
JClass Chart
Programmer’s Guide

Version 6.3 ■

for Java 2 (JDK 1.3.1 and higher)

The Best Java Charting Solution

TM

8001 Irvine Center Drive
Irvine, CA 92618
949-754-8000
www.quest.com

April 2004 RefNo: PRGDE-JCCHT/630-04/2004

© Copyright Quest Software, Inc. 2004. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used or copied
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording
for any purpose other than the purchaser's personal use without the written permission of Quest Software,
Inc.

Warranty

The information contained in this document is subject to change without notice. Quest Software makes no
warranty of any kind with respect to this information. QUEST SOFTWARE SPECIFICALLY
DISCLAIMS THE IMPLIED WARRANTY OF THE MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Quest Software shall not be liable for any direct, indirect, incidental,
consequential, or other damage alleged in connection with the furnishing or use of this information.

Trademarks

JClass, JClass Chart, JClass Chart 3D, JClass DataSource, JClass Elements, JClass Field, JClass HiGrid,
JClass JarMaster, JClass LiveTable, JClass PageLayout, JClass ServerChart, JClass ServerReport,
JClass DesktopViews, and JClass ServerViews are trademarks of Quest Software, Inc. Other trademarks and
registered trademarks used in this guide are property of their respective owners.

World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com
e-mail: info@quest.com
U.S. and Canada: 949.754.8000

Please refer to our Web site for regional and international office information.

This product includes software developed by the Apache Software Foundation http://www.apache.org/.

The JPEG Encoder and its associated classes are Copyright © 1998, James R. Weeks and BioElectroMech.
This product is based in part on the work of the Independent JPEG Group.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, all
files included with the source code, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

http://www.quest.com
http://www.apache.org/

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This product includes software developed by the JDOM Project (http://www.jdom.org/). Copyright © 2000-
2002 Brett McLaughlin & Jason Hunter, all rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions,
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions, and the disclaimer that follows these conditions in the documentation and/or other
materials provided with the distribution.

3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
license@jdom.org.

4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in
their name, without prior written permission from the JDOM Project Management
(pm@jdom.org).

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

http://www.jdom.org/
mailto:license@jdom.org
mailto:pm@jdom.org

Table of Contents

Preface . 1
Introducing JClass Chart . 1
Assumptions . 2
Typographical Conventions Used in this Manual 2
Overview of Manual . 2
API Reference . 3
Licensing . 4
Related Documents . 4
About Quest . 4
Contacting Quest Software 5
Customer Support . 5
Product Feedback and Announcements 6

Part I: Using JClass Chart

1 JClass Chart Basics. 9
1.1 Chart Areas . 9
1.2 Chart Types . 10
1.3 Loading Data . 13
1.4 Setting and Getting Object Properties 13

Setting Properties with Java Code 14
Setting Applet Properties in an HTML File 14
Saving a JCChart Instance to HTML 18
Updating Charts with Data 19
Setting Properties with a Java IDE at Design-Time 20
Setting Properties Interactively at Run-Time 20

1.5 Other Programming Basics 20
1.6 JClass Chart Inheritance Hierarchy 21
1.7 JClass Chart Object Containment 23
1.8 The Chart Customizer 24

Displaying the Chart Customizer at Run-Time 25
Editing and Viewing Properties 25

1.9 Internationalization 26
i

2 Chart Types and Special Chart Properties 27
2.1 Chart Type: Polar Charts 27

Background Information for the Polar Charts 28
Setting the Origin 28
Data Format . 31
PolarChartDraw class 31
Full or Half-Range X-Axis 31
Allowing Negative Values 32
Gridlines . 32

2.2 Chart Type: Radar Charts 33
Background Information for Radar Charts 34
Data Format . 34
RadarChartDraw Class 34
Gridlines . 35

2.3 Chart Type: Area Radar Charts 36
Background Information for Area Radar Charts 37
Data Format . 37
AreaRadarChartDraw Class 37
Gridlines . 38

