

Universal Library�

User�s Guide

Document Revision 6.6, July, 2005

 Copyright 2005, Measurement Computing Corp

Your new Measurement Computing product comes with a fantastic extra �

Management committed to your satisfaction!
Refer to www.mccdaq.com/execteam.html for the names, titles, and contact information of each key executive at
Measurement Computing.

Thank you for choosing a Measurement Computing product�and congratulations! You own the finest, and
you can now enjoy the protection of the most comprehensive warranties and unmatched phone tech support.
It�s the embodiment of our two missions:

! To offer the highest-quality, computer-based data acquisition, control, and GPIB hardware and software
available�at the best possible price.

! To offer our customers superior post-sale support�FREE. Whether providing unrivaled telephone
technical and sales support on our latest product offerings, or continuing that same first-rate support on
older products and operating systems, we�re committed to you!

30 Day Money Back Guarantee: You may return any Measurement Computing Corporation product within
30 days of purchase for a full refund of the price paid for the product being returned. If you are not satisfied,
or chose the wrong product by mistake, you do not have to keep it. Please call for an RMA number first. No
credits or returns accepted without a copy of the original invoice. Some software products are subject to a
repackaging fee.

These warranties are in lieu of all other warranties, expressed or implied, including any implied warranty of
merchantability or fitness for a particular application. The remedies provided herein are the buyer�s sole and
exclusive remedies. Neither Measurement Computing Corporation, nor its employees shall be liable for any
direct or indirect, special, incidental or consequential damage arising from the use of its products, even if
Measurement Computing Corporation has been notified in advance of the possibility of such damages.

Universal Library User's Guide

ii

SM UL USER'S GUIDE.doc

Licensing Information
Each original copy of Universal Library is licensed for development use on one CPU at a time. It is theft to make copies of
this program for simultaneous program development. If a customer creates an application using the Universal Library,
they may distribute the necessary runtime files (Universal Library driver files) with their application royalty free. They
may not distribute any files that give their customer the ability to develop applications using the Universal Library.
Trademark and Copyright Information
MEGA-FIFO, the CIO prefix to data acquisition board model numbers, the PCM prefix to data acquisition board model
numbers, PCM-DAS08, PCM-DAC02, PCM-DAS16D/12, PCI-DAS6402/16, Universal Library, InstaCal, Measurement
Computing Corporation, and the Measurement Computing logo are either trademarks or registered trademarks of
Measurement Computing Corp.

SoftWIRE and the SoftWIRE logo are registered trademarks of SoftWIRE Technology.

Pentium is a trademark of Intel Corp.

PC is a trademark of International Business Machines Corp.

Microsoft, MS-DOS, Visual Basic, Visual C#, Visual Studio .NET, Windows, and Windows NT are trademarks of
Microsoft Corp.

All other trademarks are the property of their respective owners.

Information furnished by Measurement Computing Corp. is believed to be accurate and reliable. However, no
responsibility is assumed by Measurement Computing Corp. neither for its use; nor for any infringements of patents or
other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any
patent or copyrights of Measurement Computing Corp.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
by any means, electronic, mechanical, by photocopying, recording or otherwise without the prior written permission of
Measurement Computing Corp.

Notice
Measurement Computing Corporation does not authorize any Measurement Computing Corporation product
for use in life support systems and/or devices without the written approval of the CEO of Measurement
Computing Corporation. Life support devices/systems are devices or systems which, a) are intended for
surgical implantation into the body, or b) support or sustain life and whose failure to perform can be
reasonably expected to result in injury. Measurement Computing Corporation products are not designed with
the components required, and are not subject to the testing required to ensure a level of reliability suitable for
the treatment and diagnosis of people.

iii

Table of Contents

Table of MCC Hardware with UL Support..vi
1 Introducing the Universal Library ...1

Universal Library overview.. 1

2 Installation and Configuration...3
Installing the Universal Library .. 3
The CB.CFG file and InstaCal... 3
Installation � .NET support.. 3
Installation � SoftWIRE® support .. 3

SoftWIRE MCC DAQ Components for VS .NET ... 3
Installation � HP VEE support... 4
Licensing information .. 4
Redistributing a custom UL application... 4

Distributing InstaCal in addition to your custom UL application... 4
Integrating InstaCal into your custom UL installation CD or disk... 5

3 Getting Started ...6
Example programs.. 6

4 Universal Library Description and Use...7
General UL language interface description... 7

Function arguments... 7
Constants .. 7
Options arguments .. 7
Error handling.. 8
16-bit values using a signed integer data type .. 8

Using the Universal Library in Windows.. 8
Real-time acquisition under Windows ... 9
Processor speed ... 9
Visual Basic for Windows .. 9
Microsoft Visual C++ ... 10
Borland C /C++ for Windows... 10
Delphi example programs ... 10

Using the Library with SoftWIRE® ... 10
SoftWIRE Mcc Daq Components for .NET.. 11

Using the Library with DOS BASIC ... 12
BASIC header file.. 12
Using the Library within the integrated BASIC environment.. 12
Using the Library with the BASIC command line compiler .. 12
Sample BASIC programs .. 12
Passing arguments to the Universal Library.. 12

Using the Library with VisualBasic® for DOS .. 14
Compiling stand-alone EXE files ... 14

Using the Library with C for DOS.. 14
C header file.. 14
Memory models... 15
Large data arrays .. 15
Compiling the sample C programs .. 15

Using the Library with HP VEE ... 15
New HP VEE functions.. 16
Installation note ... 16
Using VEE 3.2 or later... 16

5 Universal Library for .NET Description & Use17
Configuring a UL for .NET project ... 17
General UL for .NET language interface description... 18

MccBoard class... 18
ErrorInfo class ... 19

Universal Library User's Guide

iv

MccService class ...20
GlobalConfig class ...20
MccDaq enumerations ...20
Parameter data types...22

Differences between the UL and UL for .NET..22
Board number ..22
MCC classes..23
Methods ...23
Enumerated types..23
Error handling ..24
Service methods ..24
Configuration methods...24

6 How to Use the "Streamer" File Functions ..25
File functions overview ..25
Hard disk vs. RAM disk files ..25
Maximum sampling speed ...25

How to determine the maximum sampling speed ..26
Speeding up disk files (defragmenting)..26

RAM disks ...27
Installing a RAM disk ...27
Using the RAM disk ...27

7 Analog Input Boards..28
Introduction..28
Trigger support ..28

Digital Trigger...28
Analog Trigger ...28

Sampling rate using SINGLEIO ...29
PCI-DAS6000 Series ...30
PCI-DAS4020 Series ...36
PCI-DAS64/Mx/16 Series ..41
PCI- and CIO-DAS6402 and DAS3202 Series ..44
PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series..48
PCIM-DAS1602 and PCIM-DAS16JR Series ..52
CIO-DAS800 Series...55
CIO-, PCI-, and PC104-DAS08 Series ..57
CIO-DAS08/Jr and CIO-DAS08/Jr/16 Series...60
PCM-DAS08 ..62

Determining the maximum sampling rate in DOS ..63
PPIO-AI08 ...64
CIO- and PC104-DAS16..65
PCM- and PC-CARD-DAS16 Series..69
CIO-DAS1400 and CIO-DAS1600 Series..72
CIO-DAS48/PGA ...75
DAS-TC Series ..76
CIO-DAS-TEMP...77
USB-TEMP, USB-TC...78
miniLAB 1008 ..80
USB-1208 Series ...83
USB-1608 Series ...88
USB-1616 Series ...91

8 Analog Output Boards...94
Introduction..94
DAC04 HS Series ..95
DAC Series (Excluding HS Series) ..96
PCI-DAC6700 Series...97
PCM- and PC-CARD- DAC Series ..98
PCIM- and CIO- DDA06 Series ...99
PCI- and CPCI- DDA Series ..100
cSBX-DDA04...101

Universal Library User's Guide

v

9 Digital Input/Output Boards...102
Introduction ... 102

Basic signed integers .. 102
AC5 Series.. 103
DIO Series .. 104
DIO24/CTR3 and D24/CTR3 Series ... 105
PCI-DIO48/CTR15 .. 106
PDISO8 and PDISO16 Series... 107

Establishing and requesting control of an E-PDISO16.. 107
Sending a request for control of an E-PDISO16.. 107
Receiving a request for control of an E-PDISO16 ... 108
Receiving a message.. 108

CIO-PDMA16 and CIO-PDMA32 .. 109
USB-1024 and USB-DIO24 Series ... 110
USB-DIO96 Series (formerly USB-1096 Series) .. 111
USB-SSR Series... 112
Switch & Sense 8/8... 113

10 Digital Input Boards ...114
Introduction ... 114
CIO- and PC104- DI Series... 115
CIO-DISO48.. 116

11 Digital Output Boards ..117
Introduction ... 117
CIO-RELAY Series ... 118
USB-ERB Series... 119
CIO- and PC104-DO Series.. 120

12 Counter Boards ..121
Introduction ... 121

Basic signed integers .. 121
Counter chip variables... 121

CTR Series ... 122
INT32 Series ... 124
PPIO-CTR06... 125
QUAD Series .. 126

13 MetraBus Boards..128
Introduction ... 128
MDB64 Series... 129
MIO and MII Digital I/O ... 130
MEM Series Relay .. 131
MSSR-24 SSR.. 132

14 Expansion Boards..133
Introduction ... 133
CIO-EXP Series .. 134
MEGA-FIFO.. 135

15 Other Hardware ..136
Introduction ... 136
COM422 Series .. 137
COM485 Series .. 137
Demo-Board.. 138
Appendix � MCC Device IDs..140

vi

Table of MCC Hardware with UL Support

Table of MCC Ha

CPCI boards
CPCI-DDA02/12............. 100
CPCI-DDA02/16............. 100
CPCI-DDA04/12............. 100
CPCI-DDA04/16............. 100
CPCI-DDA08/12............. 100
CPCI-DDA08/16............. 100
CPCI-DIO24H 104
CPCI-DIO48H 104
CPCI-DIO96H 104

Ethernet boards
E-PDISO16 107�8

Expansion boards
CIO-EXP16..................... 134
CIO-EXP32..................... 134
CIO-EXP-BRIDGE......... 134
CIO-EXP-GP 134
CIO-EXP-RTD 134

ISA boards
CIO-COM422 137
CIO-COM485 137
CIO-CTR05 121�23
CIO-CTR10 121�23
CIO-CTR10HD......... 121�23
CIO-CTR20HD......... 121�23
CIO-DAC02...................... 96
CIO-DAC02/16................. 96
CIO-DAC04/12-HS 95
CIO-DAC04/16-HS 95
CIO-DAC08...................... 96
CIO-DAC08/16................. 96
CIO-DAC08-I 96
CIO-DAC16...................... 96
CIO-DAC16/16................. 96
CIO-DAC16-I 96
CIO-DAS08 57�59
CIO-DAS08/Jr 60
CIO-DAS08/Jr/16 60
CIO-DAS08/Jr/16-AO 60
CIO-DAS08/Jr-AO 60
CIO-DAS1401/12 72�74
CIO-DAS1402/12 72�74
CIO-DAS1402/16 72�74
CIO-DAS16 65�68
CIO-DAS16/330 65�68
CIO-DAS16/330i 65�68
CIO-DAS16/F............. 65�68
CIO-DAS16/Jr 65�68
CIO-DAS16/Jr/16 65�68
CIO-DAS16/M1.......... 65�68
CIO-DAS16/M1/16..... 65�68
CIO-DAS1601/12 72�74
CIO-DAS1602/12 72�74
CIO-DAS1602/16 72�74
CIO-DAS48/PGA 75
CIO-DAS48-I.................... 75
CIO-DAS6402/12 44�47

CIO-DAS6402/16 44�47
CIO-DAS800 55�56
CIO-DAS801 55�56
CIO-DAS802 55�56
CIO-DAS802/16 55�56
CIO-DAS-TC.................... 76
CIO-DAS-TEMP 77�79
CIO-DDA06...................... 99
CIO-DDA06/16 99
CIO-DDA06/JR 99
CIO-DDA06/JR/16 99
CIO-DI192 115
CIO-DI48........................ 115
CIO-DI96........................ 115
CIO-DIO192 104
CIO-DIO24 104
CIO-DIO24/CTR3 105
CIO-DIO24H 104
CIO-DIO48 104
CIO-DIO48H 104
CIO-DIO96 104
CIO-DISO48................... 116
CIO-DO192H............ 119�20
CIO-DO24DD........... 119�20
CIO-DO48DD........... 119�20
CIO-DO48H.............. 119�20
CIO-DO96H.............. 119�20
CIO-DUAL422 137
CIO-DUAL-AC5 103
CIO-INT32...................... 124
CIO-PDISO16............. 107�8
CIO-PDISO8............... 107�8
CIO-PDMA16................. 109
CIO-PDMA32................. 109
CIO-QUAD02........... 126�27
CIO-QUAD04........... 126�27
CIO-RELAY08............... 118
CIO-RELAY16............... 118
CIO-RELAY16/M 118
CIO-RELAY24............... 118
CIO-RELAY32............... 118
DEMO-BOARD 138�39
ISA-MDB64.................... 129

Memory boards
MEGA-FIFO................... 135

MetraBus boards
MEM-32 131
MEM-8 131
MSSR-24 132

PC104 boards
PC104-AC5..................... 103
PC104-CTR10HD..... 121�23
PC104-DAC06.................. 96
PC104-DAS08 57�59
PC104-DAS16Jr/12 65�68
PC104-DAS16Jr/16 65�68
PC104-DI48 115

PC104-DIO48 104
PC104-DO48H.......... 119�20
PC104-MDB64 129
PC104-PDISO8........... 107�8

PCI boards
cSBX-DDA04................. 101
PCI-CTR05 121�23
PCI-CTR10 121�23
PCI-CTR20HD 121�23
PCI-DAC6702 97
PCI-DAC6703 97
PCI-DAS08................. 57�59
PCI-DAS1000............. 48�51
PCI-DAS1001............. 48�51
PCI-DAS1002............. 48�51
PCI-DAS1200............. 48�51
PCI-DAS1200/JR........ 48�51
PCI-DAS1602/12........ 48�51
PCI-DAS1602/16........ 48�51
PCI-DAS3202/16........ 44�47
PCI-DAS4020/12........ 36�40
PCI-DAS6013............. 30�35
PCI-DAS6014............. 30�35
PCI-DAS6023............. 30�35
PCI-DAS6025............. 30�35
PCI-DAS6030............. 30�35
PCI-DAS6031............. 30�35
PCI-DAS6032............. 30�35
PCI-DAS6033............. 30�35
PCI-DAS6034............. 30�35
PCI-DAS6035............. 30�35
PCI-DAS6036............. 30�35
PCI-DAS6040............. 30�35
PCI-DAS6052............. 30�35
PCI-DAS6070............. 30�35
PCI-DAS6071............. 30�35
PCI-DAS64/M1/16 41�43
PCI-DAS64/M2/16 41�43
PCI-DAS64/M3/16 41�43
PCI-DAS6402/12........ 44�47
PCI-DAS6402/16........ 44�47
PCI-DAS-TC 76
PCI-DDA02/12 100
PCI-DDA02/16 100
PCI-DDA04/12 100
PCI-DDA04/16 100
PCI-DDA08/12 100
PCI-DDA08/16 100
PCI-DIO24...................... 104
PCI-DIO24/LP 104
PCI-DIO24/S 104
PCI-DIO24H................... 104
PCI-DIO24H/CTR3 105
PCI-DIO48H................... 104
PCI-DIO48H/CTR15 .. 106�7
PCI-DIO96...................... 104
PCI-DIO96H................... 104

Universal Library User's Guide Table of MCC Hardware with UL Support

vii

PCI-DUAL-AC5..............103
PCI-INT32.......................124
PCIM-DAS1602/1652�54
PCIM-DAS16JR/16.....52�54
PCI-MDB64129
PCIM-DDA06/1699
PCI-PDISO16107�8
PCI-PDISO8107�8
PCI-QUAD04126�27
PCI-QUAD-AC5103

PCMCIA cards
PC-CARD-D24/CTR3.....105
PC-CARD-DAS16/12..69�71
PC-CARD-DAS16/12AO69�71
PC-CARD-DAS16/16..69�71
PC-CARD-DAS16/16AO69�71
PC-CARD-DAS16/33069�71
PC-CARD-DIO48104
PCM-D24/CTR3..............105
PCM-DAS0862�63

PCM-DAS16D/1269�71
PCM-DAS16D/12AO..69�71
PCM-DAS16D/1669�71
PCM-DAS16S/1269�71
PCM-DAS16S/1669�71
PCM-DAS16S/33069�71
PCM-QUAD02..........126�27

PPIO boards
PPIO-AI08.........................64
PPIO-CTR06125
PPIO-DIO24104

USB devices
miniLAB 1008.............80�82
PMD-1024HLS................110
PMD-1024LS...................110
PMD-1208FS...............83�87
PMD-1208LS...............83�87
PMD-1608FS...............88�90
Switch & Sense 8/8..........113
USB-1024HLS.................110

USB-1024LS110
USB-1096HFS111, See USB-
DIO96H
USB-1208FS................83�87
USB-1208LS83�87
USB-1608FS................88�90
USB-1616FS................91�93
USB-DIO24/37................110
USB-DIO24/37................110
USB-DIO96H111
USB-DIO96H/50111
USB-ERB08119
USB-ERB24119
USB-PDISO8...............107�8
USB-PDISO8/40107�8
USB-SSR08.....................112
USB-SSR24.....................112
USB-TC.............................79
USB-TEMP79

1

1
Introducing the Universal Library
Congratulations and thank you for selecting the Universal Library (UL). We believe it is the most
comprehensive and easiest-to-use data acquisition software interface available anywhere. As easy as
Universal Library is to use, significant documentation and explanation is still required to help new users get
going, and to allow previous users to take advantage of all the package's powerful features.

The fast changing nature of the software industry makes it very difficult to provide a totally up to date user
guide in written form. Adding to this complexity are the new features and functions that are constantly being
added to the library. To provide the most complete information possible and at the same time keep the
information current, the Universal Library documentation is offered in four parts:

! Universal Library User's Guide: The User's Guide provides a general description of the UL, offers an
overview of the various features and functions, and discusses and how they can be used in different
operating systems and languages. The User's Guide also provides board-specific information relating to
the features and functions that are included with the Universal Library.

! Universal Library Function Reference: The Function Reference contains detailed information about
the Universal Library functions, usage, and options. This document is available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf.

! Example programs: The examples programs demonstrate the use of many of the most frequently used
functions, and are valuable learning tools. They are written for many popular languages. Each example
program is fully functional, and provides an ideal starting place for your own programming effort. You
can cut and paste from the example programs to create your own programs. It's easier to cut-and-paste
pieces from a known, working program than to start writing everything from scratch.

! Readme files: The best way to get the latest, most up to date information is through Readme files. We
incorporate this information into our documentation as quickly as we can, but for the latest, greatest
information, read the Readme file.

Universal Library overview

The Universal Library is the software that you need to write your own programs for use with any of
Measurement Computing�s data acquisition and control boards. The library is universal in three ways:

Universal across boards: The library contains high level functions for all of the common operations for all
boards. Each of the boards has different hardware but the Universal Library hides these differences from your
program. So, for example, a program written for use with one A/D board will work "as is" with a different
A/D board.

Universal across languages: The Universal Library provides the identical set of functions and arguments for
each supported language. If you switch languages, you will not have to learn a new library, with new syntax,
and different features.

If you are programming for the .NET framework, you will find that the Universal Library for .NET has the
same "look and feel" as the Universal Library for 32-bit windows applications, and is just as easy to program.

If you are a SoftWIRE user, and are using data acquisition controls, specific support components of
applicable UL functions are required and used by SoftWIRE. Refer to "Using the Library with SoftWIRE" on
page 10 for more information.

Languages supported by the Universal Library, at the time this manual was published, are listed in the
following table. Both 16- and 32-bit versions are supported where applicable.

Universal Library User's Guide Introducing the Universal Library

2

Microsoft Windows Languages Borland Windows Languages
Visual Basic Borland C++
Visual C/C++ Borland C++ Builder
Quick C for Windows Delphi
Microsoft C

Microsoft DOS Languages Borland DOS Languages Hewlett Packard
(Now Agilent)

QuickBasic 4.5 Turbo C HP VEE
Professional Basic 7.0 Turbo C++
Visual Basic for DOS Borland C++
Quick C

.NET Languages

VB .NET
C# .NET

Universal across platforms: The Universal Library provides the same sets of functions for DOS, Windows
3.x and 32-bit Windows (95/98/ME/NT/2000/XP). Additionally, these functions have been extended to
support the .NET environment.

3

2
Installation and Configuration

Installing the Universal Library
To install the Universal Library, follow the steps below

1. Place the Universal Library CD in your CD drive.

The Measurement Computing CD dialog opens.

If the dialog does not open, use Windows Explorer to run on the root of the CD.
2. From the Measurement Computing CD dialog, click on the Install InstaCal and the Universal Library

button.

3. Follow the installation instructions as prompted.
4. Leave the Universal Library CD in your CD drive, and restart your computer.

InstaCal is a powerful installation, test, and calibration software package that is installed as part of the
Universal Library package. Refer to the Quick Start Guide for examples of using InstaCal with MCC's
DEMO-BOARD

Using SoftWIRE data acquisition controls with UL:
If you are going to be using SoftWIRE for data acquisition, you may need to load the latest version of the
Universal Library. Refer to "Installation - SoftWIRE® support" below for installation instructions.

The CB.CFG file and InstaCal
All board-specific information, including current installed options, are stored in the file CB.CFG which is read
by Universal Library. InstaCal creates and/or modifies this file when board configuration information is added
or updated. The Universal Library will not function without the CB.CFG file.

For this reason, you must use InstaCal to modify all board setups and configurations as well as to install or
remove boards from your system.

Installation � .NET support

Universal Library support for .NET requires that the Microsoft .NET framework already be installed on the
system before you install the Universal Library.

Installation � SoftWIRE® support

SoftWIRE MCC DAQ Components for VS .NET
SoftWIRE Graphical Programming for VS .NET is one of the applications installed from the Measurement
Computing DAQ Software CD that ships with all MCC hardware. SoftWIRE includes a set of MCC DAQ
components that perform many of the UL functions, and can be designed in a graphical programming
environment.

For instructions on installing SoftWIRE, refer to the Quick Start Guide that came with your hardware
(available on our web site at www.mccdaq.com/PDFmanuals/DAQ-Software-Quick-Start.pdf).

Universal Library User's Guide Installation and Configuration

4

Installation � HP VEE support
Before installing HP VEE support, install the Universal Library and InstaCal.

After you install the HP VEE application and drivers, run InstaCal and configure the driver. InstaCal is an
installation, calibration, and test program that creates a required configuration file describing the specifics of
the hardware installed.

The changes made to your system when installing HP VEE Support are identical to the changes made when
installing the Universal Library, except for the following:

! The menu bar program VEE.MNU (or CBI.MNN, depending on the version) is written to the VEE
directory.

Handling multiple custom menu bars (VEE.MNU)
If you use a custom VEE.MNU, such as the one shipped with DT-VEE, the install program may overwrite it.
Contact MCC�s technical support for information on handling multiple custom menu bars.

! Example programs are added to the VEE installation directory. The Universal Library sample VEE
programs have a .VEE extension. For a list of sample programs, refer to the "Example Programs" chart in
Chapter 1, "Functional Overview," of the Universal Library Function Reference, available on our web
site at www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf).

Licensing information

Each original copy of Universal Library is licensed for development use on one CPU at a time. It is theft to
make copies of this program for simultaneous program development.

Redistributing a custom UL application
The easiest way to distribute an application written with the Universal Library is to include a copy of
Measurement Computing's InstaCal installation package with the application. Instruct the end user to install
InstaCal before installing the application.

Some developers may want to integrate the installation of the required Universal Library drivers into the
custom application's installation. This should only be attempted by developers experienced in installation
development.

Following is an overview of the two methods.

Distributing InstaCal in addition to your custom UL application
If you create an application using the Universal Library, you may distribute the necessary runtime files
(Universal Library driver files) with the application royalty free. These files can be installed from
Measurement Computing's InstaCal installation package. To distribute a custom UL application, provide the
end user with two CDs or disks:

! One CD or disk that contains Measurement Computing's InstaCal application. InstaCal must be installed
before the custom UL application.

! One CD or disk that contains the setup program for their custom VB or C++ application.

You may not distribute any files that give the end user the ability to develop applications using the Universal
Library.

Universal Library User's Guide Installation and Configuration

5

Integrating InstaCal into your custom UL installation CD or disk
For developers who wish to distribute their application on one CD, refer to the Universal Library
Redistribution Guide. This document contains procedures to merge the setup programs for both InstaCal and
the custom UL application into one setup program that you can distribute on one CD or disk. The merging
process is complicated � only experienced programmers should attempt to do this.

When you install the software, the Universal Library Redistribution Guide (ULRedist.pdf) is copied to the
default installation directory "C:\MCC\Documents" on your local drive.

6

3
Getting Started
The Universal Library is callable from many languages and environments, including Visual Basic®, Visual
C++, Borland C++ Builder, and Delphi. A list of the languages currently supported by the Universal Library
is provided on page 1. Additionally, the UL is now callable from any language supported by the .NET
framework. This chapter describes how to use the library from each of the languages, as well as several 16-bit
environments. The first section of the chapter describes details of the library that apply to all languages. The
following sections describe the differences for each language.

Before starting your application, you should perform the following:

! Set up and test your boards with InstaCal. The Universal Library will not function until InstaCal has
created a configuration file (CB.CFG).

! Run the example programs for the language you program in.

Example programs
Example programs are installed into the Sample32 and Sample16 installation subdirectory for each
programming language mentioned above. Note that 16-bit sample programs are only installed when you
install the 16-bit library. The names of the installation folders are:

! C

! CWIN

! DELPHI

! VBWIN

All .NET applications run in the 32-bit Windows environment. A complete set of UL for .NET example
programs are included in the C# and VB.NET folders of the Universal Library installation directory. Each
program illustrates the use of Universal Library functions from within a .NET program.

For a complete list of example programs, refer to the UL Function Reference
The Universal Library Function Reference contains tables that list the UL and UL for .NET example
programs. Each table contains the name of the sample program and the functions that the program
demonstrates. This document is available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-
functions.pdf).

7

4
Universal Library Description and Use
The Universal Library consists of a set of functions that are callable from your program. These functions are
grouped according to their purpose. All of the groups except for Miscellaneous are based on which type of
device they are used with.

Important - Read the UL documentation, Readme file, and run the example programs
In order to understand the functions, please read the board-specific information section contained in this
manual and in the Readme files supplied on the Universal Library disk. We also urge you to examine and run
one or more of the example programs supplied prior to attempting any programming of your own. Following
this advice can save you hours of frustration and wasted time.

General UL language interface description
The interface to all languages is a set of function calls and a set of constants. The list of function calls and
constants are identical for each language. All of the functions and constants are defined in a "header" file for
each language. Refer to the sections below, and especially to the example programs for each language. This
manual is brief with respect to details of language use and syntax. For more detailed information, review the
example programs. Example programs for each language are located in the installation directory.

Function arguments
Each library function takes a list of arguments and most return an error code. Some functions also return data
via their arguments. For example, one of the arguments to cbAIn() is the name of a variable in which the
analog input value will be stored. All function arguments that return data are listed in the "Returns" section of
the function description.

Constants
Many functions take arguments that must be set to one of a small number of choices. These choices are all
given symbolic constant names. For example, cbTIn() takes an argument called Scale that must be set to
CELSIUS, FAHRENHEIT or KELVIN. These constant names are defined, and are assigned a value in the "header"
file for each language. Although it is possible to use the numbers rather than the symbolic constant names, we
strongly recommend that you use the names. Using constant names make your programs more readable and
more compatible with future versions of the library. The numbers may change in future versions, but the
symbolic names always remain the same.

Options arguments
Some library functions have an argument called Options. The Options argument is used to turn on and off
various optional features associated with the function. If you set Options = 0, the function sets all of these
options to the default value, or OFF.

