).

RATEGENERATOR Output of counter (OUT N) pulses low for one clock cycle on terminal count,
reloads counter and recycles. See mode 2 on 8254 data sheet in the accompanying
82C54.pdf file located in the Documents subdirectory where you installed UL
(C:\MCC by default).

SQUAREWAVE Output of counter (OUT N) is high for count < 1/2 terminal count then low until
terminal count, whereupon it recycles. This mode generates a square wave. See
mode 3 on 8254 data sheet in accompanying 82C54.pdf file located in the
Documents subdirectory where you installed UL (C:\MCC by default).

SOFTWARESTROBE Output of counter (OUT N) pulses low for one clock cycle on terminal count.
Count starts after counter is loaded. See mode 4 on 8254 data sheet in
accompanying 82C54.pdf file located in the Documents subdirectory where you
installed UL (C:\MCC by default).

http://www.measurementcomputing.com/PDFmanuals/82C54.pdf
http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Counter Functions cbC8254Config()

55

HARDWARESTROBE Output of counter (OUT N) pulses low for one clock cycle on terminal count.
Count starts on rising edge at GATE N input. See mode 5 on 8254 data sheet in
accompanying 82C54.pdf file located in the Documents subdirectory where you
installed UL (C:\MCC by default).

Counter Functions cbC8536Config()

56

cbC8536Config()
Configures 8536 counter for desired operation. This function can only be used with 8536 counters. Refer to
the Zilog 8536 manual. (This manual is available from MCC, but is not available on our web site.)

Function prototype:

C/C++: int cbC8536Config(int BoardNum, int CounterNum, int OutputControl,
int RecycleMode, int Retrigger)

Visual Basic: Function cbC8536Config(ByVal BoardNum&, ByVal CounterNum&, ByVal
OutputControl&, ByVal RecycleMode&, ByVal Retrigger&) As Long

Delphi: function cbC8536Config(BoardNum:Integer; CounterNum:Integer;
OutputControl:Integer; RecycleMode:Integer; Retrigger:Integer
):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with
the InstaCal® configuration program. The board must have an 8536. BoardNum
may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

CounterNum Selects one of the counter channels. An 8536 has 3 counters. The value may be 1, 2
or 3.

OutputControl Specifies the action of the output signal. Set it to one of the constants in the
"OutputControl " section below.

RecycleMode If set to RECYCLE (as opposed to ONETIME) then the counter will automatically
reload to the starting count every time it reaches 0, then counting will continue.

Retrigger If set to ENABLED (CBENABLED in Visual Basic and Delphi) then every trigger on the
counter's trigger input will initiate loading of the initial count and counting will
proceed from initial count.

Returns:

Error code or 0 if no errors

OutputControl argument values:

HIGHPULSEONTC Output transitions from low to high for one clock pulse on terminal count.

TOGGLEONTC Output will change state on terminal count.

HIGHUNTILTC Output will transition to high at the start of counting then go low on terminal count.

Counter Functions cbC9513Config()

57

cbC9513Config()
Sets all of the configurable options of a 9513 counter. For more information, refer to the AM9513A data sheet
in the 9513A.pdf file located in the Documents subdirectory where you installed UL (C:\MCC by default).

The data sheet is also available on our web site at www.mccdaq.com/PDFmanuals/9513A.pdf

Function prototype:

C/C++: int cbC9513Config(int BoardNum, int CounterNum, int GateControl,
int CounterEdge, int CountSource, int SpecialGate, int Reload, int
RecycleMode, int BCDMode, int CountDirection, int OutputControl);

Visual Basic: Function cbC9513Config(ByVal BoardNum&, ByVal CounterNum&, ByVal
GateControl&, ByVal CounterEdge&, ByVal CountSource&, ByVal
SpecialGate&, ByVal Reload&, ByVal RecycleMode&, ByVal BCDMode&,
ByVal CountDirection&, ByVal OutputControl&) As Long

Delphi: function cbC9513Config(BoardNum:Integer; CounterNum:Integer;
GateControl:Integer; CounterEdge:Integer; CountSource:Integer;
SpecialGate:Integer; Reload:Integer; RecycleMode:Integer;
BCDMode:Integer; CountDirection:Integer;
OutputControl:Integer):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with the
configuration program. The specified board must have a 9513 counter. BoardNum may
be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

CounterNum Counter number (1 - n) where n is the number of counters on the board. For
example, a CIO-CTR5 has 5, a CIO-CTR10 has 10, etc. See board specific info.

GateControl Sets the gating response for level, edge, etc. Set it to one of the constants in the
"GateControl argument values" section on page 58.

CounterEdge Which edge to count. Referred to as "Source Edge" in 9513 data book. Can be set
to POSITIVEEDGE (count on rising edge) or NEGATIVEEDGE (count on falling edge).

CountSource Each counter may be set to count from one of 16 internal or external sources. Set it
to one of the constants in the "CountSource argument values" section on page 58.

SpecialGate Special gate may be enabled or disabled (CBENABLED or CBDISABLED: in Visual
Basic or Delphi).

Reload Reload the counter from the load register (Reload = LOADREG) or alternately load
from the load register, then the hold register (Reload = LOADANDHOLDREG).

RecycleMode Execute once (RecycleMode = ONETIME) or reload and recycle (RecycleMode =
RECYCLE).

BCDMode Counter may operate in binary coded decimal count (ENABLED) or binary count
(DISABLED) (CBENABLED or CBDISABLED in Visual Basic or Delphi).

CountDirection AM9513 may count up (COUNTUP) or down (COUNTDOWN).

OutputControl The type of output desired. Set it to one of the constants in the "OutputControl
argument values" section on page 58.

Returns:
Error code or 0 if no errors

http://www.measurementcomputing.com/PDFmanuals/9513A.pdf

Counter Functions cbC9513Config()

58

GateControl argument values:

NOGATE No gating

AHLTCPREVCTR Active high TCN -1

AHLNEXTGATE Active High Level GATE N + 1

AHLPREVGATE Active High Level GATE N - 1

AHLGATE Active High Level GATE N

ALLGATE Active Low Level GATE N

AHEGATE Active High Edge GATE N

ALEGATE Active Low Edge GATE N

CountSource argument values:

TCPREVCTR TCN - 1 (Terminal count of previous counter)

CTRINPUT1 SRC 1 (Counter Input 1)

CTRINPUT2 SRC 2 (Counter Input 2)

CTRINPUT3 SRC 3 (Counter Input 3)

CTRINPUT4 SRC 4 (Counter Input 4)

CTRINPUT5 SRC 5 (Counter Input 5)

GATE1 GATE1

GATE2 GATE2

GATE3 GATE3

GATE4 GATE4

GATE5 GATE 5

FREQ1 F1

FREQ2 F2

FREQ3 F3

FREQ4 F4

FREQ5 F5

ALWAYSLOW Inactive, Output Low

OutputControl argument values:

HIGHPULSEONTC High pulse on Terminal Count

TOGGLEONTC TC Toggled

DISCONNECTED Inactive, Output High Impedance

LOWPULSEONTC Active Low Terminal Count Pulse

3, 6, 7 (numeric values) Illegal

Counter Functions cbC9513Config()

59

Notes:

The information provided here and in the cbC9513Init() data sheet will only help you understand how
Universal Library syntax corresponds to information in the 9513 data sheet. It is not a substitute for the data
sheet. You cannot program and use a 9513 without this data sheet.

Refer to the accompanying 9513A.pdf file located in the Documents subdirectory where you installed UL
(C:\MCC by default). The data sheet is also available on our web site at
www.mccdaq.com/PDFmanuals/9513A.pdf.

http://www.measurementcomputing.com/PDFmanuals/9513A.pdf

Counter Functions cbC8536Init()

60

cbC8536Init()
Initializes the counter linking features of an 8536 counter chip. Refer to the Zilog 8536 manual,
"Counter/Timer Link Controls" section, for a complete description of the hardware affected by this mode.
(This manual is available from MCC, but is not available on our web site.) Counters 1 and 2 must be linked
before enabling the counters.

Function prototype:

C/C++: int cbC8536Init(int BoardNum, int ChipNum, int CtrlOutput)

Visual Basic: Function cbC8536Init(ByVal BoardNum&, ByVal ChipNum&, ByVal
Ctr1Output&) As Long

Delphi: function cbC8536Init(BoardNum:Integer; ChipNum:Integer;
Ctr1Output:Integer):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with
the InstaCal® configuration program. The specified board must have an 8536.
BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

ChipNum Selects one of the 8536 chips on the board, 1 to n.

CtrlOutput Specifies how counter 1 is to be linked to counter 2, if at all. Set it to one of the
constants in the "CtrlOutput argument values" section below.

Returns:
Error code or 0 if no errors.

CtrlOutput argument values:

NOTLINKED Counter 1 is not connected to any other counters inputs.

GATECTR2 Output of counter 1 is connected to the GATE of counter #2.

TRIGCTR2 Output of counter 1 is connected to the trigger of counter #2.

INCTR2 Output of counter 1 is connected to counter #2 clock input.

Counter Functions cbC9513Init()

61

cbC9513Init()
Initializes all of the chip level features of a 9513 counter chip. This function can only be used with 9513
counters. For more information, refer to the AM9513A data sheet in the 9513A.pdf file located in the
Documents subdirectory where you installed UL (C:\MCC by default).

This data sheet is also available on our web site at www.mccdaq.com/PDFmanuals/9513A.pdf.

Function prototype:

C/C++: int cbC9513Init(int BoardNum, int ChipNum, int FOutDivider, int
FOutSource, int Compare1, int Compare2, int TimeOfDay)

Visual Basic: Function cbC9513Init(ByVal BoardNum&, ByVal ChipNum&, ByVal
FOutDivider&, ByVal FOutSource&, ByVal Compare1&, ByVal Compare2&,
ByVal TimeOfDay&) As Long

Delphi: function cbC9513Init(BoardNum:Integer; ChipNum:Integer;
FOutDivider:Integer; FOutSource:Integer; Compare1:Integer;
Compare2:Integer; TimeOfDay:Integer):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with
the configuration program. The specified board must have a 9513 counter.
BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

ChipNum Specifies which 9513 chip is to be initialized. For a CTR05 board this should be set
to 1. For a CTR10 board it should be either 1 or 2, and for a CTR20 it should be 1-
4.

FOutDivider F-Out divider (0-15). If set to 0, FoutDivider is the rate of FoutSource divided
by 16. If set to a number between 1 ands 15, FoutDivider is the rate of
FoutSource divided by FoutDivider.

FOutSource Specifies source of the signal for F-Out signal. Set it to one of the constants in the
"FOutSource argument values" section on page 62.

Compare1 Compare1 ENABLED or Compare1 DISABLED (CBENABLED or
CBDISABLED in Visual Basic or Delphi).

Compare2 Compare2 ENABLED or Compare2 DISABLED. (CBENABLED or
CBDISABLED in Visual Basic or Delphi).

TimeOfDay TimeOfDay ENABLED or TimeOfDay DISABLED. (CBENABLED or
CBDISABLED in Visual Basic or Delphi). The options for this argument are listed
in the "TimeOfDay argument values" section on page 62.

Returns:
Error code or 0 if no errors

http://www.measurementcomputing.com/PDFmanuals/9513A.pdf

Counter Functions cbC9513Init()

62

FOutSource argument values:

FOutSource 9513 Data Sheet Equivalent

CTRINPUT1 SRC 1 (Counter Input 1)

CTRINPUT2 SRC 2 (Counter Input 2)

CTRINPUT3 SRC 3 (Counter Input 3)

CTRINPUT4 SRC 4 (Counter Input 4)

CTRINPUT5 SRC 5 (Counter Input 5)

GATE1 GATE1

GATE2 GATE2

GATE3 GATE3

GATE4 GATE4

GATE5 GATE5

FREQ1 F1

FREQ2 F2

FREQ3 F3

FREQ4 F4

FREQ5 F5

TimeOfDay argument values:

TimeOfDay 9513 Data Sheet Equivalent

CBDISABLED TOD Disabled

1 TOD Enabled / 5 Input

2 TOD Enabled / 6 Input

3 TOD Enabled / 10 Input

No arguments for: 9513 data sheet equivalent

0 (FOUT on) FOUT Gate

0 (Data bus matches board) Data Bus Width

1 (Disable Increment) Data Pointer Control

1 (BCD Scaling) Scalar Control

Notes:

The information provided here and in cbC9513Config() will help you understand how the Universal
Library syntax corresponds to the 9513 data sheet, but is not a substitute for the data sheet. You cannot
program and use a 9513 without this data sheet.

Refer to the accompanying 9513A.pdf file located in the Documents subdirectory where you installed UL
(C:\MCC by default). The data sheet is also available on our web site at
www.mccdaq.com/PDFmanuals/9513A.pdf

http://www.measurementcomputing.com/PDFmanuals/9513A.pdf

Counter Functions cbCFreqIn()

63

cbCFreqIn()
Measures the frequency of a signal. This function is only used with 9513 counters. This function uses internal
counters #4 and #5.

Function prototype:

C/C++: int cbCFreqIn(int BoardNum, int SigSource, int GateInterval,
unsigned short *Count, long *Freq)

Visual Basic: Function cbCFreqIn(ByVal BoardNum&, ByVal SigSource&, ByVal
GateInterval&, Count%, Freq&) As Long

Delphi: function cbCFreqIn(BoardNum:Integer; SigSource:Integer;
GateInterval:Integer; var Count:Word; var Freq:Longint):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. The specified board must have a 9513 counter. BoardNum
may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

SigSource Specifies the source of the signal from which the frequency is calculated. The
signal to be measured is routed internally from the source specified by SigSource
to the clock input of counter 5. On boards with more than one 9513 chip, there is
more than one counter 5. Which counter 5 is used is also determined by
SigSource. Set it to one of the constants in the "SigSource argument values"
section on page 64.
The value of SigSource determines which chip will be used. CTRINPUT6 through
CTRINPUT10, FREQ6 through FREQ10 and GATE6 through GATE9 indicate chip two
will be used. The signal to be measured must be present at the chip two input
specified by SigSource. Also, the gating connection from counter 4 output to
counter 5 gate must be made between counters 4 and 5 of this chip (see below).
Refer to board-specific information to determine valid values for your board.

GateInterval Gating interval in milliseconds (must be > 0). Specifies the time (in milliseconds)
that the counter will be counting. The optimum GateInterval depends on the
frequency of the measured signal. The counter can count up to 65535. If the gating
interval is too low, the count will be too low and the resolution of the frequency
measurement will be poor. For example, if the count changes from 1 to 2, the
measured frequency doubles. If the gating interval is too long, then the counter
overflows and a FREQOVERFLOW error occurs.
The cbCFreqIn function does not return until the GateInterval has expired. There
is no background option. Under Windows, this means that window activity will
stop for the duration of the call. Adjust the GateInterval so this does not pose a
problem to your user interface.

Count The raw count is returned here.

Freq The measured frequency in Hz is returned here.

Returns:
Error code or 0 if no errors.

Count - Count that frequency calculation based on returned here.

Freq - Measured frequency in Hz returned here.

Counter Functions cbCFreqIn()

64

SigSource argument values:

One 9513 chip (Chip 1 used):

! CTRINPUT1 through CTRINPUT5

! GATE1 through GATE4

! FREQ1 through FREQ5

Two 9513 chips (Chip 1 or Chip 2 used):

! CTRINPUT1 through CTRINPUT10

! GATE1 through GATE9 (excluding gate 5)

! FREQ1 through FREQ10

Four 9513 chips (Chips 1- 4 may be used):

! CTRINPUT1 through CTRINPUT20

! GATE1 through GATE19 (excluding gates 5, 10 & 15)

! FREQ1 through FREQ20

Notes:

! This function requires an electrical connection between counter 4 output and counter 5 gate. This
connection must be made between counters 4 and 5 on the chip determined by SigSource.

! cbC9513Init() must be called for each ChipNum that will be used by this function. The values of
FOutDivider, FOutSource, Compare1, Compare2, and TimeOfDay are irrelevant to this function and may
be any value shown in the cbC9513Init() function description.

! If you select an external clock source for the counters, the GateInterval, Count, and Freq settings are
only valid if the external source is 1 MHz. Otherwise, you need to scale the values according to the
frequency of the external clock source. For example, for an external clock source of 2 MHz, increase your
GateInterval setting by a factor of 2, and also double the Count and Freq values returned when
analyzing your results.

Counter Functions cbCIn()

65

cbCIn()
Reads the current count from a counter.

Function prototype:

C/C++: int cbCIn(int BoardNum, int CounterNum, unsigned short *Count)

Visual Basic: Function cbCIn(ByVal BoardNum&, ByVal CounterNum&, Count%) As Long

Delphi: function cbCIn(BoardNum:Integer; CounterNum:Integer; var Count:Word
):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. The specified board must have a counter. BoardNum may be
0 to 99 (0 to 9 for 16-bit version of Universal Library).

CounterNum The counter to read the current count from. Valid values are 1 to 20, up to the
number of counters on the board.

Count Counter value returned here. See the "Notes" section below.

Returns:
Error code or 0 if no errors.

Notes:

Count - The range of counter values returned are: 0 to 65,535 for C or PASCAL languages. Refer to your
BASIC manual for information on BASIC integer data types. -32,768 to 32,767 for BASIC languages. BASIC
reads counters as:

! -1 reads as 65535

! -21768 reads as 32768

! 32767 reads as 32767

! 2 reads as 2

! 0 reads as 0

cbCIn() vs. cbCIn32(): Although the cbCIn() and cbCIn32() functions perform the same operation,
cbCIn32() is the preferred function to use.

The only difference between the two is that cbCIn() returns a 16-bit count value and cbCIn32() returns a 32-
bit value. Both cbCIn() and cbCIn32() can be used, but cbCIn32() is required whenever you need to read
count values greater than 16 bits (counts > 65535).

Counter Functions cbCIn32() (32-bit UL Only)

66

cbCIn32() (32-bit UL Only)
Reads the current count from a counter and returns it as a 32-bit integer.

Function prototype:

C/C++: int cbCIn32(int BoardNum, int CounterNum, unsigned long *Count)

Visual Basic: Function cbCIn32(ByVal BoardNum&, ByVal CounterNum&, Count&) As
Long

Delphi: function cbCIn32 (BoardNum:Integer; CounterNum:Integer; var
Count:Longint):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. The specified board must have an LS7266 counter.
BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

CounterNum The counter to read current count from. Valid values are 1 to N, where N is the
number of counters on the board.

Count Current count value from selected counter is returned here.

Returns:
Error code or 0 if no error occurs.

Notes:

cbCIn() vs. cbCIn32(): Although the cbCIn() and cbCIn32()functions perform the same operation,
cbCIn32() is the preferred function to use.

The only difference between the two is that cbCIn() returns a 16-bit count value and cbCIn32() returns a 32-
bit value. Both cbCIn() and cbCIn32() can be used, but cbCIn32() is required whenever you need to read
count values greater than 16 bits (counts > 65535).

Counter Functions cbCLoad()

67

cbCLoad()
Loads the specified counter's LOAD, HOLD, ALARM, COUNT, PRESET or PRESCALER register with a count. When
loading a counter with a starting value, it is never loaded directly into the counter's count register. Rather, it is
loaded into the load or hold register. From there, the counter, after being enabled, loads the count from the
appropriate register, generally on the first valid pulse.

Function prototype:

C/C++: int cbCLoad(int BoardNum, int RegNum, unsigned LoadValue)

Visual Basic: Function cbCLoad(ByVal BoardNum&, ByVal RegNum&, ByVal LoadValue&)
As Long

Delphi: function cbCLoad(BoardNum:Integer; RegNum:Integer; LoadValue:Word
):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. The specified board must have a counter. BoardNum may be
0 to 99 (0 to 9 for 16-bit version of Universal Library).

RegNum The register to load the count to. Set it to one of the constants in the "RegNum
argument values" section below.

LoadValue The value to be loaded. Must be between 0 and 2resolution - 1 of the counter. For
example, a 16-bit counter is 216 - 1, or 65,535. Refer to the discussion of Basic
signed integers in the "16-bit values using a signed integer data type" section in the
"Universal Library Description & Use" chapter of the Universal Library User's
Guide (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-
guide.pdf).

Returns:
Error code or 0 if no errors.

RegNum argument values:

LOADREG1 .. 20 Load registers 1 through 20. This may span several chips.

HOLDREG1 .. 20 Hold registers 1 through 20. This may span several chips. (9513 only)

ALARM1CHIP1 Alarm register 1 of the first counter chip. (9513 only)

ALARM2CHIP1 Alarm register 2 of the first counter chip. (9513 only)

ALARM1CHIP2 Alarm register 1 of the second counter chip. (9513 only)

ALARM2CHIP2 Alarm register 2 of the second counter chip. (9513 only)

ALARM1CHIP3 Alarm register 1 of the third counter chip. (9513 only)

ALARM2CHIP3 Alarm register 2 of the third counter chip. (9513 only)

ALARM1CHIP4 Alarm register 1 of the four counter chip. (9513 only)

ALARM2CHIP4 Alarm register 2 of the four counter chip. (9513 only)

COUNT1 .. 4 Current Count (LS7266 only)

PRESET1 .. 4 Preset register (LS7266 only)

PRESCALER1 .. 4 Prescaler register (LS7266 only)

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf
http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Counter Functions cbCLoad()

68

Notes:

You cannot load a count-down-only counter with less than 2.

Counter types: There are several counter types supported. Please refer to the counter chip's data sheet for the
registers that are available.

cbCLoad() vs. cbCLoad32(): Although the cbCLoad() and cbCLoad32()functions perform the same
operation, cbCLoad32() is the preferred function to use.

The only difference between the two is that cbCLoad() loads a 16-bit count value, and cbCLoad32() loads a
32-bit value. The only time you need to use cbCLoad32() is to load counts that are larger than 32-bits (counts
> 65535).

Counter Functions cbCLoad32() (32-bit UL Only)

69

cbCLoad32() (32-bit UL Only)
Loads the specified counter's COUNT, PRESET, or PRESCALER register with a count.

Function prototype:

C/C++: int cbCLoad32(int BoardNum, int RegNum, unsigned long LoadValue)

Visual Basic: Function cbCLoad32(ByVal BoardNum&, ByVal RegNum&, ByVal LoadValue&
) As Long

Delphi: function cbCLoad32 (BoardNum:Integer; RegNum:Integer;
LoadValue:Longint):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with
the configuration program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library).

RegNum The register to load the value into. Set it to one of the constants in the "RegNum
argument values" section below.

Returns:
Error code or 0 if no error occurs.

RegNum argument values:

LOADREG1 .. 20 Load registers 1 through 20. This may span several chips.

HOLDREG1 .. 20 Hold registers 1 through 20. This may span several chips. (9513 only)

ALARM1CHIP1 Alarm register 1 of the first counter chip. (9513 only)

ALARM2CHIP1 Alarm register 2 of the first counter chip. (9513 only)

ALARM1CHIP2 Alarm register 1 of the second counter chip. (9513 only)

ALARM2CHIP2 Alarm register 2 of the second counter chip. (9513 only)

ALARM1CHIP3 Alarm register 1 of the third counter chip. (9513 only)

ALARM2CHIP3 Alarm register 2 of the third counter chip. (9513 only)

ALARM1CHIP4 Alarm register 1 of the four counter chip. (9513 only)

ALARM2CHIP4 Alarm register 2 of the four counter chip. (9513 only)

COUNT1 .. 4 Current Count (LS7266 only)

PRESET1 .. 4 Preset register (LS7266 only)

PRESCALER1 .. 4 Prescaler register (LS7266 only)

Notes:

cbCLoad() vs. cbCLoad32(): Although the cbCLoad() and cbCLoad32()functions perform the same
operation, cbCLoad32() is the preferred function to use.

The only difference between the two is that cbCLoad() loads a 16-bit count value, and cbCLoad32() loads a
32-bit value. The only time you need to use cbCLoad32() is to load counts that are larger than 32-bits (counts
> 65535).

Counter Functions cbCStatus() (32-bit UL Only)

70

cbCStatus() (32-bit UL Only)
Returns status information about the specified counter (7266 counters only). For more information, see the
LS7261 data sheet in the LS7266R1pdf file located in the Documents subdirectory where you installed UL
(C:\MCC by default). This data sheet is also available on our web site at
www.mccdaq.com/PDFmanuals/LS7266R1.pdf.

Function prototype:

C/C++: int cbCStatus (int BoardNum, int CounterNum, unsigned long
*StatusBits)

Visual Basic: Function cbCStatus(ByVal BoardNum&, ByVal CounterNum&, StatusBits&)
As Long

Delphi: function cbCStatus (BoardNum:Integer; CounterNum:Integer; var
StatusBits:Longint):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. The specified board must have an LS7266 counter.
BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

CounterNum The counter to read current count from. Valid values are 1 to N, where N is the
number of counters on the board.

StatusBits Current status from selected counter is returned here. The status consists of
individual bits that indicate various conditions within the counter. Set it to one of
the constants in the "StatusBits argument values" section below.

Returns:
Error code or 0 if no error occurs.

StatusBits argument values:

C_UNDERFLOW Set to 1 whenever the count decrements past 0. Is cleared to 0 whenever
cbCStatus() is called.

C_OVERFLOW Set to 1 whenever the count increments past it's upper limit. Is cleared to 0
whenever cbCStatus() is called.

C_COMPARE Set to 1 whenever the count matches the preset register. Is cleared to 0 whenever
cbCStatus() is called.

C_SIGN Set to 1 when the MSB of the count is 1. Is cleared to 0 whenever the MSB of the
count is set to 0.

C_ERROR Set to 1 whenever an error occurs due to excessive noise on the input. Is cleared to
0 by calling cbC7266Config() set to 1 when index is valid. Is cleared to 0
when index is not valid.

C_UP_DOWN Set to 1 when counting up. Is cleared to 0 when counting down

C_INDEX Set to 1 when index is valid. Is cleared to 0 when index is not valid.

http://www.measurementcomputing.com/PDFmanuals/LS7266R1.pdf

Counter Functions cbCStoreOnInt()

71

cbCStoreOnInt()
Changed R4.0 RW

Installs an interrupt handler that will store the current count whenever an interrupt occurs. This function can
only be used with 9513 counters. This function will continue to operate in the background until either
IntCount has been satisfied or cbStopBackground() is called.

Function prototype:

C/C++: int cbCStoreOnInt (int BoardNum, int IntCount, int CntrControl[],
int MemHandle)

Visual Basic: Function cbCStoreOnInt (ByVal BoardNum&, ByVal IntCount&,
CntrControl%, ByVal MemHandle&) As Long

Delphi: function cbCStoreOnInt (BoardNum:Integer; IntCount:Integer; var
CntrControl:SmallInt; MemHandle:Integer):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. The specified board must have a 9513 counter. BoardNum
may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

IntCount The counters will be read every time an interrupt occurs until IntCount number of
interrupts have occurred. If IntCount is = 0 then the function will run until
cbStopBackground() is called. (refer to MemHandle).

CntrControl The array should have an element for each counter on the board. (5 elements for
CTR-05 board, 10 elements for a CTR-10, etc.). Each element corresponds to a
counter channel. Each element should be set to either CBDISABLED or CBENABLED.
All channels that are set to CBENABLED will be read when an interrupt occurs.

MemHandle Handle for Windows buffer. Counts are stored in an array. The array should have
an element for each counter on the board. (5 elements for CTR-05 board, 10
elements for a CTR-10, etc.). Each element corresponds to a counter channel. Each
channel that is marked as CBENABLED in the CntrControl array will be read when
an interrupt occurs. The count value will be stored in the DataBuffer element
associated with that channel.

Returns:

Error code or 0 if no errors.

Notes:

New functionality: If the Library Revision is set to 4.0 or greater, the following code changes are required:

! If IntCount is non-zero, then the CountData array must be allocated to (IntCount * Number of
Counters).

For example, if you set IntCount to 100 for a CTR-05 board, then you must declare the CountData array
with a size of (100 * 5) = 500. This new functionality keeps the user application from having to move the
data out of the CountData buffer for every interrupt, before it is overwritten. Now, for each interrupt the
counter values will be stored in adjacent memory locations in the CountData array.

Counter Functions cbCStoreOnInt()

72

Allocate the proper array size for non-zero IntCount settings
Specifying IntCount as a non-zero value and failing to allocate the proper sized array results in a runtime
error. There is no way for the Universal Library to determine if the array has been allocated with the proper
size.

! If IntCount = 0, the functionality is unchanged.

73

5
Digital I/O Functions

Introduction
Use the functions explained in this chapter to read and set digital values. Most digital ports are configurable,
while some others are non-configurable. Some types of hardware allow readback of the values that output
ports are set to on configurable port types. Devices using 8255 chips for digital I/O are one example. For these
devices, input functions such as cbDIn() are valid for ports configured as output.

Use the tables below to determine the port number, bit number, and actual addresses being set by the digital
I/O functions. Table 5-1 relates the port number (PortNum) to the port address and the 8255 port. Table 5-2
relates the bit number to the 8255 chip on the board.

Table 5-1. Port Numbers and Corresponding Port Address, 8255 Port Number
Mnemonic Bit No. 8255 Port No. Port Address 8536 Port No. Port Address
FIRSTPORTA 0 - 7 1A Base + 0 1A Base + 0
FIRSTPORTB 8 - 15 1B 1B
FIRSTPORTCL 16 - 19 1CL 1C
FIRSTPORTCH 20 - 23 1CH Not present
SECONDPORTA 24 - 31 2A Base + 4 2A Base + 4
SECONDPORTB 32 - 39 2B 2B
SECONDPORTCL 40 - 43 2CL 2C
SECONDPORTCH 44 - 47 2CH Not present
and so on, to the last chip on the board as: THIRDPORTx, FOURTHPORTx, FIFTHPORTx, SIXTHPORTx, and
SEVENTHPORTx
EIGHTHPORTA 168 -175 8A Base + 28
EIGHTHPORTB 176 -183 8B
EIGHTHPORTCL 184 -187 8CL
EIGHTHPORTCH 188 -191 8CH

Table 5-2 Bit Numbers and Corresponding 8255 Chip Number
82C55 Bit# Chip # Address 8536 Bit# Chip # Address
0 � 23 1 Base + 0 0 - 19 1 Base + 0
24 � 47 2 Base + 4 20 � 39 2 Base + 4
48 � 71 3 Base + 8
72 � 95 4 Base + 12
96 � 119 5 Base + 16
120 � 143 6 Base + 20
144 � 167 7 Base + 24
168 � 191 8 Base + 28

Digital I/O Functions cbDBitIn()

74

cbDBitIn()
Reads the state of a single digital input bit.

This function treats all of the DIO ports of a particular type on a board as a single port. It lets you read the
state of any individual bit within this port.

Note that for some port types�such as 8255 ports�if the port is configured for DIGITALOUT, this function
provides readback of the last output value.

Function prototype:

C/C++: int cbDBitIn(int BoardNum, int PortType, int BitNum, unsigned short
*BitValue)

Visual Basic: Function cbDBitIn Lib(ByVal BoardNum&, ByVal PortType&, ByVal
BitNum&, BitValue%) As Long

Delphi: function cbDBitIn(BoardNum:Integer; PortType:Integer;
BitNum:Integer; var BitValue:Word):Integer;

Arguments:

BoardNum The number associated with the board when it was installed with the configuration
program. BoardNum may be 0 to 99 (0 to 9 for 16-bit UL).

PortType There are three general types of digital ports�ports that are programmable as input
or output, ports that are fixed input or output, and ports for which each bit may be
programmed as input or output. For the first of these types, set PortType to
FIRSTPORTA. For the latter two types, set PortType to AUXPORT. Some boards have
both types of digital ports (DAS1600). Set PortType to either FIRSTPORTA or
AUXPORT, depending on which digital inputs you wish to read.

BitNum This specifies the bit number within the single large port. Table 5-2 on page 73
shows which bit numbers are in which 82C55 and 8536 digital chips. The most
82C55 chips on a single board is eight (8), on the CIO-DIO196. The most (2) 8536
chips occur on the CIO-INT32.

BitValue Place holder for return value of bit. Value will be 0 or 1. A 0 indicates a logic low
reading, a 1 indicates a logic high reading. Logic high does not necessarily mean
5V. See the board manual for chip input specifications.

Returns:
Error code or 0 if no errors.

BitValue - value (0 or 1) of specified bit returned here.

Digital I/O Functions cbDBitOut()

75

cbDBitOut()
Sets the state of a single digital output bit. This function treats all of the DIO ports of a particular type on a
board as a single very large port. It lets you set the state of any individual bit within this large port. If the port
type is not AUXPORT, you must use cbDConfigPort() to configure the port for output first. If the port type
is AUXPORT, you may need to use cbDConfigBit() or cbDConfigPort() to configure the bit for
output first. Refer to the board-specific information in the Universal Library User's Guide (available on our
web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) to determine if AUXPORT should be
configured for your hardware.

Function prototype:

C/C++: int cbDBitOut (int BoardNum, int PortType, int BitNum, unsigned
short BitValue)

Visual Basic: Function cbDBitOut(ByVal BoardNum&, ByVal PortType&, ByVal BitNum&,
ByVal BitValue%) As Long

Delphi: function cbDBitOut (BoardNum:Integer; PortType:Integer;
BitNum:Integer; BitValue:Word):Integer;

Arguments:

BoardNum The number associated with the board when it was installed with the configuration
program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

PortType There are three general types of digital ports - ports that are programmable as input
or output, ports that are fixed input or output and ports for which each bit may be
programmed as input or output. For the first of these types, set PortType to
FIRSTPORTA. For the latter two types, set PortType to AUXPORT. Some boards have
both types of digital ports (DAS1600). Set PortType to either FIRSTPORTA or
AUXPORT depending on which digital port you wish to write to.

BitNum This specifies the bit number within the single large port. The specified bit must be
in a port that is currently configured as an output.
Table 5-2 on page 73 shows which bit numbers are in which 82C55 and 8536
digital chips. The most 82C55 chips on a single board is eight (8), on the CIO-
DIO196. The most (2) 8536 chips occur on the CIO-INT32.

BitValue The value to set the bit to. Value will be 0 or 1. A 0 indicates a logic low output, a
1 indicates a logic high output. Logic high does not necessarily mean 5V. See the
board manual for chip specifications.

Returns:
Error code or 0 if no errors.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Digital I/O Functions cbDConfigBit()

76

cbDConfigBit()
Configures a specific digital bit as Input or Output. This function treats all DIO ports of the AUXPORT type
on a board as a single port. This function is NOT supported by 8255 type DIO ports. Refer to the board-
specific information for details.

Function prototype:

C/C++: int cbDConfigBit (int BoardNum, int PortType, int BitNum, int
Direction)

Visual Basic: Function cbDConfigBit (ByVal BoardNum&, ByVal PortType&, ByVal
BitNum&, ByVal Direction&) As Long

Delphi: function cbDConfigBit (Boardnum:Integer; PortType:Integer;
BitNum:Integer; Direction:Integer) :Integer;

Arguments:

BoardNum The number associated with the board when it was installed with the configuration
program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

PortType The port (AUXPORT) whose bits are to be configured. The port specified must be
bitwise configurable. See board specific information for details.

BitNum The bit number to configure as input or output. See board specific information for
details.

Direction DIGITALOUT or DIGITALIN configures the specified bit for output or input,
respectively.

Returns:
Error code or 0 if no errors.

Digital I/O Functions cbDConfigPort()

77

cbDConfigPort()
Configures a digital port as input or output. This function is for use with ports that may be programmed as
input or output, such as those on the 82C55 chips and 8536 chips. Refer to the Zilog 8536 manual for details
of chip operation. Also refer to the 82C55 data sheet, which is available on our web site at
www.mccdaq.com/PDFmanuals/82C55A.pdf.

Function prototype:

C/C++: int cbDConfigPort(int BoardNum, int PortNum, int Direction)

Visual Basic: Function cbDConfigPort(ByVal BoardNum&, ByVal PortNum&, ByVal
Direction&) As Long

Delphi: function cbDConfigPort (Boardnum:Integer; PortNum:Integer;
Direction:Integer) :Integer;

Arguments:

BoardNum The number associated with the board when it was installed with the configuration
program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

PortNum The specified port must be configurable. For most boards, AUXPORT is not
configurable; please consult board specific documentation.
Table 5-1 on page 73 shows which ports and bit numbers are associated with
which 82C55 and 8536 digital chips. The most 82C55 chips on a single board is
eight (8), on the CIO-DIO196. The most (2) 8536 chips occur on the CIO-INT32.

Direction DIGITALOUT or DIGITALIN configures entire eight or four bit port for output or
input.

Returns:
Error code or 0 if no errors.

Notes:

When used on ports within an 8255 chip, this function will reset all ports on that chip configured for output to
a zero state. This means that if you set an output value on FIRSTPORTA and then change the configuration on
FIRSTPORTB from OUTPUT to INPUT, the output value at FIRSTPORTA will be all zeros. You can, however, set
the configuration on SECONDPORTX without affecting the value at FIRSTPORTA. For this reason, this function is
usually called at the beginning of the program for each port requiring configuration.

http://www.measurementcomputing.com/PDFmanuals/82C55A.pdf

Digital I/O Functions cbDIn()

78

cbDIn()
Reads a digital input port. Note that for some port types, such as 8255 ports, if the port is configured for
DIGITALOUT, this function will provide readback of the last output value.

Function prototype:

C/C++: int cbDIn (int BoardNum, int PortNum, unsigned short *DataValue)

Visual Basic: Function cbDIn(ByVal BoardNum&, ByVal PortNum&, DataValue%) As Long

Delphi: function cbDIn (BoardNum:Integer; PortNum:Integer; var
DataValue:Word):Integer; StdCall;

Arguments:

BoardNum The number associated with the board when it was installed with the configuration
program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

PortNum Specifies which digital I/O port to read. Some hardware does allow readback of the
state of the output using this function. Check the board specific information in the
Universal Library User�s Guide.
Table 5-1 on page 73 shows which ports are in which 82C55 and 8536 digital
chips. The most 82C55 chips on a single board is eight, on a CIO-DIO192. The
most 8536 chips on a board is two, on the CIO-INT32.

DataValue Digital input value returned here.

Returns:
Error code or 0 if no errors.

DataValue - Digital input value returned here.

Notes:

The size of the ports vary. If it is an eight bit port then the returned value will be in the range 0 - 255. If it is a
four bit port the value will be in the range 0 - 15.

Refer to the example programs and the board-specific information contained in the Universal Library User's
Guide (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) for clarification of
valid PortNum values.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Digital I/O Functions cbDInScan()

79

cbDInScan()
Multiple reads of digital input port of a high speed digital port on a board with a pacer clock such as the CIO-
PDMA16.

Function prototype:

C/C++: int cbDInScan(int BoardNum, int PortNum, long Count, long *Rate, int
MemHandle, int Options)

Visual Basic: Function cbDInScan(ByVal BoardNum&, ByVal PortNum&, ByVal Count&,
Rate&, ByVal MemHandle&, ByVal Options&) As Long

Delphi: function cbDInScan(BoardNum:Integer; PortNum:Integer; Count:Longint;
var Rate:Longint; MemHandle:Integer; Options:Integer):Integer;

Arguments:

BoardNum The number associated with the board when it was installed with the configuration
program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

PortNum Specifies which digital I/O port to read (usually, FIRSTPORTA or FIRSTPORTB). The
specified port must be configured as an input.

Count The number of times to read digital input.

Rate Number of times per second (Hz) to read the port. The actual sampling rate in
some cases will vary a small amount from the requested rate. The actual rate will
be returned to the Rate argument.

MemHandle Handle for Windows buffer to store data in (Windows). This buffer must have been
previously allocated with the cbWinBufAlloc() function.

Options Bit fields that control various options. Refer to the constants in the "Options
argument values" section below.

Returns:
Error code or 0 if no errors.

Rate - actual sampling rate returned.

MemHandle - digital input value returned via allocated Windows buffer.

Options argument values:

BACKGROUND If the BACKGROUND option is not used then the cbDInScan() function will not return
to your program until all of the requested data has been collected and returned to
DataBuffer.
When the BACKGROUND option is used, control will return immediately to the next
line in your program and the transfer from the digital input port to DataBuffer will
continue in the background. Use cbGetStatus() to check on the status of the
background operation. Use cbStopBackground() to terminate the background
process before it has completed.

CONTINUOUS This option puts the function in an endless loop. Once it transfers the required
number of bytes it resets to the start of DataBuffer and begins again. The only
way to stop this operation is with cbStopBackground(). Normally this option
should be used in combination with BACKGROUND so that your program will regain
control.

Digital I/O Functions cbDInScan()

80

EXTCLOCK If this option is used then transfers will be controlled by the signal on the trigger
input line rather than by the internal pacer clock. Each transfer will be triggered on
the appropriate edge of the trigger input signal (see board specific info). When this
option is used the Rate argument is ignored. The transfer rate is dependent on the
trigger signal.

WORDXFER Normally this function reads a single (byte) port. If WORDXFER is specified then it
will read two adjacent ports on each read and store the value of both ports together
as the low and high byte of a single array element in DataBuffer[].

Notes:

Transfer method - May not be specified. DMA is used.

Digital I/O Functions cbDOut()

81

cbDOut()
Writes a byte to a digital output port. If the port type is not AUXPORT, you must use cbDConfigPort() to
configure the port for output first. If the port type is AUXPORT, you may need to use cbDConfigPort() to
configure the port for output first. Check the board specific information in the Universal Library User's Guide
(available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) to determine if AUXPORT
should be configured for your hardware.

Function prototype:

C/C++: int cbDOut (int BoardNum, int PortNum, unsigned short DataValue)

Visual Basic: Function cbDOut(ByVal BoardNum&, ByVal PortNum&, ByVal DataValue%)
As Long

Delphi: function cbDOut (BoardNum:Integer; PortNum:Integer;
DataValue:Word):Integer;

Arguments:

BoardNum The number associated with the board when it was installed with the configuration
program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

PortNum There are three general types of digital ports - ports that are programmable as input
or output, ports that are fixed input or output and ports for which each bit may be
programmed as input or output. For the first of these types, set PortNum to
FIRSTPORTA. For the latter two types, set PortNum to AUXPORT. Some boards have
both types of digital ports (DAS1600). Set PortNum to either FIRSTPORTA or
AUXPORT depending on the digital port you want to set.
Table 5-1 on page 73 shows which ports are in which 82C55 and 8536 digital
chips. The CIO-DIO196 has eight 82C55 chips�the most on a single board. The
CIO-INT32 has two 8536 �the most on a single board.

DataValue Digital input value to be written.

Returns:
Error code or 0 if no errors.

Notes:

The size of the ports vary. If it is an eight bit port then the output value should be in the range 0 - 255. If it is a
four bit port the value should be in the range 0 - 15. Be sure to look at the example programs and the board
specific information in the Universal Library User's Guide for clarification of valid PortNum.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Digital I/O Functions cbDOutScan()

82

cbDOutScan()
Performs multiple writes to a digital output port of a high speed digital port on a board with a pacer clock,
such as the CIO-PDMA16 or CIO-PMA32.

Function prototype:

C/C++: int cbDOutScan(int BoardNum, int PortNum, long Count, long *Rate,
int MemHandle, int Options)

Visual Basic: Function cbDOutScan(ByVal BoardNum&, ByVal PortNum&, ByVal Count&,
Rate&, ByVal MemHandle&, ByVal Options&) As Long

Delphi: function cbDOutScan (BoardNum:Integer; PortNum:Integer;
Count:Longint; var Rate:Longint; MemHandle:Integer;
Options:Integer):Integer;

Arguments:

BoardNum The number associated with the board when it was installed with the configuration
program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

PortNum Specifies which digital I/O port to write. The two choices are FIRSTPORTA or
FIRSTPORTB. The specified port must be configured as an output.

Count The number of times to write digital output.

Rate Number of times per second (Hz) to write to the port. The actual update rate in
some cases will vary a small amount from the requested rate. The actual rate will
be returned to the Rate argument.

MemHandle Handle for Windows buffer to store data in (Windows). This buffer must have been
previously allocated with the cbWinBufAlloc() function.

Options Bit fields that control various options. Refer to the constants in the "Options
argument values" section below.

Returns:
Error code or 0 if no errors.

Rate - actual sampling rate returned.

Options argument values:

BACKGROUND If the BACKGROUND option is not used then the cbDOutScan() function will not
return to your program until all of the requested data has been output.
When the BACKGROUND option is used, control returns immediately to the next line
in your program and the transfer to the digital output port from DataBuffer will
continue in the background. Use cbGetStatus() to check on the status of the
background operation. Use cbStopBackground() to terminate the background
process before it has completed.

CONTINUOUS This option puts the function in an endless loop. Once it transfers the required
number of bytes it resets to the start of the buffer and begins again. The only way
to stop this operation is with cbStopBackground(). Normally this option
should be used in combination with BACKGROUND so that your program will regain
control.

Digital I/O Functions cbDOutScan()

83

EXTCLOCK If this option is used then transfers will be controlled by the signal on the trigger
input line rather than by the internal pacer clock. Each transfer will be triggered on
the appropriate edge of the trigger input signal (see board specific information).
When this option is used the Rate argument is ignored. The transfer rate is
dependent on the trigger signal.

WORDXFER Normally this function writes a single (byte) port. If WORDXFER is specified then it
will write two adjacent ports as the low and high byte of a single array element in
the buffer.

Notes:

! BYTEXFER is the default option. Make sure you are using an array when your data is arranged in bytes.
Use the WORDXFER option for word array transfers.

! Transfer method - May not be specified. DMA is used.

85

6
Error Handling Functions

Introduction
Use the functions explained in this chapter to get information from error codes returned by other UL
functions. Most library functions return error codes. The different methods built in to the functions for
handling errors include stopping the program when an error occurs, and printing error messages versus error
codes.

Error Handling Functions cbErrHandling()

86

cbErrHandling()
Sets the error handling for all subsequent function calls. Most functions return error codes after each call. In
addition, other error handling features are built into the library. This function controls those features. If the
Universal Library cannot find the configuration file CB.CFG, it always terminates the program, regardless of
the cbErrHandling() setting.

Function prototype:

C/C++: int cbErrHandling(int ErrReporting, int ErrHandling)

Visual Basic: Function cbErrHandling(ByVal ErrReporting&, ByVal ErrHandling&) As
Long

Delphi: function cbErrHandling(ErrReporting:Integer; ErrHandling:Integer
):Integer;

Arguments:

ErrReporting This argument controls when the library will print error messages on the screen.
The default is DONTPRINT. Set it to one of the constants in the "ErrReporting
argument values" section below.

ErrHandling This argument specifies what class of error will cause the program to halt. The
default is DONTSTOP Set it to one of the constants in the "ErrHandling argument
values" section below.

Returns:
Always returns 0.

ErrReporting argument values:

DONTPRINT Errors will not generate a message to the screen. In that case your program must
always check the returned error code after each library call to determine if an error
occurred.

PRINTWARNINGS Only warning errors will generate a message to the screen. Your program will have
to check for fatal errors.

PRINTFATAL Only fatal errors will generate a message to the screen. Your program must check
for warning errors.

PRINTALL All errors will generate a message to the screen.

ErrHandling argument values:

DONTSTOP The program will always continue executing when an error occurs.

STOPFATAL The program will halt if a "fatal" error occurs.

STOPALL Will stop whenever any error occurs. If you are running in an Integrated
Development Environment (IDE) then when errors occur, the environment may be
shut down along with the program. If your IDE behaves this way, (QuickBasic and
VisualBasic do), then set ErrHandling to DONTSTOP. Refer to "Error Codes" on
page 301 for a complete list of error codes and their associated messages.

Notes:

Warnings vs. Fatal Errors: All errors that can occur are classified as either "warnings" or "fatal":

! Errors that can occur in normal operation in a bug free program (disk is full, too few samples before
trigger occurred) are classified as "warnings".

! All other errors indicate a more serious problem and are classified as "fatal".

Error Handling Functions cbErrHandling()

87

STOPALL not intended for 32-bit C console programs: Do not use the STOPALL option in 32-bit C console
applications. Instead, use other methods to end the program, such as checking the return value of the function.

Error Handling Functions cbGetErrMsg()

88

cbGetErrMsg()
Returns the error message associated with an error code. Each function returns an error code. An error code
that is not equal to 0 indicates that an error occurred. Call this function to convert the returned error code to a
descriptive error message.