2.4 JCPolarRadarChartFormat Class 38
2.5 Special Bar Chart Properties 40
2.6 Special Pie Chart Properties 41

Building the “Other” Slice 41
“Other” Slice Style and Label 42
Pie Ordering . 43
Start Angle . 43
Exploded Pie Slices 43

2.7 Special Area Chart Properties 45
2.8 Hi-Lo, Hi-Lo-Open-Close, and Candle Charts 46

3 SimpleChart Bean Tutorial. 49
3.1 Introduction to JavaBeans 49

Properties . 49
3.2 SimpleChart Bean Tutorial 50

Steps in this Tutorial 50
ii Contents

4 Bean Reference .57
4.1 Choosing the Right Bean 57

JClass Chart Beans 58
JClass Chart Beans and JCChart 58

4.2 Standard Bean Properties 58
Axis Properties 58
Chart Types . 62
Display Properties 63
Headers and Footers 65
Legends . 65

4.3 Data-Loading Methods 66
SimpleChart: Loading Data from a File 67
SimpleChart: Using Swing TableModel Data Objects . . . 69
Data Binding in Borland JBuilder 69
Data Binding with JClass DataSource 72

5 MultiChart .77
5.1 Introduction to MultiChart 77

Multiple Axes 78
Multiple Data Views 78
Intelligent Defaults 78

5.2 Getting Started with MultiChart 79
5.3 MultiChart Property Reference 79

Axis Controls 79
Headers, Footers, and Legends 88
Data Source and Data View Controls 91
Appearance Controls 95
View3D . 98
Event Controls 99

6 Chart Programming Tutorial . 101
6.1 Introduction . 101
6.2 A Basic Plot Chart 102
6.3 Loading Data From a File 104
6.4 Adding Header, Footer, and Labels 105
6.5 Changing to a Bar Chart 109
6.6 Inverting Chart Orientation 109
6.7 Bar3d and 3d Effect 110
Contents iii

6.8 End-User Interaction 111
6.9 Get Started Programming with JClass Chart 112

7 Axis Controls . 113
7.1 Creating a New Chart in a Nutshell 113
7.2 Axis Labelling and Annotation Methods 114

Choosing Annotation Method 114
Values Annotation 115
PointLabels Annotation 116
ValueLabels Annotation 117
TimeLabels Annotation 119
Custom Axes Labels 121

7.3 Positioning Axes 123
7.4 Chart Orientation and Axis Direction 124

Inverting Chart Orientation 124
Changing Axis Direction 125

7.5 Setting Axis Bounds 125
7.6 Customizing Origins 126
7.7 Logarithmic Axes 127
7.8 Titling Axes and Rotating Axis Elements 128
7.9 Adding Gridlines 129
7.10 Adding a Second Axis 130

8 Data Sources . 133
8.1 Overview . 133
8.2 Data Views . 133
8.3 Pre-Built Chart DataSources 134
8.4 Loading Data from a File 134
8.5 Loading DataSource from a URL 134
8.6 Loading Data from an Applet 135
8.7 Loading Data from a Swing TableModel 136
8.8 Loading Data from an XML Source 136

XML Primer 136
Using XML in JClass 137
Specifying Data by Series 138
Specifying Data by Point 139
Labels and Other Parameters 140
iv Contents

8.9 Data Formats . 141
Formatted Data Examples 142
Explanation of Format Elements 142

8.10 Data Binding: Specifying Data from Databases 144
Data Binding using JDBCDataSource 145
Data Binding with JBuilder 146
Data Binding with JClass DataSource 147

8.11 Making Your Own Chart Data Source 149
The Simplest Chart Data Source Possible 149
LabelledChartDataModel – Labelling Your Chart 152
EditableChartDataModel – Modifying Your Data 154
HoleValueChartDataModel – Specifying Hole Values . . . 155

8.12 Making an Updating Chart Data Source 155
Chart Data Source Support Classes 155

9 Text and Style Elements. 159
9.1 Header and Footer Titles 159
9.2 Legends . 160

Customizing Legends 162
9.3 Chart Labels . 171

Label Implementation 171
Adding Labels to a Chart 171
Interactive Labels 172
Adding and Formatting Label Text 173
Positioning Labels 173
Adding Connecting Lines 174