Some options can have an alternative value, such as DTCONNECT and NODTCONNECT. If an option can have
more than one value, one of the values is designated as the default. Individual options can be turned on by
adding them to the Options argument. For example:

! Options = BACKGROUND will turn on the "background execution" feature.

! Options = BACKGROUND+CONTINUOUS will select both the "background execution" and the "continuous
execution" feature.

Universal Library User's Guide Universal Library Description and Use

8

Error handling
Most library functions return an error code. If no errors occurred during a library call, 0 (or NOERRORS) is
returned as the error code. Otherwise, it is set to one of the codes listed in the Universal Library Function
Reference "Error Codes" chapter. This document is available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf

If a non-zero error code is returned, you can use cbGetErrMsg() to convert the error code to a specific error
message. As an alternative to checking the error code after each function call, you can turn on the library's
internal error handling with cbErrHandling().

16-bit values using a signed integer data type
When using functions that require 16-bit values, the data is normally in the range of 0 to 65535. However,
some programming languages, such as BASIC and Visual Basic only provide signed data types. When using
signed integers, reading values above (32767) can be confusing.

The number (32767) in decimal is equivalent to (0111 1111 1111 1111) binary. The next increment (1000
0000 0000 0000) binary has a decimal value of (-32768). The maximum value (1111 1111 1111 1111)
binary translates to (-1) decimal. Keep this in mind if you are using Basic, Visual Basic (up to version 6) or
other languages that don�t support unsigned integers.

There is additional information on this topic in the Universal Library Function Reference. This document is
available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf. Also, refer to the
documentation supplied with your language compiler.

Using the Universal Library in Windows
All 32-bit applications (including console applications) access the 32-bit Windows Dynamic Link Library
(DLL) version of the Universal Library (CBW32.DLL). Example programs are provided for MS Visual C++,
MS Visual Basic, Borland C++, and Borland Delphi in the Sample32 subdirectories of the installation
directory. These sample programs illustrate the use of CBW32.DLL.

For 16-bit Windows applications, or Windows applications running in Windows 3.x, the 16-bit Windows
DLL version of the Universal Library (CBW.DLL) should be used. Example programs are provided for
Visual Basic and both Borland and MS C in the Sample16 subdirectories of the installation directory. These
programs illustrate the use of CBW.DLL.

Due to the differences in memory management among DOS, Windows 3.x, and 32-bit Windows
(95/98/ME/NT/2000/XP), the scan functions have slightly different argument lists. In DOS libraries, all scan
functions take a pointer to a data array as one of their arguments. In Windows 3.x, these functions take a
handle to a Windows Global Memory buffer instead of a pointer to an array. In the 32-bit Windows version,
these functions take a pointer (a 32-bit virtual address) or a handle returned from cbWinBufAlloc().

The affected functions are:

! cbAInScan()

! cbAOutScan()

! cbAPretrig()

! cbDInScan()

! cbDOutScan()

! cbStoreOnInt()

Universal Library User's Guide Universal Library Description and Use

9

The Windows library contains four functions for managing these Windows global memory buffers:

! cbWinBufAlloc()

! cbWinBufFree()

! cbWinArrayToBuf()

! cbWinBufToArray()

Real-time acquisition under Windows
Real-time acquisition is available for Windows. To operate at full speed in Windows, the A/D board must
have an onboard FIFO buffer. All of our advanced designs have FIFO buffers, including our PCI-DAS boards
(except for the PCI-DAS08), and many of our CIO- boards, such as the CIO-DAS80x, CIO-DAS160x, CIO-
DAS140x, and CIO-DAS16/330x. All of these data acquisition boards will operate at full speed in Windows.

Applying software calibration factors in real time on a per-sample basis eats up machine cycles. If your CPU
is slow, or if processing time is at a premium, withhold calibration until after the acquisition run is complete.
Turning off real-time software calibration saves CPU time during a high speed acquisition run.

Processor speed
Processor speed remains a factor for DMA transfers and for real-time software calibration. Processors of less
than a 150 megahertz (MHz) Pentium class may impose speed limits below the capability of the board (refer
to specific board information.)

If your processor is less than a 150 MHz Pentium and you need an acquisition speed in excess of 200 kilohertz
(kHz), use the NOCALIBRATEDATA option to a turn off real-time software calibration and save CPU time.
After the acquisition is run, calibrate the data with cbACalibrateData().

Visual Basic for Windows
To use the Universal Library with Visual Basic, include the Universal Library declaration file CBW.BAS in
your program. Include the file as a module in the project, or include it by reference inside those Forms which
call into the Universal Library. Once the declarations for the Universal Library have been added to your
project, call the library functions from any Form's event handlers.

When using the 32-bit version of Visual Basic, CBW.BAS references CBW32.DLL to call Universal Library
functions. This is accomplished with conditional compile statements. When using 16-bit versions of the
Visual Basic (such as versions 3.0 or older), these conditional compile statements must be deleted.

For Visual Basic 6.0 and older, Windows memory buffers cannot be mapped onto arrays. As a consequence,
the cbWinArrayToBuf() and cbWinBufToArray() functions must be used to copy data between arrays and
Windows buffers.

Example:
Count = 100
MemHandle = cbWinBufAlloc (Count)
cbAInScan (......,MemHandle,...)
cbWinBufToArray (MemHandle, DataArray(0), 0, Count)
For i = 0 To Count
 Print DataArray(i)
Next i
cbWinBufFree (MemHandle)

Universal Library User's Guide Universal Library Description and Use

10

Visual Basic example programs

A complete set of Visual Basic example programs is included in the VBWIN folder of the Universal Library
installation directory. Each program illustrates the use of a Universal Library function from within a Visual
Basic program. The .FRM files contain the programs, and the corresponding .VBP or .MAK files are the
project files used to build the programs for Visual Basic.

Microsoft Visual C++
To use the Universal Library with MS Visual C++, include the Universal Library header file CBW.H in your
C/C++ program and add the library file CBW32.LIB to your library modules for linking to the CBW32.DLL.
When using a 16-bit version of MS Visual C++, replace the library file CBW32.LIB with CBW.LIB.

Microsoft Visual C++ example programs

The CWIN folder of the Universal Library installation directory contains three sample programs - Wincai01,
Wincai02 and Wincai03. Each program is an example of a simple C program that calls a few of the Universal
Library functions from a Windows application. These programs contain directives for building 16- OR 32- bit
applications. Use the .MAK project files to build a 16-bit application, and the .DSP project files to build a 32-
bit application.

The non-Windows C examples in the C folder of the installation directory provide a more complete set of
examples. You can compile these programs as 32-bit console applications for Windows by using the
MAKEMC32.BAT file.

Borland C /C++ for Windows
For 32-bit Borland(or Inprise) C/C++ compilers, include the Universal Library header file CBW.H in your
program and link with the import library file CBW32BC.LIB.

When using the 16-bit version of Borland C/C++, use a tool called IMPLIB to generate an OMF-style import
library that your application can link with. For 16-bit users, IMPLIB accepts a DLL (CBW.DLL) as input and
creates an OMF-style import library (BCBW.LIB). You can run IMPLIB on CBW.DLL to emit a 16-bit
OMF-style import library (BCBW.LIB).

Borland C/C++ example programs

The non-Windows C examples provide an extensive set of examples. These can be compiled as 32-bit console
applications using the MAKEBC32.BAT file.

Delphi example programs
A complete set of Delphi example programs is included in the DELPHI folder of the Universal Library
installation directory. Each program illustrates the use of one Universal Library function from within a Delphi
program. The .PAS files contain the programs. The corresponding .DPR file is the Project file used to build
the program in a 16 bit or 32 bit Delphi environment.

In 16-bit Delphi environments, use the cbw.dll header. In 32-bit Delphi environments use the cbw32.dll
header. Conditionals within the example programs determine which of the DLLs is used. Where integers are
passed by reference to a Universal Library function, use the SmallInt data type in 32-bit environments. The
relevant functions are defined this way in the 32-bit header, so if you try to pass an Integer data type you will
get a compiler error.

Using the Library with SoftWIRE®
To understand how SoftWIRE interacts with DAQ I/O boards, study both this manual and the example
programs supplied with SoftWIRE. It is very important that you read the entire manual for information that

Universal Library User's Guide Universal Library Description and Use

11

relates to usability and performance. Remember, SoftWIRE uses the Universal Library as the interface to the
I/O boards. Library performance factors are reflected in SoftWIRE controls that use the library.

Each SoftWIRE component is implemented as a graphic block. You can access all arguments and properties
on the screen. You connect constants, variables, or objects by dragging a �wire� from �pin-to-pin.� In large
projects, the ability to easily supply an argument with a control variable that acquires its value elsewhere is
especially powerful. See the SoftWIRE Help topic for each component for detailed information on how to do
this.

SoftWIRE Mcc Daq Components for .NET
SoftWIRE is a simple and efficient way to build application programs. Read the Help file, start with simple
examples, and then begin working up your own projects. Please call us with any suggestions or questions you
may have. The following table lists the data acquisition components in SoftWIRE that require the UL
software support components.

SoftWIRE component Explanation

AI Read Calls the UL's AIn() method to read the value, or state, of a single analog input
channel on an A/D board, and output the value.

AI Scan Calls the UL's AInScan() method to scan a range of analog input channels and
output the data in a one- or two-dimensional array of data.

AI Trigger
Calls the UL's ATrig() method to continuously read the value of an analog input
channel, compare the value to a specified trigger value, and output the first value
that meets the trigger criteria.

AO Scan Calls the UL's AOutScan() method to scan a range of analog output channels and
values from an input array to those channels.

AO Update Calls the UL's AOut() method to set the value of an analog output channel.
Configure 8254 Counter Calls the UL's C8254Config() method to configure an 8254 counter.
Configure 9513 Counter Calls the UL's C9513Config() method to configure a 9513 counter

DI Read Byte Calls the UL's DIn() method to read a digital byte value from a specified board
and digital input port.

DI Read Bit Calls the UL's DBitIn() method to read a digital bit value from a digital I/O port.

DO Write Byte Calls the UL's DBitOut() method to set the value, or state, of a single bit on a
digital I/O port.

DO Write Bit Calls the UL's DOut() method to set the value, or state, of a single port on a digital
I/O board.

Initialize 9513 Counter Calls the UL's C9513Init() method to initialize a 9513 counter
Load Counter Calls the UL's CLoad32() method to load a count value to a specified counter

Read Counter Calls the UL's CIn32() method to read the current count from a counter and then
output the count from one of its data output pins

Read 9513 Frequency Calls the UL's CFreqIn() method to read the frequency read by a 9513 counter
and then output it from one of its data output pins

TEMP In Calls the UL's TIn() method to read a value from a single temperature input
channel and output the value in degrees

TEMP In Scan Calls the UL's TInScan() method to scan a range of temperature input channels
and output a two-dimensional array in degrees

Universal Library User's Guide Universal Library Description and Use

12

Using the Library with DOS BASIC
Each of the supported versions of BASIC consists of two distinct systems. Programs can be loaded into the
BASIC editor and run from within the integrated BASIC environment. Programs can also be compiled by a
command line compiler into stand-alone executable programs that can be run on their own without the help of
the integrated BASIC environment. The Universal Library provides the tools for both methods.

BASIC header file
Every BASIC program that uses the Universal Library must have a line which includes the BASIC Universal
Library header file - CB.BI. The following line should appear near the start of every program, before the first
library call is made.

'$INCLUDE: 'CB.BI'

Using the Library within the integrated BASIC environment
When you start up BASIC, load the "quick library" version of Universal Library.

For Quick BASIC, type:

qb /l cbqb

For Professional BASIC, type:

qbx /l cbpb

For VisualBasic for DOS, type:

vbdos /l cbvb

Using the Library with the BASIC command line compiler
To build stand-alone executable files with the command line compiler, you must link your compiled BASIC
program with the stand-alone version of the Universal Library. To do this, you must supply the linker with the
library name. The names of the .lib files are:

! QuickBasic: CBQB.LIB

! Professional Basic: CBPB.LIB

! VisualBasic for DOS: CBVB.LIB

Sample BASIC programs
The sample BASIC programs demonstrate how to call each function in the Universal Library. These programs
can be run from within the integrated BASIC environment. They can also be compiled using the command
line compiler with the batch file supplied. The names of the batch files are:

! QuickBasic: MAKEQB.BAT

! Professional BASIC: MAKEPB.BAT

! VisualBasic for DOS: MAKEVB.BAT

Passing arguments to the Universal Library
All functions in the library require that arguments be passed to them. The file CB.BI contains the definition of
all the argument types that are passed. In general, there are two classes of arguments: inputs and outputs.

Universal Library User's Guide Universal Library Description and Use

13

Input arguments

Input arguments to a library function are listed in the CB.BI file definition as BYVAL. You can pass these
arguments as either a variable or a constant. For example, both of these versions are acceptable:

BoardNum% = 0
cbStopBackground (BoardNum%)

or

cbStopBackground (0)

Output arguments

Output arguments pass information back to the calling function. For example, cbAIn() returns the value from
an A/D to the DataValue% argument. Others arguments are both inputs and outputs. For example, the Rate&
argument specifies the requested sampling rate for cbAInScan() (Input).

The actual sampling rate can vary from the requested sampling rate. cbAInScan() returns the actual rate to the
Rate& argument (output). Output and input/output arguments are defined in the CB.BI function definitions as
SEG. All SEG arguments can only be passed via a variable.

The following example is correct:

Count& = 1000
Rate& = 15000
cbAInScan (0, 0, 1, Count&, Rate&, BIP5VOLTS, DataArray(0), 0)

The following example is NOT correct:

cbAInScan (0, 0, 1, 1000, 15000, BIP5VOLTS, DataArray(0), 0)

DataArray argument with multiple channels

Some functions have a DataArray argument. DataArray either receives the data from an input function, such
as cbAInScan(), or contains the data to send to an output function, such as cbAOutScan().

DataArray must be dimensioned to be large enough to contain all of the data. The array can either be
dimensioned with one-dimension or two dimensions. When sampling more than one channel, it is often more
straightforward to use a two-dimensional array. The code below shows both methods:

DIM DataBuffer (1999) 'One-dimensional array. 0 to 1,999 (2,000)
elements.

or

DIM DataBuffer (1, 999) 'Two-dimensional array. 0 & 1 with 0-999
(1,000) elements each.
LowChan% = 2
HighChan% = 3
Count& = 2000
Rate& = 1000
cbAInScan (0, LowChan%, HighChan%, Count&, Rate&, BIP5VOLTS, DataBuffer(0), 0)

or

cbAInScan (0, LowChan%, HighChan%, Count&, Rate&, BIP5VOLTS, DataBuffer(0,
0), 0)

Universal Library User's Guide Universal Library Description and Use

14

The advantage of using the two-dimensioned array is that you can directly address the data in the array by
channel. Therefore, in the example above, DataBuffer (0, 99) addresses the 100th sample for channel 2
(channel 2 was the first element in the array; LowChan%).

When running UL for .NET, order Visual Basic arrays as DataArray (sample, chan). The above example
would be written in UL for .NET as DataBuffer (99, 0).

String arguments

cbGetErrMsg() requires that a string variable be passed as an argument. This string variable must have been
previously allocated to be large enough to hold the longest error message. To do this, use Quick BASIC's
space$ function as it is done in the example program.

ErrStr$ = space$ (ERRSTRLEN)

Integer arguments
BASIC does not support unsigned integers (0 to 65,535). Values for the integer data type range from
�32,768 to 32,767. When using functions that require unsigned integers, the data must be converted. (Refer to
"16-bit values using a signed integer data type" on page 8 for information on 16-bit values using unsigned
integers.)

BACKGROUND operation

If you use the BACKGROUND option with any function, you must declare the associated data array as '$STATIC.

Unless you declare an array as '$STATIC, BASIC may move the array around in memory as the program is
executing. Whenever you use the BACKGROUND option, the I/O function reads/writes from the data array in the
background while the BASIC program continues executing in the "foreground.� If BASIC moves the array
while the I/O function is reading/writing to it, it will cause intermittent and unpredictable problems.

cbStopBackground() should be executed after normal termination of all background functions to clear
variables and flags.

Using the Library with VisualBasic® for DOS

Compiling stand-alone EXE files
Due to a quirk in VisualBasic for DOS, the following message displays if you compile a stand-alone EXE file
from within the IDE and set the EXE type to "Stand alone EXE file":

"fixup overflow at 334 in the segment -TEXT target external 'B$CEND'".

Disregard this error message. The compiled program will run without error.

Using the Library with C for DOS

The C libraries included with the system can be used with either the Microsoft or Borland C compilers.

C header file
Every C program that uses the Universal Library must have a line which includes the Universal Library C
header file, CB.H. The following line should appear near the start of every program, before the first library
call is made.

#include "cb.h"

Universal Library User's Guide Universal Library Description and Use

15

Memory models
Both Borland and Microsoft C compilers support different memory models. The Universal Library comes
with the following four versions of the library.

! CBCC.LIB - For use with compact model

! CBCS.LIB - For use with small model

! CBCM.LIB - For use with medium model

! CBCL.LIB - For use with large and huge model

Large data arrays
The Universal Library supports input and output from very large (>64K) amounts of data. If your program
requires storage and transfer of large single data sets, you must compile it for the "huge" model and use the
CBCL.LIB library. If you declare an array to hold the data, it should be declared __huge.

If you allocate memory (as is done in the example programs using malloc) it should be allocated using
_halloc (Microsoft) or halloc (Borland), the pointer declared as __huge and memory freed using _hfree
(Microsoft) or hfree (Borland). Note that you must also include the malloc.h header.

Compiling the sample C programs
The example programs demonstrate how to call each of the Universal Library functions from a C program.
Two batch files are provided that show how to compile and link the sample programs using the Microsoft and
Borland compilers.

! MAKEMC16.BAT - compile and link with Microsoft C

! MAKETC16.BAT - compile and link with Borland C

Using the Library with HP VEE
The Universal Library with HP VEE includes a complete interface to HP VEE providing a DataAcq-specific
menu bar addition and functions as well as complete examples of all the library functions.

To understand how the interface to HP VEE interacts with I/O boards, you need to study both this manual and
the example programs. This manual is written for symbolic programming languages such as BASIC and C.
VEE is a graphical programming language.

It is very important that you scan the entire manual for information that relates to general performance.
Remember, VEE is using the entire Universal Library as the interface to the I/O boards. Limitations and
performance factors in the library are reflected in VEE programs that use the library. The manual contains
related information throughout the contents. We encourage you to review the entire manual.

The Universal Library interface to VEE follows the structure of the library as it is used with all other
languages. The arguments presented here in symbolic format are the same arguments you will need to specify
when using VEE to control an I/O board. The manual explains the functions and each of the arguments. The
VEE examples show how the function is interfaced to VEE and show how to use the function to control the
I/O boards.

There is one exception to this rule: the programming argument MemHandle is replaced in VEE with the
argument DataArray. VEE allocates data arrays directly. Windows programming languages use another
method of pointing to data arrays. In addition to a name change, there is some VEE programming logic done
to dimension a two-dimensional data array for all multichannel operations. This logic can be seen by
examining the design view of the function.

Universal Library User's Guide Universal Library Description and Use

16

Each function is implemented as a panel. All the arguments are accessible on the panel and require a value. In
the example programs and in simple projects this method of presenting the functions is easiest to use. Each
value is hard-coded into the panel.

If more complex projects are undertaken, open the design view of the function and drag certain arguments
outside the panel. Dragging an object outside the panel will create a 'pin' to which you can connect constants,
variables, or objects such as slider bars. In large projects the ability to supply an argument with a variable that
acquires its value elsewhere is especially useful. See the VEE manual for information on how to do this.

See the example program ULAI06.VEE for an example of the multiple uses of several arguments, where it is
better to specify the argument values globally. In this example, we have brought several arguments out of the
panel.

Remember, if you drag an argument outside a panel you must reconnect the program flow (top and bottom
pins) of the remaining arguments; the one above to the one below the argument you removed.

New HP VEE functions
Several new functions have been added strictly for use with HP VEE. These functions are listed separately in
a section devoted to the VEE-specific functions. All VEE-specific functions begin with the name cbv, rather
than cb. The new functions add VEE style data and array handling to the library.

Using the HP VEE interface is simple, and is a great way to connect your VEE programs to the real world.
Read the manual, start with the examples, and then begin working up your own projects. Remember to call us
with suggestions!

Installation note
Install the Universal Library in the default directory. The HP VEE library import block CBI_UL contains an
exact path specification for the library CBV.DLL and its header file CBV.H. If you do not install these files
into the default directory suggested by the install program, you will have to edit the library import block
CBI_UL to point to the directory where the files are installed.

To edit the library import block CBI_UL:

1. Click on the DataAcq menu item and then click on its cbLibrary sub-menu item.
2. Place the mouse cursor at the desired location for the library import block and press the left mouse button

once.
3. Double-click on the library import block object. A detailed CBI_UL library block will be displayed.
4. Within the CBI_UL library block, click on the button to the right of File Name, then enter the new path

with the file name and click OK.
5. Click on the button to the right of Definition File, then enter the new path with the file name and click

OK.

Using VEE 3.2 or later
If you are using VEE 3.2 or later, edit the library import block and change the library name from CBV.DLL to
CBV32.DLL. Be sure to include the proper path.

17

5
Universal Library for .NET Description & Use
Programming the Universal Library API is now available through the various languages supported by the
Microsoft .NET framework. All .NET applications access the 32-bit Windows Universal Library
(CBW32.DLL) through the MccDaq .NET assembly (MCCDAQ.DLL). The MccDaq assembly provides an
interface that exposes each Universal Library function that is callable from the .NET language.

The Universal Library for .NET is designed to provide the same "look and feel" as the Universal Library for
32-bit Windows. This design makes it easier to port over existing data acquisition programs, and minimizes
the learning curve for programmers familiar with the CBW32.DLL interface.

In the Universal Library for .NET, each function is exposed as a class method with virtually the same
parameter set as their UL counterparts.

Configuring a UL for .NET project
In a .NET application, there are no header files to include in your project. You define methods and constants
by adding the MccDaq assembly, or Namespace, as a reference to your project. You access UL for .NET
methods through a class that has the Universal Library as a member.

To add the MccDaq Namespace as a reference in a Visual Studio .NET project:

1. Start a new Visual Basic or C# project in Visual Studio .NET.
2. From the Visual Studio .NET Solution Explorer window, right-click on References and select Add

Reference.

The Add Reference window appears.
3. From the .NET tab, select the MccDaq option from the displayed list of .NET assemblies and click on the

Select button.

MccDaq displays in the Selected Components area on the window.

Universal Library User's Guide Universal Library for .NET Description & Use

18

4. Click on the OK button.

MccDaq appears under the References folder in the Solution Explorer window.

The MccDaq Namespace is now referenced by your Visual Studio .NET project.

General UL for .NET language interface description
The MccDaq Namespace provides an interface that exposes each Universal Library for .NET method as a
member of a class with virtually the same parameters set as their UL counterparts. The MccDaq Namespace is
a logical naming scheme for grouping related types. The .NET Framework uses a hierarchical naming scheme
for grouping types into logical categories of related functionality.

When you develop a .NET application that uses the Universal Library, you add the MccDaq Namespace as a
reference to your project. There are no "header" files in a .NET project.

The MccDaq Namespace contains the classes and enumerated values by which UL for .NET applications
access the Universal Library data types and functions.

The MccDaq Namespace contains four main classes:

! MccBoard class

! ErrorInfo class

! MccService class

! GlobalConfig class

The MccDaq assembly allows you to design Common Language Specification (CLS)-compliant programs. A
CLS-compliant program contains methods that can be called from any existing or future language developed
for the Microsoft .NET framework. Use CLS-compliant data types to ensure future compatibility.

MccBoard class
The MccBoard class provides access to all of the methods for data acquisition and properties providing board
information and configuration for a particular board.

Class Constructors

The MccBoard class provides two constructors; one which accepts a board number argument and one with no
arguments.

The following code examples demonstrate how to create a new instance of the MccBoard class using the latter
version with a default board number of 0:

Visual Basic Private DaqBoard As MccDaq.MccBoard
DaqBoard = New MccDaq.MccBoard()

C# private MccDaq.MccBoard DaqBoard;
DaqBoard = new MccDaq.MccBoard();

Universal Library User's Guide Universal Library for .NET Description & Use

19

The following code examples demonstrate how to create a new instance of the MccBoard class with the board
number passed to it:

Visual Basic Private DaqBoard As MccDaq.MccBoard
DaqBoard = New MccDaq.MccBoard(BoardNumber)

C# private MccDaq.MccBoard DaqBoard;
DaqBoard = new MccDaq.MccBoard(BoardNumber);

Class properties

The MccBoard class also contains six properties that you can use to examine or change the configuration of
your board. The configuration information for all boards is stored in the CB.CFG file, and is loaded from
CB.CFG by all programs that use the library.

Properties Description
BoardName Name of the board associated with an instance of the MccBoard class.
BoardNum Number of the board associated with an instance of the MccBoard class.
BoardConfig Gets a reference to a cBoardConfig class object. Use this class reference to get or set

various board settings.
CtrConfig Gets a reference to a cCtrConfig class object. Use this class reference to get or set various

counter settings.
DioConfig Gets a reference to a cDioConfig class object. Use this class reference to get or set various

digital I/O settings.
ExpansionConfig Gets a reference to a cExpansionConfig class object. Use this class reference to get or set

various expansion board settings.

Class methods

The MccBoard class contains close to 80 methods that are equivalents of the function calls used in the standard
Universal Library. The MccBoard class methods have virtually the same parameters set as their UL
counterparts.

The following code examples demonstrate how to call the AIn()method of the MccBoard object MccDaq:

Visual Basic ULStat = DaqBoard.AIn(Chan, Range, DataValue)
C# ULStat = DaqBoard.AIn(Chan, Range, out DataValue);

Many of the arguments are MccDaq enumerated values. Enumerated values take settings such as range types
or scan options and put them into logical groups. For example, to set a range value, reference a value from the
MCCDaq.Range enumerated type, such as Range.Bip5Volts. Refer to Table 5-1 on page 20 for a list of
MccDaq enumerated values.

The Universal Library Function Reference contains detailed information about all MccBoard class methods.
This document is available on our web site at www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf).

ErrorInfo class
Most UL methods return ErrorInfo objects. These objects contain two properties that provide information on
the status of the method called:

! ErrorInfo.Message property gets the text of the error message associated with a specific error code.

! ErrorInfo.Value property gets the named constant value associated with the ErrorInfo object.

The ErrorInfo class also includes error code enumerated values, which define the error number and
associated message which can be returned when you call a method.

Universal Library User's Guide Universal Library for .NET Description & Use

20

MccService class
The MccService class contains all members for calling utility UL functions. This class contains nine static
methods (you do not need to create an instance of the MccService class to call these methods):

! DeclareRevision()

! WinArrayToBuf()

! ErrHandling()

! WinBufToArray()

! GetRevision()

! WinBufAlloc()

! FileGetInfo()

! WinBufFree()

! FileRead()

The following code examples demonstrate how to call a UL for .NET memory management method from
within a Universal Library program:

WindowHandle=MccService.WinBuffAlloc(1000)
MccService.WinBuffFree(WindowHandle)

GlobalConfig class
The GlobalConfig class contains all of the members for getting global configuration information. This class
contains three properties:

! MccDaq.GlobalConfig.NumBoards property returns the maximum number of boards that you can install
at one time. ConfigGlobal=MccDaq.GlobalConfig.NumBoards

! MccDaq.GlobalConfig.NumExpBoards property returns the maximum number of expansions boards that
are allowed to be installed on the board. ConfigGlobal=MccDaq.GlobalConfig.NumExpBoards

! MccDaq.GlobalConfig.Version property is used to determine compatibility with the library version.
ConfigGlobal=MccDaq.GlobalConfig.Version

Each of these properties is typed as an Integer.

MccDaq enumerations
The MccDaq Namespace contains enumerated values which are used by many of the methods available from
the MccDaq classes (see Table 5-1). Refer to specific method descriptions in the Universal Library Function
Reference for the values of each enumerated type. This document is available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf.