Function prototype:

C/C++: int cbGetErrMsg(int ErrCode, char ErrMsg[ERRSTRLEN])

Visual Basic: Function cbGetErrMsg(ByVal ErrCode&, ByVal ErrMsg$) As Long

Delphi: function cbGetErrMsg (ErrCode:Integer; ErrMsg:PChar):Integer;

Arguments:

ErrCode Error code that is returned by any function in library.

ErrMsg Error message returned here. The ErrMsg variable must be pre-allocated to be at
least as large as ERRSTRLEN. This size is guaranteed to be large enough to hold the
longest error message.

Returns:
Error code or 0 if no errors.

*ErrMsg - error message string is returned here.

Notes:

See also cbErrHandling() on page 86 for an alternate method of handling errors.

89

7
Memory Board Functions

Introduction
Use the functions explained in this chapter to read and write data to and from a memory board, and also set
modes that control memory boards (MEGA-FIFO).

The most common use for the memory boards is to store large amounts of data from an A/D board via a DT-
Connect cable to a memory board. To do this, use the EXTMEMORY option with cbAInScan() or
cbAPretrig(). Once the data has been transferred to the memory board, use the memory functions to
retrieve it.

Memory Board Functions cbMemRead()

90

cbMemRead()
Reads data from a memory board into an array.

Function prototype:

C/C++: int cbMemRead(int BoardNum, unsigned short DataBuffer[], long
FirstPoint, long Count)

Visual Basic: Function cbMemRead(ByVal BoardNum&, DataBuffer%, ByVal FirstPoint&,
ByVal Count&) As Long

Delphi: function cbMemRead(BoardNum:Integer; var DataBuffer:Word;
FirstPoint:Longint; Count:Longint):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library).

DataBuffer Pointer to the data array

FirstPoint Index of first point to read, or FROMHERE. Use FirstPoint to specify the first point
to read. For example, to read data sample numbers 200 through 250, set
FirstPoint = 200 and Count = 50.

Count Number of data points (words) to read

Returns:
Error code or 0 if no errors.

DataBuffer - data read from memory board.

Notes:

When reading a large amount of data from the board in small chunks, set FirstPoint to FROMHERE to read
each successive chunk. Using FROMHERE speeds up a cbMemRead() operation when working with large
amounts of data.

For example, to read 300,000 points in 100,000 point chunks, the calls would look like this:

cbMemRead (0, DataBuffer, 0, 100000)
cbMemRead (0, DataBuffer, FROMHERE, 1000000)
cbMemRead (0, DataBuffer, FROMHERE, 1000000)

DT-Connect Conflicts - The cbMemRead() function can not be called while a DT-Connect transfer is in
progress. For example, if you start collecting A/D data to the memory board in the background (by calling
cbAInScan() with the DTCONNECT + BACKGROUND options) you can not call cbMemRead() until the
cbAInScan() has completed. If you do you will get a DTACTIVE error.

Memory Board Functions cbMemReadPretrig()

91

cbMemReadPretrig()
Reads pre-trigger data collected with the cbAPretrig() function from a memory board, and re-arranges
the data in the correct order (pre-trigger data first, then post-trigger data). This function can only be used to
retrieve data that was collected with the cbAPretrig() function with EXTMEMORY set in the options argument.
After each cbAPretrig() call, all data must be unloaded from the memory board with this function. If any
more data is sent to the memory board then the pre-trigger data will be lost.

Function prototype:

C/C++: int cbMemReadPretrig(int BoardNum, unsigned short DataBuffer[], long
FirstPoint, long Count)

Visual Basic: Function cbMemReadPretrig(ByVal BoardNum&, DataBuffer%, ByVal
FirstPoint&, ByVal Count&) As Long

Delphi: function cbMemReadPretrig(BoardNum:Integer; var DataBuffer:Word;
FirstPoint:Longint; Count:Longint):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library).

DataBuffer The pointer to the data array.

FirstPoint Index of first point to read, or FROMHERE. Use FirstPoint to specify the first point
to read. For example, to read data sample numbers 200 through 250, set
FirstPoint = 200 and Count = 50.

Count Number of data samples (words) to read

Returns:
Error code or 0 if no errors.

DataBuffer - data read from memory board.

Notes:

When reading a large amount of data from the board in small chunks, set FirstPoint to FROMHERE to read
each successive chunk. Using FROMHERE speeds up a cbMemRead() operation when working with large
amounts of data. For example, to read 300,000 points in 100,000 chunks the calls would look like this:

cbMemReadPretrig (0, DataBuffer, 0, 100000)

cbMemReadPretrig (0, DataBuffer, FROMHERE, 1000000)

cbMemReadPretrig (0, DataBuffer, FROMHERE, 1000000)

DT-Connect Conflicts - The cbMemReadPretrig() function can not be called while a DT-Connect transfer is
in progress. For example, if you start collecting A/D data to the memory board in the background (by calling
cbAInScan() with the DTCONNECT + BACKGROUND options), you can not call cbMemReadPretrig() until the
cbAInScan() has completed. If you do you will get a DTACTIVE error.

Memory Board Functions cbMemReset()

92

cbMemReset()
Resets the memory board pointer to the start of the data. The memory boards are sequential devices. They
contain a counter which points to the 'current' word in memory. Every time a word is read or written this
counter increments to the next word.

Function prototype:

C/C++: int cbMemReset(int BoardNum)

Visual Basic: Function cbMemReset(ByVal BoardNum&) As Long

Delphi: function cbMemReset(BoardNum:Integer):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library).

Returns:
Error code or 0 if no errors.

Notes:

This function is used to reset the counter back to the start of the memory. Between successive calls to
cbAInScan(), you should call this function so that the second cbAInScan() overwrites the data from the
first call. Otherwise, the data from the first cbAInScan() will be followed by the data from the second
cbAInScan() in the memory on the card.

Likewise, anytime you call cbMemRead() or cbMemWrite()it will leave the counter pointing to the next
memory location after the data that you read or wrote. Call cbMemReset() to reset back to the start of the
memory buffer before the next call to cbAInScan().

Memory Board Functions cbMemSetDTMode()

93

cbMemSetDTMode()
Sets the DT-Connect Mode of a memory board.

Function prototype:

C/C++: int cbMemSetDTMode(int BoardNum, int Mode)

Visual Basic: Function cbMemSetDTMode(ByVal BoardNum&, ByVal Mode&) As Long

Delphi: function cbMemSetDTMode (BoardNum:Integer; Mode:Integer):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library).

Mode Must be set to either DTIN or DTOUT. Set the Mode on the memory board to DTIN to
transfer data from an A/D board to the memory board. Set Mode = DTOUT to transfer
data from a memory board to a D/A board.

Returns:

Error code or 0 if no errors.

Notes:

! This command only controls the direction of data transfer between the memory board and its parent board
that is connected to it via a DT-Connect cable.

! If you are using the EXTMEMORY option, do not use cbMemSetDTMode(), as the memory board mode is
already set with EXTMEMORY. Only use cbMemSetDTMode() when the parent board is not supported by the
Universal Library.

Memory Board Functions cbMemWrite()

94

cbMemWrite()
Writes data from an array to the memory card.

Function prototype:
C/C++: int cbMemWrite(int BoardNum, unsigned short DataBuffer[], long

FirstPoint, long Count);

Visual Basic: Function cbMemWrite(ByVal BoardNum&, DataBuffer%, ByVal FirstPoint&,
ByVal Count&) As Long

Delphi: function cbMemWrite(BoardNum:Integer; var DataBuffer:Word;
FirstPoint:Longint; Count:Longint):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library).

DataBuffer Pointer to the data array.

FirstPoint Index of first point to write, or FROMHERE. Use FirstPoint to specify the first point
to write data to. For example, to write to location numbers 200 through 250, set
FirstPoint = 200 and Count = 50.

Count Number of data points (words) to write.

Returns:
Error code or 0 if no errors.

Notes:

To write a large amount of data to the board in small chunks, set FirstPoint to FROMHERE to write each
successive chunk. For example, to write 300,000 points in 100,000 point chunks:

cbMemWrite (0, DataBuffer, 0, 100000)
cbMemWrite (0, DataBuffer, FROMHERE, 100000)
cbMemWrite (0, DataBuffer, FROMHERE, 100000)

DT-Connect Conflicts - The cbMemWrite() function cannot be called while a DT-Connect transfer is in
progress. For example, if you start collecting A/D data to the memory board in the background (by calling
cbAInScan() with the DTCONNECT + BACKGROUND options). You cannot call cbMemWrite() until the
cbAInScan() is complete. Doing so will generate a DTACTIVE error.

95

8
Revision Control Functions

Introduction
Use the functions explained in this chapter to initialize the Universal Library DLL so that the functions are
interpreted according to the format of the revision that you wrote and compiled your program in As new
revisions of the library are released, bugs from previous revisions are fixed and occasionally new functions
are added. It is Measurement Computing's goal to preserve the existing programs that you have written, and
therefore to never change the order or number of arguments in a function. However, it is not always possible
to achieve this goal.

Revision Control Functions cbDeclareRevision()

96

cbDeclareRevision()
New R3.3 ID

Initializes the Universal Library with the revision number of the library used to write your program. Must be
the first Universal Library function to be called by your program.

Function prototype:

C/C++: int cbDeclareRevision(float* RevNum);

Visual Basic: Function cbDeclareRevision(RevNum!) As Long

Delphi: Function cbDeclareRevision(var RevNum:single):Integer;

Arguments:

RevNum Revision number of the Universal Library to interpret function arguments. Default
setting: Any program using the 32-bit library and not containing this line of code
will be defaulted to revision 5.4 argument assignments.

Returns:
Error Code or 0 if no errors.

Notes:

Default: Any program using the 16-bit library that does not contain a call to this function will default to
revision 3.2 argument assignments.

As new revisions of the library are released, bugs from previous revisions are fixed and occasionally new
functions are added. It is Measurement Computing's goal to preserve existing programs you have written, and
therefore to never change the order or number of arguments in a function. Sometimes this is not possible, as in
the changes from revision 3.2 to 3.3. In revision 3.3, we added support for multiple background tasks, a
feature that users have requested.

Allowing multiple background tasks required adding the argument BoardNum to several functions. Doing so
would have meant that programs written for version 3.2 would not run with 3.3 if they called those functions.
If not for the new cbDeclareRevision() function, the programs would have had to be rewritten in each line
where the affected functions are used, and the program recompiled.

The revision control function initializes the DLL so that the functions are interpreted according to the format
of the revision you wrote and used to compiled your program. This function is new in revision 3.3. To take
advantage of it, the function must be added to your program and the program recompiled.

The function works by interpreting the UL function call from your program and filling in any arguments
needed to run with the new revision. For example, the function cbAConvertData() which appears on the
following pages had the argument BoardNum added in Revision 3.3.

The two revisions of the function look like this:

Rev 3.2

int cbAConvertData (long NumPoints, unsigned ADData[], int ChanTags[])

Rev 3.3

int cbAConvertData (int BoardNum, long NumPoints, unsigned ADData[], int ChanTags[])

Revision Control Functions cbDeclareRevision()

97

If your program has declared you are running code written for revision 3.2, and you call this function, the
argument BoardNum is ignored. If you want the benefits afforded by BoardNum, you must rewrite your program
with the new argument and declare revision 3.3 (or higher) in cbDeclareRevision().

If a revision less than 3.2 is declared, revision 3.2 is assumed.

Revision Control Functions cbGetRevision()

98

cbGetRevision()
Gets the revision level of Universal Library DLL and the VXD.

Function prototype:

C/C++: int cbGetRevision(float* DLLRevNum, float* VXDRevNum);

Visual Basic: Function cbGetRevision(DLLRevNum!, VXDRevNum!) As Long

Delphi: function cbGetRevision(var DLLRevNum:Single; var VXDRevNum:
Single):Integer;

Arguments:

DLLRevNum Place holder for the revision number of Library DLL.

VXDRevNum Place holder for the revision number of Library VXD.

Returns:

DLLRevNum - Revision number of the Library DLL

VXDRevNum - Revision number of the Library VXD

Error Code if revision levels of VXD and DLL are incompatible.

99

9
Streamer File Functions

Introduction
Use the streamer file functions explained in this chapter to create, fill, and read streamer files.

Streamer File Functions cbFileAInScan()

100

cbFileAInScan()
Scans a range of A/D channels and stores the samples in a disk file. cbFileAInScan reads the specified
number of A/D samples at the specified sampling rate from the specified range of A/D channels from the
specified board. If the A/D board has programmable gain, it sets the gain to the specified range. The collected
data is returned to a file in binary format. Use cbFileRead() to load data from that file into an array. See
board-specific information to determine if this function is supported on your board.

Function prototype:

C/C++: int cbFileAInScan(int BoardNum, int LowChan, int HighChan, long
Count, long *Rate, int Range, char *FileName, unsigned Options)

Visual Basic: Function cbFileAInScan(ByVal BoardNum&, ByVal LowChan&, ByVal
HighChan&, ByVal Count&, Rate&, ByVal Range&, ByVal FileName$, ByVal
Options&) As Long

Delphi: function cbFileAInScan(BoardNum:Integer; LowChan:Integer;
HighChan:Integer; Count:Longint; var Rate:Longint; Range:Integer;
FileName:PChar; Options:Integer):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with InstaCal.
The specified board must have an A/D. BoardNum may be 0 to 99 (0 to 9 for 16-bit
version of Universal Library).

LowChan First A/D channel of scan

HighChan Last A/D channel of scan
The maximum allowable channel depends on which type of A/D board is being
used. For boards with both single ended and differential inputs, the maximum
allowable channel number also depends on how the board is configured (for
example, eight channels for differential, 16 for single ended).

Count Specifies the total number of A/D samples that will be collected. If more than one
channel is being sampled, the number of samples collected per channel is equal to
Count / (HighChan-LowChan + 1).

Rate Sample rate in samples per second (Hz) per channel. The maximum sampling rate
depends on the A/D board that is being used (see Rate explanation
cbAInScan()).

Range If the selected A/D board does not have a programmable range feature, this
argument is ignored. Otherwise set the Range argument to any range that is
supported by the selected A/D board. Refer to board specific information for a list
of the supported A/D ranges of each board.

FileName The name of the file in which to store the data. If the file doesn�t exist, it will be
created. (When using the 16 bit version of the Universal Library, the named file
must already exist. It should have been previously created with the
MAKESTRM.EXE program.)

Options Bit fields that control various options. Refer to the constants in the "Options
argument values" section on page 101.

Returns:
Error code or 0 if no errors.

Rate = actual sampling rate.

Streamer File Functions cbFileAInScan()

101

Options argument values:

EXTCLOCK If this option is used, conversions are controlled by the signal on the trigger input
line rather than by the internal pacer clock. Each conversion is triggered on the
appropriate edge of the trigger input signal (see board specific info). Additionally,
the Rate argument is ignored. The sampling rate is dependent on the trigger signal.

EXTTRIGGER If this option is specified, the sampling does not begin until the trigger condition is
met.
On many boards, this trigger condition is programmable (refer to the
cbSetTrigger() function and board-specific information for details) and can
be programmed for rising or falling edge or an analog level.
On other boards, only 'polled gate' triggering is supported. Assuming active high
operation, data acquisition commences immediately if the trigger input is high. If
the trigger input is low, acquisition is held off until it goes high. Acquisition
continues until NumPoints& samples are taken, regardless of the state of the trigger
input. For �polled gate� triggering, this option is most useful if the signal is a pulse
with a very low duty cycle (trigger signal in TTL low state most of the time) to
hold off triggering until the pulse occurs.

DTCONNECT Samples are sent to the DT-Connect port if the board is equipped with one.

Notes:

OVERRUN Error - (Error code 29) This error indicates that the data was not written to the file as fast as the
data was sampled. Consequently some data was lost. The value returned from cbFileGetInfo() in
TotalCount is the number of points that were successfully collected.

Important
In order to understand the functions, read the board-specific information contained in the Universal Library
User's Guide (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

We also urge you to examine and run one or more of the example programs supplied prior to attempting any
programming of your own. Following this advice may save you hours of frustration, and wasted time.

This note, which appears elsewhere, is especially applicable to this function. Now is the time to read the board
specific information for your board. We suggest that you make a copy of that page to refer to as you read this
manual and examine the example programs.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Streamer File Functions cbFileGetInfo()

102

cbFileGetInfo()
Returns information about a streamer file. When cbFileAInScan() or cbFilePretrig() fills the
streamer file, information is stored about how the data was collected (sample rate, channels sampled etc.).
This function returns that information. Refer to board-specific information to determine if this function is
supported on your board.

Function prototype:

C/C++: int cbFileGetInfo(char *FileName, short *LowChan, short *HighChan,
long *PretrigCount, long *TotalCount, long *Rate, int *Range)

Visual Basic: Function cbFileGetInfo(ByVal FileName$, LowChan%, HighChan%,
PretrigCount&, TotalCount&, Rate&, Range&) As Long

Delphi: function cbFileGetInfo(FileName:PChar; var LowChan:SmallInt; var
HighChan:SmallInt; var PretrigCount:Longint; var TotalCount:Longint;
var Rate:Longint; var Range:LongInt):Integer;

Arguments:

FileName Name of streamer file.

LowChan Variable to return LowChan to.

HighChan Variable to return HighChan to.

PretrigCount Variable to return PretrigCount to.

TotalCount Variable to return TotalCount to.

Rate Variable to return sampling rate to.

Range Variable to return A/D range code to.

Returns:
Error code or 0 if no errors.

LowChan - low A/D channel of scan.

HighChan - high A/D channel of scan.

TotalCount - total number of points collected.

PretrigCount - number of pre-trigger points collected.

Rate - sampling rate when data was collected.

Range - Range of A/D when data was collected .

Streamer File Functions cbFilePretrig()

103

cbFilePretrig()
Scan a range of channels continuously while waiting for a trigger. Once the trigger occurs, return the specified
number of samples including the specified number of pre-trigger samples to a disk file. This function waits for
a trigger signal to occur on the Trigger Input. Once the trigger occurs, it returns the specified number
(TotalCount) of A/D samples including the specified number of pre-trigger points. It collects the data at the
specified sampling rate (Rate) from the specified range (LowChan-HighChan) of A/D channels from the
specified board. If the A/D board has programmable gain then it sets the gain to the specified range. The
collected data is returned to a file. See board-specific info to determine if this function is supported by your
board.

Function prototype:

C/C++: int cbFilePretrig (int BoardNum, int LowChan, int HighChan, long
*PretrigCount, long *TotalCount, long *Rate, int Range, char
*FileName, unsigned Options)

Visual Basic: Function cbFilePretrig(ByVal BoardNum&, ByVal LowChan&, ByVal
HighChan&, PretrigCount&, TotalCount&, Rate&, ByVal Range&, ByVal
FileName$, ByVal Options&) As Long

Delphi: function cbFilePretrig (BoardNum:Integer; LowChan:Integer;
HighChan:Integer; var PretrigCount:Longint; var TotalCount:Longint;
var Rate:Longint; Range:Integer; FileName:PChar;
Options:Integer):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. The specified board must have an A/D and pretrigger
capability. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal
Library).

LowChan First A/D channel of scan

HighChan Last A/D channel of scan
The maximum allowable channel depends on which type of A/D board is being
used. For boards that have both single ended and differential inputs the maximum
allowable channel number also depends on how the board is configured. Refer to
board-specific information for the maximum number of channels allowed in
differential and single ended modes.

PretrigCount Specifies the number of samples before the trigger that will be returned.
PretrigCount must be less than 16000 and PretrigCount must also be less than
TotalCount - 512.
If the trigger occurs too early, then fewer than the requested number of pre-trigger
samples will be collected. In that case a TOOFEW error will occur. The
PretrigCount will be set to indicate how many samples were collected and the
post trigger samples will still be collected.

TotalCount Specifies the total number of samples that will be collected and stored in the file.
TotalCount must be greater than or equal to PretrigCount + 512. If the trigger
occurs too early then fewer than the requested number of samples will be collected.
In that case a TOOFEW error will occur. The TotalCount will be set to indicate how
many samples were actually collected.

Streamer File Functions cbFilePretrig()

104

Rate Sample rate in samples per second (Hz) per channel. The maximum sampling rate
depends on the A/D board that is being used. This is the rate at which scans are
triggered. If you are sampling 4 channels, 0 - 3, then specifying a rate of 10,000
scans per second (10 kHz) will result in the A/D converter rate of 40 kHz: 4
channels at 10,000 samples per channel per second. This is different from some
software where you specify the total A/D chip rate. In those systems, the per
channel rate is equal to the A/D rate divided by the number of channels in a scan.
This argument also returns the value of the actual set. This may be different from
the requested rate because of pacer limitations.

Range If the selected A/D board does not have a programmable range feature, this
argument is ignored. Otherwise, set the Range argument to any range that is
supported by the selected A/D board. Refer to board specific information for a list
of the supported A/D ranges of each board.

FileName The name of the file in which to store the data. If the file doesn�t exist, it will be
created. (When using the 16 bit version of the Universal Library, the named file
must already exist. It should have been previously created with the
MAKESTRM.EXE program.)

Options Bit fields that control various options. Refer to the constants in the "Options
argument values" section below.

Returns:
Error code or 0 if no errors.

PretrigCount - actual number of pre-trigger samples collected.

TotalCount - actual number of samples collected.

Rate = actual sampling rate.

Options argument values:

EXTCLOCK If this option is used then conversions will be controlled by the signal on the trigger
input line rather than by the internal pacer clock. Each conversion will be triggered
on the appropriate edge of the trigger input signal (see board specific info). When
this option is used the Rate argument is ignored. The sampling rate is dependent
on the trigger signal.

DTCONNECT Samples are sent to the DT-Connect port if the board is equipped with one.

Notes:

OVERRUN Error - (Error code 29) This error indicates that the data was not written to the file as fast as the
data was sampled. Consequently some data was lost. The value in TotalCount will be the number of points
that were successfully collected.

Streamer File Functions cbFileRead()

105

cbFileRead()
Reads data from a streamer file. See board-specific info to determine if this function is supported on your
board.

Function prototype:

C/C++: int cbFileRead(char *FileName, long FirstPoint, long *TotalCount,
int *DataBuffer)

Visual Basic: Function cbFileRead(ByVal FileName$, ByVal FirstPoint&, TotalCount&,
DataBuffer%) As Long

Delphi: function cbFileRead (FileName:PChar; FirstPoint:Longint; var
NumPoints:Longint; var DataBuffer:Word):Integer;

Arguments:

FileName Name of streamer file

FirstPoint Index of first point to read

TotalCount Number of points to read from file

DataBuffer Pointer to data buffer that data will be read into.

Returns:
Error code or 0 if no errors.

DataBuffer - data read from file.

TotalCount - number of points actually read.

TotalCount may be less than the requested number of points if an error occurs.

Notes:

Data format: The data is returned as 16-bits. The 16-bits may represent 12-bits of analog, 12-bits of analog
plus 4 bits of channel, or 16-bits of analog. Use cbAConvertData() to correctly load the data into an
array.

Loading portions of files: The file may contain much more data than can fit in DataBuffer. In those cases
use TotalCount and FirstPoint to read a selected piece of the file into DataBuffer. Call
cbFileGetInfo() first to find out how many points are in the file.

107

10
Temperature Input Functions

Introduction
Use the functions discussed in this chapter to convert a raw analog input from an EXP board, or other
temperature sensor board, to temperature.

Temperature Input Functions cbTIn()

108

cbTIn()
Changed R3.3 ID

Reads an analog input channel, linearizes it according to the selected temperature sensor type, and returns the
temperature in degrees. The CJC channel, the gain, and sensor type, are read from the InstaCal configuration
file. They should be set by running the InstaCal configuration program.

Function prototype:

C/C++: int cbTIn(int BoardNum, int Chan, int Scale, float *TempVal, int
Options)

Visual Basic: Function cbTIn(ByVal BoardNum&, ByVal Chan&, ByVal Scale&, TempVal!,
ByVal Options&) As Long

Delphi: function cbTIn (BoardNum:Integer; Chan:Integer; Scale:Integer; var
TempValue:Single; Options:Integer):Integer;

Arguments:

BoardNum BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

Chan Input channel to read.

Scale Specifies the temperature scale that the input will be converted to. Choices are
CELSIUS, FAHRENHEIT and KELVIN.

TempVal The temperature in degrees is returned here. Thermocouple resolution is
approximately 0.25 °C, depending on scale, range and thermocouple type. RTD
resolution is 0.1 °C.

Options Bit fields that control various options. Refer to the constants in the "Options
argument values" section below.

Returns:
Error code or 0 if no errors.

*TempVal - Temperature returned here.

Options argument values:

FILTER When selected, a smoothing function is applied to temperature readings, very much
like the electrical smoothing inherent in all hand held temperature sensor
instruments. This is the default. When selected, 10 samples are read from the
specified channel and averaged. The average is the reading returned. Averaging
removes normally distributed signal line noise.

NOFILTER If you use the NOFILTER option, then the readings will not be smoothed and you
will see a scattering of readings around a mean.

Notes:

Using CIO-EXP boards: For CIO-EXP boards, the channel number is calculated using the following
formula, where:

! ADChan is the A/D channel that is connected to the multiplexer.

! MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the
multiplexer board
Chan = (ADChan * 16) + (16 + MuxChan)

Temperature Input Functions cbTIn()

109

For example, you have an EXP16 connected to a CIO-DAS08 via the CIO-DAS08 channel 0. (Remember that
DAS08 channels are numbered 0, 1, 2, 3, 4, 5, 6 & 7). If you connect a thermocouple to channel 5 of the
EXP16, the value for chan would be (0 * 16) + (16 + 5)= 0 + 21 = 21.

Using 6K-EXP boards: For 6K-EXP boards, the channel number (Chan) is calculated using one of the
following formulas, where:

! ADChan is the A/D channel that is connected to the multiplexer.

! MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the
multiplexer board.

! If the A/D board has 16 or less single-ended channels:
Chan = (ADChan * 16) + (16 + MuxChan)

For example, you have a 6K-EXP16 connected to a PCI-DAS6052 via the a PCI-DAS6052 channel 0. If
you connect a thermocouple to channel 5 of the 6K-EXP16, the value for Chan would be (0 * 16) + (16 +
5)= 0 + 21 = 21.

! If the A/D board has 64 single-ended channels and the A/D multiplexer channel is less than or equal to 7:
Chan = (ADChan * 16) + (64 + MuxChan)

For example, you have a 6K-EXP16 connected to a PCI-DAS6031 via the a PCI-DAS6031 channel 7. If
you connect a thermocouple to channel 5 of the 6K-EXP16, the value for Chan would be (7 * 16) + (64 +
5) = 112 + 69 = 181.

! If the A/D board has 64 single-ended channels and the A/D multiplexer channel is greater than or equal
to 31:
Chan = (ADChan * 16 � 320) + MuxChan

For example, you have a 6K-EXP16 connected to a PCI-DAS6031 via the PCI-DAS6031 channel 32. If
you connect a thermocouple to channel 5 of the 6K-EXP16, the value for Chan would be (32 * 16 � 320)
+ 5 = 192 + 5 = 197.

CJC Channel: The CJC channel is set in the InstaCal install program. If you have multiple EXP boards,
Universal Library will apply the CJC reading to the linearization formula in the following manner:

3. If you have chosen a CJC channel for the EXP board that the channel you are reading is on, it will use the
CJC temp reading from that channel.

4. If you left the CJC channel for the EXP board that the channel you are reading is on to NOT SET, the
library will use the CJC reading from the next lower EXP board with a CJC channel selected.

For example: You have four CIO-EXP16 boards connected to a CIO-DAS08 on channel 0, 1, 2 and 3. You
choose CIO-EXP16 #1 (connected to CIO-DAS08 channel 0) to have its CJC read on CIO-DAS08 channel 7,
AND, you leave the CIO-EXP16's 2, 3 and 4 CJC channels to NOT SET. Result: The CIO-EXP boards will
all use the CJC reading from CIO-EXP16 #1, connected to channel 7 for linearization. As you can see, it is
important to keep the CIO-EXP boards in the same case and out of any breezes to ensure a clean CJC reading.

Important
For an EXP board connected to an A/D board that does not have programmable gain (DAS08, DAS16,
DAS16F), the A/D board range is read from the configuration file (cb.cfg). In most cases, set hardware-
selectable ranges to ±5 V for thermocouples, and to 0 to 10 V for RTDs. Refer to the board-specific
information in the Universal Library User's Guide (available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) or in the user manual for your board. If the board has
programmable RTDs gains, the cbTIn() function sets the appropriate A/D range.

Specific Errors: If an OUTOFRANGE or OPENCONNECTION error occurs, the value returned is -9999.0.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Temperature Input Functions cbTInScan()

110

cbTInScan()
Changed R3.3 ID

Reads a range of channels from an analog input board, linearizes them according to temperature sensor type,
and returns the temperatures to an array in degrees. The CJC channel, the gain, and temperature sensor type
are read from the configuration file. Use the InstaCal configuration program to change any of these options.

Function prototype:

C/C++: int cbTInScan(int BoardNum, int LowChan, int HighChan, int Scale,
float DataBuffer[], int Options)

Visual Basic: Function cbTInScan(ByVal BoardNum&, ByVal LowChan&, ByVal HighChan&,
ByVal Scale&, DataBuffer!, ByVal Options&) As Long

Delphi: function cbTInScan(BoardNum:Integer; LowChan:Integer;
HighChan:Integer; Scale:Integer; var DataBuffer:Single;
Options:Integer):Integer;

Arguments:

BoardNum BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library).

LowChan Low mux channel of scan.

HighChan High mux channel of scan.

Scale Specifies the temperature scale that the input will be converted to. Choices are
CELSIUS, FAHRENHEIT and KELVIN.

DataBuffer The temperature is returned in degrees. Each element in the array corresponds to a
channel in the scan. DataBuffer must be at least large enough to hold HighChan -
LowChan + 1 temperature values. Thermocouple resolution is approximately
0.25° C, depending on scale, range and thermocouple type. RTD resolution is
0.1 °C.

Options Bit fields that control various options. Refer to the constants in the "Options
argument values" section below.

Returns:
Error code or 0 if no errors.

DataBuffer[] - Temperature values in degrees are returned here for each channel in scan.

Options argument values:

FILTER When selected, a smoothing function is applied to temperature readings, very much
like the electrical smoothing inherent in all hand held temperature sensor
instruments. This is the default. When selected, 10 samples are read and averaged
on each channel. The average is the reading returned. Averaging removes normally
distributed signal line noise.

NOFILTER If you use the NOFILTER option then the readings will not be smoothed, and you
will see a scattering of readings around a mean.

Notes:

Using EXP boards: For EXP boards, these channel numbers are calculated using the following formula:

! ADChan = A/D channel that is connected to the multiplexer

Temperature Input Functions cbTInScan()

111

! MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the
multiplexer board
Chan = (ADChan * 16) + (16 + MuxChan)

For example, you have an EXP16 connected to a CIO-DAS08 via the CIO-DAS08 channel 0. (Remember,
DAS08 channels are numbered 0, 1, 2, 3, 4, 5, 6 & 7). If you connect thermocouples to channels 5, 6, and 7 of
the EXP16, the value for LowChan would be (0 * 16) + (16 + 5)= 0 + 21 = 21, and the value for HighChan
would be (0 * 16) + (16 + 7)= 0 + 21 = 23.

Important
For an EXP board connected to an A/D board that does not have programmable gain (DAS08, DAS16,
DAS16F), the A/D board range is read from the configuration file (cb.cfg). In most cases, set hardware-
selectable ranges to ±5 V for thermocouples, and to 0 to 10 V for RTDs. Refer to the board-specific
information in the Universal Library User's Guide (available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) or in the user manual for your board. If the board has
programmable RTDs gains, the cbTIn() function sets the appropriate A/D range.

Using 6K-EXP boards: For 6K-EXP boards, the channel number is calculated using one of the following
formulas, where:

! ADChan is the A/D channel that is connected to the multiplexer.

! MuxChan is a number ranging from 0 to 15 that specifies the channel number (Chan) on a particular bank
of the multiplexer board.

! If the A/D board has 16 or less single-ended channels:
Chan = (ADChan * 16) + (16 + MuxChan)

For example, you have a 6K-EXP16 connected to a PCI-DAS6052 via the a PCI-DAS6052 channel 0. If
you connect a thermocouple to channels 5, 6, and 7 of the 6K-EXP16, the value for LowChan would be (0
* 16) + (16 + 5)= 0 + 21 = 21, and the value for highChan would be (0 * 16) + (16 + 5)= 0 + 231 = 23.

! If the A/D board has 64 single-ended channels and the A/D multiplexer channel is less than or equal to 7:
Chan = (ADChan * 16) + (64 + MuxChan)

For example, you have a 6K-EXP16 connected to a PCI-DAS6031 via the a PCI-DAS6031 channel 7. If
you connect a thermocouple to channels 5, 6, and 7 of the 6K-EXP16, the value for LowChan would be
(7 * 16) + (64 + 5) = 112 + 69 = 181, and the value for HighChan would be (7 * 16) + (64 + 7) = 112 + 71
= 183.

! If the A/D board has 64 single-ended channels and the A/D multiplexer channel is greater than or equal
to 32:
Chan = (ADChan * 16 � 320) + MuxChan

For example, you have a 6K-EXP16 connected to a PCI-DAS6031 via the PCI-DAS6031 channel 32. If
you connect a thermocouple to channels 5, 6, and 7 of the 6K-EXP16, the value for LowChan would be
(32 * 16 � 320) + 5 = 192 + 5 = 197, and the value for HighChan would be (32 * 16 � 320) + 7 = 192 + 7
= 199.

CJC Channel: The CJC channel is set in the InstaCal install program. If you have multiple EXP boards,
Universal Library will apply the CJC reading to the linearization formula in the following manner:

! First, if you have chosen a CJC channel for the EXP board that the channel you are reading is on, it will
use the CJC temp reading from that channel.

! Second, if you have left the CJC channel for the EXP board that the channel you are reading is on to NOT
SET, the library will use the CJC reading from the next lower EXP board with a CJC channel selected.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Temperature Input Functions cbTInScan()

112

For example: You have four CIO-EXP16 boards connected to a CIO-DAS08 on channel 0, 1, 2 and 3. You
choose CIO-EXP16 #1 (connected to CIO-DAS08 channel 0) to have its CJC read on CIO-DAS08 channel 7,
AND, you leave the CIO-EXP16's 2, 3 and 4 CJC channels to NOT SET. Result: The CIO-EXP boards will
all use the CJC reading from CIO-EXP16 #1, connected to channel 7 for linearization. As you can see, it is
important to keep the CIO-EXP boards in the same case and out of any breezes to ensure a clean CJC reading.

Important
In order to understand the functions, refer to the board-specific information in the Universal Library User's
Guide (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) and also in the
Readme files installed with the Universal Library. We also urge you to examine and run one or more of the
example programs supplied prior to attempting any programming of your own. Following this advice may
save you hours of frustration, and wasted time. This note, which appears elsewhere, is especially applicable to
this function. Now is the time to read the board specific information for your board. We suggest that you
make a copy of that page to refer to as you read this manual and examine the example programs.

Specific Errors: For most boards, if an OUTOFRANGE or OPENCONNECTION error occurs, the value in the array
element associated with the channel causing the error returned will be -9999.0 (Refer to board specific
information).

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

113

11
Windows Memory Management Functions

Introduction
Use the functions explained in this chapter when you run the Windows version of the library. These functions
allocate, free and copy to/from Windows global memory buffers. These functions are not used in VEE, since
VEE handles memory allocation. For customers wishing to customize memory management under VEE, the
source code to CBV.DLL and CBV32.DLL is available. Please call technical support and request it.

Windows Memory Management Functions cbWinBufAlloc()

114

cbWinBufAlloc()
Allocates a Windows global memory buffer which can be used with the scan functions and returns a memory
handle for it.

Function prototype:

C/C++: int cbWinBufAlloc (long NumPoints)

Visual Basic: Function cbWinBufAlloc(ByVal NumPoints&) As Long

Delphi: function cbWinBufAlloc (NumPoints:Longint):Integer;

Arguments:

NumPoints Size of buffer to allocate. Specifies how many data points (16-bit integers, NOT
bytes) can be stored in the buffer.

Returns:
0 if buffer could not be allocated or a non-zero integer handle to the buffer.

Notes:

Unlike most other functions in the library, this function does not return an error code. It returns a Windows
global memory handle which can then be passed to the scan functions in the library. If an error occurs the
handle will come back as 0 to indicate the error.

Windows Memory Management Functions cbWinBufFree()

115

cbWinBufFree()
Frees a Windows global memory buffer which was previously allocated with the cbWinBufAlloc()
function.

Function prototype:

C/C++: int cbWinBufFree(int MemHandle)

Visual Basic: Function cbWinBufFree(ByVal MemHandle&) As Long

Delphi: function cbWinBufFree(MemHandle:Integer):Integer;

Arguments:

MemHandle A Windows memory handle. This must be a memory handle that was returned by
cbWinBufAlloc() when the buffer was allocated.

Returns:
Error code or zero if no errors.

Windows Memory Management Functions cbWinArrayToBuf()

116

cbWinArrayToBuf()
Copies data from an array into a Windows memory buffer.

Function prototype:

C/C++: int cbWinArrayToBuf(unsigned short *DataArray, int MemHandle, long
FirstPoint, long Count)

Visual Basic: Function cbWinArrayToBuf(DataArray%, ByVal MemHandle&, ByVal
FirstPoint&, ByVal Count&) As Long

Delphi: function cbWinArrayToBuf(var DataArray:Word; MemHandle:Integer;
FirstPoint:Longint; Count:Longint):Integer;

Arguments:

DataArray The array containing the data to be copied.

MemHandle This must be a memory handle that was returned by cbWinBufAlloc() when
the buffer was allocated. The data will be copied into this buffer.

FirstPoint Index of first point in memory buffer where data will be copied to.

Count Number of data points to copy.

Returns:
Error code or zero if no errors.

Notes:

This function copies data from an array to a Windows global memory buffer. This would typically be used to
initialize the buffer with data before doing an output scan. Using the FirstPoint and Count argument it is
possible to fill a portion of the buffer. This can be useful if you want to send new data to the buffer after a
BACKGROUND+CONTINUOUS scan command has sent the old data � for example, with circular buffering.

Although this function is available to both Windows C and Delphi programs, it is not necessary, since you can
manipulate the memory buffer directly by casting the MemHandle returned from cbWinBufAlloc() to the
appropriate type. This method avoids having to copy the data from an array to a memory buffer. The
following example illustrates this method:

long Count= 1000;
unsigned short *DataArray=NULL;
int MemHandle = 0;

/*allocate the buffer and cast it to an unsigned short*/
MemHandle = cbWinBufAlloc(Count);
DataArray = (unsigned short*)MemHandle;

/*calculate and store the waveform*/
for(int i=0; i<Count; ++i)
 DataArray[i] = 2047*(1.0 + sin(6.2832*i/Count));

/*output the waveform*/
cbAOutScan (......,MemHandle,...);

/*free the buffer and NULL the pointer*/
cbWinBufFree(MemHandle);
DataArray = NULL;

Windows Memory Management Functions cbWinBufToArray()

117

cbWinBufToArray()
Copies data from a Windows memory buffer into an array.

Function prototype:

C/C++: int cbWinBufToArray(int MemHandle, unsigned short*DataArray, long
FirstPoint, long Count)

Visual Basic: Function cbWinBufToArray(ByVal MemHandle&, DataArray%, ByVal
FirstPoint&, ByVal Count&) As Long

Delphi: function cbWinBufToArray (MemHandle:Integer; var DataArray:Word;
FirstPoint:Longint; Count:Longint):Integer;

Arguments:

MemHandle This must be a memory handle that was returned by cbWinBufAlloc() when
the buffer was allocated. The buffer should contain the data that you want to copy.

DataArray The array that the data will be copied to.

FirstPoint Index of first point in memory buffer that data will be copied from.

Count Number of data points to copy.

Returns:

Error code or zero if no errors.

Notes:

This function copies data from a Windows global memory buffer to an array. This would typically be used to
retrieve data from the buffer after executing an input scan function.

Using the FirstPoint and Count argument it is possible to copy only a portion of the buffer to the array. This
can be useful if you want foreground code to manipulate previously collected data while a BACKGROUND scan
continues to collect new data.

Although this function is available to both Windows C and Delphi programs, it is not necessary, since it is
possible to manipulate the memory buffer directly by casting the MemHandle returned from cbWinBufAlloc()
to the appropriate type. This method avoids having to copy the data from the memory buffer to an array -
Refer to the following example.

/*declare and initialize the variables*/
long Count=1000;
unsigned short *DataArray=NULL;
int MemHandle=0;

/*allocate the buffer and cast it to a pointer to an unsigned short*/
MemHandle = cbWinBufAlloc(Count);
DataArray = (unsigned short*)MemHandle;

/*output the waveform*/
cbAInScan (......,MemHandle,...);

/*print the results*/
for(int i=0; i<Count; ++i)
 printf("Data[%d]=%d\n", DataArray[i]);

/*free the buffer and NULL the pointer*/
cbWinBufFree(MemHandle);
DataArray = NULL;

119

12
Miscellaneous Functions

Introduction
The functions explained in this chapter do not as a group fit into a single category. They get and set board
information, convert units, manage events and background operations, and perform serial communication
operations.

Miscellaneous Functions cbDisableEvent() (32-bit UL Only)

120

cbDisableEvent() (32-bit UL Only)
Disables one or more event conditions and disconnects their user-defined handlers.

Function prototype:

C/C++: int cbDisableEvent (int BoardNum, unsigned EventType)

Visual Basic: Function cbDisableEvent(ByVal BoardNum&, ByVal EventType&) as Long

Delphi: Function cbDisableEvent(BoardNum:Integer;
EventType:Integer):Integer;StdCall

Arguments:

BoardNum The board number used to indicate which device's event handling will be disabled.
BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library). Refers to
the number associated with the board installed with the InstaCal configuration
program.

EventType Specifies one or more event conditions to disable. More than one event type can be
specified by bitwise OR'ing the event types. Note that specifying an event that has
not been enabled is benign and will not cause any errors. Refer to "EventType
argument values" on page 121 for valid EventType settings.
To disable all events in a single call, use ALL_EVENT_TYPES.

Returns:
Error code or 0 if no errors.

Notes:

For most event types, this function cannot be called while any background operations (cbAInScan(),
cbAPretrig(), or cbAOutScan()) are active. Perform a cbStopBackground() before calling
cbEnableEvent(). However, for ON_EXTERNAL_INTERRUPT events, you can call
cbDisableEvent() while the board is actively generating events.

Important
In order to understand the functions, refer to the board-specific information in the Universal Library User's
Guide (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) and also in the
Readme files installed with the Universal Library. We also urge you to examine and run one or more of the
example programs supplied prior to attempting any programming of your own. Following this advice may
save you hours of frustration, and wasted time. This note, which appears elsewhere, is especially applicable to
this function. Now is the time to read the board specific information for your board. We suggest that you
make a copy of that page to refer to as you read this manual and examine the example programs.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Miscellaneous Functions cbEnableEvent() (32-bit UL Only)

121

cbEnableEvent() (32-bit UL Only)
Binds one or more event conditions to a user-defined callback function. Upon detection of an event condition,
the user-defined function is invoked with board- and event-specific data. Detection of event conditions occurs
in response to interrupts. Typically, this function is used in conjunction with interrupt driven processes such as
cbAInScan(), cbAPretrig(), or cbAOutScan().

Function prototype:

C/C++: int cbEnableEvent (int BoardNum, unsigned EventType, unsigned
EventParam, void* CallbackFunc, void* UserData)

Visual Basic: Function cbEnableEvent (ByVal BoardNum&, ByVal EventType&, ByVal
EventParam&, ByVal CallbackFunc&, ByRef UserData as Any) as Long

Delphi: Function cbEnableEvent(BoardNum:Integer; EventType:Integer;
EventParam:Integer; CallbackFunc:Pointer;
UserData:Pointer):Integer;StdCall

Arguments:

BoardNum The board number used to indicate which device will generate the event conditions.
BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal Library). Refers to
the number associated with the board installed with the InstaCal configuration
program.

EventType Specifies one or more event conditions that will be bound to the user-defined
callback function. More than one event type can be specified by bitwise OR'ing the
event types Refer to the constants in the "EventType argument values" section
below.

EventParam Additional data required to specify some event conditions such as the
ON_DATA_AVAILABLE event. For ON_DATA_AVAILABLE events, this is used to
determine the minimum number of samples to acquire during an analog input scan
before generating the event.
Most event conditions ignore this value.

CallbackFunc The address of or pointer to the user-defined callback function to handle the above
event type(s). This function must be defined using the standard call (__stdcall)
calling convention. Consequently, Visual Basic programs must define their
callback functions in standard modules(.bas) and cannot be object methods. C++
programs can define this callback function as either a global function or as a
static member function of a class (note that static members do NOT have
access to instance specific data).
Refer to the "User Callback function" on page 123 for proper function syntax.

UserData The address of or pointer to user-defined data that will be passed to the user-
defined callback function. This parameter is NOT dereferenced by the library or its
drivers; as a consequence, a NULL pointer can be supplied.

Returns:
Error code or 0 if no errors.

EventType argument values:

ON_SCAN_ERROR Generates an event upon detection of a driver error during BACKGROUND input and
output scans. This includes OVERRUN, UNDERRUN, and TOOFEW errors.

ON_EXTERNAL_INTERRUPT For some digital and counter boards, generates an event upon detection of
a pulse at the External Interrupt pin.

ON_PRETRIGGER For cbAPretrig(), generates an event upon detection of the first trigger.

Miscellaneous Functions cbEnableEvent() (32-bit UL Only)

122

ON_DATA_AVAILABLE Generates an event whenever the number of samples acquired during an analog
input scan increases by EventParam samples or more. Note that for BLOCKIO
scans, events will be generated on packet transfers; for example, even if
EventParam is set to 1, events will only be generated every packet-size worth of
data (256 samples for the PCI-DAS1602) for aggregate rates greater than 1 kHz for
the default cbAInScan() mode.
For cbAPretrig(), the first event is not generated until a minimum of
EventParam samples after the pretrigger.

ON_END_OF_AI_SCAN Generates an event upon completion or fatal error of a cbAInScan() or
cbAPretrig(). This event is NOT generated when scans are aborted using
cbStopBackground().

ON_END_OF_AO_SCAN Generates an event upon completion or fatal error of a cbAOutScan().
This event is not generated when scans are aborted using cbStopBackground().

Notes:

! This function cannot be called while any background operations (cbAInScan(), cbAPretrig(), or
cbAOutScan()) are active. If a background operation is in progress when cbEnableEvent() is called,
the function returns an ALREADYACTIVE error. Perform a cbStopBackground() before calling
cbEnableEvent().

! Events can be generated no faster than the user callback function can handle them. If an event type
becomes multiply signaled before the event handler returns, events are merged. The event handler is
called once per event type and is supplied with the event data corresponding to the latest event. In
addition, if more than one event type becomes signaled, the event handler for each event type is called in
the same order in which they are listed above.

! Events are generated while handling board-generated interrupts. Therefore, using cbStopBackground()
to abort background operations does not generate ON_END_OF_AI_SCAN or ON_END_OF_AO_SCAN events.
However, the event handlers can be called immediately after calling cbStopBackground().

! cbEnableEvent() is intended for use with Windows applications. Use with console or DOS applications
can produce unpredictable results.

Miscellaneous Functions User Callback function (32-bit UL only)

123

User Callback function (32-bit UL only)
The User Callback function is called as an argument of the cbEnableEvent() function. You create the function
using the prototype shown below. You call the function by passing either it's address or a pointer to the
function to the CallbackFunc argument of the cbEnableEvent() function.

Callback function prototype:

C/C++: void __stdcall CallbackFunc (int BoardNum, unsigned EventType,
unsigned EventData, void* UserData);

Visual Basic: Sub CallbackFunc (ByVal BoardNum&, ByVal EventType&, ByVal
EventData&, ByRef UserData as UserDataType)
where UserDataType is the data type of the UserData argument passed in to
cbEnableEvent() (refer to page 121).

Delphi: procedure CallbackFunc (BoardNum:Integer; EventType:Integer;
EventData:Integer; UserData:Pointer);

Arguments:

BoardNum Indicates which board caused the event.

EventType Indicates which event occurred.

EventData Board specific data associated with this event. Set it to one of the constants in the
"EventData argument values" section below.