Table 5-1. MccDaq Enumerated Values
Enumeration Name Description
MccDaq.BCDMode Lists all of the counting format options.
MccDaq.C8254Mode Lists all of the operating modes for 8254 counters.
MccDaq.CompareValue List all options for comparing values while configuring a 9513 counter.
MccDaq.ConnectionPin Defines the connector pins to associate with the signal type and direction when

calling the SelectSignal() method.
MccDaq.CounterControl Defines the possible state of each counter channel (enabled/disabled).

Universal Library User's Guide Universal Library for .NET Description & Use

21

Enumeration Name Description
MccDaq.CountDirection Defines the count direction when configuring counters.
MccDaq.CountEdge Defines the edge used for counting.
MccDaq.CounterRegister Lists all of the register names to load the count to.
MccDaq.CounterSource Lists all counter input sources.
MccDaq.CountingMode Lists all valid modes for a C7266 counter configuration.
MccDaq.CtrlOutput Lists all of the options for linking counter 1 to counter 2.
MccDaq.DACUpdate Defines the available DAC update modes
MccDaq.DataEncoding Lists the format of the data that is returned by a counter.
MccDaq.DigitalPortDirection Configures a digital I/O port as input or output.
MccDaq.DigitalLogicState Defines all digital logic states.
MccDaq.DigitalPortType Defines all digital port types.
MccDaq.DTMode Lists all modes to transfer to/from the memory boards.
MccDaq.ErrorHandling Defines all error handling options.
MccDaq.ErrorReporting Defines all error reporting options.
MccDaq.EventType Lists all available event conditions.
MccDaq.FlagPins Lists all signals types that can be routed to the FLG1 and FLG2 pins on the 7266

counters.
MccDaq.FunctionType List all valid function types used with data acquisition methods.
MccDaq.GateControl List all of the gating modes for configuring a 9513 counter.
MccDaq.IndexMode List the actions to be taken when the Index signal is received by a 7266 counter.
MccDaq.InfoType Lists all configuration information to be used with the MccBoard class

configuration methods.
MccDaq.OptionState Enables or disables various options.
MccDaq.C9513OutputControl List all of the types of output from a 9513 counters.
MccDaq.C8536OutputControl Lists all of the types of output from an 8536 counters.
MccDaq.Quadrature Lists all of the resolution multipliers for quadrature input.
MccDaq.Range Defines the set of ranges within the UL for A/D and D/A operations.
MccDaq.RecycleMode Lists the recycle mode options for 9513 and 8536 counters.
MccDaq.Reload Lists the options for reloading the 9513 counter.
MccDaq.ScanOptions List the available options for paced input/output methods.
MccDaq.SignalType List all signal types associated with a connector pin on boards supporting ATCC.
MccDaq.SignalDirection Lists all of the directions available from a specified signal type assigned to a

connector pin.
MccDaq.SignalPolarity List all available polarities for a specified signal.
MccDaq.SignalSource List all of the signal sources of the signal from which the frequency will be

calculated.
MccDaq.StatusBits List all status bits available when reading counter status.
MccDaq.TempScale Lists valid temperature scales that the input can be converted to.
MccDaq.TimeOfDay List all time of day options for initializing a 9513 counter.
MccDaq.TriggerType List all valid trigger types for the MccBoard.SetTrigger method.
MccDaq.ThermocoupleOptions Specifies whether or not to apply smoothing to temperature readings.

Universal Library User's Guide Universal Library for .NET Description & Use

22

Parameter data types
Many of the Universal Library for .NET methods are overloaded to provide for signed or unsigned data types
as parameters. The AConvertData() method is shown below using both signed and unsigned data types.

Public Function AConvertData(ByVal numPoints As Integer, ByRef adData As
Short, ByRef chanTags As Short) As MccDaq.ErrorInfo
Member of MccDaq.MccBoard

VB.NET

Public Function AConvertData(ByVal numPoints As Integer, ByRef adData As
System.UInt16, ByRef chanTags As System.UInt16) As MccDaq.ErrorInfo
Member of MccDaq.MccBoard

public MccDaq.ErrorInfo AConvertData (System.Int32 numPoints, System.Int16
adData, System.Int16 chanTags)
Member of MccDaq.MccBoard

C#
.NET

public MccDaq.ErrorInfo AConvertData (System.Int32 numPoints, System.UInt16
adData, System.UInt16 chanTags)
Member of MccDaq.MccBoard

For most data acquisition applications, unsigned data values are easier to manage. However, since Visual
Basic (version 6 and earlier) does not support unsigned data types, it may be easier to port these programs to
.NET if the signed data types are used for the method parameters. For additional information on using signed
data types, refer to the section �16-bit values using a signed integer data type� on page 8.

The short (Int16) data type is Common Language Specification (CLS) compliant, is supported in VB, and will
be included in any future .NET language developed for the .NET framework. Using CLS-compliant data types
ensures future compatibility. Unsigned data types are not CLS compliant, but are still supported by various
.NET languages, such as C#.

Differences between the UL and UL for .NET
Table 5-2 lists the differences between the Universal Library and the Universal Library for .NET.

Table 5-2. Differences between UL and UL for .NET
 Universal Library Universal Library for .NET
Board
Number

The board number is included
as a parameter to the board
functions.

An MccBoard class is created for each board installed, and the
board number is passed to that board class.

Functions Set of function calls defined in
a header.

Set of methods. Methods of MccBoard or MccService classes. To
access a method, instantiate a UL for .NET class and call the
appropriate method using that class.

Constants Constants are defined and
assigned a value in the
"header" file.

Constants are defined as enumerated types.

Return
value

The return value is an Error
code.

The return value is an ErrorInfo object that contains the error's
number and message.

Board number
In a .NET application, multiple boards may be programmed by creating an MccBoard Class object for each
board installed:

Board0 = new MccBoard(0)
Board1 = new MccBoard(1)
Board2 = new MccBoard(2)

Note that the board number may be passed into the MccBoard class, which eliminates the need to include the
board number as a parameter to the board methods.

Universal Library User's Guide Universal Library for .NET Description & Use

23

MCC classes
To use board-specific Universal Library functions inside a .NET application, you use methods of the
appropriate class. UL for .NET classes are listed in Table 5-3.

Table 5-3. UL for .NET Board Classes
UL for .NET Class Description
MccBoard Access board-related Universal Library functions.
ErrorInfo Utility class for storing and reporting error codes and messages.
BoardConfig Gets and sets board configuration settings.
CtrConfig Gets and sets counter board configuration settings.
DioConfig Gets and sets digital I/O configuration settings.
ExpansionConfig Gets and sets expansion board configuration settings.
GlobalConfig Gets and sets global configuration settings.
MccService Access utility Universal Library functions.

Refer to the Universal Library Function Reference (available on our web site at
www.mccdaq.com/PDFmanuals/sm-ul-functions.pdf) for additional class information.

Methods
Methods are accessed through the class containing them. The following example demonstrates how to call the
AIn() method from within a 32-bit Windows application and also from a .NET application.

VB Application using CBW32.DLL VB .NET Application using MCCDAQ.DLL
Dim Board As Integer
Dim Channel As Integer
Dim Range As Integer
Dim ULStat As Integer
Dim DataValue As Short

Board =0
Channel = 0
Range =BIP5VOLTS;

ULStat =cbAIn(Board, Channel, Range,
DataValue)

Dim Board0 As MccBoard
Board0 = new MccDaq.MccBoard(0)
Dim Channel As Integer
Dim Range As MccDaq.Range
Dim ULStat As ErrorInfo
Dim DataValue As UInt16

Channel = 0
Range =Range.BIP5VOLTS;

ULStat =Board0.AIn(Channel, Range,
DataValue)

Enumerated types
Instead of using constants such as BIP5VOLTS, the Universal Library for .NET uses enumerated types. An
enumerated type takes settings such as range types, scan options or digital port numbers and puts them into
logical groups. Some examples are:

Range.Bip5Volts
Range.Bip10Volts
Range.Uni5Volts
Range.Uni10Volts

ScanOptions.Background
ScanOptions.Continuous
ScanOptions.BurstMode

Universal Library User's Guide Universal Library for .NET Description & Use

24

If you are programming inside of Visual Studio .NET, the types that are available for a particular enumerated
value display automatically when you type code:

Error handling
For .NET applications, the return value for the Universal Library functions is an object (ErrorInfo), rather than
a single integer value. The ErrorInfo object contains both the numeric value for the error that occurred, as well
as the associated error message. Within a .NET application, error checking may be performed as follows:

ULStat=Board0.AIn(Channel, Range, DataValue)
�check the numeric value of ULStat
If Not ULStat.Value = ErrorInfo.ErrorCode.NoErrors Then
 �if there was an error, then display the error message
 MsgBox ULStat.Message
EndIf

Service methods
You can access other Universal Library functions that are not board-specific through the MccService class.
This class contains a set of static methods you can access directly, without having to instantiate an
MccService object. The following examples demonstrate library calls to .NET memory management methods:

WindowHandle = MccService.WinBuffAlloc(1000)
MccService.WinBuffFree(WindowHandle)

Configuration methods
In 32-bit Windows applications, you access board configuration information by calling the cbGetConfig and
cbSetConfig API functions. In .NET applications, you access board configuration information through
separate classes, such as cBoardConfig, cCtrConfig, cDioConfig, and cExpansionConfig. Each
configuration item has a separate get and set method.

Some examples of how to access board configuration within a .NET application are shown below:

! UlStat = Board0.BoardConfig.GetRange(RangeValue)

! UlStat = Board1.DioConfig.GetNumBits(DevNumber, Number)

! UlStat = Board2.CtrConfig.GetCtrType(DevNumber, CounterType)

! UlStat = Board3.BoardConfig.SetClock(ClockSource)

! UlStat = Board4.ExpansionConfig.SetCJCChan(DevNumber, CjcChan)

25

6
How to Use the "Streamer" File Functions

File functions overview
The Universal Library can collect very large amounts of data to a "streamer" file. Once all of the data is
streamed to a file, your program reads it back into arrays and processes it in chunks. This feature is
particularly useful when you are using the Universal Library from DOS, where memory is limited. The library
contains four functions that are used with "streamer" files:

! cbFileAInScan() and cbFilePretrig() read the A/D and store the data in a "streamer" file. The
equivalent UL for .Net methods are FileAInScan() and FilePretrig().

! cbFileGetInfo()returns information about the streamer file (the equivalent UL for .Net method is
FileGetInfo().)

! cbFileRead() reads data from a "streamer" file to an array (the equivalent UL for .Net method is
FileRead().)

In addition to these library functions, the library comes with three utility programs for use with the
16-bit version of the library; MAKESTRM.EXE, FRAGTEST.EXE and RDSTREAM.EXE. These utilities
are not compatible with the 32-bit version of the library.

MAKESTRM creates a "streamer" file. When using the 16 bit library, this program should be run to allocate a
file large enough to hold all of the data that will be later collected with cbFileAInScan() or
cbFilePretrig() / FileAInScan() or FilePretrig(). The syntax is:

C:\MAKESTRM filename # <enter>

FRAGTEST checks an existing disk file to see if it is fragmented. In order to run at the faster sampling rates,
the "streamer" file must not be fragmented. Refer to "Speeding up Disk Files (De-fragmenting)" on page 26
for more information. The syntax is:

C:\FRAGTEST filename <enter>

RDSTREAM reads a "streamer" file and prints its contents on the screen. The syntax is:

C:\RDSTREAM filename <enter>

Hard disk vs. RAM disk files
The simplest type of file to use is a standard DOS file on a hard disk. Hard disk files have the disadvantage of
being slower than RAM disks. RAM disk (or virtual disk) files are faster but they are limited in size by the
amount of available memory in your computer.

Maximum sampling speed

The maximum sustainable sampling rate that can be specified with the cbFile functions is very hard to
predict. It depends on the speed of the CPU and the speed of the disk.

In addition to the variation in sampling speed from machine to machine, there can also be variations on the
same machine between consecutive operations of the same program. When reading an A/D to memory (non-
streaming modes) there is a hard and fast maximum sampling speed that cannot be exceeded. When using the
streaming modes the maximum rate is much fuzzier and must be arrived at by trial and error.

Universal Library User's Guide How to Use the "Streamer" File Functions

26

A rough guideline of attainable speeds are those on a 33 MHz 80386 machine with a fast hard disk it should
be possible to collect a megabyte of data at 200 kHz sampling rate to a disk file. It should also be possible to
collect a megabyte of data to a RAM disk at 330 kHz. In general the maximum sustainable speed for
cbFilePretrig() / FilePretrig() will be somewhat less than for cbFileAInScan()/FileAInScan().

Another characteristic of these "streaming" modes is that the more data you collect the lower the maximum
speed will be. On any machine with any speed disk, you can collect 32000 samples to a disk file at the
maximum A/D speed of 330 kHz. If you are pushing the upper limits of speed you will find that you can
collect 100K samples at a faster rate than you can collect 500K samples, etc.

How to determine the maximum sampling speed
The only way to determine the maximum safe speed is to run it repeatedly. The speed may work the first time
but may not necessarily work the next time. The only way to be sure that you can reliably run at a particular
speed is to try it numerous times. Another method is to increase the speed to the point where it begins to fail
every time so that you get some sense of whether or not you are pushing the speed limit on your computer.

To test it, write a program that calls cbFileAInScan() or cbFilePretrig() / FileAInScan() or
FilePretrig() (depending on whether you need pre-trigger data). Check the returned error code. If you get
an OVERRUN error (error code of 29), the sampling rate is too high. Whenever you get OVERRUN error, some data
was collected but not all of it. It is often useful to check how much data was collected to find out whether it
was almost fast enough or not even close.

Speeding up disk files (defragmenting)
Because of the way that disks work, the time that it takes to write to them can vary tremendously. A large disk
file is made up of many small pieces that are written individually to the disk. If the file is contiguous (each
piece is side by side) the speed is very fast. If the file is fragmented (pieces are in different places on the disk)
the speed is much slower. If you create a large disk file, it will most likely be fragmented to some degree, and
the maximum sampling speed will be much lower than it would be for an unfragmented file.

To get around this problem, you should use a disk optimizer or defragmenter program immediately before
creating the streamer file with MAKESTRM. After you create the streamer file, it will remain unfragmented
so long as you do not erase and recreate it. The disk optimizer program included with Norton Utilities�, is
called Speed Disk, or SD. To run it type:

SD /Q

This will execute the "Quick" optimize, which works as well as the full optimization.

After de-fragmenting the disk, create a streamer file that is large enough to hold as much data as you plan to
collect with cbFileAInScan() or cbFilePretrig(). To create the disk file, run the standalone
MAKESTRM.EXE program. This will create a streamer file of the required size.

After the file is created, run FRAGTEST.EXE to see whether or not the file is fragmented. It is possible that
the file may be fragmented even though you just de-fragmented the disk. This is because the disk may contain
some bad sectors that could not be moved when the disk was optimized. When you create the new file and it
hits one of these bad sectors, it has to skip over it, hence fragmentized.

If FRAGTEST reports that the file is fragmented, create a second file and test that with FRAGTEST. Repeat
this until FRAGTEST reports that the file is OK. After you have an unfragmented disk file you can try using it
with cbFileAInScan() or cbFilePretrig() / FileAInScan() or FilePretrig() to collect data. If the
maximum sampling speed is still too slow, you should probably switch to a RAM disk.

Universal Library User's Guide How to Use the "Streamer" File Functions

27

RAM disks
A RAM disk is not really a disk. It is a device driver that sets aside some of the computer's memory and
makes it appear to DOS as a disk drive. When you install a RAM disk on your computer, it appears exactly as
if you have another VERY fast hard disk drive. For example, if you have one hard disk (drive C:) then when
you install the RAM disk it will appear as if you have another hard disk, drive D.

After the RAM disk is installed, all DOS commands work exactly the same on the RAM disk as on the hard
disk. For example you can COPY, DEL, MKDIR, CD just as you would on a hard disk.

Installing a RAM disk
The RAM disk driver comes with DOS. Refer to your DOS manual for more information. In older versions of
DOS it is called either RAMDRIVE.SYS or VDISK.SYS. To install it you must add one line to your
\CONFIG.SYS file. Find which directory the DOS files are installed in on your machine. CD to that directory
and look for a file called RAMDRIVE.SYS or VDISK.SYS. If it is not there look at the other .SYS files in the
directory and refer to your DOS manual to find out if any of them are a RAM Disk driver. After you have
located the file add an entry to the \CONFIG.SYS file.

If the RAMDRIVE.SYS file was in a directory called DOS then you would add the following line to the
\CONFIG.SYS file.

 device=c:\dos\ramdrive.sys

The default size for the RAM disk is usually 64K. You will almost certainly want to make it larger than that.
The larger you make it the more data you can collect but the less memory will be available for other
programs.

To set up a 4 megabyte RAM disk, add the following line to your CONFIG.SYS file:
 device=c:\dos\ramdrive.sys 4000

If your computer is an 80x86, install the RAM disk in extended memory (above 1M) by specifying the /e
option:

 device=c:\dos\ramdrive.sys 4000 /e

After you add the new line to the \CONFIG.SYS file, reboot the computer (Press CTRL-ALT-DEL) to install the
RAM disk. When the machine reboots it should print a message on the screen that describes the RAM disk.

Using the RAM disk
To use the RAM disk, specify the drive letter in the FileName argument of cbFileAInScan() or
cbFilePretrig()/FileAInScan() or FilePretrig(). For example, if the RAM disk is drive D: on your
system, you could set the name of the "streamer" file in your program to "D:TEST.DAT"

This file can be created with the MAKESTRM.EXE program supplied with the Universal Library. To set up a
file large enough to hold a million samples, include the following line in your AUTOEXEC.BAT file:

 C:\CB\MAKESTRM D:\TEST.DAT 1000000

The name TEST.DAT is an example. Use the name of your preference. When you execute cbFileAInScan() or
cbFilePreTrig()/FileAInScan() or FilePreTrig(), it will fill up the file on your RAM drive. This file
will be lost as soon as the power is switched off, so if you wish to keep the data you must copy it to the hard
disk before turning the computer off.

28

7
Analog Input Boards

Introduction

All boards that have analog input support the cbAIn()/AIn() and cbAInScan()/AInScan() functions, except
expansion boards, which only support cbAIn(). Boards released after the printing of this manual are described
in Readme files contained on the Universal Library disk.

When hardware-paced A/D conversion is not supported, cbAInScan()/AInScan() loops through software
paced conversions. The scan will execute at the maximum speed possible. This speed will vary with CPU
speed. The only valid option in this case is CONVERTDATA.

Concurrent analog input and output for paced analog inputs, paced analog outputs
For boards with both paced analog inputs and paced analog outputs, concurrent analog input and output scans
are supported. That is, these boards allow operations with analog input functions (cbAInScan/AInScan() and
cbAPretrig/APretrig) and analog output functions (cbAOutScan/AOutScan()) to overlap without having to
call cbStopBackground()/StopBackground() between the start of input and output scans.

Trigger support

Digital Trigger
If trigger support is "Polled gate" (as opposed to "Hardware"), you implement a trigger by gating the on-board
pacer. This disables the on-board pacer. The trigger input is then polled continuously until the trigger occurs.
When that happens, the software disables the gate input so that when the trigger returns to its original state, it
does not affect the pacer and acquisition continues until the requested number of samples has been acquired.
There are two side effects to this type of trigger:

! The polling portion of the function does not occur in the background, even if the BACKGROUND option was
specified (although the actual data acquisition does).

! The trigger does not necessarily occur on the rising edge. Acquisition can start at any time after the
function is called if the trigger input is at "active" level. For this reason, it is best to use a trigger that goes
active for a much shorter time than it is inactive.

Similar to �Polled gate� triggering is �Polled digital input� triggering, where the pacer is disabled while the
state of a digital input is polled. When the state changes to active, the pacer is enabled by the software. The
polled digital input trigger type limitations are very similar to the polled gate type explained above.

Analog Trigger
You set up the trigger levels for an analog trigger using the function cbSetTrigger / SetTrigger, passing the
appropriate values to the HighThreshold and LowThreshold arguments.

For most boards that support analog triggering, you can calculate the HighThreshold and LowThreshold
values by passing the required trigger voltage level and the appropriate Range to the
cbFromEngUnits/FromEngUnits function.

However, for some boards, you must manually calculate HighThreshold and LowThreshold. If a board
requires manual calculation, that information will be included in the Trigger information for the specific
product in this section. The procedure for manually calculating these values is detailed in the Universal
Library Function Reference in the description of the cbSetTrigger / SetTrigger function.

Universal Library User's Guide Analog Input Boards

29

Sampling rate using SINGLEIO
When using this mode of data transfer, the maximum analog sampling rate is dependent on the speed of the
computer in which the board is installed. In general, it is in the range of 5 to 50 kHz. If the requested speed
cannot be sustained, an overrun error will occur. Data will be returned, but likely there will be gaps. Some
boards, such as the CIO-DAS08, support only this mode, so the maximum rate attainable with these boards is
system-dependent.

Universal Library User's Guide Analog Input Boards - PCI-DAS6000 Series

30

PCI-DAS6000 Series
Analog Input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(),
cbFilePretrig(), cbALoadQueue()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig(),
ALoadQueue()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, DMAIO, BLOCKIO,
BURSTMODE, EXTTRIGGER

 Packet size is 512 for all PCI-6000 Series in most configurations. The exceptions
are shown below.

Device Aggregate rate Packet size

400 kHz � 800 kHz 1024 PCI-DAS6040

PCI-DAS6070

PCI-DAS6071
Greater than 800 kHz 2048

HighChan 0 to 15 in single-ended mode, 0 to 7 in differential mode

 For PCI-DAS6031, PCI-DAS6033 and PCI-DAS6071, the following additional
argument values are also valid:

 16 to 63 in single-ended mode, 8 to 31 in differential mode

Rate PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, and PCI-DAS6033

 Up to 100000

 PCI-DAS6013, PCI-DAS6014, PCI-DAS6023, PCI-DAS6025, PCI-DAS6034,
PCI-DAS6035 and PCI-DAS6036

 Up to 200000

 PCI-DAS6040

 Up to 500000 Single-channel
Up to 250000 Multi-channel

 PCI-DAS6052

 Up to 333000

 PCI-DAS6070, PCI-DAS6071

 Up to 1250000

Range PCI-DAS6013, PCI-DAS6014, PCI-DAS6023, PCI-DAS6025, PCI-DAS6034,
PCI-DAS6035 and PCI-DAS6036

 BIP10VOLTS (± 10 volts (V))
BIP5VOLTS (± 5 V)
BIPPT5VOLTS (± 0.5 V)
BIPPT05VOLTS (± 0.05 V)

Universal Library User's Guide Analog Input Boards - PCI-DAS6000 Series

31

 PCI-DAS6030, PCI-DAS6031, PCI-DAS6032 and PCI-DAS6033

 BIP10VOLTS (± 10 V) UNI10VOLTS (0 to 10 V)
BIP5VOLTS (± 5 V) UNI5VOLTS (0 to 5 V)
BIP2VOLTS (± 2 V) UNI2VOLTS (0 to 2 V)
BIP1VOLTS (± 1 V) UNI1VOLTS (0 to 1 V)
BIPPT5VOLTS (± 0.5 V) UNIPT5VOLTS (0 to 0.5 V)
BIPPT2VOLTS (± 0.2 V) UNIPT2VOLTS (0 to 0.2 V)
BIPPT1VOLT (± 0.1 V) UNIPT1VOLTS (0 to 0.1 V)

 PCI-DAS6040, PCI-DAS6052, PCI-DAS6070 and PCI-DAS6071

 BIP10VOLTS (± 10 V) UNI10VOLTS (0 to 10 V)
BIP5VOLTS (± 5 V) UNI5VOLTS (0 to 5 V)
BIP2PT5VOLTS (± 2.5 V) UNI2VOLTS (0 to 2 V)
BIP1VOLT (± 1 V) UNI1VOLT (0 to 1 V)
BIPPT5VOLTS (± 0.5 V) UNIPT5VOLTS (0 to 0.5 V)
BIPPT25VOLTS (± 0.25 V) UNIPT2VOLTS (0 to 0.2 V)
BIPPT1VOLT (± 0.1 V) UNIPT1VOLT (0 to 0.1 V)
BIPPT05VOLTS (0.05 V)

Analog output
PCI-DAS6014, PCI-DAS6025, PCI-DAS6030, PCI-DAS6031, PCI-DAS6035, PCI-DAS6036, PCI-
DAS6040, PCI-DAS6052, PCI-DAS6070 and PCI-DAS6071

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS, BACKGROUND, EXTCLOCK, CONTINUOUS (packet size = 512)

HighChan 0 to 1

Rate PCI-DAS6014, PCI-DAS6025, PCI-DAS6035, PCI-DAS6036

 10 kHz

 PCI-DAS6030 and PCI-DAS6031

 100 kHz

 PCI-DAS6040

 500 kHz single-channel
250 kHz multi-channel

 PCI-DAS6052

 333 kHz

 PCI-DAS6070 and PCI-DAS6071

 1.0 MHz

Range PCI-DAS6014, PCI-DAS6025, PCI-DAS6035 and PCI-DAS6036

 BIP10VOLTS (± 10 V)

Universal Library User's Guide Analog Input Boards - PCI-DAS6000 Series

32

 PCI-DAS6030, PCI-DAS6031, PCI-DAS6040, PCI-DAS6052, PCI-DAS6070
and PCI-DAS6071

 BIP10VOLTS (± 10 V) UNI10VOLTS (0 to 10 V)

DataValue 0 to 4095

 For the PCI-DAS6014, PCI-DAS6030, PCI-DAS6031, PCI-DAS6036 and PCI-
DAS6052, the following additional argument value is also valid:

 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers).

Pacing Hardware pacing, external or internal clock supported.

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigBit(),
cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigBit(), DConfigPort(),
GetDInMask(), GetDOutMask()

Digital I/O argument values
PortNum AUXPORT*

DataValue 0 to 255

BitNum 0 to 7

For the PCI-DAS6025, the following additional argument values are also valid

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH;
0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 for FIRSTFIRSTPORTA

*AUXPORT is bitwise configurable for these boards, and must be configured using
cbDConfigBit()/DConfigBit() or cbDConfigPort()/DConfigPort()before use.

Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 2

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2

Universal Library User's Guide Analog Input Boards - PCI-DAS6000 Series

33

Triggering
Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

 For the PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033, PCI-
DAS6040, PCI-DAS6052, PCI-DAS6070 and PCI-DAS6071, the following
additional argument values are valid:

 TRIGABOVE, TRIGBELOW, GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW,
GATEINWINDOW, GATEOUTWINDOW

Threshold PCI-DAS6040, PCI-DAS6070 and PCI-DAS6071
0 to 255

 PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033, and
PCI-DAS6052
0 to 4095

Event notification
Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_SCAN_ERROR, ON_PRETRIGGER*, ON_DATA_AVAILABLE, ON_END_AI_SCAN,
ON_END_OF_AO_SCAN**

*Note that the EventData for ON_PRETRIGGER events may not be accurate. In general, this value will be below
the actual number of pretrigger samples available in the buffer.

**Not supported for PCI-DAS6013, PCI-DAS6023, PCI-DAS6032, PCI-DAS6033 and PCI-DAS6034.

Hardware considerations
Advanced timing and control configuration

You can access the advanced features provided by the Auxiliary Input/Output and DAQ-Sync interfaces
through the board configuration page of InstaCal and the UL functions cbGetSignal() and
cbSelectSignal(), or the UL for .NET methods GetSignal() and SelectSignal()*.

ADC_TB_SRC and DAC_TB_SRC are intended to synchronize the timebase of the analog input and output pacers
across two or more boards. Internal calculations of sampling and update rates assume that the external
timebase has the same frequency as its internal clock. Adjust sample rates to compensate for differences in
clock frequencies.

For example, if the external timebase has a frequency of 10 MHz on a board that has an internal clock
frequency of 40 MHz, the scan function samples or updates at a rate of about 1/4 the rate entered. However,
while compensating for differences in the external timebase and internal clock frequency, if the rate entered
results in an invalid pacer count, the function returns a BADRATE error.