UserData The pointer or reference to data supplied by the UserData parameter in
cbEnableEvent() (refer to page 121). Note that before use, this parameter
must be cast to the same data type as passed in to cbEnableEvent().

EventData argument values:

ON_SCAN_ERROR The Error code of the scan error.

ON_EXTERNAL_INTERRUPT The number of interrupts generated since enabling the ON_EXTERNAL_INTERRUPT
event.

ON_PRETRIGGER The number of pretrigger samples available at time of pretrigger.
This value is invalid for some boards when a TOOFEW error occurs. See board
details.

ON_DATA_AVAILABLE The number of samples acquired since the start of scan.

ON_END_OF_AI_SCAN The total number of samples acquired upon scan completion or end.

ON_END_OF_AO_SCAN The total number of samples output upon scan completion or end.

Miscellaneous Functions cbFlashLED()

124

cbFlashLED()
Causes the LED on a USB device to flash.

Function prototype:

C/C++: int cbFlashLED (int BoardNum);

Visual Basic: Function cbFlashLED (ByVal BoardNum&) as Long

Delphi: function cbFlashLED (BoardNum:Integer):Integer;

Arguments:

BoardNum The board number of the USB device whose LED will flash.

Miscellaneous Functions cbFromEngUnits()

125

cbFromEngUnits()
Converts a voltage (or current) in engineering units to a D/A count value for output to a D/A.

Function prototype:

C/C++: int cbFromEngUnits(int BoardNum, int Range, float EngUnits, unsigned
short *DataVal)

Visual Basic: Function cbFromEngUnits(ByVal BoardNum&, ByVal Range&, ByVal
EngUnits!, DataVal%) As Long

Delphi: function cbFromEngUnits(BoardNum:Integer; Range:Integer;
EngUnits:Single; var DataVal:Word):Integer;

Arguments:

BoardNum The board number associated with the D/A board when it was installed. This
function uses the board number to determine the range and resolution values to use
in the conversion. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal
Library).

Range D/A voltage (or current) range. Some D/A boards have programmable voltage
ranges, others set the voltage range via switches on the board. In either case, the
selected range must be passed to this function. Each D/A board supports different
voltage and/or current ranges. Refer to board specific information for the list of
ranges supported by each board.

EngUnits The voltage (or current) value to set the D/A to. Set the value to be within the
range specified by the Range argument.

DataVal The function returns a D/A count to this variable that is equivalent to the EngUnits
argument.

Returns:
Error code or 0 if no errors.

DataVal � the binary counts equivalent to EngUnits is returned here.

Miscellaneous Functions cbGetBoardName()

126

cbGetBoardName()
Returns the board name of a specified board.

Function prototype:

C/C++: int cbGetBoardName(int BoardNum, char *BoardName)

Visual Basic: Function cbGetBoardName(ByVal BoardNum&, ByVal BoardName$) As Long

Delphi: function cbGetBoardName(BoardNum:Integer; BoardName:PChar):Integer;

Arguments:

BoardNum Refers either to the board number associated with a board when it was installed, or
GETFIRST or GETNEXT. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library), GETFIRST or GETNEXT

BoardName A null-terminated string variable that the board name will be returned to. This
string variable must be pre-allocated to be at least as large as BOARDNAMELEN. This
size is guaranteed to be large enough to hold the longest board name string. The
"Appendix" in the Universal Library User Guide (available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) lists the board names and
associated device ID codes.

Returns:
Error code or 0 if no errors.

BoardName - return string containing the board name.

Notes:

There are two distinct ways of using this function:

! Pass a board number as the BoardNum argument. The string that is returned describes the board type of the
installed board.

! Set BoardNum to GETFIRST or GETNEXT to get a list of all board types that are supported by the library. Set
BoardNum to GETFIRST to get the first board type in the list of supported boards. Subsequent calls with
Board=GETNEXT returns each of the other board types supported by the library. When you reach the end of
the list, BoardName is set to an empty string. Refer to the ulgt04 example program in the installation
directory for more details.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Miscellaneous Functions cbGetStatus()

127

cbGetStatus()
Returns the status about the background operation currently running.

Function prototype:

C/C++: int cbGetStatus (int BoardNum, int *Status, long *CurCount, long
*CurIndex, int FunctionType)

Visual Basic: Function cbGetStatus(ByVal BoardNum&, Status%, CurCount&, CurIndex&,
FunctionType&) As Long

Delphi: function cbGetStatus (BoardNum:Integer; var Status:SmallInt; var
CurCount:Longint; var CurIndex:Longint;
FunctionType:Integer):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. BoardNum may be 0 to 99 (0 to 9 for the 16-bit version of
Universal Library).

Status Status indicates whether or not a background process is currently executing.

CurCount Specifies how many points have been input or output. It can be used to gauge how
far along the operation is towards completion. Generally the CurCount will return
the total number of samples collected at the time of the call to cbGetStatus().
However, when CONTINUOUS and BACKGROUND options are both set, CurCount
behavior depends on the board type and transfer mode. This value may recycle as
the circular buffer recycles, or may continuously increment with the number of
counts transferred. Also, CurCount may not update on each sample. For example,
when running in BLOCKIO mode, CurCount updates after each packet of data has
been transferred. The packet size is board-dependent. Refer to the Universal
Library User's Guide for board-specific information.

CurIndex CurIndex is an index into the data buffer that points at the start of the last
completed channel scan. It can be used to provide a real time display for a
background operation. DataBuffer[CurIndex] points to the start of the last
complete channel scan that was put in or taken out of the buffer. You should
expect CurIndex to increment by the number of channels in the scan as well. If no
points in the buffer have been accessed yet, CurIndex will equal -1. This value can
also behave differently when CONTINUOUS and BACKGROUND options are both set
(see CurCount description). Refer to board-specific information for details.
If you use the CONVERTDATA option with either the CONTINUOUS option or with pre-
triggering functions, CurIndex returns the index of the last A/D sample, rather than
the start of the last completed channel scan.
For many background operations CurCount = CurIndex. For Pre-Trigger inputs
though, they are different. If the hardware allows background trigger operations,
CurCount indicates how many points of the TotalCount have been collected.
CurCount will rise to PretrigCount, stop until the trigger occurs then rise to
TotalCount. CurIndex, though, will constantly increase and reset as it goes around
and around the circular buffer while waiting for the trigger to occur.

FunctionType Specifies which scan to retrieve status information about. Set it to one of the
constants in the "FunctionType argument values" section on page 128.

Miscellaneous Functions cbGetStatus()

128

Returns:
Error code or 0 if no errors

Status - IDLE - No background operation has been executed

 RUNNING - Background operation still underway

CurCount - current number of samples collected

CurIndex - Current sample index

FunctionType argument values:

AIFUNCTION Specifies analog input scans started with cbAInScan() or cbAPretrig().

AOFUNCTION Specifies analog output scans started with cbAOutScan().

DIFUNCTION Specifies digital input scans started with cbDInScan().

DOFUNCTION Specifies digital output scans started with cbDOutScan().

CTRFUNCTION Specifies counter background operations started with cbCStoreOnInt().

Notes:

VEE Programs Stopping Background Tasks Early: You must use the red STOP button on the
cbGetStatus() panel to stop background processes before the scheduled completion. If you use the stop
button on the VEE icon bar instead, the background process continues to run in the background. The result of
this action and exiting VEE is undefined. Always use the cbGetStatus() STOP button. Refer to the example
programs ULAI03.VEE through ULAI06.VEE in the installation directory for details.

Miscellaneous Functions cbInByte()

129

cbInByte()
Reads a byte from a hardware register on a board.

Function prototype:

C/C++: int cbInByte(int BoardNum, int PortNum)

Visual Basic: Function cbInByte(ByVal BoardNum&, ByVal PortNum&) As Long

Delphi: function cbInByte(BoardNum:Integer; PortNum:Integer):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with
the configuration program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library).

PortNum Register within the board. Boards are set to a particular base address. The registers
on the boards are at addresses that are offsets from the base address of the board
(BaseAdr + 0, BaseAdr + 2, etc).
Set this argument to the offset for the desired register. This function takes care of
adding the base address to the offset, so that the board's address can be changed
without changing the code.

Returns:
The current value of the specified register

Notes:

cbInByte() is used to read 8 bit ports. cbInWord() is used to read 16-bit ports.

This function was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Miscellaneous Functions cbInWord()

130

cbInWord()
Reads a word from a hardware register on a board.

Function prototype:

C/C++: int cbInWord (int BoardNum, int PortNum)

Visual Basic: Function cbInWord(ByVal BoardNum&, ByVal PortNum&) As Long

Delphi: function cbInWord(BoardNum:Integer; PortNum:Integer):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with
the configuration program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library).

PortNum Register within the board. Boards are set to a particular base address. The registers
on the boards are at addresses that are offsets from the base address of the board
(BaseAdr + 0, BaseAdr + 2, etc).
Set this argument to the offset for the desired register. This function takes care of
adding the base address to the offset, so that the board's address can be changed
without changing the code.

Returns:
The current value of the specified register.

Notes:

cbInByte() is used to read 8-bit ports. cbInWord() is used to read 16-bit ports.

This function was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Miscellaneous Functions cbOutByte()

131

cbOutByte()
Writes a byte to a hardware register on a board.

Function prototype:

C/C++: int cbOutByte (int BoardNum, int PortNum, int PortVal)

Visual Basic: Function cbOutByte(ByVal BoardNum&, ByVal PortNum&, ByVal PortVal%)
As Long

Delphi: function cbOutByte(BoardNum:Integer; PortNum:Integer;
PortVal:Integer):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with
the configuration program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library).

PortNum register within the board. Boards are set to a particular base address. The registers
on the boards are at addresses that are offsets from the base address of the board
(BaseAdr + 0, BaseAdr + 2, etc).
Set this argument to the offset for the desired register. This function takes care of
adding the base address to the offset, so that the board's address can be changed
without changing the code.

PortVal The value that is written to the register.

Returns:
Error code or 0 if no errors

Notes:

cbOutByte() is used to write to 8-bit ports. cbOutWord() is used to write to 16-bit ports.

This function was designed for use with ISA bus boards, and is not recommended for use with PCI-bus
boards.

Miscellaneous Functions cbOutWord()

132

cbOutWord()
Writes a word to a hardware register on a board.

Function prototype:

C/C++: int cbOutWord(int BoardNum, int PortNum, int PortVal)

Visual Basic: Function cbOutByte(ByVal BoardNum&, ByVal PortNum&, ByVal PortVal%)
As Long

Delphi: function cbOutWord (BoardNum:Integer; PortNum:Integer;
PortVal:Integer):Integer;

Arguments:

BoardNum Refers to the board number associated with the board when it was installed with
the configuration program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library).

PortNum A register within the board. Boards are set to a particular base address. The
registers on the boards are at addresses that are offsets from the base address of the
board (BaseAdr + 0, BaseAdr + 2, etc).
Set this argument to the offset for the desired register. This function takes care of
adding the base address to the offset, so that the board's address can be changed
without changing the code.

PortVal The value that is written to the register.

Returns:
Error code or 0 if no errors

Notes:

cbOutByte() is used to write to 8-bit ports. cbOutWord() is used to write to 16-bit ports.

This function was designed for use with ISA bus boards, and is not recommended for use with PCI bus
boards.

Miscellaneous Functions cbRS485()

133

cbRS485()
Sets the direction of RS-485 communications port buffers.

Function prototype:

C/C++: int cbRS485(int BoardNum, int Transmit, int Receive)

Visual Basic: Function cbRS485(ByVal BoardNum&, ByVal Transmit&, ByVal Receive&)
As Long

Delphi: function cbRS485(BoardNum:Integer; Transmit:Integer;
Receive:Integer):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library).

Transmit Set to ENABLED or DISABLED (CBENABLED or CBDISABLED in Visual Basic or
Delphi). The transmit RS-485 line driver is turned on. Data written to the RS-485
UART chip is transmitted to the cable connected to that port.

Receive Set to ENABLED or DISABLED (CBENABLED or CBDISABLED in Visual Basic or
Delphi). The receive RS-485 buffer is turned on. Data present on the cable
connected to the RS-485 port is received by the UART chip.

Returns:
Error code or 0 if no errors

Notes:

You can simultaneously enable or disable the transmit and receive buffers. If both are enabled, data written to
the port is also received by the port. For a complete discussion of RS485 network construction and
communication, refer to the CIO-COM485 or PCM-COM485 hardware manual.

Miscellaneous Functions cbStopBackground()

134

cbStopBackground()
Stops one or more subsystem background operations that are in progress for the specified board. use this
function to stop any function that is running in the background. This includes any function that was started
with the BACKGROUND option, as well as cbCStoreOnInt() (which always runs in the background).

Execute cbStopBackground() after normal termination of all background functions to clear variables and
flags.

Function prototype:

C/C++: int cbStopBackground(int BoardNum, int FunctionType)

Visual Basic: Function cbStopBackground(ByVal BoardNum&, ByVal FunctionType&) As
Long

Delphi: function cbStopBackground(BoardNum:Integer,
FunctionType:Integer):Integer;

Arguments:

BoardNum The board number associated with the board when it was installed with the
configuration program. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of
Universal Library).

FunctionType Specifies which background operation to stop. Set it to one of the constants in the
"FunctionType argument values" section below.

Returns:
Error code or 0 if no errors

FunctionType argument values:

AIFUNCTION Specifies analog input scans started with cbAInScan() or cbAPretrig()

AOFUNCION Specifies analog output scans started with cbAOutScan().

DIFUNCTION Specifies digital input scans started with cbDInScan().

DOFUNCTION Specifies digital output scans started with cbDOutScan().

CTRFUNCTION Specifies counter background operations started with cbCStoreOnInt().

Miscellaneous Functions cbToEngUnits()

135

cbToEngUnits()
Converts an A/D count value to an equivalent voltage value.

Function prototype:

C/C++: int cbToEngUnits (int BoardNum, int Range, unsigned short DataVal,
float *EngUnits)

Visual Basic: Function cbToEngUnits(ByVal BoardNum&, ByVal Range&, ByVal DataVal%,
EngUnits!) As Long

Delphi: function cbToEngUnits (BoardNum:Integer; Range:Integer;
DataVal:Word; var EngUnits:Single):Integer;

Arguments:

BoardNum The board number associated with the A/D board when it was installed. This
function uses the board number to determine the range and resolution values to use
for the conversion. BoardNum may be 0 to 99 (0 to 9 for 16-bit version of Universal
Library).

Range A/D voltage (or current) range. Some A/D boards have programmable voltage
ranges, others set the voltage range via switches on the board. In either case, the
selected range must be passed to this function. Each A/D board supports different
voltage and/or current ranges. Refer to board specific information for a list of the
supported A/D ranges of each board.

DataVal A/D count returned from an A/D board.

EngUnits The voltage (or current) value that is equivalent to DataVal is returned to this
variable. The value will be within the range specified by the Range argument.

Returns:
Error code or 0 if no errors.

EngUnits � the engineering units value equivalent to DataVal is returned to this variable.

13

Universal Library for .NET
Classes, Methods, and

Properties

139

14
UL for .NET Class Library Overview
The new Microsoft .NET platform provides a framework that allows for the development of Windows
applications using a wide range of new programming languages. These languages include VB .NET:, C#,
managed C++, JScript, and any other language that is compliant with the .NET Common Language Runtime
(CLR). The CLR is a multi-language execution environment.

The interface to the Universal Library consists of standard �C� functions. These functions are not CLR-
compliant. Therefore, the Universal Library for .NET was developed. This library enables the various .NET
programming languages to call into the Universal Library.

The Universal Library for .NET consists of a set of classes. For the most part, the methods within each class
have a corresponding function in the standard UL. Each UL for .NET method has virtually the same
parameter set as their UL counterparts.

MccDaq namespace

The MccDaq namespace contains the classes and enumerated constants by which your UL for .NET
applications can access the Universal Library data types and functions.

MccDaq classes
The MccDaq namespace contains four main classes:

! MccBoard class

! ErrorInfo class

! MccService class

! GlobalConfig class

The MccDaq namespace also contains the following four secondary classes:

cBoardConfig Contains all of the members for setting and getting board-level configuration.

cCtrConfig Contains all of the members for setting and getting the counter-level configuration
of a board.

cDioConfig Contains all of the members for getting the digital configuration of a board.

cExpansionConfig Contains all of the members for setting and getting expansion board configuration.

These classes include methods that are accessible from properties of the MccBoard class (explained below).

MccBoard class
The MccBoard class provides access to all of the methods for data acquisition and properties providing board
information and configuration for a particular board.

The MccBoard class is a member of the MccDaq namespace. Refer to the "MccDaq namespace" above for an
explanation of the MccDaq namespace.

UL for .NET Class Library Overview ErrorInfo class

140

Class constructors:

The MccBoard class provides two constructors; one which accepts a board number argument and one with no
arguments.

The following code examples demonstrate how to create a new instance of the MccBoard class using the latter
version with a default board number of 0.

VB .NET: Private DaqBoard As MccDaq.MccBoard

DaqBoard = New MccDaq.MccBoard()

C# .NET: private MccDaq.MccBoard DaqBoard;

DaqBoard = new MccDaq.MccBoard();

The following code examples demonstrate how to create a new instance of the MccBoard class with the board
number passed to it.

VB .NET: Private DaqBoard As MccDaq.MccBoard

DaqBoard = New MccDaq.MccBoard(BoardNumber)

C# .NET: private MccDaq.MccBoard DaqBoard;

DaqBoard = new MccDaq.MccBoard(BoardNumber);

Properties and methods

The MccBoard class includes close to 100 methods for data acquisition. The MccBoard class methods are
equivalents of the function calls used in the standard Universal Library. The MccBoard class methods have
virtually the same parameter set as their UL counterparts.

The MccBoard class also includes six properties that you can use to examine or change the configuration of
your board. The configuration information for all boards is stored in the CB.CFG file, and is loaded from
CB.CFG by all programs that use the library.

Each MccBoard property and method is explained briefly later in this chapter, and in detail in the remaining
chapters of the reference manual.

ErrorInfo class
Contains all of the members for storing and reporting error codes and messages. This class also includes error
code enumerated constants, which define the error number and associated message which can be returned
when you call a method.

Most UL for .NET methods return ErrorInfo objects. Error information is stored internally on the return from
calling the low-level UL function. The error is reported when the user calls the class library methods.

The ErrorInfo class is a member of the MccDaq namespace. Refer to the "MccDaq namespace" section on
page 139 for an explanation of the MccDaq namespace.

Enumerated constants

ErrorCode Lists the named constants for all error codes. For a full explanation of the error
associated with each error code and error constant, refer to the "Error Codes"
appendix on page 301.

UL for .NET Class Library Overview Analog I/O methods

141

Properties and methods

The ErrorInfo class also includes two properties and close to 100 methods that you can use to examine error
information. Each property and method is explained briefly later in this chapter, and in detail in the remaining
chapters of the reference manual.

MccService class
Contains all of the members for calling utility UL functions.

The MccService class is a member of the MccDaq namespace. Refer to the "MccDaq namespace" on page
139 for an explanation of the MccDaq namespace.

Methods

The MccService class contains nine static methods. You do not need to create an instance of the MccService
class to call these methods.

GlobalConfig class
Contains all of the members for getting global board configuration information.

The GlobalConfig class is a member of the MccDaq namespace. Refer to the "MccDaq namespace" on
page 139 for an explanation of the MccDaq namespace.

Properties and methods

The GlobalConfig class also includes three properties that you can use to examine global board configuration
information. Each property is explained briefly later in this chapter, and in detail in the remaining chapters of
the reference manual.

Analog I/O methods

The analog I/O methods available from the MccBoard class are explained below. These methods perform
analog input and output and convert analog data.

! MccBoard.AIn() - Takes a single reading from an analog input channel (A/D).

! MccBoard.AInScan() - Repeatedly scans a range of analog input (A/D) channels. You can specify the
channel range, the number of iterations, the sampling rate, and the A/D range. The data that is collected is
stored in an array.

! MccBoard.ALoadQueue() - Loads a series of chan/gain pairs into an A/D board's queue. These
chan/gains are used with all subsequent analog input methods.

! MccBoard.AOut() - Outputs a single value to an analog output (D/A).

! MccBoard.AOutScan() - Repeatedly scans a range of analog output (D/A) channels. You can specify the
channel range, the number of iterations, and the rate. The data from consecutive elements of an array are
sent to each D/A channel in the scan.

! MccBoard.APretrig() - Repeatedly scans a range of analog input (A/D) channels waiting for a trigger
signal. When a trigger occurs, it returns the specified number of samples and points before the trigger
occurred. You can specify the channel range, the sampling rate, and the A/D range. All of the data that is
collected is stored in an array.

! MccBoard.ATrig() - Reads analog input and waits until it goes above or below a specified threshold.
When the trigger condition is met, the current sample is returned.

UL for .NET Class Library Overview Configuration methods and properties

142

! MccBoard.AConvertData() - Converts analog data from data plus channel tags to separate data and
channel tags.

Each raw sample from analog input is a 16-bit value. On some 12-bit A/D boards it consists of a 12-bit
A/D value along with a four bit channel number. This method is not intended for use with 16-bit A/D
boards.

This conversion is done automatically by the MccBoard.AIn() method. It can also be done
automatically by the MccBoard.AInScan() method with the ConvertData option. In some cases
though, it may be useful or necessary to collect the data and then do the conversion sometime later. The
MccBoard.AConvertData() method takes a buffer full of unconverted data and converts it.

! MccBoard.ACalibrateData() - Calibrates analog data.

Each raw sample from a board with software calibration factors that must be applied to the sample may
be acquired and calibrated, then passed to an array. Alternatively, they can be acquired then passed to the
array without calibration. This technique applies the calibration factors to an array of data after the
acquisition is complete. When this second technique is used, ACalibrateData() may be used to apply
the calibration factors to an array of data after the acquisition is complete. The only case where you
would withhold calibration until after the acquisition run was complete is on slower CPUs, or when the
processing time is at a premium. Applying calibration factors in real time on a per sample basis does eat
up machine cycles.

To disable the automatic calibration so that you may apply the calibration later, specify the
NoCalibrateData option when collecting data with the MccBoard.AInScan() method.

! MccBoard.AConvertPretrigData() - Converts and re-orders pre-trigger data from data plus channel tags
to separate data and channel tags.

When data is collected with the MccBoard.APretrig() method, the same data conversion needs to
be done as is performed by the MccBoard.AConvertData() method. There is a further complication
because MccBoard.APretrig() collects analog data into an array. It treats the array like a circular buffer.
While it is waiting for the trigger to occur, it fills the array. When it gets to the end it resets to the start
and begins again. When the trigger signal occurs it continues collecting data into the circular buffer until
the requested number of samples have been collected.

When the data acquisition is complete, all of the data is in the array but it is in the wrong order. The first
element of the array does not contain the first data point. The data has to be rotated in the correct order.

This conversion can be done automatically by the MccBoard.APretrig() method with the
ConvertData option. In some cases though, it may be useful or necessary to collect the data and then do
the conversion sometime later. The MccBoard.AConvertPretrigData() method takes a buffer
full of unconverted data and converts it.

Configuration methods and properties

The configuration methods and properties available from the MccBoard class, cBoardConfig class,
cCtrConfig class, cDioConfig class, and the cExpansionConfig class are explained below.

The configuration information for all boards is stored in the configuration file CB.CFG. This information is
loaded from CB.CFG by all programs that use the library. The library includes the following classes and
methods that retrieve or change configuration options.

! MccBoard.BoardNum property - Number of the board associated with an instance of the MccBoard class.

! MccBoard.GetSignal() - Retrieves the configured auxiliary or DAQ Sync connection and polarity for the
specified timing and control signal. This method is intended for advanced users.

UL for .NET Class Library Overview Configuration methods and properties

143

! MccBoard.SelectSignal() - Configures timing and control signals to use specific auxiliary or DAQ Sync
connections as a source or destination. This method is intended for advanced users.

! MccBoard.SetTrigger() - Sets up trigger parameters used with the ExtTrigger option for
MccBoard.AInScan().

! MccBoard.BoardConfig property - Gets an instance of a cBoardConfig object.

! MccBoard.BoardConfig.DACUpdate() - Updates the voltage values on analog output channels.

! MccBoard.BoardConfig.GetBaseAdr() - Gets the base address of a board.

! MccBoard.BoardConfig.GetBoardType() - Gets the unique number (device ID) assigned to the board
(between 0 and 8000h) indicating the type of board installed.

! MccBoard.BoardConfig.GetCiNumDevs() - Gets the number of counter devices on the board.

! MccBoard.BoardConfig.GetDACStartup() - Gets the board�s configuration register STARTUP bit
setting.

! MccBoard.BoardConfig.GetDACUpdateMode() - Returns the update mode for a digital-to-analog
converter (DAC).

! MccBoard.BoardConfig.GetClock() - Gets the clock frequency in MHz (40, 10, 8, 6, 5, 4, 3, 2, 1), or 0
for not supported.

! MccBoard.BoardConfig.GetDInMask() - Determines the bits on a specified port that are configured for
input.

! MccBoard.BoardConfig.GetDiNumDevs() - Gets the number of digital devices on the board.

! MccBoard.BoardConfig.GetDmaChan() - Gets the DMA channel (0, 1 or 3) set for the board.

! MccBoard.BoardConfig.GetDOutMask() - Determines the bits on a specified port that are configured for
output.

! MccBoard.BoardConfig.GetDtBoard() - Gets the number of the board with the DT connector used to
connect to external memory boards.

! MccBoard.BoardConfig.GetIntLevel() - Gets the interrupt level set for the board (0 for none, or 1 to 15).

! MccBoard.BoardConfig.GetNumAdChans() - Gets the number of A/D channels

! MccBoard.BoardConfig.GetNumDaChans() - Gets the number of D/A channels.

! MccBoard.BoardConfig.GetNumExps() - Gets the number of expansion boards.

! MccBoard.BoardConfig.GetNumIoPorts() - Gets the number of I/O ports used by the board.

! MccBoard.BoardConfig.GetRange() - Gets the selected voltage range.

! MccBoard.BoardConfig.GetUsesExps() - Gets the True/False value indicating support of expansion
boards.

! MccBoard.BoardConfig.GetWaitState() - Gets the value of the Wait State jumper (1-enabled, 0-
disabled).

! MccBoard.BoardConfig.SetBaseAdr() - Sets the base address of a board

! MccBoard.BoardConfig.SetClock() - .Sets the clock source by the frequency (40, 10, 8, 6, 5, 4, 3, 2, 1),
or 0 for not supported.

! MccBoard.BoardConfig.SetDACStartup() - Sets the board�s configuration register STARTUP bit to 0 or
1 to enable/disable the storing of digital-to-analog converter (DAC) startup values.

UL for .NET Class Library Overview Configuration methods and properties

144

! MccBoard.BoardConfig.SetDACUpdateMode() - Sets the update mode for a digital-to-analog converter
(DAC).

! MccBoard.BoardConfig.SetDmaChan() - Sets the DMA channel (0, 1 or 3).

! MccBoard.BoardConfig.SetIntLevel() - Sets the interrupt level: 0 for none, or 1 to 15.

! MccBoard.BoardConfig.SetNumAdChans() - Sets the number of A/D channels available on the board.

! MccBoard.BoardConfig.SetRange() - Sets the selected voltage range.

! MccBoard.BoardConfig.SetWaitState() - Sets the value of the Wait State jumper (1 = enabled, 0 =
disabled).

! MccBoard.CtrConfig property - Gets an instance of a cCtrConfig object.

! MccBoard.CtrConfig.GetCtrType() - Gets the counter device number of counter type specified with the
configVal parameter.

! MccBoard.DioConfig property - Gets an instance of a cDioConfig object.

! MccBoard.DioConfig.GetConfig() - Gets the configuration of a digital device (digital input or digital
output).

! MccBoard.DioConfig.GetCurVal() - Gets the current value of digital outputs.

! MccBoard.DioConfig.GetDevType() - Gets the device type of the digital port (AUXPORT,
FIRSTPORTA, etc.).

! MccBoard.DioConfig.GetDlnMask() - Determines the bits on a specified port that are configured for
input.

! MccBoard.DioConfig.GetDOutMask() - Determines the bits on a specified port that are configured for
output.

! MccBoard.DioConfig.GetNumBits() - Gets the number of bits in the digital port value.

! MccBoard.ExpansionConfig property - Gets an instance of a cExpansionConfig object.

! MccBoard.ExpansionConfig.GetBoardType() - Gets the expansion board type.

! MccBoard.ExpansionConfig.GetCjcChan() - Gets the channel that the CJC is connected to.

! MccBoard.ExpansionConfig.GetMuxAdChan1() - Gets the first A/D channel that the board is connected
to.

! MccBoard.ExpansionConfig.GetMuxAdChan2() - Gets the second A/D channel that the board is
connected to.

! MccBoard.ExpansionConfig.GetNumExpChans() - Gets the number of expansion board channels.

! MccBoard.ExpansionConfig.GetRange1() - Gets the range/gain of the low 16 channels.

! MccBoard.ExpansionConfig.GetRange2() - Gets the range/gain of the high 16 channels.

! MccBoard.ExpansionConfig.GetThermType() - Gets the type of thermocouple configuration for the
board (J, K, E, T, R, S, and B types).

! MccBoard.ExpansionConfig.SetCjcChan() - Sets the channel that the CJC is connected to.

! MccBoard.ExpansionConfig.SetMuxAdChan1() - Sets the first A/D channel that the board is connected
to.

! MccBoard.ExpansionConfig.SetMuxAdChan2() - Sets the second A/D channel that the board is
connected to.

UL for .NET Class Library Overview Counter methods

145

! MccBoard.ExpansionConfig.SetRange1() - Sets the range/gain of the low 16 channels.

! MccBoard.ExpansionConfig.SetRange2() - Sets the range/gain of the high 16 channels.

! MccBoard.ExpansionConfig.SetThermType() - Sets the type of thermocouple configuration for the
board (J, K, E, T, R, S, and B types).

! GlobalConfig.NumBoards property - Returns the maximum number of boards you can install at one
time.

! GlobalConfig.NumExpBoards property- Returns the maximum number of expansion boards you can
install on a board.

! GlobalConfig.Version property - Information used by the library to determine compatibility.

Counter methods

The counter functions available from the MccBoard class are explained below. These methods load, read,
and configure counters. There are five types of counter chips used in MCC counter boards: 8254's, 8536's,
7266's, 9513's, and generic event counters. Some of the counter commands only apply to one type of counter.

! MccBoard.C7266Config() - Selects the basic operating mode of an LS7266 counter.

! MccBoard.C8254Config() - Selects the basic operating mode of an 8254 counter.

! MccBoard.C8536Config() - Selects the basic operating mode of an 8536 counter chip.

! MccBoard.C8536Init() - Initializes and selects all of the chip level features for a 8536 counter board. The
options that are set by this command are associated with each counter chip, not the individual counters
within it.

! MccBoard.C9513Config() - Sets the basic operating mode of a 9513 counter. This method sets all of the
programmable options that are associated with a 9513 counter. It is similar in purpose to C8254Config()
except that it is used with a 9513 counter.

! MccBoard.C9513Init() - Initializes and selects all of the chip level features for a 9513 counter board. The
options that are set by this command are associated with each counter chip, not the individual counters
within it.

! MccBoard.CFreqIn() - Measures the frequency of a signal by counting it for a specified period of time
(GatingInterval), and then converting the count to count/sec (Hz). Works only with 9513 counters.

! MccBoard.CIn() - Reads a counter's current value.

! MccBoard.CIn32() - Reads a counter's current value as a 32-bit integer. Used primarily with LS7266
counters.

! MccBoard.CLoad() - Loads a counter with an initial count value.

! MccBoard.CLoad32() - Loads a counter with a 32-bit integer initial value. Used primarily with LS7266
counters.

! MccBoard.CStatus() - Read the counter status of a counter. Returns various bits that indicate the current
state of a counter (currently only applies to LS7266 counters).

! MccBoard.CStoreOnInt() - Installs an interrupt handler that stores the current count whenever an
interrupt occurs. This method only works with 9513 counters.

UL for .NET Class Library Overview Digital I/O methods

146

Digital I/O methods
The digital methods available from the MccBoard class are explained below. These methods perform digital
input and output on various types of digital I/O ports.

! MccBoard.DBitIn() - Reads a single bit from a digital input port.

! cbMccBoard.DBitOut() - Sets a single bit on a digital output port.

! MccBoard.DConfigBit() - Configures a specific digital bit as input or output.

! MccBoard.DConfigPort() - Selects whether a digital port is an input or an output.

! MccBoard.DIn() - Reads a specified digital input port.

! MccBoard.DInScan() - Reads a set number of bytes or words from a digital input port at a specific rate.

! MccBoard.DOut() - Writes a byte to a digital output port.

! MccBoard.DOutScan() - Writes a series of bytes or words to a digital output port at a specified rate.

Error Handling methods and properties

Most UL for .NET methods return ErrorInfo objects. The MccService class includes one method that
determines how errors are handled internally by the library. The ErrorInfo class includes two properties
that provide information returned by the method called.

! MccService.ErrHandling() - Sets the manner of reporting and handling errors for all method calls.

! ErrorInfo.Message property - Gets the text of the error message associated with a specific error code.

! ErrorInfo.Value property - Gets the error constant associated with an ErrorInfo object.

Memory board methods

The memory board methods available from the MccBoard class read and write data to and from a
memory board, and also set modes that control memory boards (MEGA-FIFO).

The most common use for memory boards is to store large amounts of data from an A/D board via a DT-
Connect cable between the two boards. To do this, use the ExtMemory option with the
MccBoard.AInScan() or MccBoard.APretrig() methods.

Once the data has been transferred to the memory board you can use the memory methods to retrieve the data.

! MccBoard.MemSetDTMode() - Set DT-Connect mode on a memory board. Memory boards have a DT-
Connect interface which can be used to transfer data through a cable between two boards rather than
through the PC's system memory. The DT-Connect port on the memory board can be configured as either
an input (from an A/D) or as an output (to a D/A). This method configures the port.

! MccBoard.MemReset() - Resets the memory board address. The memory board is organized as a
sequential device. When data is transferred to the memory board it is automatically put in the next
address location. This method resets the current address to the location 0.

! MccBoard.MemRead() - Reads a specified number of points from a memory board starting at a specified
address.

! MccBoard.MemWrite() - Writes a specified number of points to a memory board starting at a specified
address.

UL for .NET Class Library Overview Revision control methods and properties

147

! MccBoard.MemReadPretrig() - Reads data collected with MccBoard.APretrig(). The
MccBoard.APretrig() method writes the pre-triggered data to the memory board in a scrambled
order. This method unscrambles the data and returns it in the correct order.

Revision control methods and properties

The revision control methods and property explained below are available from the MccBoard class.

As new revisions of the library are released, bugs from previous revisions are fixed, and occasionally new
functions are added. It is Measurement Computing's goal to preserve the programs you have written so that
you never change the order or number of arguments in a method. However, sometimes it is not possible to
achieve this goal.

The revision control methods initialize the DLL so that the functions are interpreted according to the format of
the revision you wrote and compiled your program in.

! MccBoard.DeclareRevision() - Declares the revision number of the Universal Library for .NET that your
program was written with.

! MccBoard.GetRevision() - Returns the version number of the installed Universal Library for .NET.

Streamer file methods

The streamer file methods available from the MccBoard class create, fill, and read streamer files.

! MccBoard.FileAInScan() - Transfer analog input data directly to file. Very similar to AInScan() except
that the data is stored in a file instead of an array.

! MccBoard.FilePretrig() - Pre-triggered analog input to a file. Very similar to APretrig() except that the
data is stored in a file instead of an array.

! MccBoard.FileGetInfo() - Reads streamer file information on how much data is in the file, and the
conditions under which it was collected (sampling rate, channels, etc.).

! MccBoard.FileRead() - Reads a selected number of data points from a streamer file into an array.

Temperature input methods
The methods explained below convert a raw analog input from an EXP or other temperature sensor board to
temperature.

! MccBoard.TIn() - Reads a channel from a digital input board, filters it (if specified), does the cold
junction compensation, linearizes and converts it to temperature.

! MccBoard.TInScan() - Scans a range of temperature inputs. Reads temperatures from a range of channels
and returns the temperature values to an array.

Windows memory management methods

The Windows memory management methods available from the MccService class take care of
allocating, freeing, and copying to/from Windows global memory buffers.

! MccService.WinBufAlloc() - Allocate a Windows memory buffer.

! MccService.WinBufFree() - Free a Windows buffer.

! MccService.WinArrayToBuf() - Copies data from an array to a Windows buffer.

UL for .NET Class Library Overview Miscellaneous methods, properties, and delegates

148

! MccService.WinBufToArray() - Copies data from a Windows buffer to an array.

Miscellaneous methods, properties, and delegates

The methods explained below are available from the MccBoard class. These functions do not as a group
fit into a single category. They get and set board information, convert units, manage events and background
operations, and perform serial communication operations.

! MccBoard.GetStatus() - Returns the status of a background operation.

Once a background operation starts, your program must periodically check on its progress. This method
returns the current status of the operation.

! MccBoard.StopBackground() - Stop a background process.

It is sometimes necessary to stop a background process even though the process has been set up to run
continuously. This method stops a background process that is running. StopBackground()should be
executed after normal termination of all background functions in order to clear variables and flags.

! MccBoard.EnableEvent() - Binds one or more event conditions to a user-defined callback function.

! MccBoard.DisableEvent() - - Disables one or more events set up with EnableEvent() and disconnects
their user-defined handlers.

! EventCallback delegate � Defines the prototype for the user function for EnableEvent(). This defines
the format for the user-defined handlers to be called when the events set up using EnableEvent() occurs.

! MccBoard.InByte() - Reads a byte from a hardware register on a board.

! MccBoard.InWord() - Reads a word from a hardware register on a board.

! MccBoard.OutByte() - Writes a byte to a hardware register on a board.

! MccBoard.OutWord() - Writes a byte or word to a hardware register on a board.

! MccBoard.GetBoardName() - Returns the name of a specified board.

! MccBoard.RS485() - Sets the transmit and receive buffers on an RS485 port.

! MccBoard.ToEngUnits() - Converts a count value from an A/D to voltage (or current).

! MccBoard.FromEngUnits() - Converts a voltage (or current) to a D/A count value.

! MccBoard.BoardName property - Name of the board associated with an instance of the MccBoard
class.

Universal Library for .NET example programs

The Universal Library for .NET contains many example programs to help you learn and apply UL for .NET
methods. We strongly recommend running appropriate example programs before attempting to use the
methods.

Table 13-1 lists the UL for .NET example programs sorted by program name. It includes their featured
method calls, special aspects, and other method calls included in the program. All example programs include
the DeclareRevision() and ErrHandling() methods. Table 13-2 lists the UL for .NET example programs
sorted by the method name.

UL for .NET Class Library Overview Universal Library for .NET example programs

149

Table 13-1. UL for .NET Example Programs � Sorted by Program Name
Program
name

Featured UL for
.NET method call

Notes Other UL for .NET method calls

ULAI01 AIn() ToEngUnits()
ULAI02 AInScan() Default mode WinBufToArray()

WinBufFree()
WinBufAlloc()

ULAI03 AInScan() Background mode GetStatus()
StopBackground()
WinBufToArray()
WinBufFree()
WinBufAlloc()

ULAI04 AConvertData() AInScan()
GetStatus()
StopBackground()
WinBufToArray()
WinBufFree()
WinBufAlloc()

ULAI05 AInScan() with manual data conversion GetStatus()
StopBackground()
WinBufToArray()
WinBufFree()
WinBufAlloc()

ULAI06 AInScan() Continuous Background mode AConvertData()
GetStatus()
StopBackground()
WinBufToArray()
WinBufFree()
WinBufAlloc()

ULAI07 ATrig() FromEngUnits()
ULAI08 APretrig() WinBufToArray()

WinBufFree()
WinBufAlloc()

ULAI09 ConvertPretrigData
()

Background APretrig()
GetStatus()
StopBackground()
WinBufToArray()
WinBufFree()
WinBufAlloc()

ULAI10 cbALoadQueue() AInScan()
WinBufToArray()
WinBufFree()
WinBufAlloc()

ULAI11 cbToEngUnits() AIn()
ULAI12 cbAInScan() ExtClock mode WinBufToArray()

WinBufFree()
WinBufAlloc()

ULAI13 cbAInScan() Various sampling mode options WinBufToArray()
WinBufFree()
WinBufAlloc()

UL for .NET Class Library Overview Universal Library for .NET example programs

150

Program
name

Featured UL for
.NET method call

Notes Other UL for .NET method calls

ULAI14 SetTrigger() With ExtTrigger selected AInScan()
FromEngUnits()
WinBufToArray()
WinBufFree()
WinBufAlloc()

ULAIO01 AInScan()
AOutScan()

Concurrent analog input and analog
output scans

GetStatus()
StopBackground()
WinArrayToBuf()
WinBufAlloc()
WinBufFree()
WinBufToArray()

ULAO01 AOut() FromEngUnits()
AOut()

ULAO02 AOutScan() WinBufToArray()
WinBufFree()
WinBufAlloc()

ULAO03 AOut()
DACUpdate()
SetDACUpdateMode()

Demonstrates the difference between
BoardConfig.DACUpdate.Immedia
te and
BoardConfig.DACUpdate.OnComman
d D/A update modes. Board 0 must
support DAC update mode settings,
such as the PCI-DAC6700 Series
boards.

FromEngUnits()

ULCT01 C8254Config() CLoad(), CIn()
ULCT02 C9513Init()

C9513Config()
 CLoad(), CIn()

ULCT03 CStoreOnInt() C9513Init(), CLoad()
C9513Config(), CIn()

ULCT04 CFreqIn() C9513Init()
ULCT05 C8536Init()

C8536Config()
 CLoad()

CIn()
ULCT06 C7266Config() CLoad32(), CIn32()

CStatus()
ULDI01 DIn() DConfigPort()
ULDI02 DBitIn() DConfigPort()
ULDI03 DInScan() DConfigPort()

GetStatus()
StopBackground()
WinBufToArray()
WinBufFree()
WinBufAlloc()

ULDI04 DIn() Using the AuxPort DioConfig()
DConfigPort()

ULDI05 DBitIn() Using the AuxPort DioConfig()
DConfigPort()

ULDI06 DConfigBit() DBitIn()
DioConfig()
DConfigPort()

ULDO01 DOut() DConfigPort()
ULDO02 DBitOut() DOut(), DConfigPort()

UL for .NET Class Library Overview Universal Library for .NET example programs

151

Program
name

Featured UL for
.NET method call

Notes Other UL for .NET method calls

ULDO04 DOut() Using the AuxPort DioConfig()
DConfigPort()

ULDO05 DBitOut() Using the AuxPort DOut()
DioConfig()
DConfigPort()

ULEV01 EnableEvent()
DisableEvent()

Using OnExternalInterrupt DConfigPort()
DIn()

ULEV02 EnableEvent()
DisableEvent()

Using OnDataAvailable and
OnEndOfAiScan

AInScan()
StopBackground()
ToEngUnits()
WinBufAlloc()
WinBufFree()
WinBufToArray()

ULEV03 EnableEvent()
DisableEvent()

Using OnPretrig and
OnEndOfAiScan

APretrig()
AConvertPretrigData()
DConfigPort()
DOut()
StopBackground()
ToEngUnits()
WinBufAlloc()
WinBufFree()
WinBufToArray()

ULEV04 EnableEvent()
DisableEvent()

Using OnEndOfAoScan AOutScan()
DConfigPort()
DOut()
FromEngUnits()
StopBackground()
WinArrayToBuf()
WinBufAlloc()
WinBufFree()

ULFI01 FileAInScan() FileGetInfo()
ULFI02 FileRead() FileAInScan()

FileGetInfo()
ULFI03 FilePretrig() FileGetInfo()

FileRead()
ULGT01 GetErrMsg() AIn()
ULGT03 MccDaq().MccBoard(

) class() properties:
BoardConfig,
DioConfig and
ExpansionConfig

Use the MccBoard class properties to
get configuration information for a
board.

GetBoardName()

ULGT04 GetBoardName() MccDaq.MccBoard.BoardName
property
MccDaq.GlobalConfig.NumBoar
ds property

ULMM01 MemReadPretrig() APretrig()
ULMM02 MemRead()

MemWrite()

ULMM03 AInScan() With ExtMemory option MemReset()
MemRead()

ULTI01 TIn()

UL for .NET Class Library Overview Universal Library for .NET example programs

152

Program
name

Featured UL for
.NET method call

Notes Other UL for .NET method calls

ULTI02 TInScan()

Table 13-2. UL for .NET Example Programs � Sorted by Method Name
UL for .NET method call UL for .NET

example program
Name

UL for .NET special features/notes

AConvertData() ULAI04
ULAI06

AConvertPretrigData() ULAI09
ULEV03*

ACalibrateData() None No example programs at this time
AIn() ULAI01 ULGT01

ULAI11

AInScan() ULAI02 ULAI10
ULAI03 ULAI12
ULAI04 ULAI13
ULAI05 ULAI14
ULAI06 ULMM03
ULEV02*

Default, Background mode with manual data conversion
Continuous Background mode
ExtClock mode
Various sampling mode options

ALoadQueue() ULAI10
AOut() ULAO01

ULAO03
Demonstrates the difference between
BoardConfig.DACUpdate.Immediate and
BoardConfig.DACUpdate.OnCommand D/A update modes.
Board 0 must support DAC update mode settings, such as the
PCI-DAC6700 Series boards.

AOutScan() ULAO02
ULAIO01
ULEV04*

Concurrent AInScan() and AOutScan()

APretrig() ULAI08 ULFI03
ULAI09 ULMM01
ULEV03*

ATrig() ULAI07 ULMM01
C7266Config() ULCT06
C8254Config() ULCT01
C8536Config() ULCT05
C8536Init() ULCT05
C9513Config() ULCT02 ULCT03
C9513Init() ULCT02 ULCT04

ULCT03

CFreqIn() ULCT04
CIn() ULCT01 ULCT05

ULCT02

CIn32() ULCT06
CLoad() ULCT01 ULCT03

ULCT02 ULCT05

CLoad32() ULCT06
CStoreOnInt() ULCT03
CStatus() ULCT06
DBitIn() ULDI02 ULDI06

ULDI05

UL for .NET Class Library Overview Universal Library for .NET example programs

153

UL for .NET method call UL for .NET
example program
Name

UL for .NET special features/notes

DBitOut() ULDO02
ULDO05

DConfigBit() ULDI06
DConfigPort() ULDI01 ULDO01

ULDI02 ULDO02
ULDI03 ULDO05
ULEV01*ULEV03*
ULEV04*

DIn() ULDI01 ULDI04
ULDI03 ULEV01*

DInScan() ULDI03
DOut() ULDO01 ULDO05

ULDO02 ULDO04
 ULEV03*ULEV04*

DOutScan() None No example programs at this time
EnableEvents()
DisableEvents()

ULEV01* ULEV03*
ULEV02* ULEV04*

OnExternalInterrupt
OnDataAvailable
OnPretrigger
OnEndOfAoScan
OnScanError
OnEndOfAiScan

ErrHandling() All Samples All sample programs use this method

FileAInScan() ULFI01
ULFI02

FilePretrig() ULFI03 ULFI01
ULFI02

FileRead() ULFI02
ULFI03

FlashLED() ULFI01 Flashes the onboard LED for visual identification (board 0
must have an external LED, such as the miniLAB 1008 or the
USB-1208LS.

FromEngUnits ULAO01
ULAO03
ULAI07
ULAI14
ULEV04

GetBoardName ULGT03
ULGT04

GetDACStartup() None No sample programs at this time
GetDACUpdateMode() None No sample programs at this time
GetErrMsg() ULGT01
GetRevision() None No sample programs at this time
GetStatus() ULAI03 ULAI06

ULAI04 ULAI09
ULAI05 ULCT03
ULAIO01
ULDI0

InByte() None No example programs at this time
InWord() None No example programs at this time

UL for .NET Class Library Overview Universal Library for .NET example programs

154

UL for .NET method call UL for .NET
example program
Name

UL for .NET special features/notes

MccDaq.MccBoard class
properties:
BoardConfig, DioConfig, and
ExpansionConfig

ULGT03
ULGT04

Use the MccBoard class properties to get configuration
information for a board.