Universal Library User's Guide Analog Input Boards - PCI-DAS6000 Series

34

*Although the PCI-DAS6013 and PCI-DAS6014 both support cbSelectSignal/SelectSignal(), these
boards do not support DAQ-Sync. Therefore:

! Using the DS_CONNECT option with the Connection argument for the cbSelectSignal() function
generates a BADCONNECTION error.

! Using the DsConnect option with the connectionPin parameter for the SelectSignal() method
generates a BADCONNECTION error.

Pacing analog input

Hardware pacing, external or internal clock supported. The clock edge is selectable through InstaCal and
cbSelectSignal / SelectSignal().

When using EXTCLOCK and BURSTMODE together, do not use the A/D External Pacer to supply the clock. Use
the A/D Start Trigger input instead. Since BURSTMODE is actually paced by the internal burst clock, specifying
EXTCLOCK when using BURSTMODE is equivalent to specifying EXTTRIGGER.

Except for SINGLEIO transfers, CONTINUOUS mode scans require enough memory for two packets, or 1024
samples. The packet size is 512 samples.

Analog input configuration

16 channel boards: The analog input mode may be 8 channel differential, 16 channel single-ended referenced
to ground or 16 channel single-ended non-referenced, and may be selected using InstaCal.

64-channel boards: The analog input mode may be 32 channel differential, 64 channel single-ended
referenced to ground, or 64 channel single-ended non-referenced, and may be selected using InstaCal.

Triggering and gating

Digital (TTL) hardware triggering is supported for the entire series. cbSetTrigger() / SetTrigger() is
supported for GATEHIGH, GATELOW, TRIGPOSEDGE, TRIGNEGEDGE.

The A/D PACER GATE input is used for gating with GATEHIGH or GATELOW. The A/D START TRIGGER input is used
for triggering with TRIGPOSEDGE and TRIGNEGEDGE.
When using cbAPretrig() or cbFilePretrig() / APretrig() or FilePretrig() , use the A/D Stop Trigger
input to supply the trigger.

For the PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033, PCI-DAS6040, PCI-DAS6052,
PCI-DAS6070 and PCI-DAS6071: Analog hardware triggering and gating are supported.
cbSetTrigger()/SetTrigger() is supported for TRIGABOVE, TRIGBELOW, GATENEGHYS, GATEPOSHYS,
GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW.

The analog trigger source may be set via InstaCal as either the ATRIG input (pin #43 on the I/O connector),
or as the first channel in the scan (CH# IN). To use the ATRIG input as the trigger source, set the InstaCal
"Analog Input Trig Source" to "Analog Trigger Pin." To use the first scanned channel as the trigger source,
set InstaCal to "1st Chan in the Scan."

Recommended trigger source when using analog gating features
If using analog gating features, we strongly recommend setting the ATRIG input as the trigger source.

Using the ATRIG input as the Trigger Input

When the trigger source is set to "Analog Trigger Pin," analog thresholds are set relative to the ± 10 V range.

Universal Library User's Guide Analog Input Boards - PCI-DAS6000 Series

35

Using the �First Channel in Scan� as the Trigger Input

When the trigger source is set to "1st Chan in Scan," the range used for the thresholds is the same as the A/D
channel. When using analog gating features with "1st Channel in Scan" as the trigger source, be careful to
only scan a single channel.

Calculating Analog Trigger Thresholds

Analog thresholds for the PCI-DAS6030, PCI-DAS6031, PCI-DAS6032, PCI-DAS6033 and PCI-DAS6052
are 12-bit values. For example: a threshold value of 0 equates to -10 volts (V), while a threshold value of 4095
equates to +9.9976 volts (V). Analog thresholds for the PCI-DAS6040, PCI-DAS6070 and PCI-DAS6071
are 8-bit values. For example: a threshold value of 0 equates to 10 V, while a threshold value of 255 equates
to +9.92188 V.

You need to manually calculate trigger threshold values for these PCI-DAS6000 Series boards. For
information on calculating thresholds, refer to the "Notes" section in the "cbSetTrigger()" and
"SetTrigger()" in the Universal Library Function Reference.

Channel-Gain queue

When using cbALoadQueue()/ALoadQueue(), up to 8k elements may be loaded into the queue.

Analog Output

Using cbAOutScan()/AOutScan() in CONTINUOUS mode requires a minimum sample size of two packets. A
packet is 512 samples.

Digital I/O configuration

AUXPORT is bitwise configurable for these boards, and must be configured using cbDConfigBit() or
cbDConfigPort() / DConfigBit() or DConfigPort() before use.

Counters

The source for counters 1 and 2 may be internal 10 MHz, internal 100 kHz or external, and is selectable using
InstaCal.

Universal Library User's Guide Analog Input Boards - PCI-DAS4020 Series

36

PCI-DAS4020 Series
Analog Input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(),
cbFilePretrig()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, DMAIO, BLOCKIO,
EXTTRIGGER

HighChan 3 max (when scanning multiple channels, the number of channels scanned must be
even)

Rate Up to 20000000 (Contiguous memory may be required to achieve maximum
performance. Refer to "Memory configuration" on page 38 for details.)

Range BIP5VOLTS (± 5 V)
BIP1VOLTS (± 1 V)

Analog output
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options NONE

HighChan 1 max

Count 2

Rate Ignored

Range BIP10VOLTS (± 10 V)
BIP5VOLTS (± 5 V)

DataValue 0 to 4095

Pacing Software only

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 255 for FIRSTPORTA or FIRSTPORTB;
0 to 15 for FIRSTPORTCL or FIRSTPORTCH

BitNum 0 to 23 for FIRSTPORTA

Universal Library User's Guide Analog Input Boards - PCI-DAS4020 Series

37

Counter I/O
Counter functions and methods supported

None

Triggering
Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, TRIGABOVE, TRIGBELOW, GATEHIGH, GATELOW,
GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW

Threshold 0 to 4095

Event notification
Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_SCAN_ERROR, ON_PRETRIGGER�, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Hardware considerations
Pacing analog input

Hardware pacing, external or internal clock supported. The clock source can be set via InstaCal to either the
"Trig/Ext Clk" BNC input or the "A/D External Clock" input on the 40 pin connector (P3). Configuring for
the BNC clock input will disable the clock input (pin 10) on the 40-pin connector. When the EXTCLOCK option
is used, the clock signal presented to the "Trig/Ext Clk" BNC input or the "A/D External Clock" input is
divided by 2 in one or two channel mode and is divided by 4 in four channel mode. If both EXTCLOCK and
EXTTRIGGER are used, both the Trigger BNC and pin 10 on the 40-pin connector require signals. This is
further explained in the "Triggering and gating" section below. When using EXTCLOCK, the Rate argument is
used by the Universal Library to calculate the appropriate chain size. Set the Rate argument to the
approximate rate used by the external clock to pace acquisitions.

When executing cbAInScan()/AInScan() with the EXCLOCK option, the first three clock pulses are used to set
up the PCI-DAS4020/12, and the first sample is actually taken on the fourth clock pulse.

The packet size varies. See "Memory configuration" on page 38 for more information.

Triggering and gating

Digital (TTL) hardware triggering supported. The trigger source can be set via InstaCal to either the
"Trig/Ext Clk" BNC input, the "A/D Start Trigger" input on the 40-pin connector (P3) or the "A/D Stop
Trigger" input on the 40-pin connector (P3). Use the A/D Start Trigger input for the cbAInScan() and
cbFileAInScan() functions, and AInScan() and FileAInScan() methods. For the cbAPretrig() or
cbFilePretrig() functions, and the APretrig() or FilePretrig() method, use the A/D Stop Trigger
input.

� The EventData for ON_PRETRIGGER events may not be accurate. In general, this value is below the actual number of
pretrigger samples available in the buffer.

Universal Library User's Guide Analog Input Boards - PCI-DAS4020 Series

38

When using both EXTCLOCK and EXTTRIGGER options, one of the signals (either clock or trigger) must be
assigned to the Trig/Ext Clk BNC input. The function of the Trigger BNC is determined by the setting of
"Trig/Ext Clock Mode" in InstaCal. The Trig/Ext Clock BNC can be set to function as either the trigger ("A/D
Start Trigger") or the clock ("A/D External Clock"). Pin 10 on the 40-pin connector then assumes the opposite
function.

Analog hardware triggering supported. The trigger source can be set via InstaCal to any of the analog BNC
inputs. cbSetTrigger()/SetTrigger() is supported for TRIGBELOW and TRIGABOVE trigger types. Analog
thresholds are set relative to the voltage range set in the scan. For example, using a range of BIP1VOLTS during
a cbAInScan()/AInScan(), (0) corresponds to �1 volt (V) and 4095 corresponds to +1 V.

When using the cbAPretrig() function or the APretrig() method, use either the TRIGGER BNC or pin 8 of
the 40 pin connector. To use the BNC, set InstaCal "Trig/Ext Clock Mode" to A/D Stop Trigger; otherwise, if
not set to this selection, pin 8 of the 40-pin connector is used.

When using cbAPretrig()/APretrig() with EXTCLOCK, the two inputs are required. The TRIGGER BNC
can be set to function as either the pacer clock or the trigger. For the BNC to be setup as the pacer clock, set
InstaCal "Trig/Ext Clk Mode" to A/D External Clock. To use the BNC as the trigger, set this InstaCal option
to A/D Stop Trigger. If neither of these selections are used, the 40-pin connector will be used for both inputs;
pin 8 will be input for A/D Stop Trigger, and pin 10 will be input for the pacer clock signal.

Digital (TTL) hardware gating supported. The gate source can be set via InstaCal to either the "Trig/Ext Clk"
BNC input or the "A/D Pacer Gate" input on the 40-pin connector (P3).

Analog hardware gating supported. Analog thresholds are set relative to the voltage range set in the scan. For
example, using a range of BIP1VOLTS during a cbAInScan()/AInScan(), (0) corresponds to (-1V) and 4095
corresponds to +1V.

The gate must be in the active (enabled) state before starting an acquisition.

For EXTCLOCK or EXTTRIGGER (digital triggering) using the BNC connector, InstaCal provides a configuration
setting for thresholds. The selections available are either 0 V or 2.5 V. Use 0 V if the incoming signal is
BIPOLAR. Use the 2.5 V option if the signal is UNIPOLAR, for example, standard TTL.

When using both EXTCLOCK and EXTTRIGGER options, one of the signals (either clock or trigger) must be
assigned to the Trig/Ext Clk BNC input.

Memory configuration

In order to achieve the maximum sample rate under some conditions, a contiguous area of memory must be
set up. The following is a guide that can be used to determine whether or not you need to set up this memory
and how to accomplish it using InstaCal.

If the number of samples you are acquiring is less than 2K (2,048) samples then you do NOT need to set up
contiguous memory (leave the Memory Size edit box in InstaCal at zero).

If you are acquiring more than 2048 samples, contiguous memory may be required depending on sample rate.
Use the table below to determine if contiguous memory is required.

of Channels Rate Requiring Contiguous Memory
(when sample count > 2048)

1 > 4 MHz
2 >2 MHz
4 >1 MHz

Universal Library User's Guide Analog Input Boards - PCI-DAS4020 Series

39

If contiguous memory is required, follow the InstaCal procedures below to set the size of the contiguous
memory to reserve:

1. Run InstaCal, select the PCI-DAS4020 board and click the Configure tab.
2. In the Memory Size edit box for the Contiguous Memory Settings, enter the amount of memory in

kilobytes that you need for the acquisition.

To calculate the number of kilobytes required, use the following formula:

(# of kilobytes (KB)) = {(# of samples) x (2 bytes/sample) x (1 KB/1024 bytes)}

or

(# of KB) = {(# of samples)/512}

Memory is allocated in blocks of 4 KB. As a consequence, InstaCal adjusts the amount entered upward to
the nearest integer multiple of 4 KB. For example, the contiguous memory requirements for a 10,000-
sample acquisition would be:

 (10,000/512) = 19.5 rounded up to multiple of 4 KB = 20 KB.

Note that the maximum number of samples allowed for the given contiguous memory size is displayed as
the Sample Count (displayed below the Memory Size edit box).

3. Reboot the computer. The Universal Library attempts to reserve the desired amount of contiguous
memory at boot up time. If it is unable to reserve all the memory requested, the amount successfully
reserved memory displays in the Memory Size entry when you run InstaCal.

4. Run InstaCal. In the Memory Size entry, verify the size of the contiguous memory that was successfully
reserved.

Repeat this procedure to change or free the contiguous memory.

The size of the block shown in InstaCal is the total contiguous memory that is available to all boards
installed. Other installed boards that call the cbWinBufAlloc() function or WinBufAlloc() method will also
use this contiguous memory, so plan the size of the contiguous memory buffer accordingly.

With the following functions and methods, be aware of packet size, and adjust the number of samples
acquired accordingly:

! cbAPretrig()/APretrig()

! cbAInScan()/AInScan() with the CONTINUOUS scan option.

These functions and methods use a circular buffer. Align the data by packets in the buffer. For these functions,
the total number of samples must be greater than one packet (refer to the following table), and must be an
integer multiple of packet size. In addition, contiguous memory must be used if noted in the following table.
The minimum value for contiguous memory is calculated using the formula from step 2 above:

(# of KB) = {(# of samples) / 512}

For example, to run cbAInScan on one channel at 18 MHz with the CONTINUOUS option set, determine the
minimum sample size from the table to be 262,144 (since the Rate is between 14 and 20 MHz). The minimum
contiguous memory is calculated as:

 (262,144 / 512) = 512 KB

Universal Library User's Guide Analog Input Boards - PCI-DAS4020 Series

40

Number
of
Channels

Rate in MHz Packet
Size in
Samples

Minimum
Sample Size
(two packets)

Contiguous
Memory

Min Contiguous
Memory (based on
Min Sample Size)

20 >= Rate
>=13.3

131,072 262,144 Required 512 KB

13.3 > Rate >= 4 65,536 131,072 Required 256 KB
4 > Rate >= 2 4,096 8,192 Not Required 0 KB

1

2 > Rate 2,048 4,096 Not Required 0 KB
20 >= Rate >=
6.6

131,072 262,144 Required 512 KB

6.6 > Rate >= 2 65,536 131,072 Required 256 KB
2 > Rate >= 1 4,096 8,192 Not Required 0 KB

2

1 > Rate 2,048 4,096 Not Required 0 KB
20 >= Rate >=
3.3

131,072 262,144 Required 512 KB

3.3 > Rate >= 1 65,536 131,072 Required 256 KB
1 > Rate >= 0.5 4,096 8,192 Not Required 0 KB

4

0.5 > Rate 2,048 4,096 Not Required 0 KB

*Note that the EventData for ON_PRETRIGGER events may not be accurate. In general, this value will be below
the actual number of pretrigger samples available in the buffer.

Notes for SoftWIRE® users
Memory configuration

The Analog In Scan control may require more contiguous memory than listed in the prior table. When the
CONTINUOUS option is set for the Analog In Scan control, the control allocates a buffer large enough to hold
four times as much data as required for a single scan. As a consequence, if you will be running CONTINUOUS
scans with the Analog In Scan control, you will need to allocate a minimum of four times that shown in the
table above.

For example, using the Analog In Scan control to run a CONTINUOUS scan of one channel at 18 MHz will
require a minimum scan Count Per Channel of 262,144 samples, but will require at least 2048 KB
(= 4*262144/512 KB) of contiguous memory.

The Analog In PreTrigger control may require more contiguous memory than listed in the prior table. When
the Analog In PreTrigger control is run, it allocates a buffer that will hold 512 samples larger than requested
by the user. As a consequence, when contiguous memory is required for the scan, the Analog In PreTrigger
control will require an extra 4-KB worth of contiguous memory be allocated.

For example, using the Analog In PreTrigger control to run a scan with one channel at 18 MHz requires a
minimum count per channel of 262,144 samples, and at least 516 KB (= 512 KB + 4 KB) of contiguous
memory.

Universal Library User's Guide Analog Input Boards - PCI-DAS64/Mx/16 Series

41

PCI-DAS64/Mx/16 Series
Analog input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(),
cbFilePretrig(), cbALoadQueue()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig(),
ALoadQueue()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, DMAIO, BLOCKIO,
BURSTMODE, EXTTRIGGER

HighChan 0 to 63 in single-ended mode, 0 to 31 in differential mode

Rate PCI-DAS64/M3/16
Single-channel, Single-range: Up to 3000000
Multi-channel, Single-range: Up to 1500000
Channel/Gain Queue: Up to 750000
PCI-DAS64/M2/16
Single-channel, Single-range: Up to 2000000
Multi-channel, Single-range: Up to 1500000
Channel/Gain Queue: Up to 750000
PCI-DAS64/M1/16
Single-channel, Single-range: Up to 1000000
Multi-channel, Single-range: Up to 1000000
Channel/Gain Queue: Up to 750000

Range BIP5VOLTS (±5 V) UNI5VOLTS (0-5 V)
BIP2PT5VOLTS (±2.5 V) UNI2PT5VOLTS (0-2.5 V)
BIP1PT25VOLTS (±1.25 V) UNI1PT25VOLTS (0-1.25 V)
BIPPT625VOLTS (±.625 V)

Analog output
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS

HighChan 1 max

Rate Up to 100000
Range BIP5VOLTS

DataValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

Universal Library User's Guide Analog Input Boards - PCI-DAS64/Mx/16 Series

42

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH, AUXPORT

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH or AUXPORT
0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 for FIRSTPORTA
0 to 3 for AUXPORT

Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

RegNum: LOADREG1

Triggering
Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, TRIGABOVE, TRIGBELOW, GATEHIGH, GATELOW,
GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW

Threshold 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

Event notification
Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_SCAN_ERROR, ON_PRETRIGGER, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN,
ON_END_OF_AO_SCAN

Universal Library User's Guide Analog Input Boards - PCI-DAS64/Mx/16 Series

43

Hardware considerations
Pacing analog input

! Hardware pacing, external or internal clock supported.

! The clock edge used to trigger acquisition for the external pacer may be rising or falling and is selectable
using InstaCal.

! The packet size is 512 samples.

Analog Input configuration

The analog input mode may be 32 channel differential or 64 channel single-ended and may be selected using
InstaCal.

Analog Input options

Except for SINGLEIO transfers, CONTINUOUS mode scans require enough memory for half FIFO of memory.

Triggering and gating

Digital (TTL) hardware triggering supported. Use the A/D Start Trigger Input (pin 55) for triggering and
gating with cbAInScan() and cbFileAInScan() / AInScan() and FileAInScan(). Use the A/D Stop Trigger
Input (pin 54) for cbAPretrig() and cbFilePretrig() / APretrig() and FilePretrig().

Analog hardware triggering and gating are supported. cbSetTrigger() / SetTrigger() are supported for
TRIGABOVE, TRIGBELOW, GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW.
Use the Analog Trigger Input (pin 56) for analog triggering. Analog thresholds are set relative to the ±5 V
range. For example: a threshold of 0 equates to -5 V, and a threshold of 65535 equates to +4.999847 V.

When using analog trigger feature, one or both of the DACs are used to set the threshold and are unavailable
for other functions. If the trigger function requires a single reference (GATEABOVE, GATEBELOW, TRIGABOVE,
TRIGBELOW) then DAC0 is available. If the trigger function requires two references (GATEINWINDOW, GATE
OUTWINDOW, GATENEGHYS, GATEPOSHYS) then neither DAC is available for other functions.

Caution! Gating should NOT be used with BURSTMODE scans.

Pacing analog output

! Hardware pacing, external or internal clock supported.

! The clock edge used to trigger analog output updates for the external pacer may be rising or falling and is
selectable using InstaCal.

! EventData for ON_PRETRIGGER events may not be accurate. In general, this value will be below the actual
number of pretrigger samples available in the buffer.

These boards support concurrent analog input and output scans. That is, these boards allow for operations of
analog input functions and methods (cbAInScan() and cbAPretrig() / AInScan() and APretrig()) and
analog output functions and methods (cbAOutScan() / AOutScan()) to overlap without having to call
cbStopBackground() between the start of input and output scans.

Output pin 59 configuration

Pin 59 may be configured as the DAC Pacer Output, SSH Output with hold configured as high level, or
SSH Output with hold configured as low level. These options are selected via InstaCal

Universal Library User's Guide Analog Input Boards - PCI- and CIO-DAS6402 and DAS3202 Series

44

PCI- and CIO-DAS6402 and DAS3202 Series
Analog Input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(),
cbFilePretrig()

 For PCI-Versions, the following function also applies:
cbALoadQueue()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig()

 For PCI-Versions, the following method also applies:
ALoadQueue()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO,
BURSTMODE, EXTTRIGGER

HighChan PCI-DAS6402 and CIO-DAS6402
0 to 63 in single-ended mode, 0 to 31 in differential mode

 PCI-DAS3202
0 to 31

Rate CIO-DAS6402/12 CIO-DAS6402/16 All others
Up to 330000 Up to 100000 Up to 200000

Range BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS

Analog output
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values
Options SIMULTANEOUS

For PCI Versions, the following argument values are also valid:

 BACKGROUND, EXTCLOCK, CONTINUOUS

HighChan 1 max

Rate PCI Versions CIO Versions
Up to 100000 Ignored

Range PCI Versions, CIO-DAS6402/12 CIO-DAS6402/16

 BIP10VOLTS Ignored
 BIP5VOLTS

 UNI10VOLTS

 UNI5VOLTS

Universal Library User's Guide Analog Input Boards - PCI- and CIO-DAS6402 and DAS3202 Series

45

DataValue 0 to 4095

 For PCI-DAS6402/16, PCI-DAS3202/16, CIO-DAS6402/16, the following
additional argument values are also valid: 0 to 65535 (Refer to "16-bit values using
a signed integer data type" on page 8 for information on 16-bit values using
unsigned integers.)

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

 For PCI- Versions, the following additional function is also valid:
cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

 For PCI- Versions, the following additional method is also valid:
DConfigPort()

Digital I/O argument values

PortNum AUXPORT*

DataValue 0 to 15

BitNum 0 to 3

* AUXPORT is not configurable for these boards.

For PCI- Versions, the following additional argument values are also valid:

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for PORTCL or PORTCH;
0 to 255 for PORTA or PORTB

BitNum 0 to 23 for FIRSTPORTA

Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

RegNum: LOADREG1

Triggering
Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Universal Library User's Guide Analog Input Boards - PCI- and CIO-DAS6402 and DAS3202 Series

46

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

 For PCI- versions, the following additional argument values are also valid:
TRIGABOVE, TRIGBELOW, GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW,
GATEINWINDOW, GATEOUTWINDOW

Threshold 0 to 4095

 For /16 versions the following argument values are also valid:
0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers).

Event notification
Event notification functions and methods supported (PCI versions Only)

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_SCAN_ERROR, ON_PRETRIGGER, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN,
ON_END_OF_AO_SCAN

Hardware considerations
Pacing Analog input

Hardware pacing, external or internal clock supported. The packet size is 512 samples for CIO versions, and
2048 for PCI versions.

Triggering and gating

Digital (TTL) hardware triggering supported. The PCI version also supports analog hardware triggering.
Analog thresholds are set relative to the ±10 V range. For example, a threshold of 0 equates to -10 V and a
threshold of 65535 equates to +9.999695 V.

When using the UL functions cbAPretrig() or cbFilePretrig() (or the UL for .NET methods APretrig()
or FilePretrig()) on the PCI-DAS6402/16 or PCI-DAS3202/16, use the A/D Stop Trigger In (pin 47) input
to supply the trigger.

When using both EXTCLOCK and BURSTMODE on the PCI-DAS6402/16 or PCI-DAS3202/16, use the A/D Start
Trigger In (pin 45) input to supply the clock and not the A/D External Pacer (pin 42). Since BURSTMODE is
actually paced by the internal burst clock, specifying EXTCLOCK when using BURSTMODE is equivalent to
specifying EXTTRIGGER.

When using analog trigger feature, one or both of the DACs are used to set the threshold and are unavailable
for other functions. If the trigger function requires a single reference (GATEABOVE, GATEBELOW, TRIGABOVE,
TRIGBELOW) then DAC0 is available. If the trigger function requires two references (GATEINWINDOW, GATE
OUTWINDOW, GATENEGHYS, GATEPOSHYS), then neither DAC is available for other functions.

Caution! Gating should NOT be used with BURSTMODE scans.

Gain queue

When using the UL function cbALoadQueue() or the UL for .NET method ALoadQueue() with the PCI
version, up to 8k elements can be loaded into the queue.

Universal Library User's Guide Analog Input Boards - PCI- and CIO-DAS6402 and DAS3202 Series

47

Pacing analog output

CIO Version: Software only

PCI Version: Hardware pacing, external or internal clock supported.

Output pin 49 configuration

On the PCI version, pin 49 may be configured as the DAC Pacer Output, SSH Output with hold configured
as high level or SSH Output with hold configured as low level. These options are selected via InstaCal

Event notification:

The PCI- versions of these boards support concurrent analog input and output scans. That is, these boards
allow for operations of analog input functions (cbAInScan() and cbAPretrig()) and analog output functions
(cbAOutScan()) to overlap without having to call cbStopBackground() between the start of input and output
scans. Equivalent UL for .NET methods are AInScan(), APretrig(), AOutScan()and StopBackground().

Universal Library User's Guide Analog Input Boards - PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series

48

PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series

Analog input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(),
cbFilePretrig()

UL for .NET: AIn(), AInScan(), ATrig(), APretrig(), FileAInScan(), FilePretrig()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO,
BURSTMODE, EXTTRIGGER

HighChan 0 to 15 in single-ended mode, 0 to 7 in differential mode

Rate PCI-DAS1602/12, PCI-DAS1200, PCI-DAS1200/JR
Up to 330000

 PCI-DAS1000
Up to 250000

 PCI-DAS1602/16, PCI-DAS1002
Up to 200000

 PCI-DAS1001
Up to 150000

Range PCI-DAS1602/12, PCI-DAS1602/16, PCI-DAS1200, PCI-DAS1200Jr,
PCI-DAS1002, PCI-DAS1000
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS

 PCI-DAS1001
BIP10VOLTS UNI10VOLTS
BIP1VOLTS UNI1VOLTS
BIPPT1VOLTS UNIPT1VOLTS
BIPPT01VOLTS UNIPT01VOLTS

Analog output
Excludes PCI-DAS1200Jr.

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values
Options SIMULTANEOUS

 For PCI-DAS1602 Series, the following argument values are also valid:
BACKGROUND, CONTINUOUS, EXTCLOCK

HighChan 0 to 1

Rate PCI-DAS1602/16 PCI-DAS1602/12 All others
Up to 100000 Up to 250000 Ignored

Universal Library User's Guide Analog Input Boards - PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series

49

Range BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS

DataValue 0 to 4095

 For PCI-DAS1602/16, the following argument values are also valid: 0 to 65535
(Refer to "16-bit values using a signed integer data type" on page 8 for information
on 16-bit values using unsigned integers.)

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for PORTCL or PORTCH
0 to 255 for PORTA or PORTB

BitNum 0 to 23 for FIRSTPORTA

Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 4 to 6

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

RegNum: LOADREG4, LOADREG5, LOADREG6

Triggering
PCI-DAS1602/16 and PCI-DAS1602/12 only

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, TRIGABOVE, TRIGBELOW, GATEHIGH, GATELOW,
GATENEGHYS, GATEPOSHYS, GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW

Threshold PCI-DAS1602/16: 0 to 65535

 PCI-DAS1602/12: 0 to 4095

Universal Library User's Guide Analog Input Boards - PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series

50

Event notification
Event notification functions and methods supported

PCI Versions Only

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_SCAN_ERROR, ON_PRETRIGGER, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

 For PCI-DAS1602/16 and PCI-DAS1602/12 the following argument values are
also valid:
ON_END_OF_AO_SCAN

Hardware considerations
Pacing analog input

Hardware pacing, external or internal clock supported.

The clock edge used to trigger acquisition for the external pacer may be rising or falling, and is selectable
using InstaCal.

For the PCI-DAS1602/16, the packet size is 256 samples. All others in this series have a packet size of 512
samples.

Analog input configuration

The analog input mode is selectable via InstaCal for either 8-channel differential or 16-channel single-ended.

Triggering and gating - PCI-DAS1602 Series

Digital (TTL) and analog hardware triggering supported.

Analog thresholds are set relative to the ±10 V range. For example: a threshold of 0 equates to -10 V.
Thresholds of 65535 and 4095 correspond to +9.999695 and +9.995116 V for the 16-bit and 12-bit boards,
respectively.

When using analog trigger feature, one or both of the DACs are unavailable for other functions. If the trigger
function requires a single reference (GATE_ABOVE, GATE_BELOW, TRIGABOVE, and TRIGBELOW), DAC0 is
available. If the trigger function requires two references (GATE_IN_WINDOW, GATE_ OUT_WINDOW,
GATE_NEG_HYS and GATE_ POS_HYS), neither DAC is available for other functions.

Triggering and gating - PCI-DAS1200, PCI-DAS1000 Series

Digital (TTL) hardware triggering supported.

Concurrent operations - PCI-DAS1602 Series

Concurrent analog input and output scans supported. That is, PCI-DAS1602 Series boards allow for
operations of analog input functions (cbAInScan() and cbAPretrig()) and analog output functions
(cbAOutScan()) to overlap without having to call cbStopBackground() between the start of input and output
scans. Equivalent UL for .NET methods are AInScan(), APretrig(), AOutScan(), and StopBackground().

Pacing analog output - PCI-DAS1602 Series

Hardware pacing, external or internal clock supported.

Universal Library User's Guide Analog Input Boards - PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series

51

The clock edge used to trigger analog output updates for the external pacer may be rising or falling and is
selectable using InstaCal.

Counters

The source for counter 4 may be internal or external and is selectable using InstaCal.

Although counters 4, 5 and 6 are programmable through the counter functions, the primary purpose for some
of these counters may conflict with these functions.

Potential conflicts include:

! PCI-DAS1200, PCI-DAS1000 Series: Counters 5 and 6 are always available to the user. Counter 4 is
used as a residual counter by some of the analog input functions and methods.

! PCI-DAS1602 Series: Counters 5 and 6 are used as DAC pacers by some analog output functions and
methods. Counter 4 is used as a residual counter by some of the analog input functions and methods.

Universal Library User's Guide Analog Input Boards - PCIM-DAS1602 and PCIM-DAS16JR Series

52

PCIM-DAS1602 and PCIM-DAS16JR Series
Analog input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(),cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(),FileAInScan(),ATrig()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO,
BURSTMODE, EXTTRIGGER

HighChan 0 to 15 in single-ended mode, 0 to 7 in differential mode

Rate 100000
Range BIP10VOLTS UNI10VOLTS

BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS

Analog output (PCIM-DAS1602/16 only)
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options Ignored

HighChan 1 max

Count 2

Rate Ignored

Range Ignored

DataValue 0 to 4095

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

The PCIM-DAS1602/16 also supports:

UL: cbDConfigPort()

UL for .NET: DConfigPort()

Universal Library User's Guide Analog Input Boards - PCIM-DAS1602 and PCIM-DAS16JR Series

53

Digital I/O argument values

PortNum: AUXPORT*

The PCIM-DAS1602/16 also supports:

PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue: 0 to 15 FIRSTPORTCL, FIRSTPORTCH or AUXPORT*

 0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum: 0 to 23 for FIRSTPORTA

 0 to 3 for AUXPORT*

 *AUXPORT is not configurable for these boards.

Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2, LOADREG3

Event notification
Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Triggering
Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

Hardware considerations
Pacing analog input

Hardware pacing, external or internal clock supported.

Universal Library User's Guide Analog Input Boards - PCIM-DAS1602 and PCIM-DAS16JR Series

54

Analog input ranges

For the PCIM-DAS1602/16, the A/D ranges are configured with a combination of a switch (Unipolar /
Bipolar) and a programmable gain code. The state of this switch is set in the configuration file using InstaCal.
After the UNI/BIP switch setting is selected, only matching ranges can be used in Universal Library
programs.

Triggering and gating

Digital (TTL) hardware triggering supported.

Pacing analog output

Software pacing only

Universal Library User's Guide Analog Input Boards - CIO-DAS800 Series

55

CIO-DAS800 Series
Analog input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO,
EXTTRIGGER

HighChan 0 to 7

Rate CIO-DAS802/16
100000

 All others in series
50,000

Range CIO-DAS800
Range is not programmable so the Range argument is ignored.

 CIO-DAS801 supports the following A/D ranges
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI1VOLTS
BIP1VOLTS UNIPT1VOLTS
BIPPT5VOLTS UNIPT01VOLTS
BIPPT05VOLTS
BIPPT01VOLTS

 CIO-DAS802 supports the following A/D ranges
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS
BIPPT625VOLTS

 CIO-DAS802/16 supports the following A/D ranges
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS

Analog Output
These boards do not have D/A converters and do not support analog output functions.

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values

PortNum AUXPORT (not configurable for these boards)
DataValue cbDOut() cbDIn()

0 to 15 0 to 7

Universal Library User's Guide Analog Input Boards - CIO-DAS800 Series

56

BitNum cbDOut() cbDIn()
0 to 3 0 to 2

Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2, LOADREG3

Hardware considerations
Pacing analog input

Hardware pacing, external or internal clock supported.

The packet size is 128 samples. Note that digital output is not compatible with concurrent
cbAInScan()/AInScan() operation, since the channel multiplexer control shares the register with the digital
output control. Writing to this register during a scan may adversely affect the scan.

Triggering and gating

Digital hardware triggering supported.

Universal Library User's Guide Analog Input Boards - CIO-, PCI-, and PC104-DAS08 Series

57

CIO-, PCI-, and PC104-DAS08 Series
Analog input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, EXTTRIGGER

HighChan 0 to 7

Rate From 63 up to 50000 (Refer to the "Sampling Rate using SINGLEIO" on page 29.)

Range DAS08 series
Since the DAS08 series does not have programmable gain, the Range arguments
for the analog input functions are ignored.

 PCI-DAS08
BIP5VOLTS (±5 V)

 CIO-DAS08 and PC104-DAS08
BIP10VOLTS UNI10VOLTS
BIP5VOLTS

 CIO-DAS08-PGH and CIO-DAS08-AOH
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI1VOLTS
BIP1VOLTS UNIPT1VOLTS
BIPPT5VOLTS UNIPT01VOLTS
BIPPT1VOLTS BIPPT01VOLTS
BIPPT05VOLTS BIPPT005VOLTS

 CIO-DAS08-PGL and CIO-DAS08-AOL
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS
BIPPT625VOLTS

 CIO-DAS08-PGM and CIO-DAS08-AOM
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI1VOLTS
BIPPT5VOLTS UNIPT1VOLTS
BIPPT1VOLTS UNIPT01VOLTS
BIPPT05VOLTS

Analog output
AO, -AOH, -AOM, -AOL versions only

Analog output functions and methods supported

UL: cbAOut(), AOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values
Options SIMULTANEOUS

HighChan 1 max

Rate Ignored

Universal Library User's Guide Analog Input Boards - CIO-, PCI-, and PC104-DAS08 Series

58

Count 2 max

Range Ignored

DataValue 0 to 4095

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

 For CIO-DAS08 and CIO-DAS08-AOx, the following function and method is
also supported:

UL: cbDConfigPort()

UL for .NET: DConfigPort()

Digital I/O argument values
PortNum AUXPORT

DataValue 0 to 15 using cbDOut()or DOut()

 0 to 7 using cbDIn()or DIn()

BitNum 0 to 3 using cbDBitOut() or DBitOut()
0 to 2 using cbDBitIn()or DBitIn()

 For CIO-DAS08 and CIO-DAS08-AOx the following argument values are also
valid:

 FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

PortNum 0 to 15 for FIRSTPORTCL or FIRSTPORTCH
0 to 255 for FIRSTPORTA or FIRSTPORTB

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH
0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 for FIRSTPORTA

Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2, LOADREG3

Universal Library User's Guide Analog Input Boards - CIO-, PCI-, and PC104-DAS08 Series

59

Hardware considerations
Pacing analog input

Hardware pacing, external or internal clock supported.

Before using the cbAInScan() function or the AInScan() method for timed analog input with a CIO- or
PC104- series board, the output of counter 1 must be wired to the Interrupt input; if you have a CIO-DAS08
board revision 3 or higher, a jumper is provided on the board to accomplish this. An interrupt level must have
been selected in InstaCal and the CB.CFG file saved.

Triggering and gating

Digital (TTL) polled digital input triggering supported. Refer to "Trigger support" on page 28.

Pacing analog output

Software pacing only

Universal Library User's Guide Analog Input Boards - CIO-DAS08/Jr and CIO-DAS08/Jr/16 Series

60

CIO-DAS08/Jr and CIO-DAS08/Jr/16 Series
Analog Input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values
Options CONVERTDATA

HighChan 0 to 7

Rate Ignored

Range Since these boards do not have programmable gain, the Range arguments for the
analog input functions are ignored.

Analog output
(If optional D/A converters are installed)

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values
Options SIMULTANEOUS

HighChan 1 max

Rate Ignored

Count 2 max

Range Ignored

DataValue 0 to 4095

 For CIO-DAS08/Jr/16-AO, the following argument values are also valid:
0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values
PortNum AUXPORT*

DataValue 0 to 255

BitNum 0 to 7

 * AUXPORT is not configurable for these boards.

Universal Library User's Guide Analog Input Boards - CIO-DAS08/Jr and CIO-DAS08/Jr/16 Series

61

Counter I/O
Counter functions and methods supported

None

Hardware considerations
Pacing analog input

Software pacing only

Universal Library User's Guide Analog Input Boards - PCM-DAS08

62

PCM-DAS08
Analog Input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, NOTODINTS,
EXTTRIGGER, NOCALIBRATEDATA

HighChan 0 to 7

Rate 25000 max. For other restrictions, refer to the PCM-DAS08 User's Manual at
www.mccdaq.com/PDFmanuals/pcm-das08.pdf.

Range This board does not have programmable gain so the Range argument to analog
input functions is ignored.

Digital I/O
Digital I/O functions and methods supported

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

Digital I/O argument values
PortNum AUXPORT

DataValue 0 to 7

BitNum 0 to 2

Hardware considerations
Pacing analog input

Internal or external clock

Maximizing sampling rates

When paced by the onboard clock, the rate is set by an onboard oscillator running at 25 kHz. The oscillator
output may be divided by 2, 4 or 8, resulting in rates of 12.5 kHz, 6.25 kHz or 3.13 kHz. When pacing a single
channel from the onboard clock, these are the four choices of rate available. When a rate is requested within
the range of 3000 to 25000, the library selects the closest of the four available rates.

Scanning more than one channel divides the rate requested among the number of channels requested. The
maximum rate when scanning eight channels is 3130 (25000 divided by eight channels).

Although the PCM-DAS08 is capable of 25 kHz analog to digital conversions, not all computers in all
configurations can transfer the converted samples fast enough to sustain a 25 kHz sample and transfer rate
without missing some samples. This is especially true in the windows environment. Unfortunately, there isn't
much you can do to improve sampling rates in windows, but in DOS, where you have more control over the
process, you may be able to attain the full 25 kHz sampling rate.

Universal Library User's Guide Analog Input Boards - PCM-DAS08

63

Determining the maximum sampling rate in DOS
If you have installed the DOS version of the Universal Library, a utility program called MAXRATE is installed in
the UL installation directory (C:\MCC by default). MAXRATE tests your computer and advise you of the
maximum sustainable convert and transfer rate.

The maximum rate for your computer is reported for two conditions. The first is with all interrupts enabled,
the second is with the time of day interrupt disabled (TOD). The convert and transfer rate with TOD disabled
will usually be faster.

Time of Day interrupt and A/D conversions

Many TSR's and device drivers "hook" into the TOD interrupt. Using the TOD clock tick guarantees that every
1/18th of a second the routine will be woken up and can check status or do whatever the routine is designed to
do. Unfortunately this can create considerable overhead in the TOD interrupt service routine and will introduce
gaps in your sample data at high rates.

Using the cbAInScan() / AInScan() option argument to turn off the TOD interrupt increases the speed that you
can maintain with your PCM-DAS08. Turning off the TOD prevents your computer's clock from incrementing
while cbAInScan() / AInScan() is running. Your clock will lose time.

Transfer rate

Any rate below 5 kHz is sustainable with or without TOD interrupt enabled. If your maximum required rate is
less than 5 kHz, then your computer can handle that. If the required rate is greater that 10K, run MAXRATE.
Remember, we are discussing the TOTAL rate, not the per channel rate. If you want 3 channels at 5 kHz, the
total rate is 15 kHz. Run MAXRATE to see if your computer is up to the task.

Background operation

MAXRATE tests your computer using the cbAInScan() / AInScan() routine in the foreground. If you choose
background operation, it may not sustain the maximum rate returned by MAXRATE. For the fastest performance,
use cbAInScan() / AInScan() in the foreground, with the TOD interrupt disabled.

Universal Library User's Guide Analog Input Boards - PPIO-AI08

64

PPIO-AI08
Analog Input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values
Options CONVERTDATA

HighChan 0 to 7

Rate Ignored

Range This board does not have programmable gain, so the Range arguments for the
analog input functions are ignored.

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values
PortNum AUXPORT*
DataValue cbDOut() cbDIn()

0 to 15 0 to 7
BitNum cbDOut() cbDIn()

0 to 3 0 to 2

 * AUXPORT is not configurable for this board.

Hardware considerations
Pacing analog input

Software pacing only

Universal Library User's Guide Analog Input Boards - CIO- and PC104-DAS16

65

CIO- and PC104-DAS16
Analog Input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

 The DAS16/330, DAS16/330i, DAS16/M1, and DAS16/M1/16 also support:

UL: cbAPretrig(), cbFileAInScan(), cbFilePretrig()

UL for .NET: APretrig(), FileAInScan(), FilePretrig()

 The DAS16/330i and DAS16/M1 also support:

UL: cbALoadQueue()

UL for .NET: cbALoadQueue()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, EXTTRIGGER

 For DAS16/330, DAS16/330i, DAS16/M1 and DAS16/M1/16, the following
argument values are also valid:
DTCONNECT, BLOCKIO (packet size: 512), EXTMEMORY

 For DAS16, DAS16/F, DAS16/Jr, DAS16/Jr/16 and PC104-DAS16Jr series, the
following argument values are also valid:
SINGLEIO, DMAIO

 For DAS16/M1/16, the following argument value is also valid:
BURSTMODE

HighChan DAS16/M1 and DAS16/M1/16
0 to 7

 All others
0 to 15 in single-ended mode, 0 to 7 in differential mode

Rate DAS16/M1 & DAS16/M1/16 DAS16/330 & 330i
Up to 1000000 Up to 330000

 PC104-DAS16Jr/12 CIO-DAS16Jr
Up to 160000 Up to 130000

 DAS16/F & DAS16Jr/16 CIO-DAS16
Up to 100000 Up to 50000

Range CIO-DAS16 & CIO-DAS16/F
These boards do not have programmable gain so the Range argument to analog
input functions is ignored.

 All other boards in this series support the following ranges:
BIP5VOLTS UNI10VOLTS
BIP2PT5VOLTS UNI5VOLTS
BIP1PT25VOLTS UNI2PT5VOLTS
 UNI1PT25VOLTS

 For all programmable gain boards in this series except the DAS16/M1/16, the
following argument value is also valid:
BIP10VOLTS

Universal Library User's Guide Analog Input Boards - CIO- and PC104-DAS16

66

 For all programmable gain boards in this series except the CIO-DAS16Jr/16 and
PC104-DAS16Jr/16, the following argument value is also valid:
BIPPT625VOLTS

Analog output
CIO-DAS16 & CIO-DAS16/F only

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values
Options SIMULTANEOUS

HighChan 1 max

Rate Ignored

Count 2 max

Range Ignored

DataValue 0 to 4095

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

The CIO-DAS16 & 16/F, CIO-DAS16/M1 and CIO-DAS16/M1/16, the following function is also
supported:

UL: cbDConfigPort()

UL for .NET: DConfigPort()

Digital I/O argument values
PortNum AUXPORT*

DataValue 0 to 15

BitNum 0 to 3

 * AUXPORT is not configurable for these boards.

For CIO-DAS16 & 16/F, CIO-DAS16/M1 and CIO-DAS16/M1/16 the following additional argument
values are also valid:

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH
0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 for FIRSTPORTA

Universal Library User's Guide Analog Input Boards - CIO- and PC104-DAS16

67

Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

 The CIO-DAS16/M1/16 also supports these argument values:
4 to 6

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2, LOADREG3

 For CIO-DAS16/M1/16 the following argument values are also valid
LOADREG4, LOADREG5, LOADREG6

Triggering (CIO-DAS16/M1/16 only)
Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW

Threshold 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

Hardware considerations
Pacing analog input

! Hardware pacing, external or internal clock supported.

! The packet size is 512 samples

! The DMAIO option cannot be used while using the chan/gain queue on the DAS-330i board.

CIO-DAS16/M1

If you use the timed analog functions with the CIO-DAS16/M1 board to acquire more than 2048 data points,
you may not be able to achieve the full 1 MHz rate. On slow machines, these functions may hang if the scan
rate is fast, generally in the range of 500 to 700 kHz.

Determine the maximum rate by passing in different high rates until the maximum rate is achieved without
hanging the system. If the full 1.0 MHz rate is required, add a MEGA FIFO memory board and specify the
EXTMEMORY option on the call to cbAInScan()or AInScan().

CIO-DAS16/M1/16 also supports counter numbers 4 through 6, with counter 4 being the only independent
user counter.

Universal Library User's Guide Analog Input Boards - CIO- and PC104-DAS16

68

Triggering and gating

! For the CIO-DAS16/M1/16, Digital (TTL) and analog hardware triggering is supported.

! For all others in this series, digital (TTL) polled gate triggering is supported. Refer to "Trigger support"
on page 28

Pacing analog output

Software only

Universal Library User's Guide Analog Input Boards - PCM- and PC-CARD-DAS16 Series

69

PCM- and PC-CARD-DAS16 Series
Analog Input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS*, EXTCLOCK, CONVERTDATA, SINGLEIO, BLOCKIO,
EXTTRIGGER, NOTODINTS, NOCALIBRATEDATA

 The PC-CARD-DAS16 series also supports BURSTMODE.

HighChan DAS16/S and DAS16/330

 0 to 15

 DAS16/D

 0 to 7

Rate DAS16/330

 330000

 PC-CARD-DAS16/16

 200000

 All others in series

 100000

Range For DAS16x/12, the following A/D ranges are valid:
 BIP10VOLTS UNI10VOLTS

 BIP5VOLTS UNI5VOLTS

 BIP2PT5VOLTS UNI2PT5VOLTS

 BIP1PT25VOLTS UNI1PT25VOLTS

 For DAS16x/16, the following A/D ranges are valid:
 BIP10VOLTS BIP5VOLTS

 BIP2PT5VOLTS BIP1PT25VOLTS

 For DAS16/330, the following A/D ranges are valid:
 BIP10VOLTS BIP5VOLTS

Analog output
PCM-DAS16D/12AO and PC-CARD-DAS16/xx-AO only

Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS (PCM version only)

HighChan 1 max

Universal Library User's Guide Analog Input Boards - PCM- and PC-CARD-DAS16 Series

70

Rate Ignored

Count 2 max
Range BIP10VOLTS

 For PC-CARD-DAS16/12AO & PCM-DAS16D/12AO, the following argument
values are also valid:

 BIP10VOLTS

 BIP5VOLTS

DataValue 0 to 4095

 For PC-CARD-DAS16/16AO, the following argument values are also valid:

 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8.)

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum PC-CARD-DAS16/xxAO
 FIRSTPORTA

 All others in this series:

 FIRSTPORTA, FIRSTPORTB

DataValue PC-CARD-DAS16/xxAO

 0 to 15 for FIRSTPORTA

 All others in this series:

 0 to 15 for FIRSTPORTA or FIRSTPORTB

BitNum PC-CARD-DAS16/xxAO
0 to 3 for FIRSTPORTA

 All others in this series
0 to 7 for FIRSTPORTA

Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2, LOADREG3

Universal Library User's Guide Analog Input Boards - PCM- and PC-CARD-DAS16 Series

71

Triggering
PC-Card Only

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE, TRIGNEGEDGE, GATEHIGH, GATELOW (All at A/D External trigger
input)

Hardware considerations
Pacing analog input

! Internal or external clock

! The packet size is 256 samples for PCM boards; 2048 samples for
PC-CARD boards.
For CONTINUOUS mode scans, the sample count should be at least one packet size (>=2048 samples) for
the PC-CARD- boards.

These cards do not have residual counters, so BLOCKIO transfers must acquire integer multiples of the packet
size before completing the scan. This can be lengthy for the PC-CARDs which must acquire 2048 samples
between interrupts for BLOCKIO transfers. In general, it is best to allow the library to determine the best
transfer mode (SINGLEIO vs. BLOCKIO) for these boards.

Triggering and gating

! External digital (TTL) polled gate trigger supported on PCM versions. Refer to "Trigger support" on
page 28.

! External digital (TTL) hardware trigger supported on PC-CARD versions.

Universal Library User's Guide Analog Input Boards - CIO-DAS1400 and CIO-DAS1600 Series

72

CIO-DAS1400 and CIO-DAS1600 Series
Analog Input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(),FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO, DMAIO, BURSTMODE,
EXTTRIGGER

 For CIO-DAS1600, the following argument values are also valid:
DTCONNECT, EXTMEMORY.

HighChan 0 to 15 in single-ended mode, 0 to 7 in differential mode

Rate DAS1401/12, DAS1402/12, DAS1601/12, DAS1602/12
160000

 DAS1602/16, DAS1402/16

 100000

 DAS1401/12, DAS1402/12, DAS1601/12, DAS1602/12 to external memory
330000

Range CIO-DAS1402, CIO-DAS1602, CIO-DAS1402/16 and CIO-DAS1602/16
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS

 CIO-DAS1401 and CIO-DAS1601
BIP10VOLTS UNI10VOLTS
BIP1VOLTS UNI1VOLTS
BIPPT1VOLTS UNIPT1VOLTS
BIPPT01VOLTS UNIPT01VOLTS

Analog output (CIO-DAS1600 series only)
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values
Options SIMULTANEOUS

HighChan 1 max

Count 2 max

Rate Ignored

Pacing Software pacing only

Range Analog output gain is not programmable, so the Range argument is ignored.

DataValue 0 to 4095

Universal Library User's Guide Analog Input Boards - CIO-DAS1400 and CIO-DAS1600 Series

73

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

For DAS1600, the following function and method are also valid:

UL: cbDConfigPort()

UL for .NET: DConfigPort()

Digital I/O argument values

PortNum AUXPORT*

DataValue 0 to 15

BitNum 0 to 3

 * AUXPORT is not configurable for these boards.

 For DAS1600, the following additional argument values are also valid:

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH;
0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 for FIRSTPORTA

Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

RegNum: LOADREG1, LOADREG2, LOADREG3

Hardware considerations
Pacing analog input

Hardware pacing, external or internal clock supported.
Specifying SINGLEIO while also specifying BURSTMODE is not recommended. If this combination is used, the
Count value should be set as low as possible, preferably to the number of channels in the scan. Otherwise,
overruns may occur.

When EXTMEMORY is used with the CIO-DAS1600 the cbGetStatus() function or GetStatus() method does
not return the current count and current index. This is a limitation imposed by maintaining identical registers
to the KM-DAS1600.

Universal Library User's Guide Analog Input Boards - CIO-DAS1400 and CIO-DAS1600 Series

74

Triggering and gating

External digital (TTL) polled gate trigger supported. Refer to "Trigger support" on page 28.

Range

The CIO-DAS1400 and CIO-DAS1600 A/D ranges are configured with a combination of a switch (Unipolar
/ Bipolar) and a programmable gain code. The state of this switch is set in the configuration file using
InstaCal. After the UNI/BIP switch setting is selected, only matching ranges can be used in Universal Library
programs.

Universal Library User's Guide Analog Input Boards - CIO-DAS48/PGA

75

CIO-DAS48/PGA
Analog Input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values
Options CONVERTDATA

HighChan 47 (23 differential)

Rate This board does not have a timer, so the Rate argument to the analog scanning
functions is ignored.

Range The board may be configured with a jumper for either voltage or current input.

 In voltage mode
BIP10VOLTS UNI10VOLTS
BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS
BIP1PT25VOLTS UNI1PT25VOLTS
BIPPT625VOLTS

 In current mode
MA4TO20 MA2TO10
MA1TO5 MAPT5TO2PT5

Analog output
Analog output functions and methods supported

The CIO-DAS48/PGA board does not support any of the analog output functions.

Digital I/O
Digital I/O functions and methods supported

The CIO-DAS48/PGA does not support any of the digital I/O functions.

Counter I/O
Counter functions and methods supported

The CIO-DAS48/PGA does not support any of the counter I/O functions.

Universal Library User's Guide Analog Input Boards - DAS-TC Series

76

DAS-TC Series
Temperature Input
Temperature input functions and methods supported

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Temperature input argument values
Options NOFILTER

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan 0 to 15

Hardware considerations
Pacing input

The rate of measurement is fixed at approximately 25 samples per second.

Selecting thermocouples

J, K, E, T, R, S or B type thermocouples may be selected using InstaCal.

Open thermocouples

When using cbTInScan() or TInScan() with the DAS-TC, an open thermocouple error (OPENCONNECTION) on
any of the channels will cause all data to be returned as � 9999.0. This is a hardware limitation. If your
application requires isolating channels with defective thermocouples attached and returning valid data for the
remainder of the channels, use the cbTIn() function or TIn() method instead.

To read the voltage input of the thermocouple, select VOLTS for the Scale parameter in cbTIn() and
cbTInScan(), or TIn() and TInScan().

Universal Library User's Guide Analog Input Boards - CIO-DAS-TEMP

77

CIO-DAS-TEMP
Temperature input
Temperature input functions and methods supported

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Temperature input argument values
Options NOFILTER

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan 0 to 31

Hardware considerations
Pacing Input

The rate of measurement is fixed at approximately 25 samples per second.

Selecting Thermocouples

J, K, E, T, R, S or B type thermocouples may be selected using InstaCal.

Universal Library User's Guide Analog Input Boards - USB-TEMP, USB-TC

78

USB-TEMP, USB-TC
The Measurement Computing brand USB-TEMP and USB-TC support the following UL and UL for .NET
features.

Temperature input
Temperature input functions and methods supported

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Temperature input argument values
Options N/A

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan 0 to 7

Digital I/O
Digital I/O functions and methods supported

UL: cbDIn(),cbDOut(),cbDBitIn(), cbDBitOut, cbDConfigBit()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut(), DConfigBit()

Digital I/O argument values
PortNum AUXPORT

DataValue 0 to 255

BitNum 0 to 7

Hardware considerations
Pacing temperature readings

The internal update rate for temperature measurement is a fixed value for these devices. If the UL reads the
device faster than the internal update rate, temperature readings "repeat." For example, if using cbTIn() in a
loop to measure a rapidly changing temperature, readings do not change for several iterations of the loop, then
�jump� when the update occurs internally.

Using single sensors with cbTInScan()

When using single sensors for RTD or thermistor sensors, you should ignore the data for channels that do not
have sensors attached. It is best to use cbTIn() for these configurations, since you can select which channels to
read. If you use cbTInScan(), however, data for all channels over the entire range of channels are returned.
Since some channels are not populated in this configuration, you should filter out the data for channels
without sensors.

Saving configuration settings

InstaCal allows you to save USB-TEMP and USB-TC configuration settings to a file or load a configuration
from a previously saved file.

! Each USB-TEMP channel can be configured to measure temperature data collected by one of five
categories of temperature sensors: thermistors, thermocouples, RTDs, semiconductors, and Disabled.

! Each USB-TC channel can be configured to measure temperature data collected by one of eight types of
thermocouples.

Universal Library User's Guide Analog Input Boards - USB-TEMP, USB-TC

79

Recommended warm up time (USB-TEMP only)

Allow the USB-TEMP to warm up for 30 minutes before taking measurements. This warm up time minimizes
thermal drift and achieves the specified rated accuracy of measurements.

For RTD or thermistor measurements, this warm-up time is also required to stabilize the internal current
reference.