MemRead() ULMM01 ULMM03
ULMM02

MemReadPretrig() ULMM01
MemReset() ULMM03
MemSetDTMode() None No example programs at this time
MemWrite() ULMM02
RS485() None No example programs at this time
SetTrigger() ULAI14
StopBackground() ULAI03 ULAI06

ULAI04 ULAI09
ULAI05 ULCT03
ULAIO01 ULDI03
ULEV02* ULEV03*
ULEV04*

Concurrent AInScan() and AOutScan()

TIn() ULTI01
TInScan() ULTI02
ToEngUnits() ULAI01 ULAI11

ULAI07 ULEV02*
ULEV03*

WinArrayToBuf() ULAIO01
ULAIO02
ULEV04*

WinBufAlloc()
WinBufFree()
WinBufToArray()

ULAI01 ULAI10
ULAI02 ULAI12
ULAI03 ULAI13
ULAI04 ULAI14
ULAI05
ULAI06 ULAO02
ULAI08 ULCT03
ULAI09 ULDI03
ULEV02* ULEV03*

ULEV04*

(WinBufAlloc and
WinBufFree only)

155

15
Analog I/O Methods

Introduction
The methods explained in this chapter handle analog input, analog output and analog data manipulation.
These methods are available from the MccBoard class.

Most analog I/O methods include options that may not be compatible with your hardware. To determine
which of these functions are compatible with your hardware, refer to the Universal Library User�s Guide
(available in PDF format on our website at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

Table 14-1 lists the MccDaq.Range enumerated constants you can use in the range parameter found in most
of the methods explained in this chapter. These values are also used in the ALoadQueue() method's
gainArray parameter. Valid ranges for your hardware are listed in the Universal Library User�s Guide.

Table 14-1. MccDaq.Range Enumerated Constants
UL .NET settings Value UL .NET settings Value
MccDaq.Bip20Volts ±20 volts(V) MccDaq.Uni5Volts 0 to 5 V
MccDaq.Bip10Volts ±10 V MccDaq.Uni2Pt5Volts 0 to 2.5 V
MccDaq.Bip5Volts ±5 V MccDaq.Uni2Volts 0 to 2 V
MccDaq.Bip4Volts ±4 V MccDaq.Uni1Pt25Volts 0 to 1.25 V
MccDaq.Bip2Pt5Volts ±2.5 V MccDaq.Uni1Pt67Volts 0 to 1.67 V
MccDaq.Bip2Volts ±2 V MccDaq.Uni1Volts 0 to 1 V
MccDaq.Bip1Pt25Volts ±1.25 V MccDaq.UniPt5Volts 0 to 0.5 V
MccDaq.Bip1Volts ±1 V MccDaq.UniPt25Volts 0 to 0.25 V
MccDaq.Bip1Pt67Volts ±1.67 V MccDaq.UniPt2Volts 0 to 0.2 V
MccDaq.BipPt625Volts ±0.625 V MccDaq.UniPt1Volts 0 to 0.1 V
MccDaq.BipPt5Volts ±0.5 V MccDaq.UniPt01Volts 0 to 0.01 V
MccDaq.BipPt25Volts ±0.25 V MccDaq.UniPt02Volts 0 to 0.02 V
MccDaq.BipPt2Volts ±0.2 V MccDaq.UniPt05Volts 0 to 0.05 V
MccDaq.BipPt1Volts ±0.1 V MccDaq.Ma0To20 0 to 20 milliamperes (mA)
MccDaq.BipPt05Volts ±0.05 V MccDaq.Ma4To20 4 to 20 mA
MccDaq.BipPt01Volts ±0.01 V MccDaq.Ma2To10 2 to 10 mA
MccDaq.BipPt005Volts ±0.005 V MccDaq.Ma1To5 1 to 5 mA
MccDaq.Uni10Volts 0 to 10 V MccDaq.MaPt5To2Pt5 0.5 to 2.5 mA

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Analog I/O Methods AConvertData()

156

AConvertData()
Converts the raw data collected by AInScan() into 12-bit A/D values. The AInScan() method can return
either raw A/D data or converted data, depending on whether or not the ConvertData() option is used. For
many 12-bit A/D boards, the raw data is a 16-bit value that contains a 12-bit A/D value and a 4-bit channel tag
(refer to board specific-information). The converted data consists of just the 12-bit A/D value.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function AConvertData(ByVal numPoints As Integer, ByRef
adData As Short, ByRef chanTags As Short) As MccDaq.ErrorInfo
Public Function AConvertData(ByVal numPoints As Integer, ByRef
adData As System.UInt16, ByRef chanTags As System.UInt16) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo AConvertData(int numPoints, ref ushort
adData, out ushort chanTags)
public MccDaq.ErrorInfo AConvertData(int numPoints, ref short
adData, out short chanTags)

Parameters:

numPoints Number of samples to convert

adData Reference to start of data array

chanTags Reference to start of channel tag array

Returns:

An ErrorInfo object that indicates the status of the operation.

adData - converted data

chanTags - channel tags if available.

When collecting data using AInScan() without the ConvertData option, use this method to convert the data
after it has been collected. There are cases where the ConvertData option is not allowed. For example - if you
are using both the DmaIo and Background option with AInScan(). In those cases, use AConvertData() to
convert the data after the data collection is complete.

For some boards, each raw data point consists of a 12-bit A/D value with a 4-bit channel number. This method
pulls each data point apart and puts the A/D value into the adData array and the channel number into the
chanTags array.

Notes:

12-bit A/D boards: The name of the array must match that used in AInScan() or WinBufToArray().
Upon returning from AConvertData(), adData array contains only 12-bit A/D data.

Analog I/O Methods AConvertPretrigData()

157

AConvertPretrigData()
Converts the raw data collected by APretrig(). The APretrig() method can return either raw A/D data or
converted data, depending on whether or not the ConvertData option was used. The raw data is not in the
correct order as it is collected. After the data collection is completed, it must be rearranged into the correct
order. This method also orders the data, starting with the first pretrigger data point and ending with the last
post-trigger point.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function AConvertPretrigData(ByVal preTrigCount As Integer,
ByVal totalCount As Integer, ByRef adData As Short, ByRef chanTags
As Short) As MccDaq.ErrorInfo
Public Function AConvertPretrigData(ByVal preTrigCount As Integer,
ByVal totalCount As Integer, ByRef adData As System.UInt16, ByRef
chanTags As System.UInt16) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo AConvertPretrigData(int preTrigCount, int
totalCount, ref ushort adData, out ushort chanTags)
public MccDaq.ErrorInfo AConvertPretrigData(int preTrigCount, int
totalCount, ref short adData, out short chanTags)

Parameters:

preTrigCount Number of pre-trigger samples (this value must match the value returned by the
PretrigCount parameter in the APretrig() method)

totalCount Total number of samples that were collected

adData Reference to data array (must match array name used in APretrig() method)

chanTags Reference to channel tag array or a NULL reference may be passed if using 16-bit
boards or if channel tags are not desired (see the note regarding 16-bit boards
below).

Returns:

An ErrorInfo object that indicates the status of the operation.

adData - converted data

When you collect data with APretrig() and you don't use the ConvertData option, you must use this
method to convert the data after it is collected. There are cases where the ConvertData option is not allowed:
for example, if you use the Background option with APretrig(). In those cases, this method should be used
to convert the data after the data collection is complete.

Notes:

12-Bit A/D Boards: On some 12-bit boards, each raw data point consists of a 12-bit A/D value with a 4-bit
channel number. This method pulls each data point apart and puts the A/D value into the adData and the
channel number into the chanTags array.

Upon returning from AConvertPretrigData(), adData array contains only 12-bit A/D data.

16-Bit A/D Boards: This method is for use with 16-bit A/D boards only insofar as ordering the data. No
channel tags are returned.

Name of the ADData array must match that used in AInScan() or WinBufToArray().

Analog I/O Methods AConvertPretrigData()

158

Visual Basic programmers:

After the data is collected with APretrig(), it must be copied to a BASIC array with
WinBufToArray().

Important
The entire array must be copied, which includes the extra 512 samples needed by APretrig(). Example code
is given below.
SampleCount& = 10000
Dim A_D_Data% (SampleCount& + 512)
Dim Chan_Tags% (SampleCount& + 512)
APretrig%(LowChan, HighChan, PretrigCount&, SampleCount&...)
WinBufToArray%(MemHandle%, A_D_Data%, SampleCount& + 512)
AConvertPretrigData%(Pretrig_Count&, SampleCount&, A_D_Data%, Chan_Tags%)

Analog I/O Methods ACalibrateData()

159

ACalibrateData()
Calibrates the raw data collected by AInScan() from boards with real time software calibration when the
real time calibration has been turned off. The AInScan() method can return either raw A/D data or calibrated
data, depending on whether or not the NoCalibrateData option was used.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function ACalibrateData(ByVal numPoints As Integer, ByVal
range As MccDaq.Range, ByRef adData As Short) As MccDaq.ErrorInfo

Public Function ACalibrateData(ByVal numPoints As Integer, ByVal
range As MccDaq.Range, ByRef adData As System.UInt16) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo ACalibrateData(int numPoints, MccDaq.Range,
ref ushort adData)

public MccDaq.ErrorInfo ACalibrateData(int numPoints, MccDaq.Range
range, ref short adData)

Parameters:

numPoints Number of samples to convert

range The programmable gain/range used when the data was collected. Refer to Table
14-1 on page 155 for a list of valid range settings.

adData Reference to data array

Returns:

An ErrorInfo object that indicates the status of the operation.

adData - converted data

Notes:

When collecting data using AInScan() with the NoCalibrateData option, use this method to calibrate the
data after it is collected.

! The name of the array must match that used in AInScan()or WinBufToArray().

! Applying software calibration factors in real time on a per sample basis eats up machine cycles. If your
CPU is slow, or if processing time is at a premium, withhold calibration until after the acquisition run is
complete. Turning off real time software calibration saves CPU time during a high speed acquisition run.

Processor speed is a factor for DMA transfers and for real time software calibration. Processors of less
than 150 MHz Pentium class may impose speed limits below the capability of the board (refer to specific
board information.) If your processor is less than a 150 MHz Pentium, and you need an acquisition speed
in excess of 200 kHz, use the NoCalibrateData option to a turn off real-time software calibration and
save CPU time. After the acquisition is run, calibrate the data with ACalibrateData().

Analog I/O Methods AIn()

160

AIn()
Reads an A/D input channel. This method reads the specified A/D channel from the specified board. If the
specified A/D board has programmable gain then it sets the gain to the specified range. The raw A/D value is
converted to an A/D value and returned to DataValue.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function AIn(ByVal channel As Integer, ByVal range As
MccDaq.Range , ByRef dataValue As Short) As MccDaq.ErrorInfo
Public Function AIn(ByVal channel As Integer, ByVal range As
MccDaq.Range, ByRef dataValue As System.UInt16) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo AIn(int channel, MccDaq.Range range, out
ushort DataValue)

public MccDaq.ErrorInfo AIn(int channel, MccDaq.Range range, out
short DataValue)

Parameters:

channel A/D channel number. The maximum allowable channel depends on which type of
A/D board is being used. For boards with both single ended and differential inputs,
the maximum allowable channel number also depends on how the board is
configured. For example, a CIO-DAS1600 has 8 channels for differential, 16 for
single ended. Expansion boards are also supported by this method, so this
parameter can contain values up to 272. See board specific information for EXP
boards if you are using an expansion board.

range A/D Range code. If the selected A/D board does not have a programmable gain
feature, this parameter is ignored. If the A/D board does have programmable gain,
set the range parameter to the desired A/D range. Refer to board specific
information for a list of the supported A/D ranges of each board. Refer to Table
14-1 on page 155 for a list of valid range settings.

dataValue Reference to data value.

Returns:

An ErrorInfo object that indicates the status of the operation.

dataValue - Returns the value of the A/D sample.

Analog I/O Methods AInScan()

161

AInScan()
Scans a range of A/D channels and stores the samples in an array. AInScan() reads the specified number of
A/D samples at the specified sampling rate from the specified range of A/D channels from the specified board.
If the A/D board has programmable gain, then it sets the gain to the specified range. The collected data is
returned to the data array.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function AInScan(ByVal lowChan As Integer, ByVal highChan As
Integer, ByVal numPoints As Integer, ByRef rate As Integer, ByVal
range As MccDaq.Range , ByVal memHandle As Integer, ByVal options As
MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo AInScan(int lowChan , int highChan, int
numPoints, ref int rate, MccDaq.Range range, int memHandle,
MccDaq.ScanOptions options)

Parameters:

lowChan First A/D channel of the scan. When ALoadQueue() is used, the channel count is
determined by the total number of entries in the channel gain queue. lowChan is
ignored.

highChan Last A/D channel of the scan. When ALoadQueue() is used, the channel count is
determined by the total number of entries in the channel gain queue. highChan is
ignored.
low / high Channel # - The maximum allowable channel depends on which type
of A/D board is being used. For boards that have both single ended and differential
inputs the maximum allowable channel number also depends on how the board is
configured. For example, a CIO-DAS1600 has 8 channels for differential, 16 for
single ended.

numPoints Number of A/D samples to collect. Specifies the total number of A/D samples that
will be collected. If more than one channel is being sampled then the number of
samples collected per channel is equal to count / (highChan- lowChan+1).

rate The sample rate at which scans are triggered, in scans per second per channel.
For example, sampling four channels, 0-3, at a rate of 10,000 scans per second
(10 kHz) results in an A/D converter rate of 40 kHz: four channels at 10,000
samples per channel per second. With other software, you specify the total A/D
chip rate. In those systems, the per channel rate is equal to the A/D rate divided by
the number of channels in a scan.
The channel count is determined by the lowChan and highChan parameters.
Channel Count = (highChan - lowChan + 1).
When ALoadQueue() is used, the channel count is determined by the total number
of entries in the channel gain queue. lowChan and highChan are ignored.
rate also returns the value of the actual rate set, which may be different from the
requested rate because of pacer limitations.

range A/D range code. If the selected A/D board does not have a programmable range
feature, this parameter is ignored. Otherwise, set the range parameter to any range
that is supported by the selected A/D board. Refer to board-specific information for
a list of the supported A/D ranges of each board. Refer to Table 14-1 on page 155
for a list of valid range settings.

Analog I/O Methods AInScan()

162

memHandle Handle for Windows buffer to store data in (Windows). This buffer must have been
previously allocated with the WinBufAlloc() method.

options Bit fields that control various options . Refer to the constants in the "options
parameter values" section below.

Returns:

An ErrorInfo object that indicates the status of the operation.

rate - actual sampling rate used.

memHandle - collected A/D data returned via the Windows buffer.

options parameter values:

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these
constants, you must refer to the MccDaq object and the ScanOptions enumeration (variable =
MccDaq.ScanOptions.SingleIo, variable = MccDaq.ScanOptions.DmaIo, etc.).

Transfer method options: The following three options determine how data is transferred from the board to
PC memory. If none of these options is specified (recommended), the optimum sampling mode will
automatically be chosen based on board type and sampling speed.

SingleIo A/D transfers to memory are initiated by an interrupt. One interrupt per
conversion.

DmaIo A/D transfers are initiated by a DMA request.
BlockIo A/D transfers are handled in blocks (by REP-INSW for example).
 BlockIo is not recommended for slow acquisition rates: If the rate of

acquisition is very slow (say less than 200 Hz) BlockIo is probably not
the best choice for transfer mode. The reason for this is that status for the
operation is not available until one packet of data has been collected
(typically 512 samples). The implication is that if acquiring 100 samples
at 100 Hz using BlockIo, the operation will not complete until 5.12
seconds has elapsed.

BurstIo Allows higher sampling rates (up to 8000 Hz) for sample counts up to full
FIFO. Data is collected into the local FIFO. Data transfers to the PC are
held off until after the scan is complete. For Background scans, the count
and index returned by GetStatus remain 0 and the status equals
Running until the scan finishes. When the scan finishes and the data is
retrieved, the count and index are updated and the status equals Idle.

 BurstIo is the default mode for non-Continuous fast scans (aggregate
sample rates above 1000 Hz) with sample counts up to full-FIFO. To
avoid the BurstIo default, specify BlockIo. Non-BurstIo scans are
limited to a maximum of 1200 Hz. BurstIo is not a valid option for most
boards. It is used mainly for USB products.

BurstMode Enables burst mode sampling. Scans from lowChan to highChan are clocked at the
maximum A/D rate between samples in order to minimize channel to channel
skew. Scans are initiated at the rate specified by rate.
BurstMode is not recommended for use with the SingleIo option. If this
combination is used, the count value should be set as low as possible, preferably to
the number of channels in the scan. Otherwise, overruns may occur.

Analog I/O Methods AInScan()

163

ConvertData If the ConvertData option is used for 12 bit boards then the data that is returned to
the buffer will automatically be converted to 12 bit A/D values. If ConvertData is
not used then the data from 12 bit A/D boards will be return unmodified (16 bit
values that contain both a 12 bit A/D value and a 4 bit channel number). After the
data collection is complete you can call AConvertData() to convert the data
after the fact. ConvertData may not be specified if you are using the Background
option and DMA transfers. This option is ignored for the 16 bit boards.

Background If the Background option is not used, the AInScan() method will not return to
your program until all of the requested data has been collected and returned to the
buffer. When the Background option is used, control will return immediately to
the next line in your program and the data collection from the A/D into the buffer
will continue in the background. Use GetStatus() to check on the status of the
background operation. Alternatively, some boards support EnableEvent() for
event notification of changes in status of Background scans. Use
StopBackground() to stop the background process before it has completed.
StopBackground() should be executed after normal termination of all background
functions in order to clear variables and flags.

Continuous This option puts the method in an endless loop. Once it collects the required
number of samples, it resets to the start of the buffer and begins again. The only
way to stop this operation is with StopBackground(). Normally this option
should be used in combination with Background so that your program will regain
control.

 numPoints parameter settings in CONTINUOUS mode: For some DAQ
hardware, numPoints must be an integer multiple of the packet size. Packet size is
the amount of data that a DAQ device transmits back to the PC�s memory buffer
during each data transfer. Packet size can differ among DAQ hardware, and can
even differ on the same DAQ product depending on the transfer method.

 In some cases, the minimum value for the numPoints parameter may change when
the CONTINUOUS option is used. This can occur for several reasons; the most
common is that in order to trigger an interrupt on boards with FIFOs, the circular
buffer must occupy at least half the FIFO. Typical half-FIFO sizes are 256, 512
and 1024.

 Another reason for a minimum numPoints value is that the buffer in memory must
be periodically transferred to the user buffer. If the buffer is too small, data will be
overwritten during the transfer resulting in garbled data.

 Refer board-specific section of the Universal Library User's Guide (available on
our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) for packet
size information for your particular DAQ hardware.

ExtClock If this option is used then conversions will be controlled by the signal on the
external clock input rather than by the internal pacer clock. Each conversion will
be triggered on the appropriate edge of the clock input signal (see board-specific
info). When this option is used the rate parameter is ignored. The sampling rate is
dependent on the clock signal. Options for the board will default to a transfer
mode that will allow the maximum conversion rate to be attained unless otherwise
specified.

 SingleIo is recommended for slow external clock rates: If the rate of the external
clock is very slow (say less than 200 Hz) and the board you are using supports
BlockIo, you may want to include the SingleIo option. This is because that the
status for the operation is not available until one packet of data has been collected
(typically 512 samples). The implication is that, if acquiring 100 samples at 100 Hz
using BlockIo (the default for boards that support it if ExtClock is used), the
operation will not complete until 5.12 seconds has elapsed

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Analog I/O Methods AInScan()

164

ExtMemory Causes the command to send the data to a connected memory board via the DT-
Connect interface rather than returning the data to the buffer. Data for each call to
this method will be appended unless MemReset() is called. The data should be
unloaded with the MemRead() method before collecting new data. When
ExtMemory option is used, the reference to the buffer (memHandle) may be set to
null or 0. Continuous option cannot be used with ExtMemory. Do not use
ExtMemory and DtConnect together. The transfer modes DmaIo, SingleIo and
BlockIo have no meaning when used with this option.

ExtTrigger If this option is specified, the sampling will not begin until the trigger condition is
met. On many boards, this trigger condition is programmable (refer to
SetTrigger() and to board-specific info for details). On other boards, only
'polled gate' triggering is supported. In this case assuming active high operation,
data acquisition will commence immediately if the trigger input is high. If the
trigger input is low, acquisition will be held off unit until it goes high. Acquisition
will then continue until numPoints samples have been taken regardless of the state
of the trigger input. This option is most useful if the signal is a pulse with a very
low duty cycle (trigger signal in TTL low state most of the time) so that triggering
will be held off until the occurrence of the pulse.

NoTodInts If this option is specified, the system's time-of-day interrupts are disabled for the
duration of the scan. These interrupts are used to update the systems real time
clock and are also used by various other programs.
These interrupts can limit the maximum sampling speed of some boards -
particularly the PCM-DAS08. If the interrupts are turned off using this option then
the real-time clock will fall behind by the length of time that the scan takes.

NoCalibrateData Turns off real-time software calibration for boards which are software calibrated,
by applying calibration factors to the data on a sample by sample basis as it is
acquired. Examples are the PCM-DAS16/330 and PCM-DAS16x/12.
Turning off software calibration saves CPU time during a high speed acquisition
run. This may be required if your processor is less than a 150 MHz Pentium and
you desire an acquisition speed in excess of 200 kHz. These numbers may not
apply to your system. Only trial will tell for sure. DO NOT use this option if you
do not have to. If this option is used, the data must be calibrated after the
acquisition run with the ACalibrateData() method.

DTConnect All A/D values will be sent to the A/D board's DT-Connect port. This option is
incorporated into the ExtMemory option. Use DTConnect only if the external board
is not supported by Universal Library.

Caution! You will generate an error if you specify a total A/D rate beyond the capability of the board.
For example; if you specify rate LowChan = 0, HighChan = 7 (8 channels total) and Rate =
20,000 and you are using a CIO-DAS16/JR, you will get an error. You have specified a total
rate of 8*20,000 = 160,000. The CIO-DAS16/JR can convert up to 120,000 samples per
second. The maximum sampling rate depends on the A/D board that is being used. It is also
dependent on the sampling mode options.

Important
In order to understand the functions, read the board-specific information contained in the Universal Library
User's Guide (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

Review and run the example programs before attempting any programming of your own. Following this
advice will save you hours of frustration, and possibly time wasted holding for technical support.

This note, which appears elsewhere, is especially applicable to this method. Now is the time to read board-
specific information for your board (see the Universal Library User's Guide). We suggest that you make a
copy of that page to refer to as you read this manual and examine the example programs.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Analog I/O Methods ALoadQueue()

165

ALoadQueue()
Loads the A/D board's channel/gain queue. This method only works with A/D boards that have channel/gain
queue hardware.

Some products do not support channel / gain queue, and some that do support it are limited on the order of
elements, number of elements, and gain values that can be included, etc. Please refer to the device-specific
information in the Universal Library User's Guide (available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) to find details for your particular product.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function ALoadQueue(ByVal chanArray As Short(), ByVal
gainArray As MccDaq.Range (), ByVal count As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo ALoadQueue(short[] chanArray, MccDaq.Range[]
gainArray, int count)

Parameters:

chanArray Array containing channel values. This array should contain all of the channels that
will be loaded into the channel gain queue.

gainArray Array containing A/D range values. This array should contain each of the A/D
ranges that will be loaded into the channel gain queue. Refer to Table 14-1 on page
155 for a list of valid A/D range settings.

count Number of elements in chanArray and gainArray or 0 to disable chan/gain queue.
Specifies the total number of chan/gain pairs that will be loaded into the queue.
chanArray and gainArray should contain at least count elements. Set count = 0 to
disable the board's chan/gain queue. The maximum value is specific to the queue
size of the A/D boards channel gain queue.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

Normally, the AInScan() method scans a fixed range of channels (from lowChan to highChan) at a fixed
A/D range. If you load the channel gain queue with this method then all subsequent calls to AInScan() will
cycle through the chan/range pairs that you have loaded into the queue.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Analog I/O Methods AOut()

166

AOut()
Sets the value of a D/A output.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function AOut(ByVal channel As Integer, ByVal range As
MccDaq.Range, ByVal dataValue As Short) As MccDaq.ErrorInfo
Public Function AOut(ByVal channel As Integer, ByVal range As
MccDaq.Range, ByVal dataValue As System.UInt16) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo AOut(int channel, MccDaq.Range range, ushort
dataValue)
public MccDaq.ErrorInfo AOut(int channel, MccDaq.Range range, short
dataValue)

Parameters:

channel D/A channel number. The maximum allowable channel depends on which type of
D/A board is being used.

range D/A range code. The output range of the D/A channel can be set to any of those
supported by the board. If the D/A board does not have programmable ranges then
this parameter will be ignored. Refer to Table 14-1 on page 155 for a list of valid
range settings.

dataValue Value to set D/A to. Must be in the range 0 - N where N is the value 2Resolution - 1 of
the converter
Exception: using 16 bit boards with Basic range is -32768 to 32767. Refer to the
discussion on Basic signed integers for more information.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

Simultaneous Update Boards: If you set the simultaneous update jumper for simultaneous operation, use
AOutScan() for simultaneous update of multiple channels. AOut() always writes the D/A data then reads
the D/A, which causes the D/A output to be updated.

Analog I/O Methods AOutScan()

167

AOutScan()
Outputs values to a range of D/A channels. This function can be used for paced analog output on hardware
that supports paced output. It can also be used to update all analog outputs at the same time when the
Simultaneous option is used.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function AOutScan(ByVal lowChan As Integer, ByVal highChan As
Integer, ByVal numPoints As Integer, ByRef rate As Integer, ByVal
range As MccDaq.Range , ByVal memHandle As Integer, ByVal options As
MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo AOutScan(int lowChan, int highChan, int
numPoints, ref int rate, MccDaq.Range range, int memHandle,
MccDaq.ScanOptions options)

Parameters:

lowChan First D/A channel of scan.

highChan Last D/A channel of scan.
lowChan/highChan - The maximum allowable channel depends on which type of
D/A board is being used.

numPoints Number of D/A values to output. Specifies the total number of D/A values that will
be output. Most D/A boards do not support timed outputs. For these boards, set the
count to the number of channels in the scan.

rate Sample rate in scans per second. For many D/A boards the rate is ignored and can
be set to NotUsed. For D/A boards with trigger and transfer methods which allow
fast output rates, such as the CIO-DAC04/12-HS, rate should be set to the D/A
output rate (in scans/sec). This parameter also returns the value of the actual rate
set. This value may be different from the user specified rate because of pacer
limitations.
If supported, this is the rate at which scans are triggered. If you are updating 4
channels, 0-3, then specifying a rate of 10,000 scans per second (10 kHz) will
result in the D/A converter rates of 10 kHz � (one D/A per channel). The data
transfer rate will be 40,000 words per second � 4 channels * 10,000 updates per
scan.
The maximum update rate depends on the D/A board that is being used, and the
sampling mode options.

range D/A range code. The output range of the D/A channel can be set to any of those
supported by the board. If the D/A board does not have a programmable then this
parameter will be ignored. Refer to Table 14-1 on page 155 for a list of valid range
settings.

memHandle Handle for Windows buffer from which data will be output. This buffer must have
been previously allocated with the WinBufAlloc() method and data values
loaded (perhaps using WinArrayToBuf().

scanOptions Bit fields that control various options . Refer to the constants in the "scanOptions "
section on page 168.

Returns:

An ErrorInfo object that indicates the status of the operation.

Analog I/O Methods AOutScan()

168

Rate - actual sampling rate used.

scanOptions parameter values:

All of the scanOptions settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of
these constants, you must refer to the MccDaq object and the ScanOptions enumeration (variable =
MccDaq.ScanOptions.Continuous, variable = MccDaq.ScanOptions.Background, etc.).

Continuous This option may only be used with boards which support interrupt, DMA or REP-
INSW transfer methods. This option puts the method in an endless loop. Once it
outputs the specified (by Count) number of D/A values, it resets to the start of the
buffer and begins again. The only way to stop this operation is with
StopBackground(). This option should only be used in combination with
Background so that your program can regain control.

Background This option may only be used with boards which support interrupt, DMA or REP-
INSW transfer methods. When this option is used the D/A operations will begin
running in the background and control will immediately return to the next line of
your program. Use GetStatus() to check the status of background operation.
Alternatively, some boards support EnableEvent() for event notification of
changes in status of Background scans. Use StopBackground() to terminate
background operations before they are completed. StopBackground() should be
executed after normal termination of all background functions in order to clear
variables and flags.

Simultaneous When this option is used (if the board supports it and the appropriate switches are
set on the board) all of the D/A voltages will be updated simultaneously when the
last D/A in the scan is updated. This generally means that all the D/A values will
be written to the board, then a read of a D/A address causes all D/As to be updated
with new values simultaneously.

ExtClock If this option is used then conversions will be paced by the signal on the external
clock input rather than by the internal pacer clock. Each conversion will be
triggered on the appropriate edge of the clock input signal (see board-specific
info). When this option is used the Rate parameter is ignored. The sampling rate is
dependent on the clock signal. Options for the board will default to transfer types
that allow the maximum conversion rate to be attained unless otherwise specified.

ExtTrigger If this option is specified the sampling will not begin until the trigger condition is
met. On many boards, this trigger condition is programmable (see
SetTrigger() method and board-specific information for details).

Caution! You will generate an error if you specify a total D/A rate beyond the capability of the board.
For example: If you specify LowChan = 0 and HighChan = 3 (4 channels total) and Rate =
100,000, and you are using a cSBX-DDA04, you will get an error. You have specified a total
rate of 4*100,000 = 400,000. The cSBX-DDA04 is rated to 330,000 updates per second. The
maximum update rate depends on the D/A board that is being used. It is also dependent on the
sampling mode options.

Analog I/O Methods APretrig()

169

APretrig()
Waits for a trigger to occur and then returns a specified number of analog samples before and after the trigger
occurred. If only 'polled gate' triggering is supported, the trigger input line (refer to the user's manual for the
board) must be at TTL low before this method is called, or a TrigState error will occur. The trigger occurs when
the trigger condition is met. Refer to the SetTrigger() method for more details.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function APretrig(ByVal lowChan As Integer, ByVal highChan As
Integer, ByRef pretrigCount As Integer, ByRef totalCount As Integer,
ByRef rate As Integer, ByVal range As MccDaq.Range, ByVal memHandle
As Integer, ByVal options As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo APretrig(int lowChan, int highChan, ref int
pretrigCount, ref int totalCount, ref int rate, MccDaq.Range range,
int memHandle, MccDaq.ScanOptions options)

Parameters:

lowChan First A/D channel of scan.

highChan Last A/D channel of scan.

 lowChan/highChan - The maximum allowable channel depends on which type of
A/D board is being used. For boards with both single ended and differential inputs,
the maximum allowable channel number also depends on how the board is
configured (e.g., 8 channels for differential inputs, 16 for single ended inputs).

pretrigCount Number of pre-trigger A/D samples to collect. Specifies the number of samples to
collect before the trigger occurs. PretrigCount must be less than the (totalCount
- 512).
If the trigger occurs too early, fewer than the requested number of pre-trigger
samples will be collected, and a TooFew error will occur. The pretrigCount will be
set to indicate how many samples were actually collected. The post trigger samples
will still be collected.

totalCount Total number of A/D samples to collect. Specifies the total number of samples that
will be collected and stored in the buffer. TotalCount must be greater than or
equal to the PretrigCount + 512.
If the trigger occurs too early, fewer than the requested number of samples will be
collected, and a TooFew error will occur. The totalCount will be set to indicate
how many samples were actually collected.
TotalCount must be evenly divisible by the number of channels being scanned. If
it is not, this method will adjust the number (down) to the next valid value and
return that value to the totalCount parameter.

rate Sample rate in scans per second.

range A/D Range code. If the selected A/D board does not have a programmable gain
feature, this parameter is ignored. Otherwise, set to any range that is supported by
the selected A/D board. Refer to board specific information for a list of the
supported A/D ranges of each board. Refer to Table 14-1 on page 155 for a list of
valid range settings.

memHandle Handle for Windows buffer to store data in (Windows). This buffer must have been
previously allocated with the WinBufAlloc() method.

Analog I/O Methods APretrig()

170

options Bit fields that control various options . Refer to the constants in the "options
parameter values" section below.

Returns:

An ErrorInfo object that indicates the status of the operation.

pretrigCount - Number of pre-trigger samples

totalCount - Total number of samples collected

rate - actual sampling rate

memHandle - Collected A/D data returned via the Windows buffer

options parameter values:

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these
constants, you must refer to the MccDaq object and the ScanOptions enumeration (variable =
MccDaq.ScanOptions.DTConenct, variable = MccDaq.ScanOptions.ExtMemory, etc.).

ConvertData The data is collected into a "circular" buffer. When the data collection is complete,
the data is in the wrong order. If you use the ConvertData option, the data is
automatically rotated into the correct order (and converted to 12 bit values if
required) when the data acquisition is complete. Otherwise, call
AConvertPretrigData() to rotate the data. You cannot use the ConvertData
option in combination with the Background option for this function.

Background If the Background option is not used, the APretrig() method will not return to
your program until all of the requested data has been collected and returned to the
buffer. When the Background option is used, control returns immediately to the
next line in your program, and the data collection from the A/D into the buffer will
continue in the background. Use GetStatus() to check on the status of the
background operation. Alternatively, some boards support EnableEvent() for
event notification of changes in status of Background scans.

 Use StopBackground() to terminate the background process before it has
completed.
Call StopBackground() after normal termination of all background functions to
clear variables and flags. You cannot use the CONVERTDATA option in combination
with the BACKGROUND option for this function. To correctly order and parse the data,
use AConvertPretrigData()after the function completes.

ExtClock This option is available only for boards that have separate inputs for external pacer
and external trigger. Refer to your hardware manual or board-specific information.

ExtMemory Causes this method to send the data to a connected memory board via the DT-
Connect interface rather than returning the data to the buffer. If you use this option
to send the data to a MEGA-FIFO memory board, then you must use
MemReadPretrig() to later read the pre-trigger data from the memory board.
If you use MemRead(), the data will NOT be in the correct order.
Every time this option is used, it overwrites any data already stored in the memory
board. All data should be read from the board (with MemReadPretrig())
before collecting any new data. When this option is used, the memHandle
parameter is ignored. The MEGA-FIFO memory must be fully populated in order
to use the APretrig() method with the ExtMemory option.

Analog I/O Methods APretrig()

171

DTConnect When the DtConnect option is used with this method the data from ALL A/D
conversions is sent out the DT-Connect interface. While this method is waiting for
a trigger to occur, it will send data out the DT-Connect interface continuously. If
you have a Measurement Computing memory board plugged into the DT-Connect
interface then you should use the ExtMemory option rather than this option.

Important
The buffer referenced by memHandle must be big enough to hold at least TotalCount + 512 integers

Analog I/O Methods ATrig()

172

ATrig()
Waits for a specified analog input channel to go above or below a specified value. ATrig continuously reads
the specified channel and compares its value to trigValue. Depending on whether trigType is set to
TrigAbove or TrigBelow, it waits for the first A/D sample that is above or below trigValue. The first sample
that meets the trigger criteria is returned to dataValue.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function ATrig(ByVal chan As Integer, ByVal trigType As
MccDaq.TriggerType, ByVal trigValue As Short, ByVal range As
MccDaq.Range, ByRef dataValue As Short) As MccDaq.ErrorInfo
Public Function ATrig(ByVal chan As Integer, ByVal trigType As
MccDaq.TriggerType, ByVal trigValue As System.UInt16, ByVal range As
MccDaq.Range, ByRef dataValue As System.UInt16) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo ATrig (int chan, MccDaq.TriggerType
trigType, short trigValue, MccDaq.Range range, out short dataValue)
public MccDaq.ErrorInfo ATrig(int chan, MccDaq.TriggerType trigType,
ushort trigValue, MccDaq.Range range, out ushort dataValue)

Parameters:

chan A/D channel number. The maximum allowable channel depends on which type of
A/D board is being used. For boards with both single ended and differential inputs,
the maximum allowable channel number also depends on how the board is
configured. For example a CIO-DAS1600 has eight channels for differential inputs
and 16 channels for single-ended inputs.

trigType MccDaq.TriggerType.TrigAbove or MccDaq.TriggerType.TrigBelow. Specifies
whether to wait for the analog input to be above or below the specified trigger
value.

trigValue The threshold value that all A/D values are compared to. Must be in the range 0 -
4095 for 12 bit A/D boards, or 0-65,535 for 16-bit A/D boards. Refer to your
BASIC manual for information on signed BASIC integer data types.

range Gain code. If the selected A/D board does not have a programmable gain feature,
this parameter is ignored. Otherwise, set to any range that is supported by the
selected A/D board. Refer to Table 14-1 on page 155 for a list of valid range
settings. Refer to board specific information for a list of the supported A/D ranges
of each board.

dataValue Returns the value of the first A/D sample to meet the trigger criteria.

Returns:

An ErrorInfo object that indicates the status of the operation.

dataValue - value of the first A/D sample to match the trigger criteria.

Notes:

Ctrl-C will not terminate the wait for an analog trigger that meets the specified condition. There are only two
ways to terminate this call: satisfy the trigger condition or reset the computer.

Caution! Use caution when using this method in Windows programs. All active windows will lock on
the screen until the trigger condition is satisfied. All keyboard and mouse activity will also
lock until the trigger condition is satisfied.

173

16
Configuration Methods and Properties

Introduction
This section covers Universal Library for .NET methods and properties that retrieve or change configuration
options on a board. The configuration information for all boards is stored in the configuration file CB.CFG.
This information is loaded from CB.CFG by all programs that use the library.

To determine which of these methods are compatible with your hardware, refer to the board-specific
information contained in the Universal Library User�s Guide (available in PDF format on our website at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Configuration Methods and Properties BoardConfig.DACUpdate()

174

BoardConfig property
Represents an instance of the cBoardConfig class. Use this property to call the board configuration
methods.

Member of the MccBoard class.

Property prototype:

VB .NET: Public ReadOnly Property BoardConfig As MccDaq.cBoardConfig

C# .NET public MccDaq.cBoardConfig BoardConfig [get]

Methods:

Over 20 UL for .NET configuration methods are accessible only from the BoardConfig property. Before you call any of
these methods, you need to create an instance of an MccBoard object.

Dim MyBoard As MccDaq.MccBoard
MyBoard = New MccDaq.MccBoard(MyBoardNum)

To call a method from the BoardConfig property, use the notation shown in the example below.

MyErrorInfo = MyBoard.BoardConfig.GetBoardType(MyBoardType)

Each method available from the BoardConfig property is explained below.

BoardConfig.DACUpdate()
Updates the voltage values on analog output channels. This method is usually called after a
SetDACUpdateMode() method call with its configVal parameter set to 1 (on command).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function DACUpdate() As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo DACUpdate()

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetBaseAdr()
Gets the base address of a board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetBaseAdr(ByVal devNum As Integer, ByRef configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetBaseAdr(int devNum, out int configVal)

Parameters:

devNum Number of the base address to return (PCI boards may have several address
ranges).

configVal Board�s base address.

Configuration Methods and Properties BoardConfig.GetBoardType()

175

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetBoardType()
Gets the unique number (device ID) assigned to the board (between 0 and 8000h) indicating the type of board
installed.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetBoardType(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetBoardType (out int configVal)

Parameters:

configVal Returns a number indicating the board type.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetCiNumDevs()
Gets the number of counter devices on the board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetCiNumDevs(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetCiNumDevs(out int configVal)

Parameters:

configVal Returns the number of counter devices.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetClock()
Gets the counter's clock frequency in MHz (40, 10, 8, 6, 5, 4, 3, 2, 1), or 0 for not supported.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetClock(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetClock(out int configVal)

Parameters:

configVal Clock frequency in MHz.

Configuration Methods and Properties BoardConfig.GetDACStartup()

176

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetDACStartup()
Returns the board�s configuration register STARTUP bit setting. Refer to the "Notes" section for the
SetDACStartup() method on page 182 for more information.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetDACStartup(ByVal configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetDACStartup(out int configVal)

Parameters:

configVal Returns setting of startup bit (0 or 1).

Returns:

An ErrorInfo object that indicates the status of the operation.

configVal Returns 0 if startup bit is disabled, or 1 if startup bit is enabled.

BoardConfig.GetDACUpdateMode()
Returns the update mode for a digital-to-analog converter (DAC).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetDACUpdateMode(ByVal devNum as Integer, ByVal
configVal As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetDACUpdateMode(int devNum, out int
configVal)

Parameters:

devNum Number of the channel whose update mode you want set.

configVal Returns a number indicating the DAC update mode (0 = immediate, 1 = on
command).

Returns:

An ErrorInfo object that indicates the status of the operation.

configVal If ConfigVal returns 0, the DAC update mode is immediate. Values written with
AOut() or AOutScan()are automatically output by the DAC channels. If
ConfigVal returns 1, the DAC update mode is set to on command. Values written
with AOut() or AOutScan() are not output by the DAC channels until a
DACUpdate() method call is made.

Configuration Methods and Properties BoardConfig.GetDiNumDevs()

177

BoardConfig.GetDiNumDevs()
Gets the number of digital devices on the board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetDiNumDevs(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetDiNumDevs(out int configVal)

Parameters:

configVal Returns the number of digital devices.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetDmaChan()
Gets the DMA channel (0, 1 or 3) set for the board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetDmaChan(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetDmaChan(out int configVal)

Parameters:

configVal Returns DMA channel. 0, 1 or 3

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetDtBoard()
Gets the number of the board with the DT-Connect interface used to connect to external memory boards.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetDtBoard(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetDtBoard(out int configVal)

Parameters:

configVal Returns the board number of the board that the external memory board is
connected to.

Returns:

An ErrorInfo object that indicates the status of the operation.

Configuration Methods and Properties BoardConfig.GetIntLevel()

178

BoardConfig.GetIntLevel()
Gets the interrupt level set for the board (0 for none, or 1 to 15).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetIntLevel(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetIntLevel(out int configVal)

Parameters:

configVal Returns the interrupt level (0 for none, or 1 � 15).

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetNumAdChans()
Gets the number of A/D channels.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetNumAdChans(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetNumAdChans(out int configVal)

Parameters:

configVal Returns the number of A/D channels.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetNumDaChans()
Gets the number of D/A channels.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetNumDaChans(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetNumDaChans(out int configVal)

Parameters:

configVal Returns the number of D/A channels.

Returns:

An ErrorInfo object that indicates the status of the operation.

Configuration Methods and Properties BoardConfig.GetNumExps()

179

BoardConfig.GetNumExps()
Gets the number of expansion boards.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetNumExps(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetNumExps(out int configVal)

Parameters:

configVal Returns the number of expansion boards attached to the board.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetNumIoPorts()
Gets the number of I/O ports used by the board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetNumIoPorts(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetNumIoPorts(out int configVal)

Parameters:

configVal Returns the number of I/O ports used by the board.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetRange()
Gets the selected voltage range. For switch-selectable gains only.

If the selected A/D board does not have a programmable gain feature, this method returns the range as defined
by the installed InstaCal settings. If InstaCal and the board are installed correctly, the range returned
corresponds to the input range set by switches on the board. Refer to board-specific information for a list of
the A/D ranges supported by each board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetRange(ByRef configVal As MccDaq.Range) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetRange(out MccDaq.Range configVal)

Parameters:

configVal Returns the selected voltage range. Refer to Table 14-1 on page 155 for a list of
valid configVal settings.

Configuration Methods and Properties BoardConfig.GetUsesExps()

180

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetUsesExps()
Gets the True/False value indicating support of expansion boards.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetUsesExps(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetUsesExps(out int configVal)

Parameters:

configVal Returns True if the board supports expansion boards, or False if the board does not
support expansion boards.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.GetWaitState()
Gets the value of the Wait State jumper (1-enabled, 0-disabled).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function GetWaitState(ByRef configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetWaitState(out int configVal)

Parameters:

configVal Returns the wait state of the board.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.SetBaseAdr()
Sets the base address used by the Universal Library to communicate with a board. This is recommended for
use only with ISA bus boards.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function SetBaseAdr(ByVal devNum As Integer, ByVal configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetBaseAdr(int devNum, int configVal)

Configuration Methods and Properties BoardConfig.SetClock()

181

Parameters:

devNum Number of the base address to configure (should always be 0 � can�t configure PCI
base addresses).

configVal Sets the base address of the board.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.SetClock()
Sets the counter's clock source by the frequency (40, 10, 8, 6, 5, 4, 3, 2, 1), or 0 for not supported.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function SetClock(ByVal configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetClock(int configVal)

Parameters:

configVal Sets the clock frequency in MHz.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.SetDmaChan()
Sets the DMA channel (0, 1 or 3).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function SetDmaChan(ByVal configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetDmaChan(int configVal)

Parameters:

configVal Sets the DMA channel to 0, 1 or 3.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.SetDACStartup()
Sets the board�s configuration register STARTUP bit to 0 or 1 to enable/disable the storing of digital-to-
analog converter (DAC) startup values. Each time the DAC board is powered up, the stored values are written
to the DACs. New DAC start-up values are stored in memory by. Refer to the "Notes" section below for more
information.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Configuration Methods and Properties BoardConfig.SetDACUpdateMode()

182

Function prototype:

VB .NET: Public Function SetDACStartup(ByVal configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetDACStartup(int configVal)

Parameters:

configVal Set to 0 to disable, or 1 to enable the storing of startup values for the channel.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

Use the SetDACStartup() method to store the DAC values you would like each DAC channel to be set to
each time the board is powered up.

To store the current DAC values as start-up values, call SetDACStartup() with a configVal value of 1. Then,
each time you call AOut()or AOutScan(),the value written for each channel is stored in NV RAM. The last
value written to a particular channel while SetDACStartup() is set to 1 is the value that that channel will be
set to at power up. Call SetDACStartup() again with a configVal value of 0 to stop storing values in NV
RAM.

Example:

DacBoard.BoardConfig.SetDACStartup(1);

for (int i =1; i <8; i++)

{

DacBoard.AOut(i, BIP5VOLTS, DACValue[i]);

}

DacBoard.BoardConfig.SetDACStartup(0);

BoardConfig.SetDACUpdateMode()
Sets the update mode for a digital-to-analog converter (DAC).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function SetDACUpdateMode(ByVal devNum as Integer, ByVal
configVal As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetDACUpdateMode(int devNum, int configVal)

Parameters:

devNum Number of the channel whose update mode you want set.

configVal When set to 0, the DAC update mode is immediate. Values written with AOut() or
AOutScan() are automatically output by the DAC channels.

 When set to 1, the DAC update mode is on command. Values written with AOut()
or AOutScan() are not output by the DAC channel(s) until a DACUpdate()
method call is made.

Configuration Methods and Properties BoardConfig.SetIntLevel()

183

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.SetIntLevel()
Sets the interrupt level: 0 for none, or 1 to 15. Recommended for use only with ISA bus boards.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function SetIntLevel(ByVal configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetIntLevel(int configVal)

Parameters:

configVal Sets the interrupt level. Valid settings are 0 for none, or 1 � 15.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.SetNumAdChans()
Sets the number of A/D channels available on the board.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function SetNumAdChans(ByVal configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetNumAdChans(int configVal)

Parameters:

configVal Sets the number of A/D channels on the board. Check board specific info for valid
numbers. Note that this setting affects the single-ended/differential input mode of
boards for which this setting is programmable.

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.SetRange()
Sets the selected voltage range. For use with boards for which the range is manually selected.

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function SetRange(ByVal configVal As MccDaq.Range) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetRange(MccDaq.Range configVal)

Parameters:

configVal Range code.

Configuration Methods and Properties BoardConfig.SetWaitState()

184

Returns:

An ErrorInfo object that indicates the status of the operation.

BoardConfig.SetWaitState()
Sets the value of the Wait State jumper (1 = enabled, 0 = disabled).

Member of the cBoardConfig class. Accessible from the MccBoard.BoardConfig property.

Function prototype:

VB .NET: Public Function SetWaitState(ByVal configVal As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetWaitState(int configVal)

Parameters:

configVal Sets the wait state on the board.

Returns:

An ErrorInfo object that indicates the status of the operation.

Configuration Methods and Properties BoardNum property

185

BoardNum property
Number of the board associated with an instance of the MccBoard class.

Member of the MccBoard class.

Property prototype:

VB .NET: Public ReadOnly Property BoardNum As Integer

C# .NET: public int BoardNum [get]

Configuration Methods and Properties CtrConfig.GetCtrType()

186

CtrConfig property
Represents an instance of the cCtrConfig class. Use this property to call counter chip configuration
methods.