Calibration

Any time the sensor category is changed in the configuration for the USB-TEMP, a calibration is
automatically performed by InstaCal. If the device has not been warmed up when this occurs, you should re-
calibrate after the specified warmup time.

Error codes

! The UL returns -9999 when a value is out of range or an open connection is detected.

! The UL returns -9000 when the device is not ready. This usually occurs right after the device is powered
up and calibration factors are being loaded.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular
module by making its LED blink.

Universal Library User's Guide Analog Input Boards - miniLAB 1008

80

miniLAB 1008
The Measurement Computing brand miniLAB 1008 supports the following UL and UL for .NET features.

Analog Input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbALoadQueue()*, cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue()*, FileAInScan(), ATrig()

 *The channel-gain queues are limited to eight channel-gain pairs.

Analog input argument values

Options BACKGROUND, BLOCKIO***, BURSTIO**, CONTINUOUS, EXTTRIGGER, CONVERTDATA,
and NOCALIBRATEDATA.

 **BURSTIO cannot be used with the CONTINOUS option.

 ** BURSTIO can only be used with sample count scans of 4096 or less.

 *** The BLOCKIO packet size is 64 samples wide.

HighChan 0 to 7 in single-ended mode, 0 to 3 in differential mode.

Rate 8000 maximum for BURSTIO mode (1200 maximum for all other modes.)

 When using cbAInScan() or AInScan(), the minimum rate is 100 S/s aggregate.

Range Single-ended mode:
BIP10VOLTS (± 10 V)

 Differential mode:

 BIP20VOLTS (± 20 V) BIP2PT5VOLTS (± 2.5 V)
BIP10VOLTS (± 10 V) BIP2VOLTS (± 2 V)
BIP5VOLTS (± 5 V) BIP1PT25VOLTS (± 1.25 V)
BIP4VOLTS (± 4 V) BIP1VOLT (± 1 V)

Pacing Hardware pacing, internal clock supported.

Triggering

Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGHIGH, TRIGLOW

 Digital (TTL) hardware triggering supported. The hardware trigger is source
selectable via InstaCal (AUXPORT inputs 0�3).

Analog output
Analog output functions and methods supported

UL: cbAOut()

UL for .NET: AOut()

Universal Library User's Guide Analog Input Boards - miniLAB 1008

81

Analog output argument values

HighChan 1

Range UNI5VOLTS (0 to 5 V)

DataValue 0 to 1023

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigBit(),
cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigBit(), DConfigPort()

Digital I/O argument values

PortNum AUXPORT*, FIRSTPORTA

DataValue 0 to 15 for AUXPORT, FIRSTPORTCL or FIRSTPORTCH
0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 3 for AUXPORT
0 to 23 for FIRSTPORTA

 *AUXPORT is bitwise configurable for this board, and must be configured using
cbDConfigBit() or cbDConfigPort() (or the UL for .NET methods
DConfigBit() or DConfigPort()) before use for output.

Counter I/O
Counter I/O functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or CIn32() may be more
appropriate. The values returned may be greater than the data types that are used by cbCIn() and CIn() can
handle.

**cbCLoad(), CLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are used to reset the
counter.

Counter I/O argument values
CounterNum 1

Count: 232-1 when reading the counter.

LoadValue 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the
counter for this board to 0. No other values are valid.

 The �Basic signed integers� guidelines on page 102 apply when using cbCIn() or
CIn() for values greater than 32767, and when using cbCIn32() or CIn32() for
values greater than 2147483647.

RegNum: LOADREG1

Universal Library User's Guide Analog Input Boards - miniLAB 1008

82

Event notification
Even notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types: ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Hardware considerations
Resolution

When configured for single-ended mode, the resolution of the data is 11 bits (data values between 0 and
2047). However, the Universal Library maps this data to 12-bit values, so the range of data is no different
from the differential configuration. Consequently, the data returned contains only even numbers between 0
and 4094.

BURSTIO

Allows higher sampling rates (up to 8000 hertz (Hz)) for sample counts up to 4096. Data is collected into the
miniLAB 1008's local FIFO. Data is collected into the USB device's local FIFO. Data transfers to the PC
don't occur until the scan completes. For BACKGROUND scans, the Count and Index returned by cbGetStatus()
and GetStatus() remain 0, and Status=RUNNING until the scan finishes. The Count and Index are not
updated until the scan is completed. When the scan is complete and the data is retrieved, cbGetStatus()and
GetStatus()are updated to the current Count and Index, and Status = IDLE.
BURSTIO is the default mode for non-CONTINUOUS fast scans (aggregate sample rates above 1000 Hz) with
sample counts up to 4096. BURSTIO mode allows higher sampling rates (up to 8000 Hz) for sample counts up
to 4096. Non-BURSTIO scans are limited to a maximum of 1200 Hz. To avoid the BURSTIO default, specify
BLOCKIO mode.

Continuous scans

When running cbAInScan() with the CONTINUOUS option, you should consider the packet size and the
number of channels being scanned. In order to keep the data aligned properly in the array, make the total
number of samples an integer multiple of the packet size and the number of channels.

Concurrent operations

Concurrent operations on a particular USB device are not allowed. If you invoke a UL or UL for .NET
function on a USB device while another function is running on that USB device, the ALREADYACTIVE error is
returned.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a Measurement Computing USB device to blink.

When you have several USB devices connected to the computer, use these functions to identify a particular
device by making its LED blink.

Universal Library User's Guide Analog Input Boards - USB-1208 Series

83

USB-1208 Series
The Measurement Computing brand USB-1208LS and USB-1208FS support the following UL and UL
for .NET features.

Analog input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbALoadQueue()*, cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue(), FileAInScan(), ATrig()

Analog input argument values

Options USB-1208LS

 BACKGROUND, BLOCKIO*, BURSTIO**, CONTINUOUS, EXTTRIGGER, NOCALIBRATEDATA ,
and CONVERTDATA,

 USB-1208FS

 BACKGROUND, BLOCKIO*, CONTINUOUS, EXTCLOCK, EXTTRIGGER, NOCALIBRATEDATA,
and SINGLEIO

 *USB-1208 Series packet size based on Options settings are as follows:

Device Options setting Packet size

USB-1208LS BLOCKIO 64

BLOCKIO 31
USB-1208FS

SINGLEIO 1

 ** BURSTIO can only be used with the number of samples (Count) set equal to the
size of the FIFO or less. The USB-1208LS FIFO holds 4096 samples. BURSTIO
cannot be used with the CONTINUOUS option.

HighChan 0 to 7 in single-ended mode

 0 to 3 in differential mode.

Count In CONTINUOUS mode, Count must be an integer multiple of the number of channels
in the scan.

Rate USB-1208LS

 8000 Hz maximum for BURSTIO mode. The maximum rate is 1200 Hz for all other
modes. When using cbAInScan() or AInScan(), the minimum sample rate is
100 Hz.

 USB-1208FS

 50 kHz maximum for BLOCKIO mode. The throughput is system dependant. Most
systems will be able to achieve 40 kHz aggregate. Best results will be obtained
using Windows XP. When using cbAInScan() or AInScan() the minimum sample
rate is 1 Hz.

Range Single-ended mode:
BIP10VOLTS (± 10 V)

Universal Library User's Guide Analog Input Boards - USB-1208 Series

84

 Differential mode:

 BIP20VOLTS (± 20 V) BIP2PT5VOLTS (± 2.5 V)
BIP10VOLTS (± 10 V) BIP2VOLTS (± 2 V)
BIP5VOLTS (± 5 V) BIP1PT25VOLTS (± 1.25 V)
BIP4VOLTS (± 4 V) BIP1VOLT (± 1 V)

Triggering
Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType USB-1208LS

 TRIGHIGH and TRIGLOW

 USB-1208FS

 TRIGPOSEDGE and TRIGNEGEDGE

 Both products support external digital (TTL) hardware triggering. Use the Trig_In
input (pin # 18 on the screw terminal) for the external trigger signal.

Analog output
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options USB-1208LS

 Ignored

 USB-1208FS

 BACKGROUND, CONTINUOUS

 For the USB-1208FS, the number of samples (Count) in a CONTINUOUS scan needs
to be an integer multiple of the packet size (32).

HighChan 0 to 1

Count USB-1208LS
(HighChan-LowChan) + 1

 USB-1208FS
For the USB-1208FS, Count needs to be an integer multiple of the number of
channels in the scan. In a CONTINUOUS scan, Count needs to be an integer
multiple of the packet size (32).

Rate USB-1208LS
Ignored

 USB-1208FS

 10 kHz for single channel
5 kHz for two channels

Universal Library User's Guide Analog Input Boards - USB-1208 Series

85

 Performance varies when operating on non-XP systems.

Range USB-1208LS

 UNI5VOLTS (0 to 5 V)

 USB-1208FS

 UNI4VOLTS (0 to 4 V, nominal. Actual range is 0 to 4.096 V)

DataValue USB-1208LS

 0 to 1023

 USB-1208FS

 0 to 4095

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB

DataValue 0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 15 for FIRSTPORTA

Counter I/O
Counter I/O functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

 *Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or
CIn32() may be more appropriate, since the values returned may be greater than
the data types used by cbCIn() and CIn() can handle.
**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These
functions are used to reset the counter.

Counter I/O argument values

CounterNum 1

Count 232-1 when reading the counter.

 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the
counter for this board to 0. No other values are valid.

 The �Basic signed integers� guidelines on page 102 apply when using cbCIn() or
CIn() for values greater than 32767, and when using cbCIn32() or CIn32() for
values greater than 2147483647.

RegNum LOADREG1

Universal Library User's Guide Analog Input Boards - USB-1208 Series

86

Event notification
Even notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types: ON_SCAN_ERROR (analog input), ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

 The USB-1208FS also supports ON_END_OF_AO_SCAN and ON_SCAN_ERROR (analog
output)

Hardware considerations
Acquisition Rate

When using the USB-1208FS, most systems can sustain rates of 40 kS/s aggregate in BLOCKIO mode, and 1
kS/s aggregate in SINGLEIO mode.

BURSTIO (USB-1208LS)

BURSTIO mode allows higher sampling rates for sample counts up to the size of the FIFO. The USB-1208LS
FIFO holds 4096 samples. Data is collected into the device's local FIFO. Data transfers to the PC don't occur
until the scan completes. For BACKGROUND scans, the Count and Index returned by cbGetStatus() and
GetStatus() remain 0, and Status=RUNNING until the scan finishes. The Count and Index are not updated
until the scan is completed. When the scan is complete and the data is retrieved, cbGetStatus() and
GetStatus() are updated to the current Count and Index, and Status = IDLE.

The USB-1208LS uses BURSTIO as the default mode for non-CONTINUOUS fast scans with sample counts up to
the size of the FIFO (4096 samples). BURSTIO mode allows higher sampling rates for sample counts up to the
size of the FIFO. Maximum Rate values of non-BURSTIO scans are limited (see Rate on page 83). To avoid
the BURSTIO default, specify BLOCKIO mode.

EXTCLOCK (USB-1208FS)

By default, the SYNC pin is configured for pacer output and provides the internal pacer A/D clock signal. To
configure the pin for pacer input, use the EXTCLOCK option.

If you use the EXTCLOCK option, make sure that you disconnect from the external clock source when you test
or calibrate the device with InstaCal, as the SYNC pin drives the output.

Resolution

When configured for single-ended mode, the resolution of the data is 11 bits (data values between 0 and
2047). However, the Universal Library maps this data to 12-bit values, so the range of data is no different
from the differential configuration. Consequently, the data returned contains only even numbers between 0
and 4094.

Continuous scans

When running cbAInScan() with the CONTINUOUS option, consider the packet size and the number of channels
being scanned. To keep the data aligned properly in the array, make the total number of samples an integer
multiple of the packet size and the number of channels in the scan.

Concurrent operations

USB-1208LS: Concurrent operations are not allowed. If you invoke a UL or UL for .NET function on a USB-
1208LS while another function is running on that same unit, the ALREADYACTIVE error is returned.

Universal Library User's Guide Analog Input Boards - USB-1208 Series

87

USB-1208FS: The following table lists the concurrent operations supported by the USB-1208FS.

UL function/method Can be run with�

cbAOutScan()/AOutScan() ! cbDOut()/DOut()

! cbCLoad()/CLoad()

! cbFlashLED()/FlashLED()

cbAOut()/AOut() cbAInScan()/AInScan() in BACKGROUND mode

cbAInScan()/AInScan() All supported digital I/O functions (cbDIn()/Din(), cbDBitIn()/DBitOut(),
cbDOut()/DOut(, cbDBitOut()/DBitOut(), cbDConfigPort()/DConfigPort())

Channel-gain queue

When using cbALoadQueue()/ALoadQueue() with the USB-1208LS, the channel gain queue is limited to
eight elements. When using cbALoadQueue()/ALoadQueue() with the USB-1208FS, the channel gain queue
is limited to 16 elements.

The queue accepts any combination of valid channels and gains in each element.

Analog output (USB-1208FS)

When you include both analog output channels in cbAOutScan()/AOutScan(), the two channels are updated
simultaneously.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink.

When you have several USB devices connected to the computer, use these functions to identify a particular
device by making its LED blink.

Universal Library User's Guide Analog Input Boards - USB-1608 Series

88

USB-1608 Series
The Measurement Computing brand USB-1608FS supports the following UL and UL for .NET features.

Analog input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbALoadQueue()*, cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue()*, FileAInScan(), ATrig()

 *The channel-gain queue is limited to eight elements. The USB-1608FS accepts
only unique contiguous channels in each element, but the gains may be any valid
value.

Analog input argument values

Options BACKGROUND, BLOCKIO**, BURSTIO***, CONTINUOUS, EXTTRIGGER, CONVERTDATA,
NOCALIBRATEDATA, SINGLEIO**, and EXTCLOCK.

 **USB-1608 Series packet size based on Options settings is as follows:

Device Options
setting Packet size

BLOCKIO 31
USB-1608FS

SINGLEIO Equals the number of channels being sampled.

 *** BURSTIO can only be used with the number of samples (Count) set equal to the
size of the FIFO or less. The USB-1608FS�s FIFO holds 32,768 samples. Also,
BURSTIO cannot be used with the CONTINUOUS option.

HighChan 0 to 7 in single-ended mode

Count In BURSTIO mode, Count needs to be an integer multiple of the number of
channels in the scan.

 ▪ For three- and six-channel scans, the maximum Count is 32766 samples

 ▪ For five-channel scans, the maximum Count is 32765 samples

 ▪ For seven-channel scans, the maximum Count is 32767 samples

 ▪ For one-, two- , four-, and eight-channel scans, the maximum Count is 32768
samples.

Rate 200 kHz maximum for BURSTIO mode (50 kHz for any one channel). The
maximum rate is 100 kHz for all other modes (50 kHz for any one channel). When
using cbAInScan() or AInScan(), the minimum sample rate is 1 Hz. In BURSTIO
mode, the minimum sample rate is 20 Hz/channel.

Range Single-ended mode:
BIP10VOLTS (± 10 V) BIP2VOLTS (± 2 V)

 BIP5VOLTS (± 5 V) BIP1VOLT (± 1 V)

Universal Library User's Guide Analog Input Boards - USB-1608 Series

89

Triggering
Trigger functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType TRIGPOSEDGE and TRIGNEGEDGE.
External digital (TTL) hardware triggering supported. You set the hardware trigger
source with the Trig_In input (pin# 37 on the screw terminal).

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigBit(),
cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigBit(), DConfigPort()

Digital I/O argument values
PortNum AUXPORT

DataValue 0 to 255

BitNum 0 to 7 for AUXPORT

Counter I/O
Counter I/O functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

 *Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or
CIn32() may be more appropriate, since the values returned may be greater than
the data types used by cbCIn() and CIn() can handle.

 **cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These
functions are used to reset the counter.

Counter I/O argument values

CounterNum 1

Count 232-1 when reading the counter.

LoadValue 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the
counter for this board to 0. No other values are valid.

 The �Basic signed integers� guidelines on page 102 apply when using cbCIn() or
CIn() for values greater than 32767, and when using cbCIn32() or CIn32() for
values greater than 2147483647.

RegNum LOADREG1

Universal Library User's Guide Analog Input Boards - USB-1608 Series

90

Event notification
Even notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types: ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Hardware considerations
Acquisition rate

Since the maximum data acquisition rate depends on the system connected to the USB-1608FS, it is possible
to �lose� data points when scanning at higher rates. The Universal Library cannot always detect this data loss.

Most systems can sustain rates of 80 kS/s aggregate. If you need to sample at higher rates than this, consider
using the BURSTIO option explained above.

BURSTIO

BURSTIO mode allows higher sampling rates for sample counts up to the size of the FIFO. The USB-1608FS
device's FIFO holds 32,768 samples. Data is collected into the device's local FIFO. Data transfers to the PC
don't occur until the scan completes. For BACKGROUND scans, the Count and Index returned by cbGetStatus()
and GetStatus() remain 0, and Status=RUNNING until the scan finishes. The Count and Index are not
updated until the scan is completed. When the scan is complete and the data is retrieved, cbGetStatus() and
GetStatus() are updated to the current Count and Index, and Status = IDLE.

BURSTIO is required for aggregate Rate settings above 100 kHz, but Count is limited to sample counts up to
the size of the FIFO (32,768 samples). Count settings must be an integer multiple of the number of channels
in the scan.

EXTCLOCK

You can set the SYNC pin (pin 36) as a pacer input or a pacer output from InstaCal. By default, this pin is set
for pacer input. If set for output, using the cbAInScan / AInScan option, EXTCLOCK results in a BADOPTION
error.

Continuous scans

When running cbAInScan() with the CONTINUOUS option, you should consider the packet size and the number
of channels being scanned. In order to keep the data aligned properly in the array, make the total number of
samples an integer multiple of the packet size and the number of channels.

When running cbAInScan() with the CONTINUOUS option, you must set the count to an integer multiple of the
packet size (31) and the number of channels in the scan.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()
Causes the LED on a USB device to blink.

When you have several USB devices connected to the computer, use these functions to identify a particular
device by making its LED blink.

Universal Library User's Guide Analog Input Boards - USB-1616 Series

91

USB-1616 Series
The Measurement Computing brand USB-1616FS supports the following UL and UL for .NET features.

Analog input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbALoadQueue()*, cbFileAInScan(), cbATrig()

UL for .NET: AIn(), AInScan(), ALoadQueue()*, FileAInScan(), ATrig()

 *The channel-gain queue is limited to 16 elements. The USB-1616FS accepts only
unique contiguous channels in each element, but the gains may be any valid value.

Analog input argument values

Options: BACKGROUND, BLOCKIO**, BURSTIO***, CONTINUOUS, EXTTRIGGER, SINGLEIO**, and
EXTCLOCK

 **USB-1616 Series packet size based on Options settings

Device Options setting Packet size
BLOCKIO 62

USB-1616FS
SINGLEIO Equals the number of channels being

sampled.

 *** BURSTIO can only be used with the number of samples (Count) set equal to the
size of the FIFO or less. The USB-1616FS FIFO holds 32,768 samples. Also,
BURSTIO cannot be used with the CONTINUOUS option.

HighChan 0 to 15 in single-ended mode

Count In BURSTIO mode, Count needs to be an integer multiple of the number of channels
in the scan.
! For one-, two- , four-, eight-, and 16-channel scans, the maximum Count is

32768 samples.
! For three- and six-channel scans, the maximum Count is 32766 samples
! For five-channel scans, the maximum Count is 32765 samples
! For seven-channel scans, the maximum Count is 32767 samples
! For 9-, 10-, 12-, 13-, 14-, and 15-channel scans, the maximum Count is

32760 samples
! For 11-channel scans, the maximum Count is 32758 samples.

Rate: 200 kilohertz (kHz) maximum for BURSTIO mode (50 kHz for any one channel).
For all other modes, the maximum rate per channel depends on the number of
channels being scanned.

No. of channels in
scan

Maximum
rate

 No. of channels in
scan

Maximum
rate

1 or 2 50 kHz 10 14 kHz
3 36 kHz 11 12.5 kHz
4 30 kHz 12 12 kHz
5 25 kHz 13 11.25 kHz
6 22 kHz 14 10.5 kHz
7 19 kHz 15 10 kHz
8 17 kHz
9 15 kHz

16 9.5 kHz

 When using cbAInScan() or AInScan(), the minimum sample rate is 1 Hz. In
BURSTIO mode, the minimum sample rate is 20 Hz/channel.

Universal Library User's Guide Analog Input Boards - USB-1616 Series

92

Range: Single-ended:

 BIP10VOLTS (± 10 volts) BIP5VOLTS (± 5 volts)
BIP2VOLTS (± 2 volts) BIP1VOLTS (± 1 volt)

Pacing: Hardware pacing, internal clock supported.

 External clock supported via the SYNC pin.

Triggering
Triggering functions and methods supported

UL: cbSetTrigger()

UL for .NET: SetTrigger()

Trigger argument values

TrigType: TRIGPOSEDGE, TRIGNEGEDGE

 External digital (TTL) hardware triggering supported. You set the hardware trigger
source with the TRIG_IN input terminal.

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigBit(),
cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigBit(), DConfigPort()

Digital I/O argument values

PortNum: AUXPORT (eight bits, bit-configurable)

DataValue: 0 to 255

BitNum: 0 to 7

Counter I/O
Counter I/O functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()** *

 Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or
CIn32() may be more appropriate, since the values returned may be greater than
the data types used by cbCIn() and CIn() can handle. **cbCLoad(),
cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These functions are
used to reset the counter.

Counter I/O argument values

CounterNum: 1

Count 232-1 when reading the counter.

 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the
counter for this board to 0. No other values are valid.

The �Basic signed integers� guidelines on page 102 apply when using cbCIn() or CIn() for values greater
than 32767, and when using cbCIn32() or CIn32() for values greater than 2147483647.

Universal Library User's Guide Analog Input Boards - USB-1616 Series

93

Event notification
Even notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event types: ON_SCAN_ERROR, ON_DATA_AVAILABLE, ON_END_OF_AI_SCAN

Hardware considerations
Acquisition rate

Since the maximum data acquisition rate depends on the system connected to the USB-1616FS, it is possible
to "lose" data points when scanning at higher rates. The Universal Library cannot always detect this data loss.
Maximum rates may be lower in Windows operating systems that predate Windows XP. Most systems can
sustain rates of 80 kS/s aggregate. If you need to sample at higher rates than this, consider using the BURSTIO
option explained later in this topic.

EXTCLOCK

You can set the SYNC pin as a pacer input or a pacer output from InstaCal. By default, this pin is set for pacer
input. If set for output, using the cbAInScan()/AInScan() option EXTCLOCK results in a BADOPTION error.

BURSTIO

Allows higher sampling rates up to the size of the FIFO. The USB-1616FS FIFO holds 32,768 samples. Data
is collected into the USB device's local FIFO. Data transfers to the PC don't occur until the scan completes.
For BACKGROUND scans, the Count and Index returned by cbGetStatus() and GetStatus() remain 0, and
STATUS=RUNNING until the scan finishes. The Count and Index are not updated until the scan is
completed. When the scan is complete and the data is retrieved, cbGetStatus() and GetStatus() are updated
to the current Count and Index, and STATUS=IDLE.

BURSTIO is required for aggregate Rate settings above 100 kHz, but Count is limited to sample counts up to
the size of the FIFO (32,768 samples). Count settings must be an integer multiple of the number of channels
in the scan (see Count above).

 Continuous scans

When running cbAInScan()/AInScan() with the CONTINUOUS option, you should consider the packet size and
the number of channels being scanned. In order to keep the data aligned properly in the array, make the total
number of samples an integer multiple of the packet size and the number of channels.

When running cbAInScan()/AInScan() with the CONTINUOUS option, you must set the count to an integer
multiple of the packet size (62) and the number of channels in the scan.

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular
module by making its LED blink.

94

8
Analog Output Boards

Introduction

All boards with analog outputs support the cbAOut() and cbAOutScan() functions. Boards released after the
printing of this manual are described in Readme files on the Universal Library disk.

cbAOutScan()/AOutScan() are designed primarily for boards that support hardware-paced analog output, but
it is also useful when simultaneous update of all channels is desired. If the hardware is configured for
simultaneous update, this function loads each DAC channel with the appropriate value before issuing the
update command.

Universal Library User's Guide Analog Output Boards - DAC04 HS Series

95

DAC04 HS Series
Analog output
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS

HighChan 0 to 3

Rate 500000

DataValue 0 to 4095

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values

PortNum AUXPORT*

DataValue 0 to 255

BitNum 0 to 7

 * AUXPORT is not configurable for these boards.

Hardware considerations
Pacing analog output

Hardware pacing, external or internal clock supported.

The external clock is hardwired to the DAC pacer. If an internal clock is to be used, do not connect a signal to
the External Pacer input.

Universal Library User's Guide Analog Output Boards - DAC Series (Excluding HS Series)

96

DAC Series (Excluding HS Series)

Analog output
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values
Options SIMULTANEOUS

HighChan DAC02 DAC08
0 to 1 0 to 7

 DAC06 DAC16
0 to 5 0 to 15

Rate Ignored

Count HighChan - LowChan + 1 max

Range Ignored

DataValue 0 to 4095

 For the /16 series, the following argument values are also valid:
0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

Hardware considerations
Pacing analog output

Software only

Universal Library User's Guide Analog Output Boards - PCI-DAC6700 Series

97

PCI-DAC6700 Series

Analog output
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

HighChan: PCI-DAC6702: 7 PCI-DAC6703: 15

Count: HighChan - LowChan + 1 max

Rate: Ignored

Range: BIP10VOLTS (± 10.1 V)

DataValue: 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort(),
cbDConfigBit()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort(), DConfigBit()

Digital I/O argument values

PortNum: AUXPORT is bitwise configurable for these boards, and must be configured using
cbDConfigBit() or cbDConfigPort() before use as output.

DataValue 0 to 255

BitNum 0 to 7

Configuration
Configuration functions and methods supported

UL: cbGetConfig(), cbSetConfig()

UL for .NET: GetDACStartup(), GetDACUpdateMode(), SetDACStartup(),
SetDACUpdateMode()

Configuration argument values

ConfigItem: BIDACSTARTUP, BIDACUPDATEMODE, BIDACUPDATECMD

Hardware considerations
Pacing analog output
Software only

Universal Library User's Guide Analog Output Boards - PCM- and PC-CARD- DAC Series

98

PCM- and PC-CARD- DAC Series
Analog output
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options PCM-DAC02
Ignored

 PCM-DAC08 and PC-CARD-DAC08
SIMULTANEOUS

HighChan DAC02 DAC08
0 to 1 0 to 7

Rate Ignored

Count HighChan - LowChan + 1 max

Range PCM-DAC08 and PC-CARD-DAC08
Ignored

 PCM-DAC02
BIP10VOLTS BIP5VOLTS
UNI10VOLTS UNI5VOLTS

DataValue 0 to 4095

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB

DataValue 0 to 15 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 7 using FIRSTPORTA

Hardware considerations
Pacing analog output

Software only

Digital configuration

Supports two configurable 4-bit ports�FIRSTPORTA and FIRSTPORTB. Each can be independently configured
as either inputs or outputs via cbDConfigPort() or DConfigPort().

Universal Library User's Guide Analog Output Boards - PCIM- and CIO- DDA06 Series

99

PCIM- and CIO- DDA06 Series

Analog output
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument values

Options SIMULTANEOUS (CIO-DDA06 Series only)

HighChan 0 to 5

Rate Ignored

Count HighChan - LowChan + 1 max

Range Ignored

DataValue 0 to 4095

 For the /16 series, the following argument values are also valid
0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8.)

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for FIRSTPORTC
0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 using FIRSTPORTA

Hardware considerations
Pacing analog output
Software only

Initializing the �zero power-up� state

When using the CIO-DDA06 "zero power-up state" hardware option, use cbAOutScan() or AOutScan() to set
the desired output value and enable the DAC outputs.