Member of the MccBoard class.

Property prototype:

VB .NET: Public ReadOnly Property CtrConfig As MccDaq.cCtrConfig

C# .NET public MccDaq.cCtrConfig CtrConfig [get]

Methods:

The GetCtrType() configuration method is accessible only from the CtrConfig property. Before you call this method,
you need to create an instance of an MccBoard object.

Dim MyBoard As MccDaq.MccBoard
MyBoard = New MccDaq.MccBoard(MyBoardNum)

To call this method from the CtrConfig property, use the notation shown in the example below:

MyErrorInfo = MyBoard.CtrConfig.GetCtrType(MyCtrNum, MyCtrType)

This method is explained below.

CtrConfig.GetCtrType()
Gets the value that indicates the counter type.

Member of the cCtrConfig class. Accessible from the MccBoard.CtrConfig property.

Function prototype:

VB .NET: Public Function GetCtrType(ByVal devNum As Integer, ByRef configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetCtrType(int devNum, out int configVal)

Parameters:

devNum Number of the counter device.

configVal Returns the type of counter where: 1 = 8254, 2 = 9513 , 3 = 8536, 4 = 7266 or 5 =
event counter

Returns:

An ErrorInfo object that indicates the status of the operation.

Configuration Methods and Properties DioConfig.GetDInMask()

187

DioConfig property
Represents an instance of the cDioConfig class. Use this property to call various digital I/O configuration
methods.

Member of the MccBoard class.

Property prototype:

VB .NET: Public ReadOnly Property DioConfig As MccDaq.cDioConfig

C# .NET public MccDaq.cDioConfig DioConfig [get]

Methods:

Six configuration methods are accessible only from the DioConfig property. Before you call any of these
methods, you need to create an instance of an MccBoard object.

Dim MyBoard As MccDaq.MccBoard
MyBoard = New MccDaq.MccBoard(MyBoardNum)

To call these methods from the DioConfig property, use the notation shown in the example below.

MyErrorInfo = MyBoard.DioConfig.GetNumBits(MyDevNum, MyNumBits)

These methods are explained below.

DioConfig.GetDInMask()
Determines the bits on a specified port that are configured for input.

Member of the cDioConfig class. Accessible from the MccBoard.DioConfig property.

Function prototype:

VB .NET: Public Function GetDInMask(ByVal devNum As Integer, ByRef configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetDInMask (int devNum, out int configVal)

Parameters:

devNum Number of the port whose input bit configuration you want to determine.

configVal Returns a bit mask showing the bit configuration of the specified port. Any of the
lower eight bits that return a value of 1 are configured for input. Each of the upper
eight bits always return 0.

Returns:
An ErrorInfo object that indicates the status of the operation.

Notes:

Use GetDInMask() with the GetDOutMask() method to determine if an AuxPort is configurable. If you
apply both methods to the same port, and both configVal parameters returned have input and output bits that
overlap, the port is not configurable. You can determine overlapping bits by Anding both parameters.

For example, the PCI-DAS08 has seven bits of digital I/O (four outputs and three inputs). For this board, the
configVal parameter returned by GetDInMask()is always 7 (0000 0111), while the configVal parameter
returned by GetDOutMask() is always 15 (0000 1111). When you And both configVal parameters together,

Configuration Methods and Properties DioConfig.GetDOutMask()

188

you get a non-zero number (7). Any non-zero number indicates that input and output bits overlap for the
specified port, and that port is a non-configurable AuxPort.

DioConfig.GetDOutMask()
Determines the bits on a specified port that are configured for output.

Member of the cDioConfig class. Accessible from the MccBoard.DioConfig property.

Function prototype:

VB .NET: Public Function GetDOutMask(ByVal devNum As Integer, ByRef configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetDOutMask (int devNum, out int configVal)

Parameters:

devNum Number of the port whose output bit configuration you want to determine.

configVal Returns a bit mask showing the bit configuration of the specified port. Any of the
lower eight bits that return a value of 1 are configured for output. Each of the upper
eight bits always return 0.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

Use GetDInMask() with the GetDOutMask() method to determine if an AuxPort is configurable. If you
apply both methods to the same port, and both configVal parameters returned have input and output bits that
overlap, the port is not configurable. You can determine overlapping bits by Anding both parameters.

For example, the PCI-DAS08 has seven bits of digital I/O (four outputs and three inputs). For this board, the
configVal parameter returned by GetDInMask()is always 7 (0000 0111), while the configVal parameter
returned by GetDOutMask() is always 15 (0000 1111). When you And both configVal parameters together,
you get a non-zero number (7). Any non-zero number indicates that input and output bits overlap for the
specified port, and that port is a non-configurable AuxPort.

DioConfig.GetConfig()
Gets the configuration of a digital device (digital input or digital output).

Member of the cDioConfig class. Accessible from the MccBoard.DioConfig property.

Function prototype:

VB .NET: Public Function GetConfig(ByVal devNum As Integer, ByRef configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetConfig(int devNum, out int configVal)

Parameters:

devNum Number of the digital device.

configVal Current configuration (1 = DigitalOut, 2 = DigitalIn).

Returns:

An ErrorInfo object that indicates the status of the operation.

Configuration Methods and Properties DioConfig.GetCurVal()

189

DioConfig.GetCurVal()
Gets the current value of digital outputs.

Member of the cDioConfig class. Accessible from the MccBoard.DioConfig property.

Function prototype:

VB .NET: Public Function GetCurVal(ByVal devNum As Integer, ByRef configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetCurVal(int devNum, out int configVal)

Parameters:

devNum Number of the digital device.

configVal Current value of the digital output.

Returns:

An ErrorInfo object that indicates the status of the operation.

DioConfig.GetDevType()
Gets the device type of the digital port (AuxPort, FirstPortA, etc.).

Member of the cDioConfig class. Accessible from the MccBoard.DioConfig property.

Function prototype:

VB .NET: Public Function GetDevType(ByVal devNum As Integer, ByRef configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetDevType(int devNum, out int configVal)

Parameters:

devNum Number of the digital device.

configVal Constant that indicates the type of device (AuxPort, FirstPortA, etc.).

Returns:

An ErrorInfo object that indicates the status of the operation.

DioConfig.GetNumBits()
Gets the number of bits in the digital port.

Member of the cDioConfig class. Accessible from the MccBoard.DioConfig property.

Function prototype:

VB .NET: Public Function GetNumBits(ByVal devNum As Integer, ByRef configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetNumBits(int devNum, out int configVal)

Parameters:

devNum Number of the digital device.

configVal Number of bits in the digital port.

Configuration Methods and Properties DioConfig.GetNumBits()

190

Returns:

An ErrorInfo object that indicates the status of the operation.

Configuration Methods and Properties ExpansionConfig.GetBoardType()

191

ExpansionConfig property
Represents an instance of the cExpansionConfig class. Use this property to call various expansion board
configuration methods.

Member of the MccBoard class.

Property prototype:

VB .NET: Public ReadOnly Property ExpansionConfig As MccDaq.cExpansionConfig

C# .NET public MccDaq.cExpansionConfig ExpansionConfig [get]

Methods:

Over a dozen configuration methods are accessible only from the ExpansionConfig property. Before you call
any of these methods, you need to create an instance of an MccBoard object.

Dim MyBoard As MccDaq.MccBoard
MyBoard = New MccDaq.MccBoard(MyBoardNum)

To call these methods from the ExpansionConfig property, use the notation shown in the example below.

MyErrorInfo = MyBoard.ExpansionConfig.GetBoardType(MyExpNum, MyExpType)

These methods are explained below.

ExpansionConfig.GetBoardType()
Gets the expansion board type.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function GetBoardType(ByVal devNum As Integer, ByRef
configVal As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetBoardType(int devNum, out int configVal)

Parameters:

devNum Number of the expansion board.

configVal Returns a number indicating the expansion board type (refer to the "BoardType
Codes" topic in the Universal Library User's Guide).

Returns:

An ErrorInfo object that indicates the status of the operation.

Configuration Methods and Properties ExpansionConfig.GetMuxAdChan1()

192

ExpansionConfig.GetCjcChan()
Gets the channel that the CJC is connected to.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function GetCjcChan(ByVal devNum As Integer, ByRef configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetCjcChan(int devNum, out int configVal)

Parameters:

devNum Number of the expansion board.

configVal Returns a number indicating the channel on the A/D board that the CJC is
connected to.

Returns:

An ErrorInfo object that indicates the status of the operation.

ExpansionConfig.GetMuxAdChan1()
Gets the first A/D channel that the EXP board is connected to.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function GetMuxAdChan1(ByVal devNum As Integer, ByRef
configVal As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetMuxAdChan1(int devNum, out int configVal)

Parameters:

devNum Number of the expansion board.

configVal Number indicating the first A/D channel that the EXP board is connected to.

Returns:

An ErrorInfo object that indicates the status of the operation.

ExpansionConfig.GetMuxAdChan2()
Gets the second A/D channel that the EXP board is connected to.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function GetMuxAdChan2(ByVal devNum As Integer, ByRef
configVal As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetMuxAdChan2(int devNum, out int configVal)

Configuration Methods and Properties ExpansionConfig.GetNumExpChans()

193

Parameters:

devNum Number of the expansion board.

configVal Number indicating the second A/D channel that the EXP board is connected to.

Returns:

An ErrorInfo object that indicates the status of the operation.

ExpansionConfig.GetNumExpChans()
Gets the number of expansion board channels.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function GetNumExpChans(ByVal devNum As Integer, ByRef
configVal As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetNumExpChans(int devNum, out int
configVal)

Parameters:

devNum Number of the expansion board.

configVal Number of channels on the expansion board.

Returns:

An ErrorInfo object that indicates the status of the operation.

ExpansionConfig.GetRange1()
Gets the range/gain of the low 16 channels.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function GetRange1(ByVal devNum As Integer, ByRef configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetRange1(int devNum, out int configVal)

Parameters:

devNum Number of the expansion board.

configVal Returns the range (gain) of the low 16 channels.

Returns:

An ErrorInfo object that indicates the status of the operation.

Configuration Methods and Properties ExpansionConfig.GetThermType()

194

ExpansionConfig.GetRange2()
Gets the range/gain of the high 16 channels.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function GetRange2(ByVal devNum As Integer, ByRef configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetRange2(int devNum, out int configVal)

Parameters:

devNum Number of the expansion board.

configVal Returns the range (gain) of the high 16 channels.

Returns:

An ErrorInfo object that indicates the status of the operation.

ExpansionConfig.GetThermType()
Gets the type of thermocouple or RTD configuration for the board (J, K, E, T, R, S, and B types).

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function GetThermType(ByVal devNum As Integer, ByRef
configVal As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetThermType(int devNum, out int configVal)

Parameters:

devNum Number of the expansion board.

configVal Number indicating the type of thermocouple configured for the board. (J = 1, K =
2, T = 3, E = 4, R = 5, S = 6, B = 7, Platinum .00392 = 257, Platinum .00391 =
258, Platinum .00385 = 259, Copper .00427 = 260, Nickel/Iron .00581 = 261,
Nickel/Iron .00527 = 262)

Returns:

An ErrorInfo object that indicates the status of the operation.

ExpansionConfig.SetCjcChan()
Sets the channel that the CJC is connected to.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function SetCjcChan(ByVal devNum As Integer, ByVal configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetCjcChan(int devNum, int configVal)

Configuration Methods and Properties ExpansionConfig.SetMuxAdChan1()

195

Parameters:

devNum Number of the expansion board.

configVal Sets the A/D channel to connect to the CJC.

Returns:

An ErrorInfo object that indicates the status of the operation.

ExpansionConfig.SetMuxAdChan1()
Sets the first A/D channel that the EXP board is connected to.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function SetMuxAdChan1(ByVal devNum As Integer, ByVal
configVal As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetMuxAdChan1(int devNum, int configVal)

Parameters:

devNum Number of the expansion board.

configVal Number indicating the first A/D channel that the EXP board is connected to.

Returns:

An ErrorInfo object that indicates the status of the operation.

ExpansionConfig.SetMuxAdChan2()
Sets the second A/D channel that the EXP board is connected to.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function SetMuxAdChan2(ByVal devNum As Integer, ByVal
configVal As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetMuxAdChan2(int devNum, int configVal)

Parameters:

devNum Number of the expansion board.

configVal Number indicating the second A/D channel that the EXP board is connected to.

Returns:

An ErrorInfo object that indicates the status of the operation.

Configuration Methods and Properties ExpansionConfig.SetRange2()

196

ExpansionConfig.SetRange1()
Sets the range/gain of the low 16 channels.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function SetRange1(ByVal devNum As Integer, ByVal configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetRange1(int devNum, int configVal)

Parameters:

devNum Number of the expansion board.

configVal Sets the range (gain) of the low 16 channels.

Returns:

An ErrorInfo object that indicates the status of the operation.

ExpansionConfig.SetRange2()
Sets the range/gain of the high 16 channels.

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function SetRange2(ByVal devNum As Integer, ByVal configVal
As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetRange2(int devNum, int configVal)

Parameters:

devNum Number of the expansion board.

configVal Sets the range (gain) of the high 16 channels.

Returns:

An ErrorInfo object that indicates the status of the operation.

ExpansionConfig.SetThermType()
Sets the type of thermocouple or RTD configuration for the board (J, K, E, T, R, S, and B types).

Member of the cExpansionConfig class. Accessible from the MccBoard.ExpansionConfig
property.

Function prototype:

VB .NET: Public Function SetThermType(ByVal devNum As Integer, ByVal
configVal As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetThermType(int devNum, int configVal)

Configuration Methods and Properties ExpansionConfig.SetThermType()

197

Parameters:

devNum Number of the expansion board.

configVal Number that sets the type of thermocouple configured for the board. (J = 1, K = 2,
T = 3, E = 4, R = 5, S = 6, B = 7, Platinum .00392 = 257, Platinum .00391 = 258,
Platinum .00385 = 259, Copper .00427 = 260, Nickel/Iron .00581 = 261,
Nickel/Iron .00527 = 262)

Returns:

An ErrorInfo object that indicates the status of the operation.

Configuration Methods and Properties GetSignal()

198

GetSignal()
Retrieves the configured Auxiliary or DAQ Sync connection and polarity for the specified timing and control
signal.

This method is intended for advanced users. Except for the SYNC_CLK input, you can easily view the settings
for the timing and control signals using InstaCal.

Member of the MccBoard class.

Note: This method is not supported by all board types. Refer to the board-specific information contained in
the Universal Library User�s Guide (available in PDF format on our website at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

Function prototype:

VB .NET: Public Function GetSignal(ByVal direction As MccDaq.SignalDirection
, ByVal signalType As MccDaq.SignalType , ByVal index As Integer,
ByRef connectionPin As MccDaq.ConnectionPin , ByRef signalPolarity
As MccDaq.SignalPolarity) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetSignal(MccDaq.SignalDirection direction ,
MccDaq.SignalType signalType, int index, out MccDaq.ConnectionPin
connectionPin, out MccDaq.SignalPolarity signalPolarity)

Parameters:

direction Specifies whether retrieving the source (MccDaq.SignalDirection.SignalIn) or
destination (MccDaq.SignalDirection.SignalOut).

signalType Signal type whose connection is to be retrieved. Refer to "signalType parameter
values" under the SelectSignal() method section on page 202 for valid signal
types.

index Used to indicate which connection to reference when there is more than one
connection associated with the output Signal type. When querying output signals,
increment this value until BadIndex is returned or 0 is returned via the connection
parameter to determine all the output connectionPins for the specified output
Signal. The first connectionPin is indexed by 0.
For input signals (direction= MccDaq.SignalDirection.SignalIn), always set
index to 0.

connectionPin The specified connection is returned through this variable. Note that this is set to 0
if no connection is associated with the signalType, or if the index is set to an
invalid value. Refer to "direction, connectionPin, and polarity parameter values"
under the SelectSignal() method section on page 202 for expected return
values.

signalPolarity Holds the polarity for the associated signalType and connectionPin.
For output signals assigned an AuxOut connectionPin, the return value is either
MccDaq.SignalPolarity.Inverted or MccDaq.SignalPolarity.NonInverted.
For AdcConvert, DacUpdate, AdcTbSrc and DacTbSrc, input signals, either
MccDaq.SignalPolarity.PositiveEdge or
MccDaq.SignalPolarity.NegativeEdge are returned.
All other signals return 0.

Returns:

An ErrorInfo object that indicates the status of the operation.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Configuration Methods and Properties

199

Notes:

The above timing and control configuration information can also be viewed and edited inside InstaCal: Open
InstaCal, click on the board, and press the Configure... button or menu item. If the board supports DAQ Sync
and Auxiliary Input/Output signal connections, a button labeled Advanced Timing & Control Configuration
displays. Press this button to open a display for viewing and modifying the above timing and control signals.

Configuration Methods and Properties NumBoards property

200

NumBoards property
Returns the maximum number of boards you can install at one time.

Member of the GlobalConfig class.

Property prototype:

VB .NET: Public Shared ReadOnly Property NumBoards As Integer

C# .NET: public int NumBoards [get]

NumExpBoards property
Returns the maximum total number of expansion boards you can install.

Member of the GlobalConfig class.

Property prototype:

VB .NET: Public Shared ReadOnly Property NumExpBoards As Integer

C# .NET: public static int NumExpBoards [get]

Configuration Methods and Properties SelectSignal()

201

SelectSignal()
Configures timing and control signals to use specific Auxiliary or DAQ Sync connections as a source or
destination.

This method is intended for advanced users. Except for the SyncClk input, you can easily configure all the
timing and control signals using InstaCal.

Member of the MccBoard class.

SelectSignal is not supported by all boards
This method is not supported by all board types. Refer to the board-specific information contained in the
Universal Library User�s Guide (available in PDF format on our website at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

Function prototype:

VB .NET: Public Function SelectSignal(ByVal direction As
MccDaq.SignalDirection , ByVal signalType As MccDaq.SignalType,
ByVal connectionPin As MccDaq.ConnectionPin , ByVal polarity As
MccDaq.SignalPolarity) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SelectSignal(MccDaq.SignalDirection
direction, MccDaq.SignalType signal, MccDaq.ConnectionPin
connectionPin, MccDaq.SignalPolarity polarity)

Parameters:

direction Direction of the specified signal type to be assigned a connector pin. For most
signal types, this should be either MccDaq.SignalDirection.SignalIn or
MccDaq.SignalDirection.SignalOut.
For the SyncClk, AdcTbSrc and DacTbSrc signals, the external source can also be
disabled by specifying Disabled(=0), such that it is neither input nor output. Set it
in conjunction with the signalType, connectionPin, and polarity arguments
using the tables in the "direction, connectionPin, and polarity parameter values"
starting on page 202.

signalType Signal type to be associated with a connector pin. Set it to one of the constants in
the "signalType parameter values" section on page 202.

connectionPin Designates the connector pin to associate the signal type and direction. Since
individual pin selection is not allowed for the DAQ-Sync connectors, all DAQ-
Sync pin connections are referred to as DsConnector. The
MccDaq.ConnectionPin.AuxIn and MccDaq.ConnectionPin.AuxOut settings
match their corresponding hardware pin names.

polarity AdcTbSrc and DacTbSrc input signals (direction =
MccDaq.SignalDirection.SignalIn) can be set for either rising edge
(MccDaq.SignalPolarity.PositiveEdge) or falling edge
(MccDaq.SignalPolarity.NegativeEdge) signals. The AuxOut connections can
be set to MccDaq.SignalPolarity.Inverted or
MccDaq.SignalPolarity.NonInverted from their internal polarity.

Returns:

An ErrorInfo object that indicates the status of the operation.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Configuration Methods and Properties SelectSignal()

202

signalType parameter values:

All of the signalType settings are MccDaq.SignalType enumerated constants. To set a variable to one of
these constants, you must refer to the MccDaq object and the SignalType enumeration (variable =
MccDaq.SignalType.AdcConvert, variable = MccDaq.SignalType.AdcGate, etc.).

AdcConvert A/D conversion pulse or clock.

AdcGate External gate for A/D conversions.

AdcScanClk A/D channel scan signal.

AdcScanStop A/D scan completion signal.

ADC_SSH A/D simultaneous sample and hold signal.

AdcStartScan Start of A/D channel-scan sequence signal.

AdcStartTrig A/D scan start trigger.

AdcStopTrig A/D stop- or pre- trigger.

AdcTbSrc A/D pacer timebase source.

Ctr1Clk CTR1 clock source.

Ctr2Clk CTR2 clock source.

DacStartTrig D/A start trigger.

DacTbSrc D/A pacer timebase source.

DacUpdate D/A update signal.

DGnd Digital ground.

SyncClk STC timebase signal.

direction, connectionPin, and polarity parameter values:

All of the direction settings are MccDaq.SignalDirection enumerated constants. To set a variable to one of
these constants, you must refer to the MccDaq object and the SignalDirection enumeration (variable =
MccDaq.SignalDirection.SignalIn, variable = MccDaq. SignalDirection.SignalOut, etc.).

All of the connectionPin settings are MccDaq.ConnectionPin enumerated constants. To set a variable to one
of these constants, you must refer to the MccDaq object and the ConnectionPin enumeration (variable =
MccDaq.ConnectionPin.AuxIn0, variable = MccDaq.ConnectionPin.DsConnector, etc.).

All of the polarity settings are MccDaq.SignalPolarity enumerated constants. To set a variable to one of
these constants, you must refer to the MccDaq object and the SignalPolarity enumeration (variable =
MccDaq.SignalPolarity.PositiveEdge, variable = MccDaq.ConnectionPin.Negative, etc.).

Configuration Methods and Properties SelectSignal()

203

Valid input (direction= MccDaq.SignalDirection.SignalIn) settings include:
signalType connectionPin polarity
AdcConvert AuxIn0 to AuxIn5

DsConnector
PositiveEdge or NegativeEdge

AdcGate AuxIn0 to AuxIn5
DsConnector

AdcStartTrig AuxIn0 to AuxIn5
DsConnector

AdcStopTrig AuxIn0 to AuxIn5
DsConnector

See SetTrigger.

AdcTbSrc AuxIn0 to AuxIn5 PositiveEdge or NegativeEdge
DacStartTrig AuxIn0 to AuxIn5

DsConnector
Not assigned here.

DscTbSrc AuxIn0 to AuxIn5

PositiveEdge or NegativeEdge

DacUpdate AuxIn0 to AuxIn5
DsConnector

PositiveEdge or NegativeEdge

SyncClk DsConnector Not assigned here.

Valid output (direction= MccDaq.SignalDirection.SignalOut) settings include:
signalType connectionPin polarity
AdcConvert AuxIn0 to AuxIn5

DsConnector
AdcScanClk AuxOut0..AuxOut2
AdcScanStop AuxOut0..AuxOut2
AdcSsh AuxOut0..AuxOut2 DsConnector
AdcStartScan AuxOut0..AuxOut2 DsConnector
AdcStartTrig AuxOut0..AuxOut2 DsConnector
AdcStopTrig AuxOut0..AuxOut2 DsConnector
Ctr1Clk AuxOut0..AuxOut2
Ctr2Clk AuxOut0..AuxOut2
DacStartTrig AuxOut0..AuxOut2 DsConnector
DacUpdate AuxOut0..AuxOut2 DsConnector

Inverted* or NonInverted

DGND AuxOut0..AuxOut2
SyncClk DsConnector

Not assigned here.

* Inverted is only valid for Auxiliary Output (AuxOut) connections.

Valid disabled settings (direction = MccDaq.SignalDirection.Disabled):
signalType connectionPin polarity
AdcTbSrc Not assigned here. Not assigned here.
DacTbSrc
SyncClk

Notes:

! You can view and edit the above timing and control configuration information from InstaCal. Open
InstaCal, click on the board, and press the Configure... button or menu item. If the board supports DAQ

Configuration Methods and Properties SelectSignal()

204

Sync and Auxiliary Input/Output signal connections, an Advanced Timing & Control Configuration
button displays. Press that button to open a display for viewing and modifying the above timing and
control signals.

! Except for the AdcTbSrc, DacTbsSrc and SyncClk signals, selecting an input signal connection does not
necessarily activate it. Alternately, assigning an output signal to a connection does activate the signal
upon performing the respective operation. For instance, when running an ExtClock AInScan(),
AdcConvert SignalIn selects the connection to use as an external clock to pace the A/D conversions; if
AInScan() is run without setting the ExtClock option, however, the selected connection is not activated
and the signal at that connection is ignored. In both cases, the AdcConvert signal is output the
connection(s) selected for the AdcConvert SignalOut. Since there are no scan options for enabling the
Timebase Source and the SyncClk, selecting an input for the A/D or D/A Timebase Source, or SyncClk
does activate the input source for the next respective operations.

! Multiple input signals can be mapped to the same AuxIn connection by successive calls to
SelectSignal(); however, only one connection can be mapped to each input signal. If another
connection had already been assigned to an input signal, the former selection is de-assigned and the new
connection is assigned.

! Only one output signal can be mapped to the same AuxOutn connection; however, multiple connections
can be mapped to the same output signal by successive calls to SelectSignal(). If an output signal had
already been assigned to a connection, then the former output signal is de-assigned and the new output
signal is assigned to the connection.

! When selecting DsConnector for a signal, only one direction per signal type can be defined at a given
time. Attempting to assign both Directions of a signal to the DsConnector results in only the latest
selection being applied. If the signal type had formerly been assigned an input direction from the
DsConnector, assigning the output direction for that signal type results in the input signal being
reassigned to its default connection.

! Adc_Tb_Src and Dac_Tb_Src are intended to synchronize the timebase of the analog input and output
pacers across two or more boards. Internal calculations of sampling and update rates assume that the
external timebase has the same frequency as its internal clock. Adjust sample rates to compensate for
differences in clock frequencies.

For instance, if the external timebase has a frequency of 10 MHz on a board that has a internal clock
frequency of 40 MHz, the scan function samples or updates at a rate of about 1/4 the rate entered.
However, while compensating for differences in external timebase and internal clock frequency, if the
rate entered results in an invalid pacer count, the method returns a BADRATE error.

Configuration Methods and Properties SetTrigger()

205

SetTrigger()
Selects the trigger source and sets up its parameters. This trigger is used to initiate analog to digital
conversions using the following Universal Library for .NET functions:

! AInScan(), if the ExTrigger option is selected.

! APretrig()

! FilePretrig()

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function SetTrigger(ByVal trigType As MccDaq.TriggerType ,
ByVal lowThreshold As Short, ByVal highThreshold As Short) As
MccDaq.ErrorInfo
Public Function SetTrigger(ByVal trigType As MccDaq.TriggerType,
ByVal lowThreshold As System.UInt16, ByVal highThreshold As
System.UInt16) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo SetTrigger(MccDaq.TriggerType trigType,
short lowThreshold, short highThreshold)
public MccDaq.ErrorInfo SetTrigger(MccDaq.TriggerType trigType,
ushort lowThreshold, ushort highThreshold)

Parameters:

trigType Specifies the type of triggering based on the external trigger source. Set it to one of
the constants in the "trigType parameter values" section below.

lowThreshold Selects the low threshold used when the trigger input is analog. The range depends
upon the resolution of the trigger circuitry. Must be 0 to 255 for 8-bit trigger
circuits, 0 to 4095 for 12-bit trigger circuits, and 0 to 65535 for 16-bit trigger
circuits. Refer to the "Notes" section on page 206.

highThreshold Selects the high threshold used when the trigger input is analog. The range depends
upon the resolution of the trigger circuitry. Must be 0 to 255 for 8-bit trigger
circuits, 0 to 4095 for 12-bit trigger circuits, and 0 to 65535 for 16-bit trigger
circuits. Refer to the "Notes" section on page 206.

Returns:

An ErrorInfo object that indicates the status of the operation.

trigType parameter values:

All of the trigType settings are MccDaq.TriggerType enumerated constants. To set a variable to one of these
constants, you must refer to the MccDaq object and the TriggerType enumeration (variable =
MccDaq.TriggerType.GateNegHys, variable = MccDaq.TriggerType.GatePosHys, etc.).

Configuration Methods and Properties SetTrigger()

206

Trigger
Source

trigType Explanation

GateNegHys AD conversions are enabled when the external analog trigger input is more
positive than highThreshold. AD conversions are disabled when the
external analog trigger input more negative than Low/Threshold. Hysteresis
is the level between Low/Threshold and highThreshold.

GatePosHys AD conversions are enabled when the external analog trigger input is more
negative than lowThreshold. AD conversions are disabled when the
external analog trigger input is more positive than highThreshold.
Hysteresis is the level between lowThreshold and highThreshold.

GateAbove AD conversions are enabled as long as the external analog trigger input is
more positive than highThreshold.

Analog

GateBelow AD conversions are enabled as long as the external analog trigger input is
more negative than lowThreshold.

TrigAbove AD conversions are enabled when the external analog trigger makes a
transition from below highThreshold to above. Once conversions are
enabled, the external trigger is ignored.

TrigBelow AD conversions are enabled when the external analog trigger input makes a
transition from above lowThreshold to below. Once conversions are
enabled, the external trigger is ignored.

GateInWindow AD conversions are enabled as long as the external analog trigger is inside
the region defined by lowThreshold and highThreshold.

Analog

GateOutWindow AD conversions are enabled as long as the external analog trigger is outside
the region defined by lowThreshold and highThreshold.

GateHigh AD conversions are enabled as long as the external digital trigger input is 5
V (logic HIGH or 1).

GateLow AD conversions are enabled as long as the external digital trigger input is 0
V (logic LOW or 0).

TrigHigh AD conversions are enabled when the external digital trigger is 5 V (logic
HIGH or '1'). Once conversions are enabled, the external trigger is ignored.

TrigLow AD conversions are enabled when the external digital trigger is 0 V (logic
LOW or '0'). Once conversions are enabled, the external trigger is ignored.

TrigPosEdge AD conversions are enabled when the external digital trigger makes a
transition from 0 V to 5 V (logic LOW to HIGH). Once conversions are
enabled, the external trigger is ignored.

Digital

TrigNegEdge AD conversions are enabled when the external digital trigger makes a
transition from 5 V to 0 V (logic HIGH to LOW). Once conversions are
enabled, the external trigger is ignored.

Notes:

The value of the threshold must be within the range of the analog trigger circuit associated with the board.
Refer to the board-specific information in the Universal Library User's Guide. For example, on the PCI-
DAS1602/16, the analog trigger circuit handles ±10 V. A value of 0 corresponds to -10 V, whereas a value of
65535 corresponds to +10 V.

If you are using signed integer types, the thresholds range from -32768 to 32767 for 16-bit boards, instead of
from 0 to 65535. In this case, the unsigned value of 65535 corresponds to a value of -1, 65534 corresponds to
-2, �, 32768 corresponds to -32768.

For most boards that support analog triggering, you can pass the required trigger voltage level and the
appropriate Range to cbFromEngUnits/FromEngUnits to calculate the HighThreshold and LowThreshold
values.

Configuration Methods and Properties SetTrigger()

207

For some boards (refer to the "Analog Input Boards" chapter in the Universal Library User's Guide), you
must manually calculate the threshold by first calculating the least significant bit (LSB) for a particular range
for the trigger resolution of your hardware. You then use the LSB to find the threshold in counts based on an
analog voltage trigger threshold.

To calculate the threshold, do the following:

1. Calculate the LSB by dividing the full scale range (FSR) by 2resolution. FSR is the entire span from � FS to
+FS of your hardware for a particular range. For example, the full scale range of ±10 V is 20 V.

2. Calculate how many times you need to add the LSB calculated in step 1 to the negative full scale
(-FS) to reach the trigger threshold value.

The maximum threshold value is 2resolution - 1. The formula is shown here:

Abs (-FS - threshold in volts) ÷ (LSB) = threshold in counts

Here are two examples that use this formula�one for 8-bit trigger resolution and one for 12-bit trigger
resolution.

! 8-bit example using the ±10 V range with a -5 V threshold:

Calculate LSB: LSB = 20 ÷ 28 = 20 ÷ 256 = 0.078125
Calculate threshold: Abs(-10 - (-5)) ÷ .078125 = 5 ÷ 0.078125 = 64 (round this result if it is not an
integer). A count of 64 translates to a voltage threshold of -5.0 V.

! 12-bit example using the ±10 V range with a +1 V threshold:

Calculate LSB: LSB = 20 ÷ 212 = 20 ÷ 4096 = 0.00488
Calculate threshold: Abs(-10 - 1) ÷ .00488 = 11 ÷ 0.00488 = 2254 (rounded from 2254.1). A count of
2254 translates to a voltage threshold of 0.99952 V.

Configuration Methods and Properties Version property

208

Version property
This information is used by the library to determine compatibility.

Member of the GlobalConfig class.

Property prototype:

VB .NET: Public Shared ReadOnly Property Version As Integer

C# .NET: public int Version [get]

209

17
Counter Methods

Introduction
This section covers Universal Library methods that load, read, and configure counters. There are five types of
counter chips used in MCC counter boards: 8254's, 8536's, 7266's, 9513's and generic event counters.. Some
of the counter methods apply to only one type of counter.

Counter Methods C7266Config()

210

C7266Config()
Configures 7266 counter for desired operation. This method can only be used with boards that contain a 7266
counter chip (Quadrature Encoder boards). For more information, refer to the LS7266R1 data sheet in
accompanying ls7266r1.pdf file located in the "Documents" subdirectory of the installation.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function C7266Config(ByVal counterNum As Integer, ByVal
quadrature As MccDaq.Quadrature , ByVal countingMode As
MccDaq.CountingMode , ByVal dataEncoding As MccDaq.DataEncoding ,
ByVal indexMode As MccDaq.IndexMode , ByVal invertIndex As
MccDaq.OptionState , ByVal flagPins As MccDaq.FlagPins , ByVal
gateState As MccDaq.OptionState) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo C7266Config(int counterNum,
MccDaq.Quadrature quadrature, MccDaq.CountingMode countingMode,
MccDaq.DataEncoding dataEncoding, MccDaq.IndexMode indexMode,
MccDaq.OptionState invertIndex, MccDaq.FlagPins flagPins,
MccDaq.OptionState gateState)

Parameters:

counterNum Counter Number (1 - n), where n is the number of counters on the board.

quadrature Selects the resolution multiplier for quadrature input, or disables quadrature input
(NoQuad) so that the counters can be used as standard TTL counters. NoQuad,
X1Quad, X2Quad or X4Quad.

countingMode Selects operating mode for the counter. NormalMode, RangeLimit, NoRecycle,
ModuloN. Set it to one of the constants in the "countingMode " section below.

dataEncoding Selects the format of the data that is returned by the counter - either Binary or BCD
format. BinaryCount or BCDCount.

indexMode Selects which action will be taken when the Index signal is received. The
IndexMode must be set to IndexDisabled whenever a Quadrature is set to
NOQuad or when GateState is set to Enabled. Set it to one of the constants in the
"indexMode " section on page 211.

invertIndex Selects the polarity of the Index signal. If set to Disabled, the Index signal is
assumed to be positive polarity. If set to Enabled, the Index signal is assumed to be
negative polarity.

flagPins Selects which signals will be routed to the FLG1 and FLG2 pins. Set it to one of
the constants in the "flagPins " section on page 211.

gateState If gateState is set to Enabled, then the RCNTR pin will be used as a gating signal
for the counter. Whenever gateState =Enabled, the indexMode must be set to
IndexDisabled.

Returns:

An ErrorInfo object that indicates the status of the operation.

countingMode parameter values:

All of the countingMode settings are MccDaq.CountingMode enumerated constants. To set a variable to one of
these constants, you must refer to the MccDaq object and the CountingMode enumeration (variable =
MccDaq.CountingMode.NormalMode, variable = MccDaq.CountingMode.NormalMode,
CountingMode.RangeLimit, etc.).

Counter Methods C7266Config()

211

NormalMode Each counter operates as a 24-bit counter that rolls over to 0 when the maximum
count is reached.

RangeLimit In range limit count mode, an upper an lower limit is set, mimicking limit switches
in the mechanical counterpart. The upper limit is set by loading the PRESET
register with the CLoad() method after the counter has been configured. The
lower limit is always 0. When counting up, the counter freezes whenever the count
reaches the value that was loaded into the PRESET register. When counting down,
the counter freezes at 0. In either case the counting is resumed only when the count
direction is reversed.

NoRecycle In non-recycle mode, the counter is disabled whenever a count overflow or
underflow takes place. The counter is re-enabled when a reset or load operation is
performed on the counter.

ModuloN In ModuloN mode, an upper limit is set by loading the PRESET register with a
maximum count. Whenever counting up, when the maximum count is reached, the
counter will roll-over to 0 and continue counting up. Likewise when counting
down, whenever the count reaches 0, it will roll over to the maximum count (in the
PRESET register) and continue counting down.

indexMode parameter values:

All of the indexMode settings are MccDaq.IndexMode enumerated constants. To set a variable to one of these
constants, you must refer to the MccDaq object and the IndexMode enumeration (variable =
MccDaq.IndexMode.IndexDisabled, variable = MccDaq.IndexMode.LoadCtr, etc.).

IndexDisabled The Index signal is ignored.

LoadCtr The counter is loaded whenever the Index signal ON the LCNTR pin occurs.

LoadOutLatch The current count is latched whenever the Index signal on the LCNTR pin occurs.
When selected, the CIn() method returns the same count each time it is called
until the Index signal occurs.

ResetCtr The counter is reset to 0 whenever the Index signal on the RCNTR pin occurs.

flagPins parameter values:

All of the flagPins settings are MccDaq.FlagPins enumerated constants. To set a variable to one of these
constants, you must refer to the MccDaq object and the FlagPins enumeration (variable =
MccDaq.FlagPins,CarryBorrow, variable = MccDaq.FlagPins.CompareBorrow, etc.).

CarryBorrow FLG1 pin is Carry output, FLG2 is Borrow output.

CompareBorrow FLG1 pin is Compare output, FLG2 is Borrow output.

CarryBorrowUpDown FLG1 pin is Carry/Borrow output, FLG2 is Up/Down signal.
IndexError FLG1 is Index output, FLG2 is Error output.

Counter Methods C8254Config()

212

C8254Config()
Configures 8254 counter for desired operation. This method can only be used with 8254 counters. For more
information, see the 82C54 data sheet in accompanying 82C54.pdf file located in the "Documents"
subdirectory of the installation.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function C8254Config(ByVal counterNum As Integer, ByVal
config As MccDaq.C8254Mode) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo C8254Config(int counterNum, MccDaq.C8254Mode
config)

Parameters:

counterNum Selects one of the counter channels. An 8254 has 3 counters. The value may be 1 -
n, where n is the number of 8254 counters on the board (refer to board-specific
info in the).

config Refer to the 8254 data sheet for a detailed description of each of the configurations.
Set it to one of the constants in the "config " section below.

Returns:

An ErrorInfo object that indicates the status of the operation.

config parameter values:

All of the config settings are MccDaq.C8254Mode enumerated constants. To set a variable to one of these
constants, you must refer to the MccDaq object and the C8254Mode enumeration (variable =
MccDaq.C8254Mode.HighOnLastCount, variable = MccDaq.C8254Mode.LastShot, etc.).

HighOnLastCount Output of counter (OUT N) transitions from low to high on terminal count and
remains high until reset. See Mode 0 in the 8254 data sheet in accompanying
82C54.pdf file located in the Documents subdirectory of the installation.

OneShot Output of counter (OUT N) transitions from high to low on rising edge of GATE N,
then back to high on terminal count. See mode 1 in the 8254 data sheet in
accompanying 82C54.pdf file located in the Documents subdirectory of the
installation.

RateGenerator Output of counter (OUT N) pulses low for one clock cycle on terminal count,
reloads counter and recycles. See mode 2 in the 8254 data sheet in accompanying
82C54.pdf file located in the Documents subdirectory of the installation.

SquareWave Output of counter (OUT N) is high for count < 1/2 terminal count then low until
terminal count, whereupon it recycles. This mode generates a square wave. See
mode 3 in the 8254 data sheet in the accompanying 82C54.pdf file located in the
Documents subdirectory of the installation.

SoftWareStrobe Output of counter (OUT N) pulses low for one clock cycle on terminal count.
Count starts after counter is loaded. See mode 4 in the 8254 data sheet in the
accompanying 82C54.pdf file located in the Documents subdirectory of the
installation.

HardwareStrobe Output of counter (OUT N) pulses low for one clock cycle on terminal count.
Count starts on rising edge at GATE N input. See mode 5 in the 8254 data sheet in
accompanying 82C54.pdf file located in the Documents subdirectory of the
installation.

Counter Methods C8536Config()

213

C8536Config()
Configures 8536 counter for desired operation. This method can only be used with 8536 counters.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function C8536Config(ByVal counterNum As Integer, ByVal
outputControl As MccDaq.C8536OutputControl , ByVal recycleMode As
MccDaq.RecycleMode , ByVal retrigger As MccDaq.OptionState) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo C8536Config(int counterNum,
MccDaq.C8536OutputControl outputControl, MccDaq.RecycleMode
recycleMode, MccDaq.OptionState retrigger)

Parameters:

counterNum Selects one of the counter channels. An 8536 has three counters. The value may be
1, 2 or 3.

outputControl Specifies the action of the output signal. Set it to one of the constants in the
"outputControl " section below.

recycleMode If set to Recycle (as opposed to OneTime), the counter automatically reloads to the
starting count every time it reaches 0, and then counting continues.

retrigger If set to Enabled, every trigger on the counter's trigger input will initiate loading of
the initial count and counting will proceed from initial count.

Returns:

An ErrorInfo object that indicates the status of the operation.

outputControl parameter values:

All of the outputControl settings are MccDaq.C8536OutputControl enumerated constants. To set a variable
to one of these constants, you must refer to the MccDaq object and the C8536OutputControl enumeration
(variable = MccDaq.C8536OutputControl.HighPulseOnTc, variable =
MccDaq.C8536OutputControl.ToggleOnTc, etc.).

HighPulseOnTc Output transitions from low to high for one clock pulse on terminal count.

ToggleOnTc Output changes state on terminal count.

HighUntilTc Output transitions to high at the start of counting, and then goes low on terminal
count.

Counter Methods C8536Init()

214

C8536Init()
Initializes the counter linking features of an 8536 counter chip. See the 8536 data sheet "Counter/Timer Link
Controls" section for a complete description of the hardware affected by this mode. The linking of counters 1
and 2 must be accomplished prior to enabling the counters.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function C8536Init(ByVal chipNum As Integer, ByVal ctr1Output
As MccDaq.CtrlOutput) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo C8536Init(int chipNum, MccDaq.CtrlOutput
ctr1Output)

Parameters:

chipNum Selects one of the 8536 chips on the board, 1 to n.

ctrlOutput Specifies how the counter 1 is to be linked to counter 2, if at all. Set it to one of the
constants in the "ctrlOutput " section below.

Returns:

An ErrorInfo object that indicates the status of the operation.

ctrlOutput parameter values:

All of the ctrlOutput settings are MccDaq.CtrlOutput enumerated constants. To set a variable to one of
these constants, you must refer to the MccDaq object and the CtrlOutput enumeration (variable =
MccDaq.CtrlOutput.NotLinked, variable = MccDaq.CtrlOutput.GateCtr2, etc.).

NotLinked Counter 1 is not connected to any other counter's inputs.

GateCtr2 Output of counter 1 is connected to the GATE of counter #2.

TrigCtr2 Output of counter 1 is connected to the trigger of counter #2.

InCtr2 Output of counter 1 is connected to counter #2 clock input.

Counter Methods C9513Config()

215

C9513Config()
Sets all of the configurable options of a 9513 counter. For more information, see the AM9513A data sheet in
accompanying 9513A.pdf file located in the Documents subdirectory of the installation.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function C9513Config(ByVal counterNum As Integer, ByVal
gateControl As MccDaq.GateControl , ByVal counterEdge As
MccDaq.CountEdge , ByVal counterSource As MccDaq.CounterSource ,
ByVal specialGate As MccDaq.OptionState , ByVal reload As
MccDaq.Reload , ByVal recycleMode As MccDaq.RecycleMode , ByVal
bcdMode As MccDaq.BCDMode , ByVal countDirection As
MccDaq.CountDirection , ByVal outputControl As
MccDaq.C9513OutputControl) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo C9513Config(int counterNum,
MccDaq.GateControl gateControl, MccDaq.CountEdge counterEdge,
MccDaq.CounterSource counterSource, MccDaq.OptionState specialGate,
MccDaq.Reload reload, MccDaq.RecycleMode recycleMode, MccDaq.BCDMode
bcdMode, MccDaq.CountDirection countDirection,
MccDaq.C9513OutputControl outputControl)

Parameters:

counterNum Counter number (1 - n) where n is the number of counters on the board. (For
example, a CIO-CTR5 has 5, a CIO-CTR10 has 10, etc. See board specific info).

gateControl Sets the gating response for level, edge, etc. Set it to one of the constants in the
"gateControl parameter values" section on page 216.

counterEdge Which edge to count. Referred to as "Source Edge" in 9513 data book. Can be set
to POSITIVEEDGE (count on rising edge) or NEGATIVEEDGE (count on falling edge).

counterSource Each counter may be set to count from one of 16 internal or external sources. Set it
to one of the constants in the "counterSource parameter values" section on page
216.

specialGate Special gate may be enabled (MccDaq.OptionState.Enabled) or disabled
(MccDaq.OptionState.Disabled).

reload Reload the counter from the load register (reload = MccDaq.Reload.LoadReg) or
alternately load from the load register, then the hold register (reload =
MccDaq.Reload.LoadAndHoldReg).

recycleMode Execute once (MccDaq.RecycleMode.OneTime) or reload and recycle
(MccDaq.RecycleMode.Recycle).

bcdMode Counter may operate in binary coded decimal count (MccDaq.BCDMode.BCDCount)
or binary count (MccDaq.BCDMode.BinaryCount).

countDirection AM9513 may count up (MccDaq.CountDirection.CountUp) or down
(MccDaq.CountDirection.CountDown).

outputControl The type of output desired. Set it to one of the constants in the "

Counter Methods C9513Config()

216

outputControl parameter values" section on page 217.

Returns:

An ErrorInfo object that indicates the status of the operation.

gateControl parameter values:

All of the gateControl settings are MccDaq.GateControl enumerated constants. To set a variable to one of
these constants, you must refer to the MccDaq object and the GateControl enumeration (variable =
MccDaq.GateControl.NoGate, variable = MccDaq.GateControl.AhlTcPrevCtr, etc.).

NoGate No gating

AhlTcPrevCtr Active high TCN -1

AhlNextGate Active High Level GATE N + 1

AhlPrevGate Active High Level GATE N - 1

AhlGate Active High Level GATE N

AllGate Active Low Level GATE N

AheGate Active High Edge GATE N

Alegate Active Low Edge GATE N

counterSource parameter values:

All of the counterSource settings are MccDaq.CounterSource enumerated constants. To set a variable to one
of these constants, you must refer to the MccDaq object and the CounterSource enumeration (variable =
MccDaq.CounterSource.TcPrevCtr, variable = MccDaq.CounterSource.CtrInput1, etc.).

TcPrevCtr TCN - 1 (Terminal count of previous counter)

CtrInput1 SRC 1 (Counter Input 1)

CtrInput2 SRC 2 (Counter Input 2)

CtrInput3 SRC 3 (Counter Input 3)

CtrInput4 SRC 4 (Counter Input 4)

CtrInput5 SRC 5 (Counter Input 5)

Gate1 GATE 1

Gate2 GATE 2

Gate3 GATE 3

Gate4 GATE4

Gate5 GATE 5

Freq1 F1

Freq2 F2

Freq3 F3

Freq4 F4

Freq5 F5

Counter Methods C9513Config()

217

outputControl parameter values:

All of the outputControl settings are MccDaq.9513OutputControl enumerated constants. To set a variable
to one of these constants, you must refer to the MccDaq object and the 9513OutputControl enumeration
(variable = MccDaq.9513OutputControl.AlwaysLow, variable =
MccDaq.9513OutputControl.HighPulseOnTc, etc.).

AlwaysLow Inactive, Output Low

HighPulseOnTc High pulse on Terminal Count

ToggleOnTc TC Toggled

Disconnected Inactive, Output High Impedance

LowPulseOnTc Active Low Terminal Count Pulse

3, 6, 7 (numeric values) Illegal

Notes:

The information provided here and in C9513Init() will only help you understand how Universal Library
syntax corresponds to the 9513 data sheet (refer to the accompanying 9513A.pdf file located in the Documents
subdirectory of the installation). It is not a substitute for the data sheet. You cannot program and use a 9513
counter/timer without the data sheet.