Universal Library User's Guide Analog Output Boards - PCI- and CPCI- DDA Series

100

PCI- and CPCI- DDA Series
Analog output
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument ranges
Options SIMULTANEOUS

HighChan DDA02: 0 to 1
DDA04: 0 to 3
DDA08: 0 to 7

Rate Ignored

Count HighChan - LowChan + 1 max
Range BIP10VOLTS UNI10VOLTS

BIP5VOLTS UNI5VOLTS
BIP2PT5VOLTS UNI2PT5VOLTS

DataValue 0 to 4095

 For the /16 series, the following argument values are also valid
0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH, SECONDPORTA,
SECONDPORTB, SECONDPORTCL, SECONDPORTCH

DataValue 0 to 15 for PORTC; 0 to 255 for PORTA or PORTB

BitNum 0 to 47 using FIRSTPORTA

Hardware considerations
Pacing analog output

Software only.

Universal Library User's Guide Analog Output Boards - cSBX-DDA04

101

cSBX-DDA04
Analog output
Analog output functions and methods supported

UL: cbAOut(), cbAOutScan()

UL for .NET: AOut(), AOutScan()

Analog output argument ranges

Options BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS

Rate 300,000

Pacing Hardware pacing, external or internal clock supported

Digital I/O
Digital I/O functions and methods supported

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut(), cbDInScan(), cbDOutScan()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values
PortNum AUXPORT*

DataValue 0 to 255 using cbDIn() or cbDInScan(), 0 to 16383

BitNum 0 to 7 using cbDBitIn()
0 to 13 using cbDBitOut()

Rate 500 kHz (refer to "Notes" below).

Pacing Hardware
* AUXPORT is not configurable for this board.

Notes
The cSBX-DDA04 board allows interleaving of analog and digital output data. To support interleaving, a
control bit indicates the data type. The control bit is the MSB of each 16-bit word of analog or digital data.
The MSB = 0 for analog data, and 1 for digital data. The data is passed to the board and then directed to the
correct output type by hardware on the board which detects and acts on the MSB control bit.

! To use this interleaving capability with the UL, set HighChan and LowChan to NOTUSED, and indicate the
data type and channel in the most significant four bits of the data values in the buffer.

! To use this interleaving capability with the UL for .NET, set HighChan and LowChan to NOTUSED, and
indicate the data type and channel in the most significant four bits of the data values in the buffer.

102

9
Digital Input/Output Boards

Introduction
This section has details on using digital I/O boards in conjunction with the Universal Library. Boards released
after the printing of this manual will be described in Readme files on the Universal Library disk.

Basic signed integers
When reading or writing ports that are 16-bits wide, be aware of the following issue using signed integers (as
you are forced to do when using Basic):

On some boards, for example the PDISO16, the AUXPORT digital ports are set up as one 16-bit port. When
using cbDOut() or DOut(), the digital values are written as a single 16-bit word. Using signed integers,
writing values above 0111 1111 1111 1111 (32767 decimal) can be confusing. The next increment,
1000 0000 0000 0000, has a decimal value of -32768. Using signed integers, this is the value that you would
use for turning on the MSB only. The value for all bits on is −1. Keep this in mind if you are using Basic,
since Basic does not supply unsigned integers (values from 0 to 65536).

To fully understand and maximize the performance of this and other digital input function calls, refer to the
82C55 data sheet in the Documents subdirectory of the installation. This data sheet is also available from our
web site at www.mccdaq.com/PDFmanuals/82C55A.pdf. Also refer to the 8536 data sheet (this data sheet file
is not available in PDF format).

Universal Library User's Guide Digital Input/Output Boards - AC5 Series

103

AC5 Series
Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values
All boards in this series support:

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 using FIRSTPORTCL or FIRSTPORTCH
0 to 255 using FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 using FIRSTPORTA

 DUAL-AC5 and QUAD-AC5 boards also support:

PortNum SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

DataValue 0 to 15 using SECONDPORTCL or SECONDPORTCH
0 to 255 using SECONDPORTA or SECONDPORTB

BitNum 0 to 47 using FIRSTPORTA

 QUAD-AC5 boards also support:

PortNum THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH, FOURTHPORTA,
FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

DataValue 0 to 15 using THIRDPORTCL or THIRDPORTCH
0 to 255 using THIRDPORTA or THIRDPORTB

BitNum 0 to 95 using FIRSTPORTA

Universal Library User's Guide Digital Input/Output Boards - DIO Series

104

DIO Series
Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

 For DIO48, DIO48H, DIO96, and DIO192, the following values are also valid:
SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

 For DIO96, and DIO192, the following argument values are also valid:
THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH, FOURTHPORTA,
FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

 For DIO192, the following values are also valid:
FIFTHPORTA through EIGHTHPORTCH

DataValue 0 to 15 for PORTCL or PORTCH
0 to 255 for PORTA or PORTB

BitNum 0 to 23 using FIRSTPORTA

 For DIO48, DIO48H, DIO96, and DIO192, the following values are also valid:
24 to 47 using FIRSTPORTA

 For DIO96, and DIO192, the following values are also valid:
48 to 95 using FIRSTPORTA

 For DIO192, the following values are also valid:
96 to 191

Event notification (CIO- and PCI- DIO24 and DIO24H; PCI-DIO24/LP and PCI-
DIO24/S only)
Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_EXTERNAL_INTERRUPT (UL)/OnExternalInterrupt (UL for .NET)

Hardware considerations
Event Notification

DIO Series boards that support event notification only support external rising edge interrupts.

Universal Library User's Guide Digital Input/Output Boards - DIO24/CTR3 and D24/CTR3 Series

105

DIO24/CTR3 and D24/CTR3 Series
Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH
0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 using FIRSTPORTA

Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 3

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8.)

RegNum: LOADREG1, LOADREG2, LOADREG3

Event notification
CIO-DIO24/CTR3 and PC-CARD-D24/CTR3

Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values
EventType ON_EXTERNAL_INTERRUPT

Hardware considerations
Counter configuration

Counter source functions are programmable using InstaCal.

Universal Library User's Guide Digital Input/Output Boards - PCI-DIO48/CTR15

106

PCI-DIO48/CTR15
Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH, SECONDPORTA,
SECONDPORTB, SECONDPORTCL, SECONDPORTCH

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH
0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 47 using FIRSTPORTA

Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 15

Config HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE,
HARDWARESTROBE

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.).

RegNum: LOADREG1 � LOADREG15

Event notification
Event notification functions and methods supported

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values
EventType ON_EXTERNAL_INTERRUPT

Universal Library User's Guide Digital Input/Output Boards - PDISO8 and PDISO16 Series

107

PDISO8 and PDISO16 Series
Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values
PortNum AUXPORT

DataValue PDISO8

 0 to 255

 PDISO16

 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.)

BitNum PDISO8

 0 to 7

 PDISO16

 0 to 15

Miscellaneous functions and methods supported (USB-PDISO8, USB-PDISO8/40, and E-PDISO16
only)

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink. Causes the LINK LED on a
Measurement Computing Ethernet module to blink.

When you have several USB modules connected to the computer or Ethernet modules on the network, use
these functions to identify a particular module by making its LED blink.

Establishing and requesting control of an E-PDISO16
The first computer to establish a TCP socket establishes control over an E-PDISO16. Additional computers
that contact the device can only query the state of the device and its ports.

Sending a request for control of an E-PDISO16
If another computer already has control over E-PDISO16 when you connect to it, you can send a message to
the controlling computer. Do the following.

1. From InstaCal's main window, double-click on the E-PDISO16.
2. From the Ethernet Settings tab, click on the Request Ownership button.
3. On the Request Ownership dialog, enter your message (up to 256 characters). Press Ctrl and Enter to go

to a new line.
4. You can set how long the message is displayed on the computer that controls the E-PDISO16 from the

Maximum Wait drop-down list box.
5. When you are ready to send the message, click on the Send button.

Universal Library User's Guide Digital Input/Output Boards - PDISO8 and PDISO16 Series

108

Receiving a request for control of an E-PDISO16
If your computer controls an E-PDISO16 and you receive a message from another person requesting control
of the device, the message shows on your screen for the time the person set in the Maximum Wait drop-down
list.

! To disconnect and give control of the E-PDISO16 to the person requesting, click on the Yes button.

! To retain control of the E-PDISO16, click on the No button.

Receiving a message
When a computer sends a message to the computer controlling the device, the message displays on the
monitor of the controlling computer for the time specified by the Time-out value.

The message box has two buttons used to respond to the message. When you receive a message, enter a
response in the message box and click on one of the following buttons.

! Yes: Click on Yes to give up ownership/control over the network device.

The computer automatically disconnects from the network connection, and control over the device
transfers to the computer that sent the message. The Device Owner property in InstaCal updates with the
name of the computer that gained control of the device.

! No: Click on No when you do not agree to give up ownership or control over the network device.

When you click on a button, the message box and selected response displays on the computer that sent the
message.

Universal Library User's Guide Digital Input/Output Boards - CIO-PDMA16 and CIO-PDMA32

109

CIO-PDMA16 and CIO-PDMA32
Digital I/O
Digital I/O functions and methods supported

UL: cbDOutScan(), cbDInScan(), cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(),
cbDConfigPort()

UL for .NET: DOutScan(), DInScan(), DOut(), DIn(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, AUXPORT

DataValue 0 to 7 using AUXPORT (only cbDOut()is supported),
0 to 255 using FIRSTPORTA and FIRSTPORTB,
0 to 65535 using WORDXFER FIRSTPORTA.

BitNum 0 to 2 using AUXPORT (only cbDBitOut() and DBitOut()are supported),
0 to 15 using PORTA.

Rate CIO-PDMA16: 125 Kwords

 CIO-PDMA32: 750 Kwords

Options BACKGROUND, CONTINUOUS, EXTCLOCK, WORDXFER

Hardware considerations
Digital I/O Pacing

Hardware pacing, external or internal clock supported.

Universal Library User's Guide Digital Input/Output Boards - USB-1024 and USB-DIO24 Series

110

USB-1024 and USB-DIO24 Series
The Measurement Computing brand USB-1024LS, USB-1024HLS, USB-DIO24/37, and USB-DIO24H/37
support the following UL and UL for .NET features.

Digital I/O
Digital I/O functions and methods supported

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH

DataValue 0 to 15 for FIRSTPORTCL or FIRSTPORTCH
0 to 255 for FIRSTPORTA or FIRSTPORTB

BitNum 0 to 23 for FIRSTPORTA

Counter I/O
Counter functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**
*Although cbCIn() and CIn() are valid for use with this counter, cbCIn32() or
CIn32() may be more appropriate, since the values returned may be greater than
the data types used by cbCIn() and CIn() can handle.
**cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These
functions are used to reset the counter.

Counter argument values

CounterNum 1

Count 0 to 232-1 when reading the counter.

LoadValue 0 when loading the counter.

 cbCLoad() and cbCLoad32() / CLoad() and CLoad32()are only used to reset the
counter for this board to 0. No other values are valid. The �Basic signed integers�
guidelines on page 102 apply when using cbCIn() or CIn() for values greater than
32767, and when using cbCIn32() or CIn32() for values greater than
2147483647.

RegNum LOADREG1

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the LED on a USB device to blink.

When you have several USB devices connected to the computer, use these functions to identify a particular
device by making its LED blink.

Universal Library User's Guide Digital Input/Output Boards - USB-DIO96 Series (formerly USB-1096 Series)

111

USB-DIO96 Series (formerly USB-1096 Series)
The Measurement Computing brand USB-DIO96H, USB-DIO96H/50, and USB-1096HFS support the
following UL and UL for .NET features.

Digital I/O
Digital I/O functions and methods supported

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O arguments

PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH, SECONDPORTA,
SECONDPORTB, SECONDPORTCL, SECONDPORTCH, THIRDPORTA, THIRDPORTB,
THIRDPORTCL, THIRDPORTCH, FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL,
FOURTHPORTCH

DataValue: 0 to 15 for PORTCL or PORTCH

 0 to 255 for PORTA or PORTB

BitNum: 0 to 95 for FIRSTPORTA

Counter I/O
Counter functions and methods supported

UL: cbCIn()*, cbCIn32(), cbCLoad()**, cbCLoad32()**

UL for .NET: CIn()*, CIn32(), CLoad()**, CLoad32()**

 *Although cbCIn()/CIn() are valid for use with this counter, cbCIn32() or
CIn32() may be more appropriate, since the values returned may be greater than
the data types used by cbCIn() and CIn() can handle.

 **cbCLoad(), cbCLoad32(), CLoad() and CLoad32() only accept Count=0. These
functions are used to reset the counter.

CounterNum: 1

Count 0 to 232-1 when reading the counter.

 The �Basic signed integers� guidelines on page 102 apply when using cbCIn() or
CIn() for values greater than 32767, and when using cbCIn32() or CIn32() for
values greater than 2147483647.

 0 when loading the counter.

 cbCLoad() and cbCLoad32()/CLoad() and CLoad32()are only used to reset the
counter for this module to 0. No other values are valid.

RegNum LOADREG1

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular
module by making its LED blink.

Universal Library User's Guide Digital Input/Output Boards - USB-SSR Series

112

USB-SSR Series
The Measurement Computing brand USB-SSR24 and USB-SSR08 both support the following UL and UL for
.NET features unless noted otherwise.

Digital I/O
Digital I/O functions and methods supported

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

Digital I/O arguments

PortNum FIRSTPORTCL, FIRSTPORTCH

 For the USB-SSR24, the following argument values are also valid:

 FIRSTPORTA, FIRSTPORTB

DataValue 0 to 15 for FIRSTPORTCL and FIRSTPORTCH

 For the USB-SSR24, the following argument values are also valid:

 0 to 255 for FIRSTPORTA and FIRSTPORTB

BitNum For the USB-SSR08, the following argument values are valid:

 16 to 23 for FIRSTPORTA

 For the USB-SSR24, the following argument values are valid:

 0 to 23 for FIRSTPORTA

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular
module by making its LED blink.

Hardware considerations
Do not change state of switches while program is running
Do not change the state of any switches (labeled S1, S2, and S3) on a USB-SSR module while a program is
running. UL stores the current state of each switch, and changing a switch setting while a program is running
can cause unpredictable results.

Universal Library User's Guide Digital Input/Output Boards - Switch & Sense 8/8

113

Switch & Sense 8/8
The Measurement Computing brand Switch & Sense 8/8 supports the following UL and UL for .NET features.

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(),cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values

PortNum AUXPORT

DataValue 0 to 255

BitNum 0 to 7

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular
module by making its LED blink.

114

10
Digital Input Boards

Introduction
This section provides details on using digital input boards in conjunction with the Universal Library. Boards
released after the printing of this document will be described in Readme files on the Universal Library disk.

To fully understand and maximize the performance of this and other digital input function calls, refer to the
82C55 data sheet in the Documents subdirectory of the installation (C:\MCC\Documents by default), or from
our web site at www.mccdaq.com/PDFmanuals/82C55A.pdf. Refer also to the 8536 data sheet (this data sheet
file is not available in PDF format).

Universal Library User's Guide Digital Input Boards - CIO- and PC104- DI Series

115

CIO- and PC104- DI Series
Digital I/O
Digital input functions and methods supported

UL: cbDIn, cbDBitIn()

UL for .NET: DIn, DBitIn()

Digital input argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL and FIRSTPORTCH.

 For DI48, DI96, and DI192, the following argument values are also valid:
SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

 For DI96, and DI192, the following argument values are also valid:
THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH, FOURTHPORTA,
FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

 For DI192, the following argument value is also valid:
FIFTHPORTA through EIGHTHPORTCH

DataValue 0 to 255 for PORTA or PORTB,
0 to 15 for PORTCL or PORTCH

BitNum 0 to 23 for FIRSTPORTA

 For DI48, DI96, and DI192, the following argument values are also valid:
24 to 47 using FIRSTPORTA

 For DI96, and DI192, the following argument values are also valid:
48 to 95 using FIRSTPORTA

 For DI192, the following argument values are also valid:
96 to 191

Universal Library User's Guide Digital Input Boards - CIO-DISO48

116

CIO-DISO48
Digital I/O
Digital input functions and methods supported

UL: cbDIn, cbDBitIn()

UL for .NET: DIn, DBitIn()

Digital input argument values

PortNum FIRSTPORTA, SECONDPORTA, THIRDPORTA, FOURTHPORTA, FIFTHPORTA, SIXTHPORTA

DataValue 0 to 255

BitNum 0 to 47 using FIRSTPORTA

117

11
Digital Output Boards

Introduction
This chapter provides details on using digital output boards in conjunction with the Universal Library. Boards
released after the printing of this document will be described in Readme files on the Universal Library disk.

To fully understand and maximize the performance of this and other digital input function calls, refer to the
82C55 data sheet in the Documents subdirectory of the installation (C:\MCC\Documents by default), or from
our web site at www.mccdaq.com/PDFmanuals/82C55A.pdf. Refer also to the 8536 data sheet (this data sheet
file is not available in PDF format).

Universal Library User's Guide Digital Output Boards - CIO-RELAY Series

118

CIO-RELAY Series
Digital I/O
Digital output functions and methods supported

UL: cbDOut, cbDBitOut()

UL for .NET: DOut, DBitOut()

Digital output argument values
PortNum FIRSTPORTA

 For CIO-RELAY16 & 16/M, the following argument values are also valid:
FIRSTPORTB

 For CIO-RELAY24, the following argument values are also valid:
SECONDPORTA

 For CIO-RELAY32, the following argument values are also valid:
SECONDPORTB

DataValue 0 to 255

BitNum 0 to 7 using FIRSTPORTA

 For CIO-RELAY16 & 16/M, the following argument values are also valid:
0 to 15 using FIRSTPORTA

 For CIO-RELAY24, the following argument values are also valid:
0 to 23 using FIRSTPORTA

 For CIO-RELAY32, the following argument values are also valid:
0 to 31 using FIRSTPORTA

Universal Library User's Guide Digital Output Boards - USB-ERB Series

119

USB-ERB Series
The Measurement Computing brand USB-ERB08 and USB-ERB24 support the following UL and UL
for .NET features.

Digital I/O
Digital output functions and methods supported

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

Digital output argument values

PortNum FIRSTPORTCL, FIRSTPORTCH

 For the USB-ERB24, the following argument values are also valid:

 FIRSTPORTA, FIRSTPORTB

DataValue 0 to 15 for FIRSTPORTCL and FIRSTPORTCH

 For the USB-ERB24, the following argument values are also valid:

 0 to 255 for FIRSTPORTA and FIRSTPORTB

BitNum For the USB-ERB08, the following argument values are valid:

 16 to 23 for FIRSTPORTA

 For the USB-ERB24, the following argument values are valid:

 0 to 23 for FIRSTPORTA

Miscellaneous functions and methods supported

UL: cbFlashLED()

UL for .NET: FlashLED()

Causes the USB LED on a Measurement Computing USB module to blink.

When you have several modules connected to the computer, use these functions to identify a particular
module by making its LED blink.

Do not change state of invert/non-invert switch (S1) while program is running
Do not change the state of the invert/non-invert switch (labeled S1) on a USB-ERB module while a program
is running. UL stores the current state of this switch, and changing the switch setting while a program is
running can cause unpredictable results.

Universal Library User's Guide Digital Output Boards - CIO- and PC104-DO Series

120

CIO- and PC104-DO Series
Digital I/O
Digital output functions and methods supported

UL: cbDOut, cbDBitOut()

UL for .NET: DOut, DBitOut()

Digital output argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL and FIRSTPORTCH.

 For DO48H, DO48DD, DO96H and DO192H, the following argument values are
also valid:
SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH

 For DO96H and DO192H, the following argument values are also valid:
THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH, FOURTHPORTA,
FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH

 For DO192H, the following argument values are also valid:
FIFTHPORTA through EIGHTHPORTCH

DataValue 0 to 255 for PORTA or PORTB,
0 to 15 for PORTCL or PORTCH

BitNum 0 to 23 for FIRSTPORTA

 For DO48H, DO48DD, DO96H and DO192H the following argument values are
also valid:
24 to 47 using FIRSTPORTA

 For DO96H and DO192H, the following argument values are also valid:
48 to 95 using FIRSTPORTA

 For DO192H, the following argument values are also valid:
96 to 191

121

12
Counter Boards

Introduction
This chapter provides details on using counter/timer boards in conjunction with the Universal Library. Boards
released after the printing of this user�s guide are explained in Readme files on the Universal Library
installation disk.

Basic signed integers
When reading or writing ports that are 16-bits wide, be aware of the following issue using signed integers
(which is required when using Basic):

On some boards, such as the CIO-CTR10 count register or AUXPORT digital ports, the ports are 16-bits wide.
When accessing the data at these ports, the digital values are arranged as a single 16-bit word. Using signed
integers, values above 0111 1111 1111 1111 (32767 decimal) can be confusing. The next increment, 1000
0000 0000 0000 has a decimal value of -32768. Using signed integers, this is the value that is returned from a
16 bit counter at half of maximum count. The value for full count (just before the counter turns over) is -1.
Keep this in mind if you are using Basic, since Basic does not supply unsigned integers (values from 0 to
65535) or unsigned longs (values from 0 to 4,294,967,295). Refer to "16-bit values using a signed integer data
type" on page 8 for more information.

The Universal Library provides functions for the initialization and configuration of counter chips, and can
configure a counter for any of the counter operations. However, counter configuration does not include
counter-use, such as event counting and pulse width. Counter-use is accomplished by programs which use the
counter functions. The Universal Library Version 1 and later provides the cbCFreqIn() function for counter
use, while the Universal Library for .NET provides the CFreqIn() method. Other functions and methods may
be added for counter use to later revisions.

Read the counter chip's data sheet
To use a counter for any but the simplest counting function, you must read, understand, and employ the
information contained in the chip manufacturer's data sheet. Technical support of the Universal Library does
not include providing, interpreting, or explaining the counter chip data sheet.

To fully understand and maximize the performance of the counter/timer boards and their related function
calls, review the following related data sheet(s):

Counter/Timer Data Sheet
82C54 82C54.pdf is located in the Documents installation subdirectory, and is also available from our

web site at www.mccdaq.com/PDFmanuals/82C54.pdf.
AM9513 9513A.pdf is located in the Documents installation subdirectory, and is also available from our

web site at www.mccdaq.com/PDFmanuals/9513A.pdf.
Z8536 The data book for the Z8536 counter chip is included with the product that employs this chip.
LS7266 LS7266R1.pdf is located in the Documents installation subdirectory, and is also available from

our web site at www.mccdaq.com/PDFmanuals/ls7266r1.pdf.

Counter chip variables
UL counter initialization and configuration functions include names for bit patterns, such as ALEGATE, which
stands for Active Low Enabled Gate N. In any case where the UL has a name for a bit pattern, it is allowed
to substitute the bit pattern as a numeric. This will work, but your programs will be harder to read and debug.

Universal Library User's Guide Counter Boards - CTR Series

122

CTR Series
Counter I/O
Counter functions and methods supported

UL: cbC9513Config(), cbC9513Init(), cbCStoreOnInt(), cbCFreqIn(), cbCIn(),
cbCLoad()

UL for .NET: C9513Config(), C9513Init(), CStoreOnInt(), CFreqIn(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 5 (All boards in this series)

 CTR10 & CTR10HD also support counters 6 through 10
CTR20HD also supports counters 11 through 20

RegNum: LOADREG1 � 5, HOLDREG1 � 5, ALARM1CHIP1, ALARM2CHIP1

 CTR10 & CTR10HD also support LOADREG6 � 10, HOLDREG6 � 10,
ALARM1CHIP2, ALARM2CHIP2
CTR20HD also supports LOADREG11 � 20, HOLDREG11 � 20, ALARM1CHIP3,
ALARM2CHIP3, ALARM1CHIP4, ALARM2CHIP4

LoadValue 0 to 65535 (Refer to "16-bit values using a signed integer data type" on page 8 for
information on 16-bit values using unsigned integers.).

ChipNum 1 (All boards in this series)

 CTR10 & CTR10HD also support chip 2
CTR20HD also support chips 3 and 4

FOutSource CTRINPUT1 � 5, GATE1 � 5, FREQ1 � 5
These values refer to the sources on a particular 9513 chip, so are limited to the
sources on that particular chip. For example, to set the source to the input for
counter 6, use CTRINPUT1 (the first counter on the second 9513 chip).

CountSource TCPREVCTR, CTRINPUT1 � 5, GATE1 � 5, FREQ1 � 5
These values refer to the sources on a particular 9513 chip, so are limited to the
sources on that particular chip. For example, to set the source to the input for
counter 6, use CTRINPUT1 (the first counter on the second 9513 chip). Likewise for
the TCPREVCTR value; when applied to the first counter on a chip (counter 6, for
example) the �previous counter� is counter 5 on that chip (for this example,
counter 10).

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values
PortNum AUXPORT*

DataValue CTR05: 0 to 255
CTR10: 0 to 65535. Refer to "Basic signed integers" on page 121.

BitNum CTR05: 0 to 7; CTR10: 0 to 15
* AUXPORT is not configurable for these boards.

Universal Library User's Guide Counter Boards - CTR Series

123

Event notification
Event notification functions and methods supported

PCI-CTR05, PCI-CTR10 and PCI-CTR20HD only

UL: cbEnableEvent(), cbDisableEvent()

UL for .NET: EnableEvent(), DisableEvent()

Event notification argument values

EventType ON_EXTERNAL_INTERRUPT (UL)/OnExternalInterrupt (UL for .NET)

Hardware considerations
Clock input frequency (PCI boards only)

The clock source for each of the four counters is configurable with InstaCal:

PCI-CTR05, PCI-CTR10: 1 MHz, 1.67 MHz, 3.33 MHz, 5 MHz

PCI-CTR20HD: 1 MHz, 1.67 MHz, 3.33 MHz, 5 MHz, or External

Event Notification

ON_EXTERNAL_INTERRUPT cannot be used with cbCStoreOnInt() or CStoreOnInt().

CTR Series boards that support event notification only support external rising edge interrupts.

Universal Library User's Guide Counter Boards - INT32 Series

124

INT32 Series
Counter I/O
Counter functions and methods supported

UL: cbC8536Config(), cbC8536Init(), cbCIn(), cbCLoad()

UL for .NET: C8536Config(), C8536Init(), CIn(), CLoad()

Counter argument values

CounterNum 1 to 6

ChipNum 1 or 2

RegName LOADREG1 through LOADREG6

LoadValue Values up to 65,535 (216�1) can be used. Refer to "Basic signed integers" on page
121 for more information.

Digital I/O
Digital I/O functions and methods supported

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, SECONDPORTA, SECONDPORTB and
SECONDPORTCL.

DataValue 0 to 255 using PORTA or PORTB
0 to 15 using PORTCL

BitNum 0 to 39 using FIRSTPORTA

Hardware considerations
Argument Value vs. configuration

These boards have two 8536 chips, which have both counter and digital I/O and interrupt vectoring
capabilities. The numbers stated for digital I/O apply when both chips are configured for the maximum
number of digital devices. The numbers stated for counter I/O apply when both chips are configured for the
maximum number of counter devices.

Universal Library User's Guide Counter Boards - PPIO-CTR06

125

PPIO-CTR06
Counter I/O
Counter functions and methods supported

UL: cbC8254Config(), cbCIn(), cbCLoad()

UL for .NET: C8254Config(), CIn(), CLoad()

Counter argument values
CounterNum 1 to 6

Digital I/O
Digital I/O functions and methods supported

UL: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

UL for .NET: DIn(), DOut(), DBitIn(), DBitOut()

Digital I/O argument values
PortNum AUXPORT*

DataValue 0 to 15, or 0 to 255, depending on jumper setting

BitNum 0 to 3, or 0 to 7, depending on jumper setting

 * AUXPORT is not configurable for this board.