Counter Methods C9513Init()

218

C9513Init()
Initializes all of the chip-level features of a 9513 counter chip. This method can only be used with 9513
counters. For more information, refer to the AM9513A data sheet in accompanying 9513A.pdf file located in
the Documents subdirectory of the installation.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function C9513Init(ByVal chipNum As Integer, ByVal
foutDivider As Integer, ByVal foutSource As MccDaq.CounterSource,
ByVal compare1 As MccDaq.CompareValue , ByVal compare2 As
MccDaq.CompareValue , ByVal timeOfDay As MccDaq.TimeOfDay) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo C9513Init(int chipNum, int foutDivider,
MccDaq.CounterSource foutSource, MccDaq.CompareValue compare1,
MccDaq.CompareValue compare2, MccDaq.TimeOfDay timeOfDay)

Parameters:

chipNum Specifies which 9513 chip is to be initialized. For a CTR05 board this should be set
to 1. For a CTR10 board it should be either 1 or 2, and for a CTR20 it should be 1-
4.

foutDivider F-Out divider (0-15). If set to 0, foutDivider is the rate of foutSource divided
by 16. If set to a number between 1 ands 15, foutDivider is the rate of
foutSource divided by foutDivider.

foutSource Specifies source of the signal for F-Out signal. Set it to one of the constants in the
"foutSource parameter values" section on page 219.

compare1 MccDaq.CompareValue.Enabled or MccDaq.CompareValue.Disabled

compare2 MccDaq.CompareValue.Enabled or MccDaq.CompareValue.Disabled.

timeOfDay MccDaq.TimeOfDay.Disabled, or three different enabled settings. Set it to one of
the constants in the "timeOfDay " section on page 219.

Returns:

An ErrorInfo object that indicates the status of the operation.

Counter Methods C9513Init()

219

foutSource parameter values:

All of the foutSource settings are MccDaq.CounterSource enumerated constants. To set a variable to one of
these constants, you must refer to the MccDaq object and the CounterSource enumeration (variable =
MccDaq.CounterSource.CtrInout1, variable = MccDaq.CounterSource.CtrInput2, etc.).

foutSource 9513 Data Sheet Equivalent foutSource 9513 Data Sheet
Equivalent

CtrInput1 SRC 1 (Counter Input 1) Gate3 GATE3
CtrInput2 SRC 2 (Counter Input 2) Gate4 GATE4
CtrInput3 SRC 3 (Counter Input 3) Gate5 GATE5
CtrInput4 SRC 4 (Counter Input 4) Freq1 F1
CtrInput5 SRC 5 (Counter Input 5) Freq2 F2
Gate1 GATE1 Freq3 F3
Gate2 GATE2 Freq4 F4

timeOfDay parameter values:

All of the timeOfDay settings are MccDaq.TimeOfDay enumerated constants. To set a variable to one of these
constants, you must refer to the MccDaq object and the TimeOfDay enumeration (variable =
MccDaq.TimeOfDay.Disable, variable = MccDaq.TimeOfDay.One, etc.).

timeOfDay 9513 Data Sheet Equivalent

Disabled TOD Disabled

One TOD Enabled/5 Input

Two TOD Enabled/6 Input

Three TOD Enabled/10 Input

No parameters for 9513 Data Sheet Equivalent

0 (FOUT on) FOUT Gate

0 (Data bus matches board) Data Bus Width

1 (Disable Increment) Data Pointer Control

1 (BCD Scaling) Scalar Control

Notes:

The information provided here and in C9513Config() will only help you understand how Universal
Library for .NET syntax corresponds to the 9513 data sheet (refer to the accompanying 9513A.pdf file located
in the Documents subdirectory of the installation). It is not a substitute for the data sheet. You cannot program
and use a 9513 counter/timer without the data sheet.

Counter Methods CFreqIn()

220

CFreqIn()
Measures the frequency of a signal. This method can only be used with 9513 counters. This method uses
internal counters #5 and #4.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function CFreqIn(ByVal signalSource As MccDaq.SignalSource ,
ByVal gateInterval As Integer, ByRef count As Short, ByRef freq As
Integer) As MccDaq.ErrorInfo

Public Function CFreqIn(ByVal signalSource As MccDaq.SignalSource,
ByVal gateInterval As Integer, ByRef count As System.UInt16, ByRef
freq As Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo CFreqIn(MccDaq.SignalSource signalSource,
int gateInterval, out short count, out int freq)

public MccDaq.ErrorInfo CFreqIn(MccDaq.SignalSource signalSource,
int gateInterval, out ushort count, out int freq

Parameters:

signalSource Specifies the source of the signal to calculate the frequency from.
The signal to be measured is routed internally from the source specified by
signalSource to the clock input of counter 5. On boards with more than one 9513
chip, there is more than one counter 5. Which counter 5 is used is also determined
by SigSource. Set it to one of the constants in the "signalSource parameter values"
section on page 221.
The value of signalSource determines which chip will be used. CtrInput6
through CtrInput10, Freq6 through Freq10 and Gate6 through Gate9 indicate
chip two will be used. The signal to be measured must be present at the chip two
input specified by SigSource.
Note: The gating connection from counter 4 output to counter 5 gate must be made
between counters 4 and 5 of this chip (see below). Refer to board-specific
information to determine valid values for your board.

gateInterval Gating interval in milliseconds (must be > 0). Specifies the time, in milliseconds,
that the counter will count. The optimum gateInterval depends on the frequency
of the measured signal. The counter can count up to 65535. If the gating interval is
too low, then the count will be too low and the resolution of the frequency
measurement will be poor. For example, if the count changes from 1 to 2 the
measured frequency doubles.
If the gating interval is too long, the counter will overflow and a FreqOverFlow
error will occur.
This method will not return until the gateInterval has expired. There is no
background option. Under Windows, this means that window activity will stop for
the duration of the call. Adjust the gateInterval so this does not pose a problem
to your user interface.

count The raw count.

freq The measured frequency in Hz.

Counter Methods CFreqIn()

221

Returns:

An ErrorInfo object that indicates the status of the operation.

Count - Count that the frequency calculation is based on.

Freq - Measured frequency in Hz

signalSource parameter values:

All of the signalSource settings are MccDaq.SignalSource enumerated constants. To set a variable to one of
these constants, you must refer to the MccDaq object and the SignalSource enumeration (variable =
MccDaq.SignalSource.CtrInput1, variable = MccDaq.SignalSource.Gate1, etc.).

One 9513 chip (Chip 1 used):

! CtrInput1 through CtrInput5

! Gate1 through Gate4

! Freq1 through Freq5

Two 9513 chips (Chip 1 or Chip 2 used):

! CtrInput1 through CtrInput10

! Gate1 through Gate9 (excluding Gate5)

! Freq1 through Freq10

Four 9513 chips (Chips 1- 4 may be used):

! CtrInput1 through CtrInput20

! Gate1 through Gate19 (excluding gates 5, 10 & 15)

! Freq1 through Freq20

Notes:

! This method requires an electrical connection between counter 4 output and counter 5 gate. This
connection must be made between counters 4 and 5 on the chip specified by signalSource.

! C9513Init() must be called for each chipNum that will be used by this method. The values of
foutDivider, foutSource, compare1, compare2, and timeOfDay are irrelevant to this method and may
be any value shown in the C9513Init() method description.

! If you select an external clock source for the counters, the gateInterval, count, and freq settings are
only valid if the external source is 1 MHz. Otherwise, you need to scale the values according to the
frequency of the external clock source.

For example, for an external clock source of 2 MHz, increase your gateInterval setting by a factor of 2,
and also double the count and freq values returned when analyzing your results.

Counter Methods CIn()

222

CIn()
Reads the current count from a counter.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function CIn(ByVal counterNum As Integer, ByRef count As
Short) As MccDaq.ErrorInfo

Public Function CIn(ByVal counterNum As Integer, ByRef count As
System.UInt16) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo CIn(int counterNum, out ushort count)

public MccDaq.ErrorInfo CIn(int counterNum, out short count)

Parameters:

counterNum The counter to read current count from. Valid values are 1 to 20, up to the number
of counters on the board.

count Counter value returned here.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

count: Refer to your BASIC manual for information on BASIC integer data types. -32,768 to 32,767 for
BASIC languages. BASIC reads counters as:

! -1 reads as 65535

! -21768 reads as 32768

! 32767 reads as 32767

! 2 reads as 2

! 0 reads as 0

CIn() vs. CIn32(): Although the CIn() and CIn32() methods perform the same operation, CIn32() is the
preferred method to use.

The only difference between the two is that CIn() returns a 16-bit count value and CIn32() returns a 32-bit
value. Both CIn() and CIn32() can be used, but CIn32() is required whenever you need to read count values
greater than 16 bits (counts > 65535).

Counter Methods CIn32()

223

CIn32()
Reads the current count from a counter, and returns it as a 32 bit integer.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function CIn32(ByVal counterNum As Integer, ByRef count As
Integer) As MccDaq.ErrorInfo

 Public Function CIn32(ByVal counterNum As Integer, ByRef count As
System.UInt32) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo CIn32(int counterNum, out uint count)

 public MccDaq.ErrorInfo CIn32(int counterNum, out int count)

Parameters:

counterNum The counter to read current count from. Valid values are 1 to n, where n is the
number of counters on the board.

count Current count value from selected counter.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

CIn() vs. CIn32(): Although the CIn() and CIn32() methods perform the same operation, CIn32() is the
preferred method to use.

The only difference between the two is that CIn() returns a 16-bit count value and CIn32() returns a 32-bit
value. Both CIn() and CIn32() can be used, but CIn32() is required whenever you need to read count values
greater than 16 bits (counts > 65535).

Counter Methods CLoad()

224

CLoad()
Loads the specified counter's Load, Hold, Alarm, QuadCount, QuadPreset or PreScaler register with a count.
When loading a counter with a starting value, it is never loaded directly into the counter's count register.
Rather, it is loaded into the load or hold register. From there, the counter, after being enabled, loads the count
from the appropriate register, generally on the first valid pulse.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function CLoad(ByVal regNum As MccDaq.CounterRegister, ByVal
loadValue As Integer) As MccDaq.ErrorInfo

Public Function CLoad(ByVal regNum As MccDaq.CounterRegister, ByVal
loadValue As System.UInt32) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo CLoad(MccDaq.CounterRegister regNum, uint
loadValue)

public MccDaq.ErrorInfo CLoad(MccDaq.CounterRegister regNum, int
loadValue)

Parameters:

regNum The register to load the count to. Set it to one of the constants in the "regNum
parameter values" section below.

loadValue The value to be loaded. This value must be between 0 and 2resolution-1 of the counter.
Refer to the discussion of Basic signed integers in the "16-bit values using a signed
integer data type" section in the "Universal Library Description & Use" chapter of
the Universal Library User's Guide (available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

Returns:

An ErrorInfo object that indicates the status of the operation.

regNum parameter values:

All of the regNum settings are MccDaq.CounterRegister enumerated constants. To set a variable to one of
these constants, you must refer to the MccDaq object and the CounterRegister enumeration (variable =
MccDaq.CounterRegister.LoadReg1, variable = MccDaq.CounterRegister.HoldReg1, etc.).

LoadReg1 � 20 Load registers 1 to 20. Can span many chips.

HoldReg1 � 20 Hold registers 1 to 20. Can span several chips. (9513 only)

Alarm1Chip1 Alarm register 1 of the first counter chip. (9513 only)

Alarm2Chip1 Alarm register 2 of the first counter chip. (9513 only)

Alarm1Chip2 Alarm register 1 of the 2nd counter chip. (9513 only)

Alarm2Chip2 Alarm register 2 of the 2nd counter chip. (9513 only)

Alarm1Chip3 Alarm register 1 of the third counter chip. (9513 only)

Alarm2Chip3 Alarm register 2 of the third counter chip. (9513 only)

Alarm1Chip4 Alarm register 1 of the four counter chip. (9513 only)

Alarm2Chip4 Alarm register 2 of the four counter chip. (9513 only)

QuadCount1 to QuadCount4 Current Count (LS7266 only)

QuadPreset1 to QuadPreset4 Preset register (LS7266 only)

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Counter Methods CLoad()

225

QuadPrescaler1 to QuadPrescaler4 Prescaler register (LS7266 only)

Notes:

You cannot load a count-down-only counter with less than 2.

Counter types: There are several counter types supported. Please refer to the data sheet for the registers
available for a counter type.

CLoad() vs. CLoad32(): The CLoad() and CLoad32() perform the same operation. These methods differ
in that CLoad() loads a 16-bit count value, while CLoad32() loads a 32-bit value. The only time you need to
use CLoad32() is to load counts that are larger than 32 bits (counts > 65535).

Counter Methods CLoad32()

226

CLoad32()
Loads the specified counter's COUNT, PRESET or PRESCALER register with a count.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function CLoad32(ByVal regNum As MccDaq.CounterRegister ,
ByVal loadValue As Integer) As MccDaq.ErrorInfo

Public Function CLoad32(ByVal regNum As MccDaq.CounterRegister,
ByVal loadValue As System.UInt32) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo CLoad32(MccDaq.CounterRegister regNum, uint
loadValue)

public MccDaq.ErrorInfo CLoad32(MccDaq.CounterRegister regNum, int
loadValue)

Parameters:

regNum The register to load the value into. Set it to one of the constants in the "regNum
parameter values" section below.

loadValue The value to be loaded into regNum.

Returns:

An ErrorInfo object that indicates the status of the operation.

regNum parameter values:

All of the regNum settings are MccDaq.CounterRegister enumerated constants. To set a variable to one of
these constants, you must refer to the MccDaq object and the CounterRegister enumeration (variable =
MccDaq.CounterRegister.LoadReg1, variable = MccDaq.CounterRegister.HoldReg1, etc.).

LoadReg1 � 20 Load registers 1 to 20. Can span many chips.

HoldReg1 � 20 Hold registers 1 to 20. Can span several chips. (9513 only)

Alarm1Chip1 Alarm register 1 of the first counter chip. (9513 only)

Alarm2Chip1 Alarm register 2 of the first counter chip. (9513 only)

Alarm1Chip2 Alarm register 1 of the 2nd counter chip. (9513 only)

Alarm2Chip2 Alarm register 2 of the 2nd counter chip. (9513 only)

Alarm1Chip3 Alarm register 1 of the third counter chip. (9513 only)

Alarm2Chip3 Alarm register 2 of the third counter chip. (9513 only)

Alarm1Chip4 Alarm register 1 of the four counter chip. (9513 only)

Alarm2Chip4 Alarm register 2 of the four counter chip. (9513 only)

QuadCount1 to QuadCount4 Used to initialize the counter

QuadPreset1 to QuadPreset4 Used to set upper limit of counter in some modes.

QuadPrescaler1 to QuadPrescaler4 Used for clock filtering (valid values: 0 to 255).

Notes:

CLoad() vs. CLoad32():Although the CLoad() and CLoad32() methods perform the same operation,
CLoad32() is the preferred method to use.

Counter Methods CLoad32()

227

The only difference between the two is that CLoad() loads a 16-bit count value, and CLoad32() loads a 32-bit
value. The only time you need to use CLoad32() is to load counts that are larger than 32 bits (counts > 65535).

Counter Methods CStatus()

228

CStatus()
Returns status information about the specified counter (7266 counters only)

Function prototype:

VB .NET: Public Function CStatus(ByVal counterNum As Integer, ByRef
statusBits As MccDaq.StatusBits) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo CStatus(int counterNum, out
MccDaq.StatusBits statusBits)

Parameters:

counterNum The counter to read current count from. Valid values are 1 to n, where n is the
number of counters on the board.

statusBits Current status from selected counter is returned here. The status consists of
individual bits that indicate various conditions within the counter. Set it to one of
the constants in the "statusBits parameter values" section below.

Returns:

An ErrorInfo object that indicates the status of the operation.

All of the statusBits settings are MccDaq.StatusBits enumerated constants. To set a variable to one of
these constants, you must refer to the MccDaq object and the StatusBits enumeration (variable =
MccDaq.StatusBits.UnderFlow, variable = MccDaq.StatusBits.Overflow, etc.).

statusBits parameter values:

Underflow set to 1 whenever the count decrements past 0. Is cleared to 0 whenever CStatus()
is called.

Overflow Set to 1 whenever the count increments past it's upper limit. Is cleared to 0
whenever CStatus() is called.

Compare Set to 1 whenever the count matches the preset register. Is cleared to 0 whenever
CStatus() is called.

Sign Set to 1 when the MSB of the count is 1. Is cleared to 0 whenever the MSB of the
count is set to 0.

Error Set to 1 whenever an error occurs due to excessive noise on the input. Is cleared to
0 by calling C7266Config().

UpDown Set to 1 when counting up. Is cleared to 0 when counting down

Index Set to 1 when index is valid. Is cleared to 0 when index is not valid.

Counter Methods CStoreOnInt()

229

CStoreOnInt()
Installs an interrupt handler that will store the current count whenever an interrupt occurs. This method can
only be used with 9513 counters. This method will continue to operate in the background until either IntCount
has been satisfied or StopBackground() is called.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function CStoreOnInt(ByVal intCount As Integer, ByRef
cntrControl As MccDaq.CounterControl , ByVal memHandle As Integer)
As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo CStoreOnInt(int intCount, ref
MccDaq.CounterControl cntrControl, int memHandle)

Parameters:

intCount The counters will be read every time an interrupt occurs, until IntCount number of
interrupts have occurred. If intCount = 0, the method will run until
StopBackground() is called. (refer to memHandle below).

cntrControl The array should have an element for each counter on the board. (5 elements for
CTR-05 board, 10 elements for a CTR-10, etc.). Each element corresponds to a
counter channel. Each element should be set to either
MccDaq.CounterControl.Disabled or MccDaq.CounterControl.Enabled. All
channels set to MccDaq.CounterControl.Enabled will be read when an interrupt
occurs.

memHandle The handle for the Windows buffer. Counts are stored in an array. The array should
have an element for each counter on the board. (5 elements for CTR-05 board, 10
elements for a CTR-10, etc.). Each element corresponds to a counter channel. Each
channel that is marked as Enabled in the CntrControl array will be read when an
interrupt occurs. The count value will be stored in the DataBuffer element
associated with that channel.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

If the library revision is set to 4.0 or greater, the following code changes are required:

! If intCount is non-zero, the countData array must be allocated to (intCount * Number of Counters).

! For example, if intCount is set to 100 for a CTR-05 board, then the countData array must be declared
with a size of (100 * 5) = 500. This new functionality keeps the user application from having to move the
data out of the countData buffer for every interrupt, before it is overwritten. Now, for each interrupt the
counter values will be stored in adjacent memory locations in the countData array.

Allocate the proper array size for non-zero IntCount settings
Specifying intCount as a non-zero value and failing to allocate the proper sized array results in a runtime
error. There is no way for the Universal Library to determine if the array has been allocated with the proper
size.

! If intCount = 0, the functionality is unchanged.

231

18
Digital I/O Methods

Introduction
Use the methods explained in this chapter to read and set digital values. Most digital ports are configurable,
while some others are non-configurable. Some types of hardware allow readback of the values that output
ports are set to on configurable port types. Devices using 8255 chips for digital I/O are one example. For these
devices, input methods such as DIn() are valid for ports configured as output.

Use the tables below to determine the port number, bit number, and actual addresses being set by the digital
I/O methods. Table 17-1 relates the port number (portNum) to the port address and the 8255 port. Table 17-2
relates the bit number to the 8255 chip on the board.

Table 17-1. Port Numbers and Corresponding Port Address, 8255 Port Number

Mnemonic Bit No. 8255 Port No. Port Address 8536 Port No. Port Address
FirstPortA 0 - 7 1A Base + 0 1A Base + 0
FirstPortB 8 - 15 1B 1B
FirstPortCL 16 - 19 1CL 1C
FirstPortCH 20 - 23 1CH Not present
SecondPortA 24 - 31 2A Base + 4 2A Base + 4
SecondPortB 32 - 39 2B 2B
SecondPortCL 40 - 43 2CL 2C
SecondPortCH 44 - 47 2CH Not present
and so on, to the last chip on the board as: ThirdPortx, FourthPortx, FifthPortx, SixthPortx, and
SeventhPortx
EighthPortA 168 -175 8A Base + 28
EighthPortB 176 -183 8B
EighthPortCL 184 -187 8CL
EighthPortCH 188 -191 8CH

Table 17-2. Bit Numbers and Corresponding 8255 Chip Number
82C55 Bit# Chip # Address 8536 Bit# Chip # Address
0 � 23 1 Base + 0 0 - 19 1 Base + 0
24 � 47 2 Base + 4 20 � 39 2 Base + 4
48 � 71 3 Base + 8
72 � 95 4 Base + 12
96 � 119 5 Base + 16
120 � 143 6 Base + 20
144 � 167 7 Base + 24
168 � 191 8 Base + 28

Digital I/O Methods DBitIn()

232

DBitIn()
Reads the state of a single digital input bit. This method treats all of the DIO ports of a particular type on a
board as a single port. It lets you read the state of any individual bit within this port. Note that for some port
types, such as 8255 ports, if the port is configured for DigitalOut, this method provides readback of the last
output value.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function DBitIn(ByVal portType As MccDaq.DigitalPortType ,
ByVal bitNum As Integer, ByRef bitValue As MccDaq.DigitalLogicState)
As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo DBitIn(MccDaq.DigitalPortType portType, int
bitNum, out MccDaq.DigitalLogicState bitValue)

Parameters:

portType There are three general types of digital ports - ports that are programmable as input
or output, ports that are fixed input or output and ports for which each bit may be
programmed as input or output. For the first of these types, set PortType to
FirstPortA. For the latter two types, set PortType to AuxPort. Some boards have
both types of digital ports (DAS1600). Set PortType to either FirstPortA or
AuxPort, depending on which digital inputs you wish to read.

bitNum This specifies the bit number within the single large port. Table 17-2 on page 231
shows which bit numbers are in which 82C55 and 8536 digital chips. The most
82C55 chips on a single board is eight (8), on the CIO-DIO196. The most (2) 8536
chips occur on the CIO-INT32.

bitValue Place holder for return value of bit. Value will be 0 or 1. A 0 indicates a logic low
reading, a 1 indicates a logic high reading. Logic high does not necessarily mean
5 V. See the board manual for chip input specifications.

Returns:

An ErrorInfo object that indicates the status of the operation.

BitValue - value (0 or 1) of specified bit returned here.

Digital I/O Methods DBitOut()

233

DBitOut()
Sets the state of a single digital output bit. This method treats all of the DIO chips of a particular type on a
board as a single very large port. It lets you set the state of any individual bit within this large port. If the port
type is not AuxPort, you must use DConfigPort() to configure the port for output first. If the port type is
AuxPort, you may need to use DConfigBit() or DConfigPort() to configure the bit for output first.
Check the board specific information in the Universal Library User's Guide (available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) to determine if AuxPort should be configured for your
hardware.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function DBitOut(ByVal portType As MccDaq.DigitalPortType ,
ByVal bitNum As Integer, ByVal bitValue As MccDaq.DigitalLogicState
) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo DBitOut(MccDaq.DigitalPortType portType, int
bitNum, MccDaq.DigitalLogicState bitValue)

Parameters:

portType There are three general types of digital ports - ports that are programmable as input
or output, ports that are fixed input or output and ports for which each bit may be
programmed as input or output. For the first of these types, set PortType to
FirstPortA. For the latter two types, set PortType to AuxPort. Some boards have
both types of digital ports (DAS1600). Set PortType to either FirstPortA or
AuxPort depending on which digital port you wish to write to.

bitNum This specifies the bit number within the single large port. The specified bit must be
in a port that is currently configured as an output.
Table 17-2 on page 231 shows which bit numbers are in which 82C55 and 8536
digital chips. The most 82C55 chips on a single board is eight (8), on the CIO-
DIO196. The most (2) 8536 chips occur on the CIO-INT32.

bitValue The value to set the bit to. Value will be 0 or 1. A 0 indicates a logic low output, a
1 indicates a logic high output. Logic high does not necessarily mean 5V. Refer to
the board's user's guide for chip specifications.

Returns:

An ErrorInfo object that indicates the status of the operation.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Digital I/O Methods DConfigBit()

234

DConfigBit()
Configures a specific digital bit as Input or Output. This method treats all DIO ports of the AuxPort type on a
board as a single port. This method is NOT supported by 8255 type DIO ports. Please refer to board specific
information for details.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function DConfigBit(ByVal portNum As MccDaq.DigitalPortType,
ByVal bitNum As Integer, ByVal direction As
MccDaq.DigitalPortDirection) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo DConfigBit(MccDaq.DigitalPortType portNum,
int bitNum, MccDaq.DigitalPortDirection direction)

Parameters:

portNum The port (AuxPort) whose bits are to be configured. The port specified must be
bitwise configurable. See board specific information for details.

bitNum The bit number to configure as input or output. See board specific information for
details.

direction MccDaq.DigitalPortDirection DigitalOut or DigitalIn configures the
specified bit for output or input, respectively.

Returns:

An ErrorInfo object that indicates the status of the operation.

Digital I/O Methods DConfigPort()

235

DConfigPort()
Configures a digital port as input or output. This method is for use with ports that may be programmed as
input or output, such as those on the 82C55 chips and 8536 chips. See the board user's manual for details of
chip operation.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function DConfigPort(ByVal portNum As MccDaq.DigitalPortType
, ByVal direction As MccDaq.DigitalPortDirection) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo DConfigPort(MccDaq.DigitalPortType portNum,
MccDaq.DigitalPortDirection direction)

Parameters:

portNum The specified port must be configurable. For most boards, AuxPort is not
configurable; so please consult your board-specific documentation.
Table 17-2 on page 231 shows which ports and bit numbers are in which 82C55
and 8536 digital chips. The most 82C55 chips on a single board is eight (8), on the
CIO-DIO196. The most (2) 8536 chips occur on the CIO-INT32.

direction MccDaq.DigitalPortDirection.DigitalOut or
MccDaq.DigitalPortDirection.DigitalIn configures the entire eight-bit or
four-bit port for output or input.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

When used on ports within an 8255 chip, this method will reset all ports on that chip configured for output to
a zero state. This means that if you set an output value on FirstPortA and then change the configuration on
FirstPortB from Output to Input, the output value at FirstPortA will be all zeros. You can, however, set
the configuration on SecondPortX without affecting the value at FirstPortA. For this reason, this method is
usually called at the beginning of the program for each port requiring configuration.

Digital I/O Methods DIn()

236

DIn()
Reads a digital input port. Note that for some port types, such as 8255 ports, if the port is configured for
DigtalOut, this method will provide readback of the last output value.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function DIn(ByVal portNum As MccDaq.DigitalPortType , ByRef
dataValue As Short) As MccDaq.ErrorInfo
Public Function DIn(ByVal portNum As MccDaq.DigitalPortType, ByRef
dataValue As System.UInt16) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo DIn(MccDaq.DigitalPortType portNum, out
ushort dataValue)
public MccDaq.ErrorInfo DIn(MccDaq.DigitalPortType portNum, out
short dataValue)

Parameters:

portNum Specifies which digital I/O port to read. Some hardware does allow readback of the
state of the output using this method. Check the board specific information in the
Universal Library User�s Guide.
Table 17-2 on page 231 shows which ports are in which 82C55 and 8536 digital
chips. The most 82C55s on a single board is eight (8), on the CIO-DIO196. The
most 8536s on a single board is two (2), on the CIO-INT32.

dataValue Digital input value returned here.

Returns:

An ErrorInfo object that indicates the status of the operation.

dataValue - Digital input value returned here

Notes:

The size of the ports vary. If it is an eight bit port, the returned value is in the 0 - 255 range. If it is a four bit
port, the value is in the 0 - 15 range.

Refer to the board-specific information contained in the Universal Library User's Guide for clarification of
valid portNum values (available in PDF format on our website at www.mccdaq.com/PDFmanuals/sm-ul-user-
guide.pdf)

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf
http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Digital I/O Methods DInScan()

237

DInScan()
Multiple reads of digital input port of a high speed digital port on a board with a pacer clock such as the CIO-
PDMA16.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function DInScan(ByVal portNum As MccDaq.DigitalPortType ,
ByVal numPoints As Integer, ByRef rate As Integer, ByVal memHandle
As Integer, ByVal options As MccDaq.ScanOptions) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo DInScan(MccDaq.DigitalPortType portNum, int
numPoints, ref int rate, int memHandle, MccDaq.ScanOptions options)

Parameters:

portNum Specifies which digital I/O port to read (usually, FirstPortA or FirstPortB). The
specified port must be configured as an input.

numPoints The number of times to read digital input.

rate Number of times per second (Hz) to read the port. The actual sampling rate in
some cases will vary a small amount from the requested rate. The actual rate will
be returned to the rate parameter.

memHandle Handle for Windows buffer to store data in (Windows). This buffer must have been
previously allocated with the WinBufAlloc() method.

options Bit fields that control various options. Set it to one of the constants in the "options "
section below.

Transfer method - May not be specified. DMA is used.

Returns:

An ErrorInfo object that indicates the status of the operation.

rate - actual sampling rate returned.

memHandle - digital input value returned via allocated Windows buffer.

options parameter values:

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these
constants, you must refer to the MccDaq object and the ScanOptions enumeration (variable =
MccDaq.ScanOptions.Background, variable = MccDaq.ScanOptions.Continuous, etc.).

Background If the Background option is not used, the DInScan() method will not return to
your program until all of the requested data has been collected and returned to
DataBuffer.
When the Background option is used, control will return immediately to the next
line in your program and the transfer from the digital input port to DataBuffer will
continue in the background. Use GetStatus() to check on the status of the
background operation. Use StopBackground() to terminate the background
process before it has completed.

Continuous This option puts the method in an endless loop. Once it transfers the required
number of bytes it resets to the start of dataBuffer and begins again. The only
way to stop this operation is with StopBackground().

Digital I/O Methods DInScan()

238

Normally this option should be used in combination with Background so that your
program will regain control.

ExtClock If this option is used then transfers will be controlled by the signal on the trigger
input line rather than by the internal pacer clock. Each transfer will be triggered on
the appropriate edge of the trigger input signal (refer to board-specific info). When
this option is used, the rate parameter is ignored. The transfer rate is dependent on
the trigger signal.

WordXfer Normally this method reads a single (byte) port. If WordXfer is specified then it
will read two adjacent ports on each read and store the value of both ports together
as the low and high byte of a single array element in dataBuffer[].

Notes:

Transfer method - May not be specified. DMA is used.

Digital I/O Methods DOut()

239

DOut()
Writes a byte to a digital output port. If the port type is not AuxPort, you must use DConfigPort() to
configure the port for output first. If the port type is AuxPort, you may need to use DConfigPort() to
configure the port for output first. Check the board specific information in the Universal Library User's
Guide (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) to determine if
AuxPort should be configured for your hardware.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function DOut(ByVal portNum As MccDaq.DigitalPortType, ByVal
dataValue As Short) As MccDaq.ErrorInfo
Public Function DOut(ByVal portNum As MccDaq.DigitalPortType, ByVal
dataValue As System.UInt16) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo DOut(MccDaq.DigitalPortType portNum, ushort
dataValue)
public MccDaq.ErrorInfo DOut(MccDaq.DigitalPortType portNum, short
dataValue)

Parameters:

portNum There are three general types of digital ports - ports that are programmable as input
or output, ports that are fixed input or output, and ports for which each bit may be
programmed as input or output. For the first of these types, set portNum to
FirstPortA. For the latter two types, set portNum to AuxPort. Some boards have
both types of digital ports (DAS1600). Set portNum to either FirstPortA or
AuxPort depending on which digital port you wish to write to. Table 17-2 on page
231 shows which ports are in which 82C55 and 8536 digital chips. The most
82C55 chips on a single board is eight (8), on the CIO-DIO196. The most 8536
chips on a board is two (2) on the CIO-INT32.

dataValue Digital input value to be written.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

The size of the ports vary. If it is an eight bit port, the output value is in the 0 - 255 range. If it is a four bit
port, the value is in the 0 - 15 range. Refer to the board-specific information in the Universal Library User's
Guide for valid portNum values (available in PDF format on our website at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf)

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf
http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Digital I/O Methods DOutScan()

240

DOutScan()
Performs multiple writes to a digital output port of a high speed digital port on a board with a pacer clock,
such as the CIO-PDMA16 or CIO-PMA32.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function DOutScan(ByVal portNum As MccDaq.DigitalPortType ,
ByVal count As Integer, ByRef rate As Integer, ByVal memHandle As
Integer, ByVal options As MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo DOutScan(MccDaq.DigitalPortType portNum, int
count, ref int rate, int memHandle, MccDaq.ScanOptions options)

Parameters:

portNum Specifies which digital I/O port to write. The two choices are FirstPortA or
FirstPortB. The specified port must be configured as an output.

count The number of times to write digital output.

*rate Number of times per second (Hz) to write to the port. The actual update rate in
some cases will vary a small amount from the requested rate. The actual rate will
be returned to the rate parameter.

memHandle Handle for Windows buffer to store data in (Windows). This buffer must have been
previously allocated with the WinBufAlloc() method.

options Bit fields that control various options. Set it to one of the constants in the "options "
section below.

Returns:

An ErrorInfo object that indicates the status of the operation.

rate - actual sampling rate returned.

options parameter values:

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these
constants, you must refer to the MccDaq object and the ScanOptions enumeration (variable =
MccDaq.ScanOptions.Background, variable = MccDaq.ScanOptions.Continuous, etc.).

Background If the Background option is not used then the DOutScan() method will not return to
your program until all of the requested data has been output.
When the Background option is used, control will return immediately to the next
line in your program and the transfer to the digital output port from dataBuffer
will continue in the background. Use GetStatus() to check on the status of the
background operation. Use StopBackground() to terminate the background
process before it has completed.

Continuous This option puts the method in an endless loop. Once it transfers the required
number of bytes it resets to the start of the buffer and begins again. The only
way to stop this operation is with StopBackground(). Normally this option
should be used in combination with Background so that your program will regain
control.

Digital I/O Methods DOutScan()

241

ExtClock If this option is used then transfers will be controlled by the signal on the trigger
input line rather than by the internal pacer clock. Each transfer will be triggered on
the appropriate edge of the trigger input signal (see board specific information).
When this option is used the rate parameter is ignored. The transfer rate is
dependent on the trigger signal.

WordXfer Normally this method writes a single (byte) port. If WordXfer is specified then it
will write two adjacent ports as the low and high byte of a single array element in
dataBuffer.

Notes:

! MccDaq.ScanOptions.ByteXfer is the default option. Make sure you are using an array when your data
is arranged in bytes. Use the MccDaq.ScanOptions.WordXfer option for word array transfers.

! Transfer method - May not be specified. DMA is used.

243

19
Error Handling Methods and Properties

Introduction
Use the methods and properties explained in this chapter to get information from error codes returned by other
UL for .NET methods. Most library methods return ErrorInfo objects. These objects contain properties that
provide information on the status of the method called. The different routines built into the methods for
handling errors include stopping the program when an error occurs, and printing error messages versus error
codes.

Error Handling Methods and Properties ErrHandling()

244

ErrHandling()
Sets the error handling for all subsequent method calls. Most methods return error codes after each call. In
addition, other error handling features are built into the library. This method controls those features. If the
Universal Library cannot find the configuration file CB.CFG, it always terminates the program, regardless of
the ErrHandling() setting.

Member of the MccService class.

Function prototype:

VB .NET: Public Shared Function ErrHandling(ByVal errorReporting As
MccDaq.ErrorReporting , ByVal errorHandling As MccDaq.ErrorHandling
) As MccDaq.ErrorInfo

C# .NET: public static MccDaq.ErrorInfo ErrHandling(MccDaq.ErrorReporting
errorReporting, MccDaq.ErrorHandling errorHandling))

Parameters:

errorReporting This parameter controls when the library will print error messages on the screen.
The default is DontPrint. Set it to one of the constants in the "errorReporting
parameter values" section below.

errorHandling This parameter specifies what class of error will cause the program to halt. Set it to
one of the constants in the "errorHandling parameter values" section below.

Returns:

Returns an ErrorInfo object that always has ErrorInfo.Value = NOERRORS.

errorReporting parameter values:

All of the errorReporting settings are MccDaq.ErrorReporting enumerated constants. To set a variable to
one of these constants, you must refer to the MccDaq object and the ErrorReporting enumeration (variable =
MccDaq.ErrorReporting.DontPrint, variable = MccDaq.ErrorReporting.PrintWarnings, etc.).

DontPrint Errors will not generate a message to the screen. In that case your program must
always check the returned error code after each library call to determine if an error
occurred.

PrintWarnings Only warning errors will generate a message to the screen. Your program will have
to check for fatal errors.

PrintFatal Only fatal errors will generate a message to the screen. Your program must check
for warning errors.

PrintAll All errors will generate a message to the screen.

errorHandling parameter values:

All of the errorReporting settings are MccDaq.ErrorHandling enumerated constants. To set a variable to
one of these constants, you must refer to the MccDaq object and the ErrorHandling enumeration (variable =
MccDaq.ErrorHandling.DontStop, variable = MccDaq.ErrorHandling.StopFatal, etc.).

DontStop The program will always continue executing when an error occurs.

StopFatal The program will halt if a "fatal" error occurs.

StopAll Will stop whenever any error occurs. You can check error codes to determine the
cause of the error.

Error Handling Methods and Properties ErrHandling()

245

Notes:

Warnings vs. fatal errors: All errors that can occur are classified as either "warnings" or "fatal."

! Errors that can occur in normal operation in a bug free program (disk is full, too few samples before
trigger occurred) are classified as "warnings."

! All other errors indicate a more serious problem and are classified as "fatal."

Error Handling Methods and Properties Message property

246

Message property
Use the ErrorInfo.Message property to get the error message associated with an ErrorInfo object. Most UL
for .NET methods return an ErroInfo object. If an error occurred, an ErroInfo object is returned with the
Message property set to �No error has occurred�.

Member of the ErrorInfo class.

Property prototype:

VB .NET: Public ReadOnly Property Message As String

C# .NET: public string Message [get]

Notes:

Refer to the ErrHandling() method for an alternate method of handling errors.

Error Handling Methods and Properties Value property

247

Value property
Use the ErrorInfo.Value property to get the error constant associated with an ErrorInfo object. Most UL
for .NET methods return an ErroInfo object. If an error occurs, an ErroInfo object is returned with a non-
zero value in the Value property.

Member of the ErrorInfo class.

Property prototype:

VB .NET: Public ReadOnly Property Value As MccDaq.ErrorInfo.ErrorCode

C# .NET: public MccDaq.ErrorInfo.ErrorCode Value [get]

Notes:

Refer to the ErrHandling() method for an alternate method of handling errors.

249

20
Memory Board Methods
Use the functions explained in this chapter to read and write data to and from a memory board, and also set
modes that control memory boards (MEGA-FIFO).

The most common use for the memory boards is to store large amounts of data from an A/D board via a DT-
Connect cable to a memory board. To do this, use the ExtMemory option with AInScan() or APretrig().

Once the data is transferred to the memory board, you can use the memory functions to retrieve it.

Memory Board Methods MemRead()

250

MemRead()
Reads data from a memory board into an array. Member of the MccBoard class.

Function prototype:

VB .NET: Public Function MemRead(ByRef dataBuffer As Short, ByVal firstPoint
As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

 Public Function MemRead(ByRef dataBuffer As System.UInt16, ByVal
firstPoint As Integer, ByVal numPoints As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo MemRead(out short dataBuffer, int
firstPoint, int numPoints)

 public MccDaq.ErrorInfo MemRead(out ushort dataBuffer, int
firstPoint, int numPoints)

Parameters:

dataBuffer Reference to the data array.

firstPoint Index of first point to read, or FromHere. Use the firstPoint parameter to specify
the first point to be read. For example, to read data sample numbers 200 through
250, set firstPoint= 200 and Count = 50.

numPoints Number of data points (words) to read.

Returns:

An ErrorInfo object that indicates the status of the operation.

dataBuffer - data read from the memory board.

Notes:

If you are going to read a large amount of data from the board in small chunks, set firstPoint to FromHere
to read each successive chunk. Using FromHere speeds up the operation of MemRead() when working with
large amounts of data.

For example, to read 300,000 points in 100,000 point chunks, the calls would look like this:
DaqBoard0.MemRead (DataBuffer, 0, 100000)
DaqBoard0.MemRead (DataBuffer, FROMHERE, 1000000)
DaqBoard0.MemRead (DataBuffer, FROMHERE, 1000000)

DT-Connect Conflicts - The MemRead() method can not be called while a DT-Connect transfer is in
progress. For example, if you start collecting A/D data to the memory board in the background (by calling
AInScan() with the DTConnect + Background options) you cannot call MemRead() until the AInScan() has
completed. If you do you will get a DtActive error.

Memory Board Methods MemReadPretrig()

251

MemReadPretrig()
Reads pre-trigger data from a memory board that has been collected with the APretrig() method and re-
arranges the data in the correct order (pre-trigger data first, then post-trigger data). This method can only be
used to retrieve data that has been collected with the APretrig() method with ExtMemory set in the options
parameter. After each APretrig() call, all data must be unloaded from the memory board with this method. If
any more data is sent to the memory board then the pre-trigger data will be lost.

Member of the MccBoard class.

Function Prototype:

VB .NET: Public Function MemReadPretrig(ByRef dataBuffer As Short, ByVal
firstPoint As Integer, ByVal numPoints As Integer) As
MccDaq.ErrorInfo

Public Function MemReadPretrig(ByRef dataBuffer As System.UInt16,
ByVal firstPoint As Integer, ByVal numPoints As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo MemReadPretrig(out short dataBuffer, int
firstPoint, int numPoints)

public MccDaq.ErrorInfo MemReadPretrig(out ushort dataBuffer, int
firstPoint, int numPoints)

Parameters:
dataBuffer Reference to the data array

firstPoint Index of first point to read or FromHere. Use the FirstPoint parameter to specify
the first point to be read. For example, to read data sample numbers 200 through
250, set FirstPoint = 200 and Count = 50.

numPoints Number of data samples (words) to read

Returns:

An ErrorInfo object that indicates the status of the operation.

dataBuffer - data read from memory board

Notes:

If you are going to read a large amount of data from the board in small chunks, set FirstPoint to FromHere
to read each successive chunk. Using FromHere speeds up the operation of MemRead() when working with
large amounts of data.

For example, to read 300,000 points in 100,000 chunks, the calls would look like this:
DaqBoard0.MemReadPretrig (0, DataBuffer, 0, 100000)

DaqBoard0.MemReadPretrig (0, DataBuffer, FROMHERE, 1000000)

DaqBoard0.MemReadPretrig (0, DataBuffer, FROMHERE, 1000000)

DT-Connect Conflicts - The MemRead() method can not be called while a DT-Connect transfer is in
progress. For example, if you start collecting A/D data to the memory board in the background (by calling
AInScan() with the DTConnect + Background options) you cannot call MemRead() until the AInScan() has
completed. If you do you will get a DTACTIVE error.

Memory Board Methods MemReset()

252

MemReset()
Resets the memory board reference to the start of the data. The memory boards are sequential devices. They
contain a counter which points to the 'current' word in memory. Every time a word is read or written this
counter increments to the next word.

Member of the MccBoard class.

Function Prototype:

VB .NET: Public Function MemReset() As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo MemReset()

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

This method is used to reset the counter back to the start of the memory. Between successive calls to
AInScan(), you should call this method so that the second AInScan() overwrites the data from the first
call. Otherwise, the data from the first AInScan() will be followed by the data from the second AInScan() in
the memory on the card.

Likewise, anytime you call MemRead() or MemWrite(), it will leave the counter pointing to the next
memory location after the data that you read or wrote. Call MemReset() to reset back to the start of the
memory buffer before the next call to AInScan().

Memory Board Methods MemSetDTMode()

253

MemSetDTMode()
Sets the DT-Connect Mode of a memory board.

Member of the MccBoard class.

Function Prototype:

VB .NET: Public Function MemSetDTMode(ByVal mode As MccDaq.DTMode) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo MemSetDTMode(MccDaq.DTMode mode)

Parameters:

mode Must be set to either DTIn or DTOut. Set the mode on the memory board to DTIn to
transfer data from an A/D board to the memory board. Set mode = DTOut to transfer
data from a memory board to a D/A board.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

This command only controls the direction of data transfer between the memory board and its parent board that
is connected to it via a DT-Connect cable.

If using the ExtMemory option for AInScan(), etc., this method should not be used. The memory board mode
is already set through the ExtMemory option.

Use this method only if the parent board is not supported by the Universal Library.

Memory Board Methods MemWrite()

254

MemWrite()
Writes data from an array to the memory card.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function MemWrite(ByRef dataBuffer As Short, ByVal firstPoint
As Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

 Public Function MemWrite(ByRef dataBuffer As System.UInt16, ByVal
firstPoint As Integer, ByVal numPoints As Integer) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo MemWrite(ref short dataBuffer, int
firstPoint, int numPoints)

 public MccDaq.ErrorInfo MemWrite(ref ushort dataBuffer, int
firstPoint, int numPoints)

Parameters:

dataBuffer Reference to the data array.

firstPoint Index of first point to write or FromHere. Use the firstPoint parameter to specify
where in the board's memory to write the first point. For example, to write to
location numbers 200 through 250, set
firstPoint= 200 and Count = 50.

numPoints Number of data points (words) to write

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

To write large amount of data to the board in small chunks, set firstPoint to FromHere to write each
successive chunk. Using FromHere speeds up the operation of MemWrite() when working with large amounts
of data.

For example, to write 300,000 points in 100,000 point chunks, the calls would look like this:
DaqBoard1.MemWrite (0, DataBuffer, 0, 100000)
DaqBoard1.MemWrite (0, DataBuffer, FROMHERE, 100000)
DaqBoard1.MemWrite (0, DataBuffer, FROMHERE, 100000)

DT-Connect Conflicts - The MemWrite() method cannot be called while a DT-Connect transfer is in
progress. For example, if you start collecting A/D data to the memory board in the background (by calling
AInScan() with the DTCONNECT + BACKGROUND options). You cannot call MemWrite() until the AInScan()
has completed. If you do, you will get a DTACTIVE error.

255

21
Revision Control Methods and Properties

Introduction
Use the methods and properties explained in this chapter to initialize the Universal Library DLL so that the
underlying functions are interpreted according to the format of the revision you wrote and compiled your
program in.

As new revisions of the library are released, bugs from previous revisions are fixed and occasionally new
methods are added. It is our goal to preserve existing programs you have written and therefore to never
change the order or number of arguments in a method. However, sometimes it is not possible to achieve this
goal.

Revision Control Methods and Properties DeclareRevision()

256

DeclareRevision()
Initializes the Universal Library with the revision number of the library used to write your program. Must be
the first Universal Library for .NET method to be called by your program.

Member of the MccService class.

Function prototype:

VB .NET: Public Shared Function DeclareRevision(ByRef revNum As Single) As
MccDaq.ErrorInfo

C# .NET: public static MccDaq.ErrorInfo DeclareRevision(ref float revNum)

Parameters:

revNum Revision number of the Library to interpret method parameters.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

Default: Any program using the 32-bit library and not containing this line of code will be defaulted to
revision 5.4 parameter assignments.

As new revisions of the library are released, bugs from previous revisions are fixed and occasionally new
functions are added. It is Measurement Computing's goal to preserve existing programs you have written and
therefore to never change the order or number of parameters in a method.

With the DeclareRevision() method, programs do not have to be rewritten in each line where new functions
are used, and the program then recompiled. The revision control method initializes the DLL so that the
functions are interpreted according to the format of the revision that you wrote and compiled your program in.
The method works by interpreting the UL function call from your program and filling in any arguments
needed to run with the new revision.

If your program has declared you are running code written for an earlier revision and you call a new method,
you must rewrite your program to include the new parameter, and declare the current revision in
DeclareRevision().

Revision Control Methods and Properties GetRevision()

257

GetRevision()
Gets the revision level of Universal Library DLL and the VXD.

Member of the MccService class.

Function prototype:

VB .NET: Public Shared Function GetRevision(ByRef revNum As Single, ByRef
vxdRevNum As Single) As MccDaq.ErrorInfo

C# .NET: public static MccDaq.ErrorInfo GetRevision(out float revNum, out
float vxdRevNum)

Parameters:

revNum Place holder for the revision number of Library DLL.

vxdRevNum Place holder for the revision number of Library VXD.