Universal Library User's Guide Counter Boards - QUAD Series

126

QUAD Series
Counter I/O
Counter functions and methods supported

UL: cbC7266Config(), cbCIn(), cbCIn32(), cbCLoad(), cbCLoad32(), cbCStatus()

UL for .NET: C7266Config(), CIn(), CIn32(), CLoad(), CLoad32(), CStatus()

Counter argument values

CounterNum PCM-QUAD02, CIO-QUAD02

 1 to 2

 CIO-QUAD04, PCI-QUAD04
1 to 4

RegName UL:
COUNT1, COUNT2, PRESET1, PRESET2, PRESCALER1, PRESCALER2
UL for .NET:
QuadCount1, QuadCount2, QuadPreset1, QuadPreset2, QuadPreScaler1,
QuadPreScaler2

 CIO-QUAD04, PCI-QUAD04 also support:
UL:
COUNT3, COUNT4, PRESET3, PRESET4, PRESCALER3, PRESCALER4
UL for .NET:
QuadCount3, QuadCount4, QuadPreset3, QuadPreset4, QuadPreScaler3,
QuadPreScaler4

LoadValue When using cbCLoad32() or CLoad32() to load the COUNT# or PRESET# registers,
values up to 16.78 million (224�1) can be loaded. Values using cbCLoad() and
CLoad()are limited to 65,535 (216�1). Refer to "Basic signed integers" on page 121
for more information. When loading the PRESCALER# register, values can be from 0
to 255. (Digital Filter Clock frequency = 10 MHz/LoadValue + 1.)

Hardware considerations
Loading and Reading 24-bit values

The QUAD series boards feature a 24-bit counter. For counts of less than 16 bits (65535), you can use the
cbCIn() and cbCLoad() functions, or the CIn() and CLoad() methods. You can use the cbCIn32() and
cbCLoad() functions, or the CIn32() and CLoad32() methods for any number supported by the LS7266
counter (24 bits = 16777216).

Cascading counters (PCI-QUAD04 only)

The PCI-QUAD04 can be set up for cascading counters. By setting the appropriate registers, you can have (4)
24-bit counters, (2) 48-bit counters, (1) 24-bit and (1) 72-bit counters, or (1) 96-bit counter. The OUTPUT pins
of a counter are directed to the next counter by setting the FLG1 to CARRY/BORROW and the FLG2 to UP/DOWN.
Bits 3 and 4 of the IOR Register control are set to 1,0 to accomplish this.

You can set these bits by using the functions cbC7266Config(BoardNum, CounterNum, Quadrature,
CountingMode, DataEncoding, IndexMode, InvertIndex, FlagPins, and GateEnable). When using the
Universal Library for .NET, use the C7266Config() method.
The constant CARRYBORROW_UPDOWN (value of 3) is used for the parameter FlagPins.

The IOR register cannot be read. However, you can read the values of the BADR2+9 register. The value for
Base 2 can be determined by looking at the resources used by the board. The 8-bit region is BADR2. The
BADR+9 register contains values for PhxA and PhxB, for x = 1 to 4 to identify counters. The diagram below

Universal Library User's Guide Counter Boards - QUAD Series

127

indicates the routing of the FLG pins depending on the value of PhxA and PhxB. The actual values of the
BADR2+9 register are shown below:

Register BADR2 + 9 D0-D6
 PH2A PH2B PH3A PH3B PH4A PH4B1/PH4B0 Value
Case 1: (4) 24-bit counters (1/2/3/4) 0 0 0 0 0 0,0 00
Case 2: (2) 48-bit counters (1-2/3/4) 1 1 0 0 1 1,0 53
Case 3: (1) 24-bit, (1) 72-bit (1/2-3-4) 0 0 1 1 1 0,1 3C
Case 4: (1) 96-bit counter (1-2-3-4) 1 1 1 1 1 0,1 3F

Defaults to 0x00 (no inter-counter connections).

Examples

Case 1: (4) 24-bit counters (1/2/3/4)
cbC7266Config(0,1,0,0,2,0,0,1,0)
cbC7266Config(0,2,0,0,2,0,0,1,0)
cbC7266Config(0,3,0,0,2,0,0,1,0)
cbC7266Config(0,4,0,0,2,0,0,1,0)

Case 2: (2) 48-bit counters (1-2/3-4)
cbC7266Config(0,1,0,0,2,0,0,3,0)
cbC7266Config(0,2,0,0,2,0,0,1,0)
cbC7266Config(0,3,0,0,2,0,0,3,0)
cbC7266Config(0,4,0,0,2,0,0,1,0)

Case 3: (1) 24-bit & (1) 72-bit counter (1/2-3-4)
cbC7266Config(0,1,0,0,2,0,0,1,0)
cbC7266Config(0,2,0,0,2,0,0,3,0)
cbC7266Config(0,3,0,0,2,0,0,3,0)
cbC7266Config(0,4,0,0,2,0,0,1,0)

Case 4: (1) 96-bit counter (1-2-3-4)
cbC7266Config(0,1,0,0,2,0,0,3,0)
cbC7266Config(0,2,0,0,2,0,0,3,0)
cbC7266Config(0,3,0,0,2,0,0,3,0)
cbC7266Config(0,4,0,0,2,0,0,1,0)

The actual value of the BADR+9 register is not set until the cbCLoad()/CLoad() command is called.

Counter4 setting
Setting Counter4 to CARRYBORROW-UPDOWN is NOT VALID.

Counter Cascading Functional Diagram

1
0

1A

1B

2A

2B

PH2A

PH2A

PH3A

PH3A

PH4AB1/B0

PH4AB1/B0

FLG1

FLG2

FLG3

FLG4

1A

1B

2A

2B

3A

3A

3B

4A

4B

1
0

1
0
1
0
1
0

10
01
00

3B

4B

4A

128

13
MetraBus Boards

Introduction
This section provides details on using all MetraBus boards in conjunction with the Universal Library. Future
releases will be described in Readme files on the Universal Library installation disk.

To use any MetraBus I/O board, a MetraBus interface board, such as the ISA-MDB64, PCI-MDB64 or a
CPCI-MDB64, is required for the Universal Library functions to operate correctly. The interface board and a
MetraBus cable provide the interface between the PC bus (ISA-, PC104-, PCI-, or CPCI-) and the MetraBus
I/O Boards.

The MetraBus system is made up of at least one controller board that communicates with real world interface
boards via a data bus (ribbon cable). The implication is that there will always be two or more boards in the
system.

Universal Library User's Guide MetraBus Boards - MDB64 Series

129

MDB64 Series
This series makes up the controller portion of the MetraBus system. The Universal Library contains no
function to communicate specifically with this board. The functions in the library are directed to the devices
on the bus instead.

For example, if this board was installed in InstaCal as board 0, and an MII-32 was installed as board 1, the
communication would be directed to board 1. If you wanted to read digital bits from this configuration, use
the cbDBitIn() function or the DBitIn() method. The value of the BoardNum argument would be 1.

Universal Library User's Guide MetraBus Boards - MIO and MII Digital I/O

130

MIO and MII Digital I/O
All MetraBus boards require a cable and an interface board (such as an ISA-, PC104-, or PCI- MDB64) to
interface to the host computer system.

Digital In
MII-32 Only

Digital input functions and methods supported

UL: cbDIn, cbDBitIn()

UL for .NET: DIn, DBitIn()

Digital input argument values

PortNum FIRSTPORTA, FIRSTPORTB, SECONDPORTA, SECONDPORTB

DataValue 0 to 255 for PORTA or PORTB

BitNum 0 to 31 for FIRSTPORTA

Digital Out
MIO-32 Only

Digital output functions and methods supported

UL: cbDOut, cbDBitOut(), cbDBitIn(), cbDIn()

UL for .NET: DOut, DBitOut(), DBitIn(), DIn()

Digital output argument values

PortNum FIRSTPORTA, FIRSTPORTB, SECONDPORTA, SECONDPORTB

DataValue 0 to 255 for PORTA or PORTB

BitNum 0 to 31 for FIRSTPORTA

Functions/methods for reading back the MIO-32 output state
Although the MIO-32 is a digital output-only board, the state of the outputs can be read back using the UL
functions cbDIn() and cbDBitIn(), or the UL for .NET methods DIn() and DBitIn().

Universal Library User's Guide MetraBus Boards - MEM Series Relay

131

MEM Series Relay
All MetraBus boards require a cable and an interface board (such as an ISA-, PC104-, or PCI- MDB64) to
interface to the host computer system.

Digital I/O
Digital I/O functions and methods supported

UL: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

UL for .NET: DOut(), DIn(), DBitIn(), DBitOut()

Digital I/O argument values
PortNum FIRSTPORTA

 For MEM-32, the following argument values are also valid:
FIRSTPORTB, SECONDPORTA, SECONDPORTB

DataValue 0 to 255 for PORTA or PORTB

BitNum 0 to 7 for FIRSTPORTA

 For MEM-32, the following argument values are also valid:
0 to 31 for FIRSTPORTA

Functions/methods for reading back the MEM Series Relay output state
Although the MEM Series Relay is a digital output-only board, the state of the outputs can be read back
using the UL functions cbDIn() and cbDBitIn(), or the UL for .NET methods DIn() and DBitIn().

Universal Library User's Guide MetraBus Boards - MSSR-24 SSR

132

MSSR-24 SSR
All MetraBus boards require a cable and an interface board (such as an ISA-, PC104-, or PCI- MDB64) to
interface to the host computer system.

Digital I/O
Digital I/O functions and methods supported

UL: cbDIn, cbDBitIn(), cbDOut, cbDBitOut()

UL for .NET: DIn, DBitIn(), DOut, DBitOut()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, SECONDPORTA

DataValue 0 to 255

BitNum 0 to 24 using FIRSTPORTA

133

14
Expansion Boards

Introduction
This chapter provides details on using expansion (EXP) boards in conjunction with the Universal Library.
Boards released after the printing of this user�s guide are described in Readme files on the Universal Library
disk.

You add an expansion board to the InstaCal configuration by selecting the compatible board on the main
InstaCal form, and selecting the Add Exp Board� option from the Install menu.

Universal Library User's Guide Expansion Boards - CIO-EXP Series

134

CIO-EXP Series
Temperature Input
Temperature input functions and methods supported

UL: cbTIn(), cbTInScan()

UL for .NET: TIn(), TInScan()

Temperature input argument values
Options NOFILTER

Scale CELSIUS, FAHRENHEIT, KELVIN

HighChan From 16 up to 255 for 16-channel boards, and from 64 up to 303 for 64-channel
boards. The value depends on the number of boards connected and the application.

Hardware considerations
CIO-EXP boards are used only in combination with an A/D board. Channel numbers for accessing the
expansion boards begin at 16 for 8-channel and 16-channel boards, and at 64 for 64-channel boards. To
calculate the channel number for access to CIO-EXP channels, use the following formula:

Chan = (ADChan * 16) + (16 + MuxChan)

MuxChan is a number ranging from 0 to 15 that specifies the channel number on a particular bank of the
expansion board. An EXP32 has two banks, so the channel numbers for one EXP32 connected to an A/D
board would range from 16 to 47.

If all A/D channels are not used for CIO-EXP output, direct input to the A/D board is still available at these
channels (using channel numbers below 16).

When CIO-EXP boards are used for temperature input, set the gain of the A/D board to a specific range.
When using A/D boards with programmable gain, the range is set by the Universal Library. However, when
using boards with switch-selectable gains, you must set the gain to a range that is dependent on the
temperature sensor in use. Generally, thermocouple measurements require the A/D board to be set to 5 V
bipolar, if available (or 10 V bipolar if not). RTD sensors require a setting of 10 V unipolar, if available.
These checks are made when you configure the system for temperature measurement using InstaCal.

Universal Library User's Guide Expansion Boards - MEGA-FIFO

135

MEGA-FIFO
Memory I/O
Memory I/O is only used in combination with a board which has DT-Connect.

Memory functions and methods supported

UL: cbMemSetDTMode(), cbMemReset(), cbMemRead(), cbMemWrite(),
cbMemReadPretrig()

UL for .NET: MemSetDTMode(), MemReset(), MemRead(), MemWrite(), MemReadPretrig()

Some of these functions are integrated into the cbAInScan() function and AInScan() method. For example, if
you use MEGA-FIFO with an A/D board and select the EXTMEMORY option, you would not have to call the
cbMemSetDTMode() and cbMemWrite functions, or the MemSetDTMode() and MemWrite()methods.

EXTMEMORY option

Continuous mode can't be used with the EXTMEMORY/ExtMemory option.

136

15
Other Hardware

Introduction
This chapter provides details on using miscellaneous hardware, such as communications boards in conjunction
with the Universal Library and Universal Library for .NET. Boards released after the printing of this user�s
guide will be described in Readme files on the Universal Library disk.

Universal Library User's Guide Other Hardware - COM422 Series

137

COM422 Series
No library functions are supported for these boards, but InstaCal can be used to configure the serial protocol
in conjunction with the Set422.exe utility. All other serial communications are handled by DOS or Windows
standard serial communications handlers.

COM485 Series

The COM485 Series board supports the UL function cbRS485() and the UL for .NET method RS485() for
controlling the transmit and receive enable register. All other serial communications are handled by DOS or
Windows standard serial communications handlers.

Universal Library User's Guide Other Hardware - Demo-Board

138

Demo-Board
The DEMO-BOARD is a software simulation of a data acquisition board that simulates analog input and
digital I/O operations.

Analog Input
Analog input functions and methods supported

UL: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()

UL for .NET: AIn(), AInScan(), ATrig(), FileAInScan()

Analog input argument values

Options BACKGROUND, CONTINUOUS, SINGLEIO, DMAIO

HighChan 7 max

Rate 300000

Digital I/O
Digital I/O functions and methods supported

UL: cbDIn(), cbDBitIn(), cbDInScan(), cbDOut(), cbDBitOut(), cbDOutScan(),
cbDConfigPort()

UL for .NET: DIn(), DBitIn(), DInScan(), DOut(), DBitOut(), DOutScan(), DConfigPort()

Digital I/O argument values

PortNum FIRSTPORTA, FIRSTPORTB, AUXPORT

DataValue 0 to 255 using FIRSTPORTA, FIRSTPORTB, or AUXPORT

BitNum 0 to 15 using FIRSTPORTA
0 to 7 using AUXPORT

Using the Demo Board
Analog input

The DEMO-BOARD simulates eight channels of 16-bit analog input. InstaCal is used to configure the
following waveforms on the analog input channels:

! sine wave

! square wave

! saw-tooth, ramp

! damped sine wave

! input from a data file

The data file is a streamer file, so any data that has been previously saved in a streamer file can be used as a
source of demo data by the board. Data files are named DEMO0.DAT through DEMO7.DAT. When a data file is
assigned to a channel, the library tries to extract data for that channel from the streamer file. If data for that
channel does not exist, then the first (and possibly only) channel data in the streamer is extracted and used.

For example, DEMO2.DAT is assigned as the data source for channel 5 on the demo board. The library will try
to extract data from the file that corresponds to channel 5. If DEMO2.DAT has scan data that corresponds to
channels 0 through 15, then channel 5 data is extracted. If DEMO2.DAT only has data for a single channel, the
data for that channel is used as the data source for channel 5.

Universal Library User's Guide Other Hardware - Demo-Board

139

Digital I/O

The DEMO-BOARD simulates the following:

! One eight-bit AUXPORT non-configurable digital input port. Each bit of the AUXPORT generates a square
wave with a different period.

! One eight-bit AUXPORT non-configurable digital output port.

! Two eight-bit configurable digital I/O ports�FIRSTPORTA, FIRSTPORTB�which can be used for high
speed scanning. FIRSTPORTA functions like AUXPORT in that it generates square waves. Each bit of
FIRSTPORTB generates a pulse with a different frequency.

140

Appendix � MCC Device IDs
This Appendix lists the device ID associated with each MCC hardware type. This information is returned by
the BoardName and BoardNum arguments.

Board Name Device ID
PCI-DAS1602/16 1

CIO-DAS6402/12 8
CIO-DAS16/M1/16 9
CIO-DAS6402/16 10
PCI-DIO48H 11
PCI-PDISO8 12
PCI-PDISO16 13
CPCI-GPIB 14
PCI-DAS1200 15
PCI-DAS1602/12 16
CIO-RELAY16M 17
CIO-PDMA32 18
CIO-DAC04/16-HS 19
PCI-DIO24H 20
PCI-DIO24H/CTR3 21
PCI-DIO48H/CTR15 22
PCI-DIO96H 23
PCI-CTR05 24
PCI-DAS1200Jr 25
PCI-DAS1001 26
PCI-DAS1002 27
PCI-DAS1602JR_16 28
PCI-DAS6402/16 29
PCI-DAS6402/12 30
PCI-DAS16/M1 31
PCI-DDA02/12 32
PCI-DDA04/12 33
PCI-DDA08/12 34
PCI-DDA02/16 35
PCI-DDA04/16 36
PCI-DDA08/16 37
PCI-DAC04/12HS 38
PCI-DAC04/16HS 39
PCI-DIO24 40
PCI-DAS08 41
CIO-RELAY24 42
CIO-RELAY32 43
PCI-INT32 44
DEMO-BOARD 45
CIO-DAS-TC 46
CIO-QUAD02 47
CIO-QUAD04 48
PCM-QUAD02 49
PCI-DAS64 50
PCI-DUAL-AC5 51
PCI-DAS-TC 52
PCI-DAS64/M1/16 53
PCI-DAS64/M2/16 54
PCI-DAS64/M3/16 55

PC-CARD-DAS16/16 56
PC-CARD-DAS16/16-AO 57
PC-CARD-DAS16/12 58
PC-CARD-DAS16/12-AO 59
PC-CARD-DAS16/330 60
PC-CARD-D24/CTR3 61
PC-CARD-DIO48 62
PCI-COM232 63
PCI-COM232/2 64
PCI-COM232/4 65
PCI-COM422 66
PCI-COM422/2 67
PCI-COM485 68
PCI-COM485/2 69
ISA-MDB64 70
MII-32 71
MIO-32 72
MEM-8 73
MEM-32 74
PCI-MDB64 75
PCI-DAS1000 76
PCI-QUAD04 77
MSSR-24 78
PC104-MDB64 79
MAI-16 80

PCI-DAS4020/12 82
PCIM-DDA06/16 83
PCI-DIO96 84
CPCI-DIO24H 85
PCIM-DAS1602/16 86
PCI-DAS3202/16 87
PC104-AC5 88
PCI-QUAD-AC5 89
CPCI-DIO96H 90
CPCI-DIO48H 91
PC-CARD-DAC08 92
PCI-DAS6023 93
PCI-DAS6025 94
PCI-DAS6030 95
PCI-DAS6031 96
PCI-DAS6032 97
PCI-DAS6033 98
PCI-DAS6034 99
PCI-DAS6035 100
PCI-DAS6040 101
PCI-DAS6052 102
PCI-DAS6070 103
PCI-DAS6071 104

PCI-CTR10 110

Universal Library User's Guide Appendix � MCC Device IDs

141

PCI-DAS6036 111
PCI-DAC6702 112
PCI-DAC6703 113

PCI-CTR20HD 116
miniLAB 1008 117
PMD-1024LS 118
PCI-DIO24/LP 119
PCI-DAS6013 120
PCI-DAS6014 121
USB-1208LS, PMD-1208LS 122
PCIM-DAS16JR/16 123

USB-1608FS, PMD-1608FS 125
PCI-DIO24/S 126
USB-1024HLS, PMD-1024HLS 127
6K-EXP16 128
USB-1616FS 129
USB-1208FS, PMD-1208FS 130
USB-1096HFS 131
Switch & Sense 8/8 132
USB-SSR24 133
USB-SSR08 134

E-PDISO16 137
USB-ERB24 138
USB-ERB08 139
USB-PDISO8 140
USB-TEMP 141

USB-TC 144

USB-DIO96H 146
USB-DIO24/37 147
USB-DIO24H/37 148
USB-DIO96H/50 149
USB-PDISO8/50 150

CIO-DAS16 257
CIO-DAS16/F 258
CIO-DAS16/Jr 259
CIO-DAS16/330 260
CIO-DAS16/330i 261
CIO-DAS16/M1 262
PC104-DAS16Jr/12 263
PC104-DAS16Jr/16 264
CIO-DAS16/Jr16 265

CIO-SSH16 513

CIO-EXP16 769
CIO-EXP32 770
CIO-EXP-GP 771
CIO-EXP-RTD 772
CIO-EXP-BRIDGE 773

CIO-DIO24 1025

CIO-DIO24H 1026
CIO-DIO48 1027
CIO-DIO96 1028
CIO-DIO192 1029
CIO-DIO24/CTR3 1030
CIO-DIO48H 1031
CIO-DUAL-AC5 1032
CIO-DI48 1033
CIO-DO48H 1034
CIO-DI96 1035
CIO-DO96H 1036
CIO-DI192 1037
CIO-DO192H 1038
CIO-DO24DD 1039
CIO-DO48DD 1040
PC104-DIO48 1041
PC104-DI48 1042
PC104-DO48H 1043

CIO-PDMA16 1281

CIO-DAC02 1537
CIO-DAC08 1538
CIO-DAC16 1539
CIO-DAC16I 1540
CIO-DAC08I 1541

PC104-DAC06 1543
CIO-DDA06/12 1793
CIO-DDA06/16 1794
CIO-DDA06/Jr 1795
CIO-DAC02/16 1796
CIO-DAC08/16 1797
CIO-DAC16/16 1798
CIO-DDA06Jr/16 1799

CIO-CTR05 2049
CIO-CTR10 2050
CIO-CTR10-HD 2051
CIO-CTR20-HD 2052
PC104-CTR10-HD 2053

CIO-PDISO8 2305
CIO-PDISO16 2306
PC104-PDISO8 2307

CIO-DAC04/12-HS 2564

PPIO-DIO24H 2817
PPIO-AI08 2818
PPIO-CTR06 2819

CIO-DAS08 3073
CIO-DAS08PGL 3074
CIO-DAS08PGH 3075
CIO-DAS08/AOL 3076
CIO-DAS08/AOH 3077

Universal Library User's Guide Appendix � MCC Device IDs

142

CIO-DAS08PGM 3078
CIO-DAS08/AOM 3079
CIO-DAS08/Jr 3080
PC104-DAS08 3081
CIO-DAS08Jr/16 3082

CIO-DAS48PGA 3329

CIO-DAS1601/12 3585
CIO-DAS1602/12 3586
CIO-DAS1602/16 3587
CIO-DAS1401/12 3588
CIO-DAS1402/12 3589
CIO-DAS1402/16 3590

MEGA-FIFO 3841
CIO-RELAY16 4097
CIO-RELAY08 4098
CIO-RELAY16/M 4099

CIO-DAS-TEMP 4353

CIO-DISO48 8193

CIO-INT32 12289

PCM-DAS08 16385
PCM-D24/CTR3 16386
PCM-DAC02 16387
PCM-COM422 16388
PCM-COM485 16389
PCM-DAS16D/12 16390
PCM-DAS16S/12 16391
PCM-DAS16D/16 16392
PCM-DAS16S/16 16393
PCM-DAS16S/330 16394
PCM-DAS16D/12AO 16395

PCM-DAC08 16401

CIO-COM422 20481
CIO-COM485 20482
CIO-DUAL422 20483

CIO-DAS800 24577
CIO-DAS801 24578
CIO-DAS802 24579
CIO-DAS802/16 24580

Measurement Computing Corporation
16 Commerce Boulevard,

Middleboro, Massachusetts 02346
(508) 946-5100

Fax: (508) 946-9500
E-mail: info@mccdaq.com

www.mccdaq.com

	Introducing the Universal Library
	Universal Library overview

	Installation and Configuration
	Installing the Universal Library
	The CB.CFG file and InstaCal
	Installation – .NET support
	Installation – SoftWIRE® support
	SoftWIRE MCC DAQ Components for VS .NET

	Installation – HP VEE support
	Licensing information
	Redistributing a custom UL application
	Distributing InstaCal in addition to your custom UL application
	Integrating InstaCal into your custom UL installation CD or disk

	Getting Started
	Example programs

	Universal Library Description and Use
	General UL language interface description
	Function arguments
	Constants
	Options arguments
	Error handling
	16-bit values using a signed integer data type

	Using the Universal Library in Windows
	Real-time acquisition under Windows
	Processor speed
	Visual Basic for Windows
	Visual Basic example programs

	Microsoft Visual C++
	Microsoft Visual C++ example programs

	Borland C /C++ for Windows
	Borland C/C++ example programs

	Delphi example programs

	Using the Library with SoftWIRE®
	SoftWIRE Mcc Daq Components for .NET

	Using the Library with DOS BASIC
	BASIC header file
	Using the Library within the integrated BASIC environment
	Using the Library with the BASIC command line compiler
	Sample BASIC programs
	Passing arguments to the Universal Library
	Input arguments
	Output arguments
	DataArray argument with multiple channels
	String arguments
	Integer arguments
	BACKGROUND operation

	Using the Library with VisualBasic® for DOS
	Compiling stand-alone EXE files

	Using the Library with C for DOS
	C header file
	Memory models
	Large data arrays
	Compiling the sample C programs

	Using the Library with HP VEE
	New HP VEE functions
	Installation note
	Using VEE 3.2 or later

	Universal Library for .NET Description & Use
	Configuring a UL for .NET project
	General UL for .NET language interface description
	MccBoard class
	Class Constructors
	Class properties
	Class methods

	ErrorInfo class
	MccService class
	GlobalConfig class
	MccDaq enumerations
	Parameter data types

	Differences between the UL and UL for .NET
	Board number
	MCC classes
	Methods
	Enumerated types
	Error handling
	Service methods
	Configuration methods

	How to Use the "Streamer" File Functions
	File functions overview
	Hard disk vs. RAM disk files
	Maximum sampling speed
	How to determine the maximum sampling speed
	Speeding up disk files (defragmenting)

	RAM disks
	Installing a RAM disk
	Using the RAM disk

	Analog Input Boards
	Introduction
	Trigger support
	Digital Trigger
	Analog Trigger

	Sampling rate using SINGLEIO
	PCI-DAS6000 Series
	PCI-DAS4020 Series
	PCI-DAS64/Mx/16 Series
	PCI- and CIO-DAS6402 and DAS3202 Series
	PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 Series
	PCIM-DAS1602 and PCIM-DAS16JR Series
	CIO-DAS800 Series
	CIO-, PCI-, and PC104-DAS08 Series
	CIO-DAS08/Jr and CIO-DAS08/Jr/16 Series
	PCM-DAS08
	Determining the maximum sampling rate in DOS

	PPIO-AI08
	CIO- and PC104-DAS16
	PCM- and PC-CARD-DAS16 Series
	CIO-DAS1400 and CIO-DAS1600 Series
	CIO-DAS48/PGA
	DAS-TC Series
	CIO-DAS-TEMP
	USB-TEMP, USB-TC
	miniLAB 1008
	USB-1208 Series
	USB-1608 Series
	USB-1616 Series

	Analog Output Boards
	Introduction
	DAC04 HS Series
	DAC Series (Excluding HS Series)
	PCI-DAC6700 Series
	PCM- and PC-CARD- DAC Series
	PCIM- and CIO- DDA06 Series
	PCI- and CPCI- DDA Series
	cSBX-DDA04

	Digital Input/Output Boards
	Introduction
	Basic signed integers

	AC5 Series
	DIO Series
	DIO24/CTR3 and D24/CTR3 Series
	PCI-DIO48/CTR15
	PDISO8 and PDISO16 Series
	Establishing and requesting control of an E-PDISO16
	Sending a request for control of an E-PDISO16
	Receiving a request for control of an E-PDISO16
	Receiving a message

	CIO-PDMA16 and CIO-PDMA32
	USB-1024 and USB-DIO24 Series
	USB-DIO96 Series (formerly USB-1096 Series)
	USB-SSR Series
	Switch & Sense 8/8

	Digital Input Boards
	Introduction
	CIO- and PC104- DI Series
	CIO-DISO48

	Digital Output Boards
	Introduction
	CIO-RELAY Series
	USB-ERB Series
	CIO- and PC104-DO Series

	Counter Boards
	Introduction
	Basic signed integers
	Counter chip variables

	CTR Series
	INT32 Series
	PPIO-CTR06
	QUAD Series

	MetraBus Boards
	Introduction
	MDB64 Series
	MIO and MII Digital I/O
	MEM Series Relay
	MSSR-24 SSR

	Expansion Boards
	Introduction
	CIO-EXP Series
	MEGA-FIFO

	Other Hardware
	Introduction
	COM422 Series
	COM485 Series
	Demo-Board

	Appendix – MCC Device IDs