Returns:

revNum - Revision number of the Library DLL

vxdRevNum - Revision number of the Library VXD

An ErrorInfo object that indicates if the revision levels of VXD and DLL are incompatible.

259

22
Streamer File Methods

Introduction
Use the streamer file methods explained in the chapter to create, fill, and read streamer files.

Streamer File Methods FileAInScan()

260

FileAInScan()
Scans a range of A/D channels and stores the samples in a disk file. FileAInScan() reads the specified
number of A/D samples at the specified sampling rate from the specified range of A/D channels from the
specified board. If the A/D board has programmable gain, it sets the gain to the specified range. The collected
data is returned to a file in binary format. Use FileRead() to load data from that file into an array. See
board specific information to determine if this method is supported on your board.

Member of the MccBoard class.

Function Prototype:

VB .NET: Public Function FileAInScan(ByVal lowChan As Integer, ByVal highChan
As Integer, ByVal numPoints As Integer, ByRef rate As Integer, ByVal
range As MccDaq.Range , ByVal fileName As String, ByVal options As
MccDaq.ScanOptions) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo FileAInScan(int lowChan, int highChan, int
numPoints, ref int rate, MccDaq.Range range, string fileName,
MccDaq.ScanOptions options)

Parameters:

lowChan First A/D channel of scan.

highChan Last A/D channel of scan.
The maximum allowable channel depends on which type of A/D board is being
used. For boards with both single ended and differential inputs, the maximum
allowable channel number also depends on how the board is configured (for
example, eight channels for differential, 16 for single ended).

numPoints Specifies the total number of A/D samples that will be collected. If more than one
channel is being sampled, the number of samples collected per channel is equal to
Count / (HighChan-LowChan+1).

rate Sample rate in samples per second (Hz) per channel. The maximum sampling rate
depends on the A/D board that is being used (refer to the rate description in
AInScan()).

range If the selected A/D board does not have a programmable range feature, this
parameter is ignored. Otherwise set the range parameter to any range that is
supported by the selected A/D board. Refer to Table 14-1 on page 155 for a list of
valid range settings. Refer to board specific information for a list of the supported
A/D ranges of each board.

filename The name of the file in which to store the data. If the file doesn�t exist, it will be
created. (When using the 16 bit version of the Universal Library, the named file
must already exist. It should have been previously created with the
MAKESTRM.EXE program.)

options Bit fields that control various options. Set it to one of the constants in the "options "
section on page 261.

Returns:

An ErrorInfo object that indicates the status of the operation.

rate = actual sampling rate

Streamer File Methods FileAInScan()

261

options :

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these
constants, you must refer to the MccDaq object and the ScanOptions enumeration (variable =
MccDaq.ScanOptions.ExtClock, variable = MccDaq.ScanOptions.ExtTrigger, etc.).

ExtClock If this option is used, conversions are controlled by the signal on the trigger input
line rather than by the internal pacer clock. Each conversion is triggered on the
appropriate edge of the trigger input signal (see board specific info). Additionally,
the rate parameter is ignored. The sampling rate is dependent on the trigger
signal.

ExtTrigger If this option is specified, the sampling does not begin until the trigger condition is
met.
On many boards, this trigger condition is programmable (see SetTrigger()
method and board specific info for details) and can be programmed for rising or
falling edge or an analog level.
On other boards, only "polled gate" triggering is supported. Assuming active high
operation, data acquisition commences immediately if the trigger input is high. If
the trigger input is low, acquisition is held off until it goes high. Acquisition
continues until numPoints& samples are taken, regardless of the state of the trigger
input. For �polled gate� triggering, this option is most useful if the signal is a pulse
with a very low duty cycle (trigger signal in TTL low state most of the time) to
hold off triggering until the pulse occurs.

DtConnect Samples are sent to the DT-Connect port if the board is equipped with one.

Notes:

Important
In order to understand the functions, you must read the board-specific information contained in the Universal
Library User's Guide (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).
Review and run the example programs before attempting to program yourself. Following this advice will save
you hours of frustration, and possibly time wasted holding for technical support.
This note, which appears elsewhere, is especially applicable to this method. Read the board-specific
information for your board. We suggest that you make a copy of that page to refer to as you read this manual
and examine the example programs.

OverRun error (Error code 29): This error indicates that the data was not written to the file as fast as the data
was sampled. Consequently some data was lost. The value returned from FileGetInfo() in *TotalCount
is the number of points that were successfully collected.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Streamer File Methods FileGetInfo()

262

FileGetInfo()
This method returns information about a streamer file. When FileAInScan() or FilePretrig() fills
the streamer file, information is stored about how the data was collected (sample rate, channels sampled etc.).
This method returns that information. See board specific info to determine if this method is supported on your
board.

Member of the MccService class.

Function prototype:

VB .NET: Public Shared Function FileGetInfo(ByVal fileName As String, ByRef
lowChan As Short, ByRef highChan As Short, ByRef pretrigCount As
Integer, ByRef totalCount As Integer, ByRef rate As Integer, ByRef
range As MccDaq.Range) As MccDaq.ErrorInfo

C# .NET: public static MccDaq.ErrorInfo FileGetInfo(string fileName, out
short lowChan, out short highChan, out int pretrigCount, out int
totalCount, out int rate, out MccDaq.Range range)

Parameters:

fileName Name of streamer file.

lowChan Variable to return lowChan to.

highChan Variable to return highChan to.

pretrigCount Variable to return pretrigCount to.

totalCount Variable to return totalCount to.

rate Variable to return sampling rate to.

range Variable to return A/D range code to. Refer to Table 14-1 on page 155 for a list of
valid range settings.

Returns:

An ErrorInfo object that indicates the status of the operation.

lowChan - low A/D channel of scan

highChan - high A/D channel of scan

totalCount - total number of points collected

pretrigCount - number of pre-trigger points collected

rate - sampling rate when data was collected

range - Range of A/D when data was collected

Streamer File Methods FilePretrig()

263

FilePretrig()
Scan a range of channels continuously while waiting for a trigger.

Once the trigger occurs, FilePretrig() returns the specified number of samples, including the specified
number of pre-trigger samples to a disk file. This method waits for a trigger signal to occur on the Trigger
Input. Once the trigger occurs, it returns the specified number (TotalCount) of A/D samples, including the
specified number of pre-trigger points. It collects the data at the specified sampling rate (rate) from the
specified range (lowChan-highChan) of A/D channels from the specified board. If the A/D board has
programmable gain then it sets the gain to the specified range. The collected data is returned to a file. See
board specific info to determine if this method is supported by your board.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function FilePretrig(ByVal lowChan As Integer, ByVal highChan
As Integer, ByRef pretrigCount As Integer, ByRef totalCount As
Integer, ByRef rate As Integer, ByVal range As MccDaq.Range , ByVal
fileName As String, ByVal options As MccDaq.ScanOptions) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo FilePretrig(int lowChan, int highChan, ref
int pretrigCount, ref int totalCount, ref int rate, MccDaq.Range
range, string fileName, MccDaq.ScanOptions options)

Parameters:

lowChan First A/D channel of scan

highChan Last A/D channel of scan
The maximum allowable channel depends on which type of A/D board is being
used. For boards that have both single ended and differential inputs the maximum
allowable channel number also depends on how the board is configured. Refer to
board-specific information for the maximum number of channels allowed in
differential and single ended modes.

pretrigCount Specifies the number of samples before the trigger that will be returned.
PretrigCount must be less than 16000, and PretrigCount must also be less than
TotalCount - 512.
If the trigger occurs too early, then fewer than the requested number of pre-trigger
samples will be collected. In that case a TooFew error will occur. The PretrigCount
will be set to indicate how many samples were collected and the post trigger
samples will still be collected.

totalCount Sets the total number of samples to be collected and stored in the file. TotalCount
must be greater than or equal to PretrigCount + 512.
If the trigger occurs too early, fewer than the requested number of samples will be
collected and a TooFew error will occur. The TotalCount will be set to indicate how
many samples were actually collected.

rate Sample rate in samples per second (Hz) per channel. The maximum sampling rate
depends on the A/D board that is being used. This is the rate at which scans are
triggered.

Streamer File Methods FilePretrig()

264

If you are sampling 4 channels, 0 - 3, then specifying a rate of 10,000 scans per
second (10 kHz) will result in the A/D converter rate of 40 kHz: 4 channels at
10,000 samples per channel per second. This is different from some software,
where you specify the total A/D chip rate. In those systems, the per channel rate is
equal to the A/D rate divided by the number of channels in a scan. This parameter
also returns the value of the actual set. This may be different from the requested
rate because of pacer limitations.

range If the selected A/D board does not have a programmable range feature, this
parameter is ignored. Otherwise, set the range parameter to any range that is
supported by the selected A/D board. Refer to Table 14-1 on page 155 for a list of
valid range settings. Refer to board specific information for a list of the supported
A/D ranges of each board.

filename The name of the file in which to store the data. If the file doesn�t exist, it will be
created. (When using the 16 bit version of the Universal Library, the named file
must already exist. It should have been previously created with the
MAKESTRM.EXE program.)

options Bit fields that control various options. Set it to one of the constants in the "options "
section below.

Returns:

An ErrorInfo object that indicates the status of the operation.

preTrigCount - actual number of pre-trigger samples collected

totalCount - actual number of samples collected

rate = actual sampling rate

options parameter values:

All of the options settings are MccDaq.ScanOptions enumerated constants. To set a variable to one of these
constants, you must refer to the MccDaq object and the ScanOptions enumeration (variable =
MccDaq.ScanOptions.ExtClock or variable = MccDaq.ScanOptions.DtConnect).

ExtClock If this option is used then conversions will be controlled by the signal on the trigger
input line rather than by the internal pacer clock. Each conversion will be triggered
on the appropriate edge of the trigger input signal (see board specific info). When
this option is used the rate parameter is ignored. The sampling rate is dependent
on the trigger signal.

DtConnect Samples are sent to the DT-Connect port if the board is equipped with one.

Notes:

OverRun error (Error code 29): This error indicates that the data was not written to the file as fast as the
data was sampled. Consequently some data was lost. The value in TotalCount will be the number of points
that were successfully collected.

Streamer File Methods FileRead()

265

FileRead()
This method reads data from a streamer file. Refer to board-specific information to determine if this method is
supported on your board.

Member of the MccService class.

Function prototype:

VB .NET: Public Shared Function FileRead(ByVal fileName As String, ByVal
firstPoint As Integer, ByRef numPoints As Integer, ByRef dataBuffer
As Short) As MccDaq.ErrorInfo

Public Shared Function FileRead(ByVal fileName As String, ByVal
firstPoint As Integer, ByRef numPoints As Integer, ByRef dataBuffer
As System.UInt16) As MccDaq.ErrorInfo

C# .NET: public static MccDaq.ErrorInfo FileRead(string fileName, int
firstPoint, ref int numPoints, out ushort dataBuffer)

public static MccDaq.ErrorInfo FileRead(string fileName, int
firstPoint, ref int numPoints, out short dataBuffer)

Parameters:

filename Name of streamer file.

firstPoint Index of first point to read.

totalCount Number of points to read from file.

dataBuffer Reference to data buffer that data will be read into.

Returns:

An ErrorInfo object that indicates the status of the operation.

dataBuffer - data read from a file.

totalCount - number of points actually read.

totalCount may be less than the requested number of points if an error occurs.

Notes:

Data format: The data is returned as 16 bits. The 16 bits may represent 12 bits of analog, 12 bits of analog
plus 4 bits of channel, or 16 bits of analog. Use AConvertData() to correctly load the data into an array.

Loading portions of files: The file may contain much more data than can fit in dataBuffer. In those cases,
use totalCount and firstPoint to read a selected piece of the file into dataBuffer. Call FileGetInfo()
first to find out how many points are in the file.

267

23
Temperature Input Methods

Introduction
Use the methods explained in this chapter to convert a raw analog input from an EXP or other temperature
sensor board to temperature.

Temperature Input Methods TIn()

268

TIn()
Reads an analog input channel, linearizes it according to the selected temperature sensor type, and returns the
temperature in degrees.

The CJC channel, the gain, and sensor type, are read from the InstaCal configuration file. They should be set
by running the InstaCal® configuration program.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function TIn(ByVal chan As Integer, ByVal scale As
MccDaq.TempScale , ByRef tempValue As Single, ByVal options As
MccDaq.ThermocoupleOptions) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo TIn(int chan, MccDaq.TempScale scale, out
float tempValue, MccDaq.ThermocoupleOptions options)

Parameters:

chan Input channel to read.

scale Specifies the temperature scale that the input is converted to. Choices are
MccDaq.TempScale.Celsius, MccDaq.TempScale.Fahrenheit and
MccDaq.TempScale.Kelvin.

tempValue The temperature in degrees is returned here. Thermocouple resolution is
approximately 0.25 °C, depending on scale, range and thermocouple type. RTD
resolution is 0.1 °C.

options Bit fields that control various options. Set it to one of the constants in the "options
parameter values" section below.

Returns:

An ErrorInfo object that indicates the status of the operation.

tempValue - Temperature returned here

options parameter values:

All of the options settings are MccDaq.ThermocoupleOptions enumerated constants. To set a variable to one
of these constants, you must refer to the MccDaq object and the ThermocoupleOptions enumeration (variable
= MccDaq.ThermocoupleOptions.Filter or variable = MccDaq.ThermocoupleOptions.NoFilter).

Filter When selected, a smoothing function is applied to temperature readings, very much
like the electrical smoothing inherent in all hand held temperature sensor
instruments. This is the default. Ten samples are read from the specified channel
and averaged. The average is the reading returned. Averaging removes normally
distributed signal line noise.

NoFilter When selected, the temperature readings are not smoothed, resulting in a scattering
of readings around a mean.

Notes:

Using CIO-EXP boards: For CIO-EXP boards, the channel number is calculated using the following
formula, where:

! ADChan is the A/D channel that is connected to the multiplexer

Temperature Input Methods TIn()

269

! MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the
multiplexer board
Chan = (ADChan * 16) + (16 + MuxChan)

For example, you have an EXP16 connected to a CIO-DAS08 via the CIO-DAS08 channel 0. (Remember that
DAS08 channels are numbered 0, 1, 2, 3, 4, 5, 6 & 7). If you connect a thermocouple to channel 5 of the
EXP16, the value for chan would be (0 * 16) + (16 + 5)= 0 + 21 = 21.

Using 6K-EXP boards: For 6K-EXP boards, the channel number is calculated using one of the following
formulas, where:

! ADChan is the A/D channel that is connected to the multiplexer.

! MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the
multiplexer board.

! If the A/D board has 16 or less single-ended channels:
Chan = (ADChan * 16) + (16 + MuxChan)

For example, you have a 6K-EXP16 connected to a PCI-DAS6052 via the a PCI-DAS6052 channel 0. If
you connect a thermocouple to channel 5 of the 6K-EXP16, the value for Chan would be (0 * 16) + (16 +
5)= 0 + 21 = 21.

! If the A/D board has 64 single-ended channels and the A/D multiplexer channel is less than or equal to 7:
Chan = (ADChan * 16) + (64 + MuxChan)

For example, you have a 6K-EXP16 connected to a PCI-DAS6031 via the a PCI-DAS6031 channel 7. If
you connect a thermocouple to channel 5 of the 6K-EXP16, the value for Chan would be (7 * 16) + (64 +
5) = 112 + 69 = 181.

! If the A/D board has 64 single-ended channels and the A/D multiplexer channel is greater than or equal
to 31:
Chan = (ADChan * 16 � 320) + MuxChan

For example, you have a 6K-EXP16 connected to a PCI-DAS6031 via the PCI-DAS6031 channel 32. If
you connect a thermocouple to channel 5 of the 6K-EXP16, the value for Chan would be (32 * 16 � 320)
+ 5 = 192 + 5 = 197.

CJC Channel: The Cold Junction Compensation (CJC) channel is set in the InstaCal install program. If you
have multiple EXP boards, Universal Library will apply the CJC reading to the linearization formula in the
following manner:

First, if you have chosen a CJC channel for the EXP board that the channel you are reading is on, it will use
the CJC temp reading from that channel.

Second, if you left the CJC channel for the EXP board that the channel you are reading is on to NOT SET, the
library will use the CJC reading from the next lower EXP board with a CJC channel selected.

For example: You have 4 CIO-EXP16 boards connected to a CIO-DAS08 on channel 0, 1, 2 and 3. You
choose CIO-EXP16 #1 (connected to CIO-DAS08 channel 0) to have its CJC read on CIO-DAS08 channel 7,
AND, you leave the CIO-EXP16's 2, 3 and 4 CJC channels to NOT SET. Result: The CIO-EXP boards all use
the CJC reading from CIO-EXP16 #1, connected to channel 7 for linearization. As you can see, it is important
to keep the CIO-EXP boards in the same case and out of any breezes to ensure a clean CJC reading.

A/D range (Important): If the EXP board is connected to an A/D that does not have programmable gain
(DAS08, DAS16, DAS16F) then the A/D board range is read from the configuration file (cb.cfg). In most
cases, hardware selectable ranges should be set to ±5 V for thermocouples and 0 to 10 V for RTDs. Refer to
the board-specific information in the Universal Library User's Guide (available on our web site at

Temperature Input Methods TIn()

270

www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) or in the user manual for your board. If the board does
have programmable RTDs gains, the TIn() method will set the appropriate A/D range.

Specific Errors: If an OutOfRange or OpenConnection error occurs, the value returned is -9999.0.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Temperature Input Methods TInScan()

271

TInScan()
Reads a range of channels from an analog input board, linearizes them according to temperature sensor type,
and returns the temperatures to an array in degrees.

The CJC channel, the gain, and temperature sensor type are read from the configuration file. Use the
InstaCal® configuration program to change any of these options.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function TInScan(ByVal lowChan As Integer, ByVal highChan As
Integer, ByVal scale As MccDaq.TempScale , ByVal dataBuffer As
Single(), ByVal options As MccDaq.ThermocoupleOptions) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo TInScan(int lowChan, int highChan,
MccDaq.TempScale scale, out float dataBuffer,
MccDaq.ThermocoupleOptions options)

Parameters:

lowChan Low mux channel of scan.

highChan High mux channel of scan.

scale Specifies the temperature scale that the input is converted to. Choices are
MccDaq.TempScale.Celsius, MccDaq.TempScale.Fahrenheit and
MccDaq.TempScale.Kelvin.

dataBuffer The temperature is returned in degrees. Each element in the array corresponds to a
channel in the scan. dataBuffer must be at least large enough to hold highChan -
lowChan + 1 temperature values. Thermocouple resolution is approximately 0.25
°C, depending on scale, range and thermocouple type. RTD resolution is 0.1 °C.

options Bit fields that control various options. Set it to one of the constants in the "options
parameter values" section below.

Returns:

An ErrorInfo object that indicates the status of the operation.

dataBuffer[] - Temperature values in degrees are returned here for each channel in scan.

options parameter values:

All of the options settings are MccDaq.ThermocoupleOptions enumerated constants. To set a variable to one
of these constants, you must refer to the MccDaq object and the ThermocoupleOptions enumeration (variable
= MccDaq.ThermocoupleOptions.Filter or variable = MccDaq.ThermocoupleOptions.NoFilter).

Filter When selected, a smoothing function is applied to temperature readings, very much
like the electrical smoothing inherent in all hand held temperature sensor
instruments. This is the default. Ten samples are read from the specified channel
and averaged. The average is the reading returned. Averaging removes normally
distributed signal line noise.

NoFilter When selected, the temperature readings are not smoothed, resulting in a scattering
of readings around a mean.

Notes:

Using EXP boards: For EXP boards, these channel numbers (Chan) are calculated using the following
formula:

Temperature Input Methods TInScan()

272

! ADChan = A/D channel that is connected to the multiplexer

! MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the
multiplexer board
Chan = (ADChan * 16) + (16 + MuxChan)

For example, you have an EXP16 connected to a CIO-DAS08 via the CIO-DAS08 channel 0. (Remember,
DAS08 channels are numbered 0, 1, 2, 3, 4, 5, 6 & 7). If you connect thermocouples to channels 5, 6, and 7 of
the EXP16, the value for lowChan would be (0+1) * 16 + 5 = 21, and the value for highChan would be (0+1) *
16 + 7 = 23.

Important
For an EXP board connected to an A/D board that does not have programmable gain (DAS08, DAS16,
DAS16F), the A/D board range is read from the configuration file (cb.cfg). In most cases, set hardware-
selectable ranges to ±5 V for thermocouples, and to 0 to 10 V for RTDs. Refer to the board-specific
information in the Universal Library User's Guide (available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) or in the user manual for your board. If the board has
programmable RTDs gains, the TIn() method sets the appropriate A/D range.

Using 6K-EXP boards: For 6K-EXP boards, the channel number (Chan) is calculated using one of the
following formulas, where:

! ADChan is the A/D channel that is connected to the multiplexer.

! MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the
multiplexer board.

! If the A/D board has 16 or less single-ended channels:
Chan = (ADChan * 16) + (16 + MuxChan)

For example, you have a 6K-EXP16 connected to a PCI-DAS6052 via the a PCI-DAS6052 channel 0. If
you connect a thermocouple to channels 5, 6, and 7 of the 6K-EXP16, the value for lowChan would be (0
* 16) + (16 + 5)= 0 + 21 = 21, and the value for highChan would be (0 * 16) + (16 + 5)= 0 + 231 = 23.

! If the A/D board has 64 single-ended channels and the A/D multiplexer channel is less than or equal to 7:
Chan = (ADChan * 16) + (64 + MuxChan)

For example, you have a 6K-EXP16 connected to a PCI-DAS6031 via the a PCI-DAS6031 channel 7. If
you connect a thermocouple to channels 5, 6, and 7 of the 6K-EXP16, the value for lowChan would be (7
* 16) + (64 + 5) = 112 + 69 = 181, and the value for highChan would be (7 * 16) + (64 + 7) = 112 + 71 =
183.

! If the A/D board has 64 single-ended channels and the A/D multiplexer channel is greater than or equal
to 32:
Chan = (ADChan * 16 � 320) + MuxChan

For example, you have a 6K-EXP16 connected to a PCI-DAS6031 via the PCI-DAS6031 channel 32. If
you connect a thermocouple to channels 5, 6, and 7 of the 6K-EXP16, the value for lowChan would be
(32 * 16 � 320) + 5 = 192 + 5 = 197, and the value for highChan would be (32 * 16 � 320) + 7 = 192 + 7
= 199.

CJC Channel: The Cold Junction Compensation (CJC) channel is set in the InstaCal install program. If you
have multiple EXP boards, Universal Library will apply the CJC reading to the linearization formula in the
following manner:

! First, if you have chosen a CJC channel for the EXP board that the channel you are reading is on, it will
use the CJC temp reading from that channel.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Temperature Input Methods TInScan()

273

! Second, if you have left the CJC channel for the EXP board that the channel you are reading is on to NOT
SET, the library will use the CJC reading from the next lower EXP board with a CJC channel selected.

For example: You have 4 CIO-EXP16 boards connected to a CIO-DAS08 on channel 0, 1, 2 and 3. You
choose CIO-EXP16 #1 (connected to CIO-DAS08 channel 0) to have its CJC read on CIO-DAS08 channel 7,
AND, you leave the CIO-EXP16's 2, 3 and 4 CJC channels to NOT SET. Result: The CIO-EXP boards all use
the CJC reading from CIO-EXP16 #1, connected to channel 7 for linearization. As you can see, it is important
to keep the CIO-EXP boards in the same case and out of any breezes to ensure a clean CJC reading.

Important
In order to understand the functions, you must read the board-specific information contained in the Universal
Library User's Guide (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

Review and run the example programs before attempting any programming of your own. Following this
advice will save you hours of frustration, and possibly time wasted holding for technical support.

This note, which appears elsewhere, is especially applicable to this method. Read the board-specific
information for your board (see the Universal Library User's Guide). We suggest that you make a copy of that
page to refer to as you read this manual and examine the example programs.

Specific errors: For most boards, if an OUTOFRANGE or OPENCONNECTION error occurs, the value in the array
element associated with the channel causing the error returned will be -9999.0 (Refer to board-specific
information).

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

275

24
Windows Memory Management Methods

Introduction
Use the methods explained in this section to allocate, free, and copy to/from Windows global memory buffers.

Windows Memory Management Methods WinBufAlloc()

276

WinBufAlloc()
Allocates a Windows global memory buffer which can be used with the scan functions and returns a memory
handle for it.

Member of the MccService class.

Function prototype:

VB .NET: Public Shared Function WinBufAlloc(ByVal numPoints As Integer) As
Integer

C# .NET: public static int WinBufAlloc(int numPoints)

Parameters:

numPoints Size of buffer to allocate. Specifies how many data points (16-bit integers, NOT
bytes) can be stored in the buffer.

Returns:
0 if buffer could not be allocated or a non-zero integer handle to the buffer.

Notes:

Unlike most other methods in the library, this method does not return an ErrorInfo object. It returns a
Windows global memory handle, which can then be passed to the scan functions in the library. If an error
occurs, the handle will come back as 0 to indicate the error.

Windows Memory Management Methods WinBufFree()

277

WinBufFree()
Frees a Windows global memory buffer which was previously allocated with the WinBufAlloc() method.

Member of the MccService class.

Function prototype:

VB .NET: Public Shared Function WinBufFree(ByVal memHandle As Integer) As
MccDaq.ErrorInfo

C# .NET: public static MccDaq.ErrorInfo WinBufFree (int memHandle)

Parameters:

memHandle A Windows memory handle. This must be a memory handle that was returned by
WinBufAlloc() when the buffer was allocated.

Returns:

An ErrorInfo object that indicates the status of the operation.

Windows Memory Management Methods WinArrayToBuf()

278

WinArrayToBuf()
Copies data from an array into a Windows memory buffer.

Member of the MccService class.

Function prototype:

VB .NET: Public Shared Function WinArrayToBuf(ByRef dataArray As Short, ByVal
memHandle As Integer, ByVal firstPoint As Integer, ByVal numPoints
As Integer) As MccDaq.ErrorInfo

Public Shared Function WinArrayToBuf(ByRef dataArray As
System.UInt16, ByVal memHandle As Integer, ByVal firstPoint As
Integer, ByVal numPoints As Integer) As MccDaq.ErrorInfo

C# .NET: public static MccDaq.ErrorInfo WinArrayToBuf(ref ushort dataArray,
int memHandle, int firstPoint, int numPoints)

public static MccDaq.ErrorInfo WinArrayToBuf(ref short dataArray,
int memHandle, int firstPoint, int numPoints)

Parameters:

dataArray The array containing the data to be copied.

memHandle This must be a memory handle that was returned by WinBufAlloc() when the
buffer was allocated. The data will be copied into this buffer.

firstPoint Index of first point in memory buffer where data will be copied to.

numPoints Number of data points to copy.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

This method copies data from an array to a Windows global memory buffer. This would typically be used to
initialize the buffer with data before doing an output scan. Using the firstPoint and count parameter it is
possible to fill a portion of the buffer. This can be useful if you want to send new data to the buffer after a
Background + Continuous scan command has sent the old data - i.e. circular buffering.

Windows Memory Management Methods WinBufToArray()

279

WinBufToArray()
Copies data from a Windows memory buffer into an array.

Member of the MccService class.

Function prototype:

VB .NET: Public Shared Function WinBufToArray(ByVal memHandle As Integer,
ByVal dataArray As System.UInt16(), ByVal firstPoint As Integer,
ByVal numPoints As Integer) As MccDaq.ErrorInfo

Public Shared Function WinBufToArray(ByVal memHandle As Integer,
ByRef dataArray As Short, ByVal firstPoint As Integer, ByVal
numPoints As Integer) As MccDaq.ErrorInfo

C# .NET: public static MccDaq.ErrorInfo WinBufToArray (int memHandle, out
ushort dataArray, int firstPoint, int numPoints)

public static MccDaq.ErrorInfo WinBufToArray (int memHandle, out
short dataArray, int firstPoint, int numPoints)

Parameters:

memHandle This must be a memory handle that was returned by WinBufAlloc() when the
buffer was allocated. The buffer should contain the data that you want to copy.

dataArray The array that the data will be copied to.

firstPoint Index of first point in memory buffer that data will be copied from.

numPoints Number of data points to copy.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

This method copies data from a Windows global memory buffer to an array. This would typically be used to
retrieve data from the buffer after executing an input scan method.

Using the firstPoint and numPoints parameters, it is possible to copy only a portion of the buffer to the
array. This can be useful if you want foreground code to manipulate previously collected data while a
Background scan continues to collect new data.

281

25
Miscellaneous Methods, Properties, and Delegates

Introduction
The methods and properties explained in this chapter do not as a group fit into a single category. They get and
set board information, convert units, manage events and background operations, and perform serial
communication operations.

Miscellaneous Methods, Properties, and Delegates BoardName property

282

BoardName property
Name of the board associated with an instance of the MccBoard class.

Member of the MccBoard class.

Function prototype:

VB .NET: Public ReadOnly Property BoardName As String

C# .NET: public string BoardName [get]

Miscellaneous Methods, Properties, and Delegates DisableEvent()

283

DisableEvent()
Disables one or more event conditions, and disconnects their user-defined handlers.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function DisableEvent(ByVal eventType As MccDaq.EventType)
As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo DisableEvent(MccDaq.EventType eventType)

Parameters:

eventType Specifies one or more event conditions that will be disabled. More than one event
type can be specified by bitwise OR'ing the event types. Note that specifying an
event that has not been enabled is benign and will not cause any errors. Refer to
"eventType " on page 284 for a list of valid event types.
To disable all events in a single call, use AllEventTypes.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

For most event types, this method cannot be called while any background operations (AInScan(),
APretrig(), or AOutScan()) are active. Perform a StopBackground() before calling
EnableEvent(). However, for OnExternalInterrupt events, you can call DisableEvent() while the
board is actively generating events.

Important
In order to understand the functions, you must read the board-specific information contained in the Universal
Library User's Guide (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

Review and run the example programs before attempting any programming of your own. Following this
advice will save you hours of frustration, and possibly time wasted holding for technical support.

This note, which appears elsewhere, is especially applicable to this method. Now is the time to read the board-
specific information for your board (see the Universal Library User's Guide). We suggest that you make a
copy of that page to refer to as you read this manual and examine the example programs.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Miscellaneous Methods, Properties, and Delegates EnableEvent()

284

EnableEvent()
This method binds one or more event conditions to a user-defined callback function. Upon detection of an
event condition, the user-defined function is invoked with board- and event-specific data. Detection of event
conditions occurs in response to interrupts. Typically, this method is used in conjunction with interrupt driven
processes such as AInScan, APretrig, or AOutScan.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function EnableEvent(ByVal eventType As MccDaq.EventType ,
ByVal eventParameter As Integer, ByVal callbackFunc As
MccDaq.EventCallback, ByVal userData As IntPtr) As MccDaq.ErrorInfo

Public Function EnableEvent(ByVal eventType As MccDaq.EventType,
ByVal eventParameter As System.UInt32, ByVal callbackFunc As
MccDaq.EventCallback, ByVal userData As IntPtr) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo EnableEvent(MccDaq.EventType eventType, uint
eventParameter, MccDaq.EventCallback callbackFunc, System.IntPtr
userData)

public MccDaq.ErrorInfo EnableEvent(MccDaq.EventType eventType, int
eventParameter, MccDaq.EventCallback callbackFunc, System.IntPtr
userData)

Parameters:

eventType Specifies one or more event conditions that will be bound to the user-defined
callback function. More than one event type can be specified by bitwise OR'ing the
event types. Set it to one of the constants in the "eventType " section below.

eventParameter Additional data required to specify some event conditions such as the
OnDataAvailable event. For OnDataAvailable events, this is used to determine
the minimum number of samples to acquire during an analog input scan before
generating the event.
Most event conditions ignore this value.

callbackFunc A delegate type that is the user-defined callback function to handle the above event
type(s). A delegate is a data structure that refers either to a static method, or to a
class instance and an instance method of that class.
The callbackFunc needs the same parameters as the EventCallback delegate
declaration. Refer to the "EventCallback delegate" section on page 286 for proper
syntax and return values.

userData Reference to user-defined data that is passed to the EventCallback delegate. This
parameter is NOT de-referenced by the library or its drivers; as a consequence, a
NULL pointer can be supplied.

Returns:

An ErrorInfo object that indicates the status of the operation.

eventType parameter values:

OnScanError Generates an event upon detection of a driver error during Background input and
output scans. This includes OverRun, UnderRun, and TooFew errors.

OnExternalInterrupt For some digital and counter boards, generates an event upon detection of a pulse
at the External Interrupt pin.

OnPretrigger For APretrig(), generates an event upon detection of the first trigger.

Miscellaneous Methods, Properties, and Delegates EnableEvent()

285

OnDataAvailable Generates an event whenever the number of samples acquired during an analog
input scan increases by EventParam samples or more. Note that for BlockIo scans,
events will be generated on packet transfers; for example, even if EventParam is
set to 1, events will only be generated every packet-size worth of data (256
samples for the PCI-DAS1602) for aggregate rates greater than 1 kHz for the
default AInScan() mode.
For APretrig(), the first event is not generated until a minimum of EventParam
samples after the pretrigger.

OnEndOfAiScan Generates an event upon completion or fatal error of a AInScan() or
APretrig(). This event is NOT generated when scans are aborted using
StopBackground().

OnEndOfAoScan Generates an event upon completion or fatal error of a AOutScan(). This event
is not generated when scans are aborted using StopBackground().

Notes:

EnableEvent() cannot be called while any background operations (AInScan(), APretrig(), or
AOutScan()) are active. If a background operation is in progress when EnableEvent() is called, EnableEvent
will return the AlreadyActive error. You should perform a StopBackground() before calling EnableEvent.

Events can be generated no faster than the user callback function can handle them. If an event type becomes
multiply signaled before the event handler returns, events will be merged, such that the event handler is called
once per event type, and the event handler is supplied with the event data corresponding to the latest event. In
addition, if more than one event type becomes signaled, the event handler for each event type is called in the
same order in which they are listed above.

Events are generated while handling board-generated interrupts. As a consequence, using
StopBackground() to abort background operations will not generate OnEndOfAoScan or OnEndOfAiScan
events. However, the event handlers can be called directly immediately after calling StopBackground().

Important
In order to understand the functions, you must read the board -specific information section found in the
Universal Library User's Guide (available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-
guide.pdf).

Review and run the example programs prior to attempting any programming of your own. Following this
advice will save you hours of frustration, and possibly time wasted holding for technical support.

This note, which appears elsewhere, is especially applicable to this method. Read the board-specific
information for your board (see the Universal Library User's Guide). We suggest that you make a copy of that
page to refer to as you read this manual and examine the example programs.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf
http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Miscellaneous Methods, Properties, and Delegates EventCallback delegate

286

EventCallback delegate
The EventCallback delegate is called as a parameter of the EnableEvent() method. A delegate is a data
structure that refers either to a static method, or to a class instance and an instance method of that class.

You create the data structure using the prototype shown below. You call the delegate by passing either it's
address or a pointer to the delegate to the callbackFunc parameter of the EnableEvent() method.

Delegate prototype:

C# .NET: public delegate void EventCallback(int BoardNum, MccDaq.EventType
EventType, uint EventData, IntPtr pUserData);

VB .NET: Public Sub MyCallback(ByVal BoardNum As Integer, ByVal EventType As
MccDaq.EventType, ByVal EventData As UInt32, ByVal pUserData As
System.IntPtr)

Parameters:

BoardNum Indicates which board caused the event.

EventType Indicates which event occurred.

EventData Board-specific data associated with this event. Set it to one of the constants in the
"EventData parameter values" section below.

pUserData Pointer to or reference of data supplied by the userData parameter in the
EnableEvent() method. Note that before using this parameter value, it must be
cast to the same data type as it was passed to EnableEvent().

Returns:

pUserData � Returns value specified by the userData parameter in EnableEvent().

EventData parameter values:

OnScanError The Error code of the scan error.

OnExternalInterrupt The number of interrupts generated since enabling the ON_EXTERNAL_INTERRUPT
event.

OnPretrigger The number of pretrigger samples available at time of pretrigger. Value is invalid
for some boards when a TOOFEW error occurs. See board details.

OnDataAvailable The number of samples acquired since the start of scan.

OnEndOfAiScan The total number of samples acquired upon scan completion or end.

OnEndOfAoScan The total number of samples output upon scan completion or end.

Miscellaneous Methods, Properties, and Delegates FlashLED()

287

FlashLED()
Causes the LED on a USB device to flash.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function FlashLED() As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo FlashLED()

Miscellaneous Methods, Properties, and Delegates FromEngUnits()

288

FromEngUnits()
Converts a voltage (or current) in engineering units to a D/A count value for output to a D/A.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function FromEngUnits(ByVal range As MccDaq.Range , ByVal
engUnits As Single, ByRef dataVal As Short) As MccDaq.ErrorInfo

Public Function FromEngUnits(ByVal range As MccDaq.Range, ByVal
engUnits As Single, ByRef dataVal As System.UInt16) As
MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo FromEngUnits(MccDaq.Range range, float
engUnits, out ushort dataVal)

public MccDaq.ErrorInfo FromEngUnits(MccDaq.Range range, float
engUnits, out short dataVal)

Parameters:

range D/A voltage (or current) range. Some D/A boards have programmable voltage
ranges, others set the voltage range via switches on the board. In either case, the
selected range must be passed to this method. Refer to Table 14-1 on page 155 for
a list of valid range settings.
Each D/A board supports different voltage and/or current ranges. Refer to board
specific information for the list of ranges supported by each board.

engUnits The voltage (or current) value to set the D/A to. Set the value to be within the
range specified by the range parameter.

dataVal The method returns a D/A count to this variable that is equivalent to the engUnits
parameter.

Returns:

An ErrorInfo object that indicates the status of the operation.

dataVal � the binary counts equivalent to engUnits is returned here

Miscellaneous Methods, Properties, and Delegates GetBoardName()

289

GetBoardName()
Returns the board name of a specified board.

Member of the MccService class.

Function prototype:

VB .NET: Public Shared Function GetBoardName(ByVal boardNumber As Integer,
ByRef boardName As String) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetBoardName(int boardNumber, ref string
boardName)

Parameters:

boardNumber Refers either to the board number associated with a board when it was installed, or
GETFIRST or GETNEXT.

boardName A null-terminated string variable that the board name is returned to. Refer to the
Appendix, "Board Type Codes," in the Universal Library User's Guide (available
on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

Returns:

An ErrorInfo object that indicates the status of the operation.

boardName - return string containing the board name.

Notes:

There are two distinct ways of using this function:

! Pass a board number as the BoardNum argument. The string that is returned describes the board type of the
installed board.

! Set BoardNum to GETFIRST or GETNEXT to get a list of all board types that are supported by the library. Set
BoardNum to GETFIRST to get the first board type in the list of supported boards. Subsequent calls with
Board=GETNEXT returns each of the other board types supported by the library. When you reach the end of
the list, BoardName is set to an empty string. Refer to the ulgt04 example program in the installation
directory for more details.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Miscellaneous Methods, Properties, and Delegates GetStatus()

290

GetStatus()
Returns the status about the background operation currently running.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function GetStatus(ByRef status As Short, ByRef curCount As
Integer, ByRef curIndex As Integer, ByVal functionType As
MccDaq.FunctionType) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo GetStatus(out short status, out int
curCount, out int curIndex, MccDaq.FunctionType functionType)

Parameters:

status Status indicates whether or not a background process is currently executing.

curCount Specifies how many points have been input or output. It can be used to gauge how
far along the operation is towards completion. Generally the curCount will return
the total number of samples collected at the time of the call to GetStatus().
However, when Continuous and Background options are both set, curCount
behavior depends on the board type and transfer mode. This value may recycle as
the circular buffer recycles, or may continuously increment with the number of
counts transferred. Also, curCount may not update on each sample. For example,
when running in BlockIo mode, curCount updates after each packet of data has
been transferred. The packet size is board-dependent. Refer to the Universal
Library User's Guide for board-specific information.

curIndex curIndex is an index into the data buffer that points at the start of the last
completed channel scan. It can be used to provide a real time display for a
background operation. DataBuffer[curIndex] points to the start of the last
complete channel scan that was put in or taken out of the buffer. You should
expect curIndex to increment by the number of channels in the scan as well. If no
points in the buffer have been accessed yet, CurIndex will equal -1. This value
can also behave differently when Continuous and Background options are both set
(see CurCount description). Refer to board specific information for details.
If you use the ConvertData option with either the Continuous option or with pre-
triggering functions, curCount returns the index of the last A/D sample, rather than
the start of the last completed channel scan.
For many background operations curCount = curIndex. For pre-trigger inputs
though, they are different. If the hardware allows background trigger operations,
curCount indicates how many points of the totalCount have been collected.
curCount will rise to pretrigCount, stop until the trigger occurs then rise to
totalCount. curIndex, though, will constantly increase and reset as it goes around
and around the circular buffer while waiting for the trigger to occur.

functionType Specifies which scan to retrieve status information about. Set it to one of the
constants in the "functionType parameter values" section on page 291.

Returns:

An ErrorInfo object that indicates the status of the operation.

Status Idle - No background operation has been executed

 Running - Background operation still underway

curCount - current number of samples collected

Miscellaneous Methods, Properties, and Delegates GetStatus()

291

curIndex - Current sample index

functionType parameter values:

AiFunction Specifies analog input scans started with AInScan() or APretrig().

AoFunction Specifies analog output scans started with AOutScan().

DiFunction Specifies digital input scans started with DInScan().

DoFunction Specifies digital output scans started with DOutScan().

CtrFunction Specifies counter background operations started with CStoreOnInt().

Miscellaneous Methods, Properties, and Delegates InByte()

292

InByte()
Reads a byte from a hardware register on a board.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function InByte(ByVal portNum As Integer) As Integer

C# .NET: public int InByte(int portNum)

Parameters:

portNum Register within the board. Boards are set to a particular base address. The registers
on the boards are at addresses that are offsets from the base address of the board
(BaseAdr + 0, BaseAdr + 2, etc).
Set this parameter to the offset for the desired register. This method takes care of
adding the base address to the offset, so that the board's address can be changed
without changing the code.

Returns:
The current value of the specified register

Notes:

InByte() is used to read 8 bit ports. InWord() is used to read 16-bit ports.

This method was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Miscellaneous Methods, Properties, and Delegates InWord()

293

InWord()
Reads a word from a hardware register on a board.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function InWord(ByVal portNum As Integer) As Integer

C# .NET: public int InWord(int portNum)

Parameters:

portNum Register within the board. Boards are set to a particular base address. The registers
on the boards are at addresses that are offsets from the base address of the board
(BaseAdr + 0, BaseAdr + 2, etc).
Set this parameter to the offset for the desired register. This method takes care of
adding the base address to the offset, so that the board's address can be changed
without changing the code.

Returns:
The current value of the specified register.

Notes:

InByte() is used to read 8-bit ports. InWord() is used to read 16 bit ports.

This method was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Miscellaneous Methods, Properties, and Delegates OutByte()

294

OutByte()
Writes a byte to a hardware register on a board.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function OutByte(ByVal portNum As Integer, ByVal portVal As
Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo OutByte(int portNum, int portVal)

Parameters:

portNum Register within the board. Boards are set to a particular base address. The registers
on the boards are at addresses that are offsets from the base address of the board
(BaseAdr + 0, BaseAdr + 2, etc).
Set this parameter to the offset for the desired register. This method takes care of
adding the base address to the offset, so that the board's address can be changed
without changing the code.

portVal Value that is written to the register.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

OutByte() is used to write to 8-bit ports. OutWord() is used to write to 16-bit ports.

This method was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Miscellaneous Methods, Properties, and Delegates OutWord()

295

OutWord()
Writes a word to a hardware register on a board.

Member of the MccBoard class.

Function Prototype:

VB .NET: Public Function OutWord(ByVal portNum As Integer, ByVal portVal As
Integer) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo OutWord(int portNum, int portVal)

Parameters:

portNum Register within the board. Boards are set to a particular base address. The registers
on the boards are at addresses that are offsets from the base address of the board
(BaseAdr + 0, BaseAdr + 2, etc).
Set this parameter to the offset for the desired register. This method takes care of
adding the base address to the offset, so that the board's address can be changed
without changing the code.

PortVal Value that is written to the register.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

OutByte() is used to write to 8-bit ports. OutWord() is used to write to 16-bit ports.

This method was designed for use with ISA bus boards. Use with PCI bus boards is not recommended.

Miscellaneous Methods, Properties, and Delegates RS485()

296

RS485()
Sets the direction of RS-485 communications port buffers.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function RS485(ByVal transmit As MccDaq.OptionState , ByVal
receive As MccDaq.OptionState) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo RS485(MccDaq.OptionState transmit,
MccDaq.OptionState receive)

Parameters:

transmit Set to Enabled or Disabled. The transmit RS-485 line driver is turned on. Data
written to the RS-485 UART chip is transmitted to the cable connected to that port.

receive Set to MccDaq.OptionState.Enabled or MccDaq.OptionState.Disabled. The
receive RS-485 buffer is turned on. Data present on the cable connected to the RS-
485 port is received by the UART chip.

Returns:

An ErrorInfo object that indicates the status of the operation.

Notes:

You can simultaneously enable or disable the transmit and receive buffers. If both are enabled, data written to
the port is also received by the port. For a complete discussion of RS485 network construction and
communication, refer to the CIO-COM485 or PCM-COM485 hardware manual.

Miscellaneous Methods, Properties, and Delegates StopBackground()

297

StopBackground()
Stops one or more subsystem background operations that are in progress for the specified board. Use this
method to stop any method that is running in the background. This includes any method that was started with
the Background option, as well as CStoreOnInt() (which always runs in the background).

Execute StopBackground() after normal termination of all background functions to clear variables and
flags.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function StopBackground(ByVal funcType As MccDaq.FunctionType
) As MccDaq.ErrorInfo

C# .NET: public MccDaq.ErrorInfo StopBackground(MccDaq.FunctionType funcType)

Parameters:

functionType Specifies which background operation to stop. Set it to one of the constants in the
"functionType parameter values" section below.

Returns:

An ErrorInfo object that indicates the status of the operation.

functionType parameter values:

AiFunction: Specifies analog input scans started with AInScan() or APretrig().

AoFunction Specifies analog output scans started with AOutScan().

DiFunction Specifies digital input scans started with DInScan().

DoFunction Specifies digital output scans started with DOutScan().

CtrFunction Specifies counter background operations started with CStoreOnInt().

Miscellaneous Methods, Properties, and Delegates ToEngUnits()

298

ToEngUnits()
Converts an A/D count value to an equivalent voltage value.

Member of the MccBoard class.

Function prototype:

VB .NET: Public Function ToEngUnits(ByVal range As MccDaq.Range , ByVal
dataVal As Short, ByRef engUnits As Single) As MccDaq.ErrorInfo

Public Function ToEngUnits(ByVal range As MccDaq.Range, ByVal
dataVal As System.UInt16, ByRef engUnits As Single) As
MccDaq.ErrorInfo

C# .NET: Public MccDaq.ErrorInfo ToEngUnits(MccDaq.Range range, ushort
dataVal, out float engUnits)

Public MccDaq.ErrorInfo ToEngUnits(MccDaq.Range range, short
dataVal, out float engUnits)

Parameters:

range A/D voltage (or current) range. Some A/D boards have programmable voltage
ranges, others set the voltage range via switches on the board. In either case, the
selected range must be passed to this method. Each A/D board supports different
voltage and/or current ranges. Refer to Table 14-1 on page 155 for a list of valid
range settings. Refer to board specific information for a list of the supported A/D
ranges of each board.

dataVal A/D count returned from an A/D board.

engUnits The voltage (or current) value that is equivalent to dataVal is returned to this
variable. The value will be within the range specified by the range parameter.

Returns:

An ErrorInfo object that indicates the status of the operation.

engUnits � the engineering units value equivalent to dataVal is returned to this variable.

Appendix

301

Error Codes
The following table lists error codes that are returned when running Universal Library or Universal Library
for .NET.

Universal Library .NET errors can be referenced from the MccDaq.ErrorInfo.Message property.

Each entry in the list has four parts: the error code number, its symbolic name, its error message, and an
explanation. Both the Universal Library function and its Universal Library .NET equivalent method are
referred to when appropriate. Error code and error messages are identical for both programming libraries. The
only difference in the error names used by each library is the case�the Universal Library error names are all
uppercase (NOERRORS, etc.), while the Universal Library for .NET error names are mixed case (NoErrors,
etc.).

Error number Error name Error message

0 NOERRORS No error has occurred
The function executed successfully.

1 BADBOARD Invalid board number
The BoardNum argument that was specified does not match any of the boards that are listed
in the configuration file. Run the configuration program to check which board numbers are
configured.

2 DEADDIGITALDEV Digital device is not responding - is base address
correct?

The digital device on the specified board is not responding. Either the board was installed
incorrectly or the board is defective. Run the configuration program and make sure that the
correct board was installed.

3 DEADCOUNTERDEV Counter device is not responding - is base address
correct?

The counter device on the specified board is not responding. Either the board was installed
incorrectly or the board is defective. Run the configuration program and make sure that the
correct board was installed.

4 DEADDADEV D/A is not responding - is base address correct?
The D/A device on the specified board is not responding. Either the board was installed
incorrectly or the board is defective. Run the configuration program and make sure that the
correct board was installed.

5 DEADADDEV A/D is not responding - is base address correct?
The A/D device on the specified board is not responding. Either the board was installed
incorrectly or the board is defective. Run the configuration program and make sure that the
correct board was installed.

6 NOTDIGITALCONF Selected board does not have digital I/O
A digital I/O function or method was called with a board number that referred to a board
that does not support digital I/O. Run the configuration program to see which type of board
that board number refers to.

7 NOTCOUNTERCONF Selected board does not have a counter
A counter function or method was called with a board number that referred to a board that
does not have a counter. Run the configuration program to see which type of board that
board number refers to.

Error Codes

Error number Error name Error message

302

8 NOTDACONF Selected board does not have a D/A
An analog output function or method was called with a board number that referred to a
board that does not have an analog output (D/A). Run the configuration program to see
which type of board the board number refers to.

9 NOTADCONF Selected board does not have an A/D
An analog input function or method was called with a board number that referred to a board
that does not have an analog input (A/D). Run the configuration program to see which type
of board that board number refers to.

10 NOTMUXCONF Selected board does not have thermocouple inputs
A thermocouple input function or method was called with a board number that does not
support thermocouple inputs or is not connected to an EXP board. Run the configuration
program to view/change the board configuration.

11 BADPORTNUM Invalid digital port number
The port number specified for a digital I/O function or method does not exist on the
specified board.

12 BADCOUNTERDEVNUM Invalid counter device
The CounterNum argument specified for a counter function or method references a counter
that does not exist on the specified board.

13 BADDADEVNUM Invalid D/A device
The D/A channel that was specified for an analog output function or method does not exist
on the specified board.

14 BADSAMPLEMODE Invalid sample mode
A sample mode that is not supported on this board (SINGLEIO, DMAIO or BLOCKIO) was
specified in the Options argument. Try running the function or method without setting any
of the Sample Mode options.

15 BADINT Board configured for invalid interrupt level
No interrupt was selected in InstaCal and one is required, or the board is set for "compatible
mode" and the interrupt level selected is not supported in this mode. Interrupts above 7 are
not valid in compatible mode. Either change the switch setting on the board to "enhanced
mode", or change the interrupt level with the configuration program to something less than
8.

16 BADADCHAN Invalid A/D channel number
An invalid channel argument was passed to an analog input function or method . The range
of valid channel numbers depends on which A/D board you are using - refer to the board
manual. For some boards it also depends on how the board is configured (with a switch).
For those boards run the configuration program and check how many channels the board is
configured for.

17 BADCOUNT Invalid count
An invalid Count argument was specified to a function or method . If this error occurs
during cbAInScan()/AInScan(), increasing the Count should correct the problem. For
boards using DMAIO, adjust the data buffer and Count above (HighChan-
LowChan+1)*Rate/100 for CONTINUOUS mode scans. However, those boards using BLOCKIO,
require a user buffer and Count large enough to hold at least one half FIFO worth of
samples (typically, 512 samples) for CONTINUOUS mode scans.

Error Codes

Error number Error name Error message

303

18 BADCNTRCONFIG Invalid counter configuration specified
An invalid Config argument was passed to cbC8254Config()/C8254Config(). The only
legal values are HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE,
SOFTWARESTROBE and HARDWARESTROBE.

19 BADDAVAL Invalid D/A value
An invalid D/A value was passed as an argument to an analog output function or method .
The only legal values are 0 to 4095 for 12-bit boards or 0 to 65,535 for 16-bit boards (see
the "Note on Basic signed integers" at the beginning of the "Counter Boards" chapter in the
Universal Library User's Guide available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf).

20 BADDACHAN Invalid D/A channel number
An invalid D/A channel was passed as an argument to an analog output function or method .
The legal range of values depends on which D/A board you are using. Refer to the board
manual to find how many D/A channels it has.

22 ALREADYACTIVE Background operation already in progress
An attempt was made to start a second background process on the same board before the
first one had completed. Background processes are started whenever the BACKGROUND option
is used by cbCStoreOnInt()/CStoreOnInt(). To stop a background operation, call
cbStopBackground()/StopBackground(). To wait for a background process to complete
call cbGetStatus()/(GetStatus() and wait for Status = IDLE.

23 PAGEOVERRUN DMA transfer crossed page boundary, may have gaps in
data

When a DMA transfer crosses a 64K memory page boundary on boards without FIFO
buffers, there may be a small gap (missing samples) in the data. For applications requiring
high speed transfers of greater than 32K samples, please select a board with a FIFO buffer.
For boards without, check the data for gaps and do not specify rates over that at which
gapless data may be taken. This is system-specific so you must determine the rate by
experimentation.

24 BADRATE Invalid sampling rate
Invalid sampling rate argument was specified. The rate was either zero, a negative number
or it was higher than the selected board supports. Refer to board-specific information for
board maximum rates.

25 COMPATMODE Board switches set for Compatible mode
An operation was attempted that is not possible when the board's switch is set for
'compatible' operation. The most likely causes are due to using the BLOCKIO option or the
pre-triggering functions. Either turn off the 'compatible' mode switch on the board or don't
use the BLOCKIO option or the pre-triggering functions.

26 TRIGSTATE Incorrect initial trigger state - trigger must start at TTL
low

Boards that use "polled gate" triggering require that the trigger be "off" when a pre-trigger
function is first called. It then waits for the trigger signal. Make sure that the Trigger Input
line (usually D0) is held at TTL low before calling the pre-trigger function.

27 ADSTATUSHUNG A/D is not responding
The A/D board is not responding as it should. Usually indicates some kind of hardware
problem - either defective hardware or more than one board at the same base address.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Error Codes

Error number Error name Error message

304

28 TOOFEW Trigger occurred before the requested number of
samples were collected

A pre-trigger function or method was called and the trigger signal occurred before the
requested number of samples could be collected. This is only a warning message. The
function or method continued anyway. The data that was returned to the array will contain
fewer than the expected number of points. The function or method will return the actual
number of pre-trigger points and the total number of points. You can use these two values to
find your way around the data in the array.

29 OVERRUN Data overrun - data was lost
Data was lost during an analog input because the computer could not keep up with the A/D
sampling rate. This typically can only happen with the file input functions or methods, or by
using SINGLIO mode. Possible solutions include lowering the sampling rate, defragmenting
the "streamer" file, switching to a RAM disk, or lowering the count.

30 BADRANGE Invalid voltage or current range
Invalid Range argument was specified to an analog input or output function or method . The
board does not support the gain you specified. Refer to board-specific information for a list
of allowable ranges.

31 NOPROGGAIN This A/D board does not have programmable gain
Invalid Range argument was passed to an analog input function or method . The selected
board does not support programmable gains so the only valid Range argument is 0. (This
argument is ignored for these board types in later versions of the library.)

32 BADFILENAME Specified file name is not valid
The FileName argument that was passed to a file function or method is not valid. It is either
an empty string or a NULL pointer.

33 DISKISFULL Disk is full, could not complete operation
A file operation failed before completing because the disk that it was writing to is full. Try
erasing some files from the disk. If this error occurred during either
cbFileAInScan()/FileAInScan()or cbFilePretrig()/FilePretrig(), it indicates
another problem. The disk space for these commands should have been previously allocated
with the MAKESTRM.EXE program. If this error is generated when data is being collected
it indicates that you did not allocate a large enough file with MAKESTRM.EXE.

34 COMPATWARN Board switch set to compatible mode - sampling speed
may be limited

The board's switch is set for "compatible mode." When in "compatible mode," BLOCKIO
transfers are not possible. BLOCKIO sampling was specified but it has automatically been
changed to DMAIO transfers. The maximum sampling rate will be limited to the maximum
rate for DMA transfers. Change the "compatible mode" switch on the board if you want to
use BLOCKIO transfers.

35 BADPOINTER Pointer is not valid
An invalid (NULL) pointer was passed as an argument/parameter to a function or method .

37 RATEWARNING Sample rate may be too fast for SINGLEIO mode
The specified sampling rate MAY be too high. The maximum allowable sampling rate
depends very much on the computer that the program is running on. This warning is
generated based on the slowest CPU speed. Your computer may be able to sustain faster
rates, but, you should expect the computer to lock up (fail to respond to keyboard input) if
you do exceed the sampling rate your computer can sustain.

Error Codes

Error number Error name Error message

305

38 CONVERTDMA CONVERTDATA cannot be used with DMAIO and
BACKGROUND

The CONVERTDATA and BACKGROUND options can not be used together when the board is
transferring data via DMA. Possible solutions include: Use
cbAConvertData()/AConvertData() to convert the data after it is collected. Don't use
BACKGROUND option. Use BLOCKIO option if your A/D board supports it. Use SINGLEIO
option if your computer is fast enough to support the selected sampling rate.

39 DTCONNECTERR Board does not support DTCONNECT option
The DTCONNECT Option was passed to an analog input function or method . The selected
board does not support that option.

40 FORECONTINUOUS CONTINUOUS can only be run with BACKGROUND
The CONTINUOUS option was passed to a function or method without also setting the
BACKGROUND option. This is not allowed. Any time you set the CONTINUOUS option you must
also set the BACKGROUND option.

41 BADBOARDTYPE This function or method can not be used with this board
An attempt was made to call a function or method for a board that does not support that
function or method .

42 WRONGDIGCONFIG Digital port not configured correctly for requested
operation

Some of the digital bits or ports (FIRSTPORTA - EIGHTHPORTCH) must be configured as inputs
OR outputs but not both. An attempt was made to use a digital input function or method on
a port or bit that was configured as an output or vice versa. Use
cbDConfigPort()/DConfigPort() or cbDConfigBit()/DConfigBit() to switch a port's
(or bit�s) direction. If the board you are using contains configurable port types and you do
not call cbDConfigPort()/DConfigPort() or cbDConfigBit()/DConfigBit() in your
program, then all of the configurable ports will be in an unknown state (input or output).

43 NOTCONFIGURABLE This digital port is not configurable (it's an In/Out port)
cbDConfigPort()/DConfigPort() or cbDConfigBit()/DConfigBit() was called for a
port that is not configurable. Check the PortNum argument passed to cbDConfigPort() and
make sure that it is in the range FIRSTPORTA - EIGHTHPORTCH. If PortNum is AUXPORT, make
sure your hardware supports configuration of this port type. If not then there is no need to
call this function or method .

44 BADPORTCONFIG Invalid digital port configuration
The Direction argument passed to cbDConfigPort()/DConfigPort() or
cbDConfigBit()/DConfigBit() is invalid. It must be set to either DIGITALIN or
DIGITALOUT.

45 BADFIRSTPOINT FirstPoint number is not valid
The FirstPoint argument to cbFileRead ()/FileRead() is invalid. It is either a negative
number or it is larger then the number of points in the file.

46 ENDOFFILE Attempted to read past the end of the file
cbFileRead()/FileRead() attempted to read beyond the end of the file. Check the file
length with cbFileGetInfo()/FileGetInfo() and make sure that the FirstPoint and
Count arguments to cbFileRead()/FileRead() are correct for that file length.

47 NOT8254CTR This board does not have an 8254 counter
cbC8254Config()/C8254Config()was called for a board that has a counter but not an 8254
counter. This function or method can only be used with an 8254 counter.

Error Codes

Error number Error name Error message

306

48 NOT9513CTR This board does not have a 9513 counter
cbC9513Config()/C9513Config()was called for a board that has a counter but not a 9513
counter. This function or method can only be used with an 9513 counter.

49 BADTRIGTYPE Invalid TrigType
cbATrig()/(ATrig()) was called with an invalid TrigType argument. It must be set to
either TRIGABOVE or TRIGBELOW.

50 BADTRIGVALUE Invalid TrigValue
cbATrig()/(ATrig()) was called with an invalid TrigValue argument. It must be in the
range 0 to 4095 for 12-bit boards or 0 to 65535 for 16-bit boards (see the "Note on Basic
signed integers" at the beginning of the "Counter Boards" chapter in the Universal Library
User's Guide, available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-
guide.pdf).

52 BADOPTION Invalid Option specified for this function or method
The Options argument contains an option that is not valid for this function or method .

53 BADPRETRIGCOUNT Invalid PretrigCount specified
Either cbAPretrig()/APretrig()or cbFilePretrig()/FilePretrig() was called with an
invalid PretrigCount argument. The pre-trigger count must not be < 0 and must be less
than TotalCount-512. It also must be less than 32k for cbAPretrig()/APretrig() and less
than 16k for cbFilePretrig()/FilePretrig().

55 BADDIVIDER Invalid FOutDivider value
The FOutDivider argument to cbC9513Init() (C9513Init()) is not valid. It must be in the
range 0 to 15.

56 BADSOURCE Invalid FOutSource value
The FOutSource argument to cbC9513Init() (C9513Init()) is not valid. It must be one of
the following values CTRINPUT1, CTRINPUT2, CTRINPUT3, CTRINPUT4, CTRINPUT5,
GATE1, GATE2, GATE3, GATE4, GATE5, FREQ1, FREQ2, FREQ3, FREQ4, FREQ5 (i.e. 0 to
15).

57 BADCOMPARE Invalid Compare value
One or both of the compare arguments to cbC9513Init()/C9513Init() are not valid. They
must be set to (CB)ENABLED or (CB)DISABLED (1 or 0).

58 BADTIMEOFDAY Invalid TimeOfDay value
The TimeOfDay argument to cbC9513Init()/C9513Init() is not valid. It must be set to
either (CB)ENABLED or (CB)DISABLED (1 or 0).

59 BADGATEINTERVAL Invalid GateInterval value
The GateInterval argument to cbCFreqIn()/CFreqIn() is not valid. It must be greater
than 0.

60 BADGATECNTRL Invalid GateControl value
The GateControl argument to cbC9513Config()/C9513Config() is not valid. It must be in
the range 0 to7.

61 BADCOUNTEREDGE Invalid CounterEdge value
The CounterEdge argument to cbC9513Config()/C9513Config() is not valid. It must be set
to either POSITIVEEDGE or NEGATIVEEDGE.

62 BADSPCLGATE Invalid SpecialGate value
The SpecialGate argument to cbC9513Config()/C9513Config() is not valid. It must be set
to either (CB)ENABLED or (CB)DISABLED (1 or 0).

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf
http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Error Codes

Error number Error name Error message

307

63 BADRELOAD Invalid Reload value
The Reload argument to cbC9513Config() (C9513Config()) is not valid. It must be set to
either LOADREG or LOADANDHOLDREG

64 BADRECYCLEFLAG Invalid RecycleMode value
The RecycleMode argument to cbC9513Config()/C9513Config() is not valid. It must be set
to either (CB)ENABLED or (CB)DISABLED (1 or 0).

65 BADBCDFLAG Invalid BCDMode value
The BCDMode argument to cbC9513Config()/C9513Config() is not valid. It must be set to
either (CB)ENABLED or (CB)DISABLED (1 or 0).

66 BADDIRECTION Invalid CountDirection value
The CountDirection argument to cbC9513Config() (C9513Config()) is not valid. It must
be set to either COUNTUP or COUNTDOWN.

67 BADOUTCONTROL Invalid OutputControl value
The OutputControl argument to cbC9513Config() (C9513Config()) is not valid. It must
be set to either ALWAYSLOW, HIGHPULSEONTC, TOGGLEONTC, DISCONNECTED or
LOWPULSEONTC.

68 BADBITNUMBER Invalid BitNum specified
The BitNum argument to cbDBitIn() or cbDBitOut() (DBitIn() or DBitOut()) is not
valid. The valid range of bit numbers depends on the selected board. If it is a DIO24
compatible board the maximum bit number is 23. If it's a DIO96, the maximum bit number
is 95. (see board-specific information in the Universal Library User's Guide, available on
our web site at www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf, or in your hardware
manual)

69 NONEENABLED None of the counter channels were enabled
None of the counter channels were marked as (CB)ENABLED in the CntrControl array that
was passed to cbCStoreOnInt()/CStoreOnInt(). At least one of the counter channels must
be enabled.

70 BADCTRCONTROL An element of CntrControl array not set to DISABLED
or ENABLED

One of the elements of the CntrControl array that was passed to
cbCStoreOnInt()/(CStoreOnInt()) was set to something other then (CB)ENABLED or
(CB)DISABLED. The array must have at least ten elements and the first ten elements must be
set to either (CB)ENABLED or (CB)DISABLED.

71 BADEXPCHAN Invalid EXP channel specified
An invalid channel was passed to one of the thermocouple input commands. The channel
number when using an EXP board must be >= 16. The maximum allowable channel number
depends on which EXP board is being used (and how many of them). Refer to the board
manual to find the number of channels.

72 WRONGADRANGE Board set to wrong A/D range for reading
thermocouples

A thermocouple input function or method was called to read an EXP board input. The EXP
board is connected to an A/D board with hardware selected gain that is set to the wrong
range. When using EXP boards with thermocouples, the A/D must be set to the −5 to +5
volt range when available. When using RTD sensors, the range is 0 to 10 V when available.

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Error Codes

Error number Error name Error message

308

73 OUTOFRANGE Temperature input is out of range
A thermocouple input function or method returned an invalid temperature. This usually
indicates an open connection in the thermocouple or its connection to the mux board.

74 BADTEMPSCALE Invalid temperature scale specified
The Scale argument/parameter to a thermocouple input function or method is not valid. It
must be set to either CELSIUS, FAHRENHEIT, KELVIN, or VOLT.

76 NOQUEUE Specified board does not have channel/gain queue
The function or method that was called requires that the board has a channel/gain queue.
The specified board does not have a queue.

77 CONTINUOUSCOUNT Count must be > packet size to use Continuous mode
The Count argument is not valid for continuous mode. Using BLOCKIO mode, the Count
argument must be large enough to cause at least one interrupt. This is usually half the size of
the boards FIFO (typical sizes are 256, 512, and 1024). See board-specific information in
the Universal Library User's Guide, available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-user-guide.pdf) or in your hardware manual.

78 UNDERRUN D/A FIFO went empty during output
The specified D/A output rate could not be sustained. This error should not normally occur.

79 BADMEMMODE Invalid memory mode specified
The memory mode that was selected with cbMemSetDTMode() (MemSetDTMode()) is not one
of the valid modes.

80 FREQOVERRUN Measured frequency too high for selected gating
interval

The GateInterval argument used with cbCFreqIn() (CFreqIn()) is too large to measure
the frequency of the signal connected to the counter. The counter is overflowing. Decrease
the gating interval to eliminate the error.

81 NOCJCCHAN A CJC Channel must be configured to make
temperature measurements

When the board was installed (with the InstaCal installation program) no Cold Junction
Compression (CJC) channel was selected. To use the temperature measurement functions or
methods with thermocouples, you must first select a CJC channel on the A/D board and then
rerun the installation program.

82 BADCHIPNUM Invalid ChipNum specified
An invalid ChipNum argument was used with cbC9513Init()/C9513Init(). If the board is
CTR05, set ChipNum to 0. If the board is a CTR10, set ChipNum to either 0 or 1.

83 DIGNOTENABLED The digital I/O on this board is not enabled
When the board was installed (with the InstaCal installation program), the expansion digital
I/O was set to DISABLED. To use these digital I/O lines, you must enable the digital I/O on
the board (with a jumper) and then re-run the installation program and set the digital I/O to
ENABLED.

84 CONVERT16BITS CONVERTDATA option can not be used with 16 bit A/D
converters

When using a 16-bit A/D (DAS1600/16), if you try to use the CONVERTDATA option with
cbAInScan()/AInScan() or call cbAConvertData()/AConvertData(), this error is
returned. (This has been updated so that it is ignored for boards for which it is inappropriate
in later versions of the library.)

http://www.measurementcomputing.com/PDFmanuals/sm-ul-user-guide.pdf

Error Codes

Error number Error name Error message

309

85 NOMEMBOARD The EXTMEMORY option requires that a MEGA-FIFO be
attached

Attempt to use a cbMem_() function or Mem_() method without a MEGA-FIFO board
installed. Install MEGA-FIFO through InstaCal.

86 DTACTIVE No memory read/write allowed while DT transfer in
progress

A read or write to a memory board was attempted while data was being transferred via DT-
Connect.

87 NOTMEMCONF Specified board is not a memory board
The specified board is not a memory board. This function or method only works with
memory boards.

88 ODDCHAN The first channel in scan and number of channels must
be even (0, 2, 4, etc)

Some boards use a channel/gain queue that require the first channel in the queue and the
number of channels in the queue always be an even channel. This error can occur even when
you are not in the process of loading the queue. Some boards use the queue automatically
with cbAInScan()/AInScan(). On those boards, the low channel must be an even number.

89 CTRNOINIT Counter was not configured or initialized
You attempted to use cbCLoad() or cbCIn() (CLoad() or CIn()) before initializing and
configuring the counter.

90 NOT8536CTR This board does not have an 8536 counter chip
Attempt to use 8536 initialization or configuration on board without 8536 chip.

91 FREERUNNING Board doesn't time A/D sampling. Collecting at fastest
possible speed

This board does not have an A/D pacer mechanism and you have called
cbAInScan()/(AInScan(). The A/D will be sampled in a tight software loop as fast as the
CPU can execute the instructions. The speed of sampling is dependent on the computer and
the concurrent tasks.

92 INTERRUPTED Operation interrupted with Ctrl-C key
A foreground operation was stopped before completion because either the Ctrl-C or Ctrl-
Break keys were pressed.

93 NOSELECTORS No selector could be allocated
A Windows selector required by the library could not be allocated. Close any open
Windows applications that are nor required to be running and try again.

94 NOBURSTMODE This board does not support burst mode
An attempt was made to use the BURSTMODE option on a board which does not support that
option.

95 NOTWINDOWSFUNC This function is not available in Windows library
The library function you called is not supported in the current revision of Universal Library
for Windows Languages. It may be supported in the future. Contact us at 508 -946-5100,
and follow the instructions for reaching Tech. Support.

96 NOTSIMULCONF Board not configured for SIMULTANEOUS option
The configuration file of the D/A board in InstaCal must be set for simultaneous update
before you use the SIMULTANEOUS option of cbAOutScan()/AOutScan(). The jumpers on
the D/A board must be set for simultaneous update before it will work.

Error Codes

Error number Error name Error message

310

97 EVENODDMISMATCH An even channel is in an odd slot in the queue, or vice
versa

The channel gain queue on some A/D boards has a restriction that the channel numbers must
be in even queue positions and odd channel numbers must be in odd queue positions.

98 M1RATEWARNING Sampling speed to system memory MAY be too fast
The A/D board sampling speed you have requested may be too fast for the computer system
bus transfer to complete before the next packet is ready for transfer. If this is the case, data
will overrun and sample data will be garbled. This warning is initiated whenever you
request a sample rate over 625 kHz AND the sample set is larger than the FIFO buffer on
the board AND an external memory board, such as a MEGA-FIFO is not being used. Your
system may be able to handle the rate requested but only experimentation will bear this out.
Your system may be capable of the full 1 MHz rate directly to system memory.

99 NOTRS485 Selected board is not a RS-485 board
An attempt was made to call cbRS485()/RS485() with a board that is not RS485
compatible.

100 NOTDOSFUNC This function not available in DOS
The function that was called is not available in the DOS version of the Universal Library.

101 RANGEMISMATCH Bipolar and unipolar ranges cannot be used together in
A/D queue

The channel/gain queue should only be loaded (via cbALoadQueue()/ALoadQueue()) with
all unipolar or bipolar ranges.

102 CLOCKTOOSLOW Sampling rate is too high for clock speed; change clock
jumper on board

The sampling rate that you requested is too fast. The A/D board pacer might be capable of
running at a higher rate. Check the board for an XTAL jumper and, if it is not set for the
highest rate, place the jumper in the position for the highest rate. After the jumper is set, re-
run InstaCal.

103 BADCALFACTORS Calibration factors are invalid, disabling software
calibration

The selected board uses software calibration and the stored calibration factors are invalid.
Run InstaCal and calibrate the board before using it.

104 BADCONFIGTYPE Invalid configuration information type specified
An invalid ConfigType argument was passed to either cbGetConfig() or cbSetConfig().

105 BADCONFIGITEM Invalid configuration item specified
An invalid ConfigItem argument was passed to either cbGetConfig() or cbSetConfig().

106 NOPCMCIABOARD Cannot access the PCMCIA board
Cannot access the specified PCMCIA board. Make sure that the PCMCIA Card & Socket
Services are installed correctly and that the board was installed in the system correctly via
InstaCal.

107 NOBACKGROUND Board does not support background operation
The BACKGROUND option was used and the specified board does not support background
operation.

Error Codes

Error number Error name Error message

311

108 STRINGTOOSHORT The string argument is too short for the string being
returned

The string passed to a library function or method is to small to contain the string that is
being returned. Increase the size of the string to the minimum size specified for the function
or method that you are using.

109 CONVERTEXTMEM CONVERTDATA not allowed with EXTMEMORY option
You requested both the CONVERTDATA and EXTMEMORY option. These options cannot be used
together. Collect the data without the CONVERTDATA option. After the data has been
collected, read it back from the memory card (cbMemRead()/MemRead()or
cbMemReadPretrig()/ MemReadPretrig()), and use cbAConvertData()/AConvertData())
to convert the data.

110 BADEUADD Program error � bad values used in cbFromEngUnits or
cbToEngUnits()

Invalid floating point data was used in cbFromEngUnits()/FromEngUnits()or
cbToEngUnits/ToEngUnits(). Check the arguments passed to the relevant function or
method .

111 DAS16JRRATEWARNING Rates greater than 125 kHz must use on board 10 MHz
clock

If a rate greater than 125 kHz is selected and the on board jumper is set for 1 MHz when
using the CIO-DAS16/JR, this warning is generated. Place the jumper on the 10 MHz
position and update your InstaCal settings.

112 DAS08TOOLOW_RATE The desired sample rate is below hardware minimum
Increase the value of the Rate argument in cbAInScan()/AInScan(). The lowest pacer
frequency is the clock frequency (usually 8 MHz / 2) divided by 65535 for the CIO-, PC104
and PCM-DAS08.

114 AMBIGSENSORONGP More than one temperature sensor type defined for
EXP-GP

Thermocouple and RTD types are both defined for an EXP-GP. cbTIn()/(TIn() and
cbTInScan()/TInScan()) require that only one be defined to operate. Set one of the sensor
types to "Not Installed" within the appropriate InstaCal menu.

115 NOSENSORTYPEONGP No temperature sensor type defined for EXP-GP
Neither Thermocouple nor RTD types are defined for an EXP-GP. cbTIn()/(TIn() and
cbTInScan()/TInScan()) require that one and only one be defined to operate. Set one of the
sensor types to a predefined type within the appropriate InstaCal menu.

116 NOCONVERSIONNEEDED Selected 12 bit board already returns converted data
Some 12-bit boards do not need to have their data converted after a call to
cbAInScan()/AInScan() with the NOCONVERTDATA option. These boards return no channel
tags and therefore return data in its proper format. Calling
cbAConvertData()/AConvertData() with data generated from these boards will generate
this warning.

117 NOEXTCONTINUOUS CONTINUOUS mode cannot be used with EXTMEMORY
CONTINUOUS mode is ignored when used with the EXTMEMORY option.

118 INVALIDPRETRIGCONVERT cbAConvertPretrigData called after cbAPretrig
failed

The data you are attempting to convert with cbAConvertPretrigData()/
AConvertPretrigData() can not be converted because cbAPretrig()/APretrig() did not
return a complete data set, probably due to an early trigger.

Error Codes

Error number Error name Error message

312

119 BADCTRREG Bad counter argument passed to cbCLoad()
The RegNum argument passed to cbCLoad() (CLoad()) is not a valid register.

120 BADTRIGTHRESHOLD Low trigger threshold is greater than high threshold
The LowThreshold arguments to cbSetTrigger()/SetTrigger() must be less than the
HighThreshold.

121 BADPCMSLOTREF NO PCM Card was found in the specified slot
This is usually caused by swapping PCMCIA cards and not re-running InstaCal. Run
InstaCal.

122 AMBIGPCMSLOTREF Two identical PCM cards found. Please specify exact
slot in InstaCal

This error occurs in DOS mode only when InstaCal is configured for a PCMCIA card in
"any slot". To correct the problem, run InstaCal. Go to the Install menu and pop up the
board's menu. Highlight PCMCIA slot and choose either "0" or "1".

123 BADSENSORTYPE Invalid sensor type selected in InstaCal
The specified sensor type is not part of the allowed list of thermocouple/RTD types. Set the
sensor type to a predefined type within the appropriate InstaCal menu.

126 CFGFILENOTFOUND Cannot find CB.CFG file
The CB.CFG file could not be found. This file should be located in the same directory that
you installed the software in.

127 NOVDDINSTALLED The CBUL.386 virtual device driver is not installed
The Windows device driver CBUL.386 is not installed on your system. Normally, it will be
automatically installed when you run the standard installation program. The following line
should be in your \windows\system.ini file in the [386Enh] section:
device=c:\cb\cbul.386

128 NOWINDOWSMEMORY Requested amount of Windows page-locked memory is
not available

The Windows device driver could not allocate the required amount of physical memory.
This error should not normally occur unless you are collecting very large amounts of data or
your system is very memory constrained. If you are collecting a very large block of
memory, try collecting a smaller amount. If this is not an option, than consider using
cbFileAInScan()/FileAInScan()instead of cbAInScan()/AInScan(). Also, if you are
running other programs, try shutting them down.

129 OUTOFDOSMEMORY Not enough DOS memory available
Try closing down any unneeded programs that are running.

130 OBSOLETEOPTION Obsolete option specified for
cbSetConfig/cbGetConfig

The specified configuration item is no longer supported in the 32-bit version of the
Universal Library.

131 NOPCMREGKEY No registry entry for this PCMCIA card
When running under Windows/NT, there must be an entry in the system registry for each
PCMCIA card that you will be using with the system. This is ordinarily taken care of
automatically by the Universal Library installation program. If this error occurs, contact the
technical support dept for assistance at 508-946-5100.

Error Codes

Error number Error name Error message

313

132 NOCBUL32SYS CBUL32.SYS device driver is not installed
The Windows device driver CBUL.SYS is not installed on your system. Normally, it will be
automatically installed when you run the MCC standard installation program. Contact the
technical support dept for assistance at 508-946-5100.

133 NODMAMEMORY No DMA memory available to device driver
The Windows device driver could not allocate the minimum required amount of memory for
DMA. If you are sampling at slower speeds, you can specify SINGLEIO in the Options
argument to cbAInScan()/(AInScan(). This will prevent the library from attempting to use
DMA. In general though, this error should not ordinarily occur. Contact technical support at
508-946-5100 with the details.

134 IRQNOTAVAILABLE IRQ not available
The Interrupt Level that was specified for the board (in InstaCal) conflicts with another
board in your computer. Try switching to a different interrupt level.

135 NOT7266CTR This board does not have an LS7266 counter
This function or method can only be used with a board that contains an LS7266 chip. These
chips are used on various quadrature encoder input boards.

136 BADQUADRATURE Invalid Quadrature argument passed to
cbC7266Config()

The Quadrature argument must be set to either NO_QUAD, X1_QUAD, X2_QUAD, or
X4_QUAD.

137 BADCOUNTMODE Invalid CountingMode argument passed to
cbC7266Config()

The CountingMode argument must be set to either NORMAL_MODE, RANGE_LIMIT,
NO_RECYCLE, or MODULO_N.

138 BADENCODING Invalid DataEncoding argument passed to
cbC7266Config()

The DataEncoding argument must be set to either BCD_ENCODING or BINARY_ENCODING.

139 BADINDEXMODE Invalid IndexMode argument passed to
cbC7266Config()

The IndexMode argument must be set to either INDEX_DISABLED, LOAD_CTR,
LOAD_OUT_LATCH, or RESET_CTR.

140 BADINVERTINDEX Invalid InvertIndex argument passed to
cbC7266Config()

The InvertIndex argument must be set to either (CB)ENABLED or (CB)DISABLED.

141 BADFLAGPINS Invalid FlagPins argument passed to cbC7266Config()
The FlagPins argument must be set to either CARRY_BORROW, COMPARE_BORROW,
CARRYBORROW_UPDOWN, or INDEX_ERROR.

142 NOCTRSTATUS This board does not support cbCStatus()
This board does not return any status information.

143 NOGATEALLOWED Gating can not be used when indexing is enabled
Gating and indexing can not be used simultaneously. If Gating is set to (CB)ENABLED, then
IndexMode must be set to INDEX_DISABLED.

144 NOINDEXALLOWED Indexing not allowed in non-quadrature mode
Indexing is not supported when Quadrature argument is set to NO_QUAD.

Error Codes

Error number Error name Error message

314

145 OPENCONNECTION Temperature input has open connection

146 BMCONTINUOUSCOUNT Count must be integer multiple of packet size for
Continuous mode

147 BADCALLBACKFUNC Invalid pointer to callback function or delegate passed
as argument

148 MBUSINUSE Metrabus in use

149 MBUSNOCTLR Metrabus I/O card has no configured controller card

150 BADEVENTTYPE Invalid EventType specified for this board
Although this board does support cbEnableEvent()/EnableEvent(), it does not
support one or more of the event types specified.

151 ALREADYENABLED Event handler already enabled for this event type
There is already an event handler bound to one or more of the events specified. To attach
the new handler to the event type, first disable and disconnect the current handler using
cbDisableEvent()/DisableEvent().

152 BADEVENTSIZE Invalid event count has been specified
The ON_DATA_AVAILABLE event requires an event count greater than (0).

153 CANTINSTALLEVENT Unable to install event handler
An internal error occurred while trying to setup the event handling.

154 BADBUFFERSIZE Buffer is too small for operation
The memory allocated by cbWinBufAlloc()/WinBufAlloc() is too small to hold all the
data specified in the operation.

155 BADAIMODE Invalid analog input mode
Invalid analog input mode (RSE, NRSE, DIFF).

156 BADSIGNAL Invalid signal type specified
The specified signal type does not exist, or is not valid for signal direction specified.

157 BADCONNECTION Invalid connection
The specified connection does not exist, or is not valid for the signal type and direction
specified.

158 BADINDEX Invalid index specified
For Index > 0, indicates that the specified index is beyond the end of the internal list of
output connections assigned to the specified signal type.

159 NOCONNECTION Invalid connection
No connection is assigned to the specified signal.

160 BADBURSTIOCOUNT Count cannot be greater than the FIFO size for
BURSTIO mode. Also, Count must be integer multiple
of number of channels in the scan.

When using BURSTIO mode, the count entered cannot be larger than the FIFO size.

161 DEADEV Device has stopped responding. Please check
connections.

Check cable connections to USB device and to your computer's USB port.

Error Codes

Error number Error name Error message

315

163 INVALIDACCESS Required access or privilege not acquired for specified
operation. Please check for other users of device and
restart application.

You are currently not the device owner and therefore cannot change the state or
configuration of the Ethernet device with functions such as cbAOut()/AOut(),
cbDBitOut/DBitOut(), cbAInScan()/AInScan(), cbFlashLED()/FlashLED(), and others.
However, you can still read the state or configuration of the Ethernet device with functions
such as cbAIn()/AIn(), cbDBitIn()/DBitIn(), and so on.

164 UNAVAILABLE Device unavailable at time of request. Please repeat
operation.

You requested an operation that conflicts with an operation in progress on the device. This
error usually occurs in multithreaded applications or if you are running multiple applications
that access the device. Both types of operations are not supported.

165 NOTREADY Device is not ready to send data. Please repeat
operation.

You requested an operation that conflicts with an operation in progress on the device. This
error can occur during device initialization.

200-299 Internal 16-bit error Internal error occurred in library: See details below

201 CANT_LOCK_DMA_BUF DMA buffer could not be locked
There is not enough physical memory to lock down enough DMA memory for this
operation. Try closing out other applications, or installing additional RAM.

202 DMA_IN_USE DMA already controlled by another driver
The DMA controller is currently being used by another device, such as another DMA board
or the floppy drive.

203 BAD_MEM_HANDLE Invalid Windows memory handle
The memory handle supplied is invalid. Memory handles supplied to library functions and
methods should be allocated using cbWinBufAlloc()/WinBufAlloc(), and should not be
de-allocated until BACKGROUND operations using this buffer are complete or cancelled with
cbStopBackground()/StopBackground().

300-399 Internal 32-bit error Error in 32-bit Windows library. See details below

304 CFG_FILE_READ_FAILURE Error reading from configuration file
The program was unable to read configuration file cb.cfg. Confirm that cb.cfg was not
deleted, moved, or renamed since the software installation.

305 CFG_FILE_WRITE_FAILURE Error writing to configuration file
The program was unable to write to the configuration file cb.cfg. Confirm that cb.cfg is
present and that its attributes are not set for Read-only. Also, check that not more than one
application is trying to access this file.

308 CFGFILE_CANT_OPEN Cannot open configuration file
The program was unable to open the configuration file cb.cfg. Confirm that cb.cfg was
not deleted, moved, or renamed since the software installation.

325 BAD_RTD_CONVERSION Overflow of RTD conversion
Either cbTIn()/Tin() or cbTInScan()/ TInScan() returned an invalid temperature
conversion. Confirm that the configuration matches the RTD type, and physical EXP board
settings; pay particular attention to gain settings and RTD base resistance. Also, check that
the RTD leads are securely attached to the EXP terminals. Finally, confirm that the board is
measuring reasonable voltages via cbAIn()/AIn().

Error Codes

Error number Error name Error message

316

326 NO_PCI_BIOS PCI BIOS not present on the PC
Could not locate the BIOS for the PCI bus. Consult PC supplier for proper installation of the
PCI BIOS.

327 BAD_PCI_INDEX Specified PCI board not detected
The specified PCI board was not detected. Check that PCI board in securely installed into
PCI slot. Also, run InstaCal to locate/set valid base address and configuration.

328 NO_PCI_BOARD Specified PCI board not detected
The specified PCI board was not detected. Check that PCI board in securely installed into
PCI slot. Also, run InstaCal to locate/set valid base address and configuration.

334 CANT_INSTALL_INT Cannot install interrupt handler. IRQ already in use
The device driver could not enable requested interrupt. Check that the selected IRQ is not
already in use by another device. This error can also occur if a FOREGROUND scan was
aborted; in such cases, rebooting the PC will correct the problem.

339 CANT_MAP_PCM_CIS Unable to access Card Information Structure
A resource conflict between the specified PCMCIA or PC-Card device and another device
prevents the system from allocating sufficient resources to map the onboard CIS.

400-499 PCMCIA error Card & Socket Service error. Contact the manufacturer

500-599 Internal DOS error Contact the manufacturer

600-699 Internal Windows error See details below

603 WIN_CANNOT_ENABLE_INT Cannot enable interrupt. IRQ already in use
The device driver could not enable requested interrupt. Check that the selected IRQ is not
already in use by another device. This error can also occur if a FOREGROUND scan was
aborted; in such cases, rebooting the PC will correct the problem.

605 WIN_CANNOT_DISABLE_INT Cannot disable interrupts
The device driver was unable to disable the IRQ. This can occur when interrupts are
generated too fast for the PC to complete servicing. For example, sampling at high
frequencies (above ~2 kHz) with scan mode set for SINGLEIO can lead to this error.
Frequently, an OVERRUN error accompanies this condition.

606 WIN_CANT_PAGE_LOCK_BUFFER Insufficient memory to page lock data buffer
There is not enough physical memory to lock down the entire data buffer. Try closing out
other applications, selecting smaller data buffers, or installing additional RAM.

630 NO_PCM_CARD PCM card not detected
The specified PCMCIA card was not detected. Confirm that the PCM card is securely
plugged into PCMCIA slot. If the board continues to return this error, run InstaCal to reset
the configuration.

Measurement Computing Corporation
16 Commerce Boulevard,

Middleboro, Massachusetts 02346
(508) 946-5100

Fax: (508) 946-9500
E-mail: info@mccdaq.com

www.mccdaq.com

mailto:info@measurementcomputing.com
http://www.measurementcomputing.com/

	Universal Library Functions�(16-bit and 32-bit)
	Overview – Universal Library \(16-bit and 32-bit
	
	Introduction
	DOS vs. Windows libraries
	Analog I/O functions
	Configuration functions
	Counter functions
	Digital I/O functions
	Error handling functions
	Memory board functions
	Revision control functions
	Streamer file functions
	Temperature input functions
	Windows memory management functions
	Miscellaneous functions
	Universal Library example programs

	Analog I/O Functions
	
	Introduction
	cbAConvertData()
	cbAConvertPretrigData()
	cbACalibrateData()
	cbAIn()
	cbAInScan()
	cbALoadQueue()
	cbAOut()
	cbAOutScan()
	cbAPretrig()
	cbATrig()

	Configuration Functions
	
	Introduction
	cbGetConfig()
	cbGetSignal()
	cbSelectSignal()
	cbSetConfig()
	cbSetTrigger()

	Counter Functions
	
	Introduction
	cbC7266Config() (32-bit UL only)
	cbC8254Config()
	cbC8536Config()
	cbC9513Config()
	cbC8536Init()
	cbC9513Init()
	cbCFreqIn()
	cbCIn()
	cbCIn32() (32-bit UL Only)
	cbCLoad()
	cbCLoad32() (32-bit UL Only)
	cbCStatus() (32-bit UL Only)
	cbCStoreOnInt()

	Digital I/O Functions
	
	Introduction
	cbDBitIn()
	cbDBitOut()
	cbDConfigBit()
	cbDConfigPort()
	cbDIn()
	cbDInScan()
	cbDOut()
	cbDOutScan()

	Error Handling Functions
	
	Introduction
	cbErrHandling()
	cbGetErrMsg()

	Memory Board Functions
	
	Introduction
	cbMemRead()
	cbMemReadPretrig()
	cbMemReset()
	cbMemSetDTMode()
	cbMemWrite()

	Revision Control Functions
	
	Introduction
	cbDeclareRevision()
	cbGetRevision()

	Streamer File Functions
	
	Introduction
	cbFileAInScan()
	cbFileGetInfo()
	cbFilePretrig()
	cbFileRead()

	Temperature Input Functions
	
	Introduction
	cbTIn()
	cbTInScan()

	Windows Memory Management Functions
	
	Introduction
	cbWinBufAlloc()
	cbWinBufFree()
	cbWinArrayToBuf()
	cbWinBufToArray()

	Miscellaneous Functions
	
	Introduction
	cbDisableEvent() (32-bit UL Only)
	cbEnableEvent() (32-bit UL Only)
	User Callback function (32-bit UL only)
	cbFlashLED()
	cbFromEngUnits()
	cbGetBoardName()
	cbGetStatus()
	cbInByte()
	cbInWord()
	cbOutByte()
	cbOutWord()
	cbRS485()
	cbStopBackground()
	cbToEngUnits()

	Universal Library for .NET Classes, Methods, and Properties
	UL for .NET Class Library Overview
	
	MccDaq namespace
	MccDaq classes
	MccBoard class

	ErrorInfo class
	MccService class
	GlobalConfig class

	Analog I/O methods
	Configuration methods and properties
	Counter methods
	Digital I/O methods
	Error Handling methods and properties
	Memory board methods
	Revision control methods and properties
	Streamer file methods
	Temperature input methods
	Windows memory management methods
	Miscellaneous methods, properties, and delegates
	Universal Library for .NET example programs

	Analog I/O Methods
	
	Introduction
	AConvertData()
	AConvertPretrigData()
	ACalibrateData()
	AIn()
	AInScan()
	ALoadQueue()
	AOut()
	AOutScan()
	APretrig()
	ATrig()

	Configuration Methods and Properties
	
	Introduction
	BoardConfig property
	BoardConfig.DACUpdate()
	BoardConfig.GetBaseAdr()
	BoardConfig.GetBoardType()
	BoardConfig.GetCiNumDevs()
	BoardConfig.GetClock()
	BoardConfig.GetDACStartup()
	BoardConfig.GetDACUpdateMode()
	BoardConfig.GetDiNumDevs()
	BoardConfig.GetDmaChan()
	BoardConfig.GetDtBoard()
	BoardConfig.GetIntLevel()
	BoardConfig.GetNumAdChans()
	BoardConfig.GetNumDaChans()
	BoardConfig.GetNumExps()
	BoardConfig.GetNumIoPorts()
	BoardConfig.GetRange()
	BoardConfig.GetUsesExps()
	BoardConfig.GetWaitState()
	BoardConfig.SetBaseAdr()
	BoardConfig.SetClock()
	BoardConfig.SetDmaChan()
	BoardConfig.SetDACStartup()
	BoardConfig.SetDACUpdateMode()
	BoardConfig.SetIntLevel()
	BoardConfig.SetNumAdChans()
	BoardConfig.SetRange()
	BoardConfig.SetWaitState()

	BoardNum property
	CtrConfig property
	CtrConfig.GetCtrType()

	DioConfig property
	DioConfig.GetDInMask()
	DioConfig.GetDOutMask()
	DioConfig.GetConfig()
	DioConfig.GetCurVal()
	DioConfig.GetDevType()
	DioConfig.GetNumBits()

	ExpansionConfig property
	ExpansionConfig.GetBoardType()
	ExpansionConfig.GetCjcChan()
	ExpansionConfig.GetMuxAdChan1()
	ExpansionConfig.GetMuxAdChan2()
	ExpansionConfig.GetNumExpChans()
	ExpansionConfig.GetRange1()
	ExpansionConfig.GetRange2()
	ExpansionConfig.GetThermType()
	ExpansionConfig.SetCjcChan()
	ExpansionConfig.SetMuxAdChan1()
	ExpansionConfig.SetMuxAdChan2()
	ExpansionConfig.SetRange1()
	ExpansionConfig.SetRange2()
	ExpansionConfig.SetThermType()

	GetSignal()
	NumBoards property
	NumExpBoards property
	SelectSignal()
	SetTrigger()
	Version property

	Counter Methods
	
	Introduction
	C7266Config()
	C8254Config()
	C8536Config()
	C8536Init()
	C9513Config()
	C9513Init()
	CFreqIn()
	CIn()
	CIn32()
	CLoad()
	CLoad32()
	CStatus()
	CStoreOnInt()

	Digital I/O Methods
	
	Introduction
	DBitIn()
	DBitOut()
	DConfigBit()
	DConfigPort()
	DIn()
	DInScan()
	DOut()
	DOutScan()

	Error Handling Methods and Properties
	
	Introduction
	ErrHandling()
	Message property
	Value property

	Memory Board Methods
	
	MemRead()
	MemReadPretrig()
	MemReset()
	MemSetDTMode()
	MemWrite()

	Revision Control Methods and Properties
	
	Introduction
	DeclareRevision()
	GetRevision()

	Streamer File Methods
	
	Introduction
	FileAInScan()
	FileGetInfo()
	FilePretrig()
	FileRead()

	Temperature Input Methods
	
	Introduction
	TIn()
	TInScan()

	Windows Memory Management Methods
	
	Introduction
	WinBufAlloc()
	WinBufFree()
	WinArrayToBuf()
	WinBufToArray()

	Miscellaneous Methods, Properties, and Delegates
	
	Introduction
	BoardName property
	DisableEvent()
	EnableEvent()
	EventCallback delegate
	FlashLED()
	FromEngUnits()
	GetBoardName()
	GetStatus()
	InByte()
	InWord()
	OutByte()
	OutWord()
	RS485()
	StopBackground()
	ToEngUnits()

	Appendix
	Error Codes