9.4 Chart Styles . 174
9.5 OutlineStyle . 176
9.6 Borders . 177
9.7 Fonts . 177
9.8 Colors . 177
9.9 Positioning Chart Elements 179
9.10 3D Effect . 180
9.11 Anti-Aliasing . 180
Contents v

10 Advanced Chart Programming . 183
10.1 Outputting JClass Charts 183

Encode method 184
Encode example 184
Code example 185

10.2 Batching Chart Updates 185
10.3 Coordinate Conversion Methods 185

CoordToDataCoord and DataIndexToCoord 186
Map and Unmap 187

10.4 FastAction . 187
10.5 FastUpdate . 187
10.6 Programming End-User Interaction 188

Event Triggers 188
Valid Modifiers 189
Programming Event Triggers 189
Removing Action Mappings 189
Calling an Action Directly 189
Specifying Action Axes 190

10.7 Image-Filled Bar Charts 190
10.8 Pick . 192
10.9 Using Pick and Unpick 192

Pick Focus . 198
10.10 Unpick . 199

Part II: Reference Appendices

 A JClass Chart Property Listing. 203
A.1 ChartDataView 203
A.2 ChartDataViewSeries 206
A.3 ChartText . 207
A.4 JCAreaChartFormat 208
A.5 JCAxis . 209
A.6 JCAxisFormula 214
A.7 JCAxisTitle . 215
A.8 JCBarChartFormat 216
A.9 JCCandleChartFormat 217
A.10 JCChart . 217
A.11 JCChartArea . 219
vi Contents

A.12 JCChartLabel . 220
A.13 JCChartLabelManager 221
A.14 JCChartStyle . 221
A.15 JCFillStyle . 223
A.16 JCGridLegend . 224
A.17 JCHLOCChartFormat 225
A.18 JCLegend . 225
A.19 JCLineStyle . 226
A.20 JCMultiColLegend 227
A.21 JCPieChartFormat 228
A.22 JCPolarRadarChartFormat 229
A.23 JCSymbolStyle . 230
A.24 JCValueLabel . 230
A.25 PlotArea . 230
A.26 SimpleChart . 231

 B Distributing Applets and Applications 235
B.1 Using JClass JarMaster to Customize the Deployment Archive . 235

 C HTML Property Reference . 237
C.1 ChartDataView Properties 238
C.2 ChartDataViewSeries Properties 240
C.3 JCAreaChartFormat Properties 241
C.4 JCAxis X- and Y-axes Properties 242
C.5 JCBarChartFormat Properties 243
C.6 JCCandleChartFormat Properties 244
C.7 JCChart Properties 245
C.8 JCChartArea Properties 246
C.9 JCChartLabel Properties 247
C.10 JCDataIndex Properties 248
C.11 JCHLOCChartFormat Properties 248
C.12 JCHiLoChartFormat Properties 248
C.13 JCLegend Properties 249
C.14 JCPieChartFormat Properties 250
C.15 JCPolarRadarChartFormat Properties 251
C.16 Header and Footer Properties 251
C.17 Example HTML File 252
Contents vii

 D Porting JClass 3.6.x Applications. 255
D.1 Overview . 255
D.2 Swing-like API . 256
D.3 New Data Model 257
D.4 New Data Subpackage 260
D.5 New Beans Subpackage 260
D.6 Data Binding Changes 260
D.7 New Applet Subpackage 260
D.8 Pluggable Header/Footer 262
D.9 JCChartLabelManager 262
D.10 Chart Label Components 263
D.11 Use of Collection Classes 263
D.12 No More JCString 264

Index . 265
viii Contents

Preface
Introducing JClass Chart ■ Assumptions ■ Typographical Conventions Used in this Manual

Overview of Manual ■ API Reference ■ Licensing ■ Related Documents ■ About Quest

Contacting Quest Software ■ Customer Support ■ Product Feedback and Announcements

Introducing JClass Chart

JClass Chart is a charting/graphing component written entirely in Java. The chart
component displays data graphically in a window and can interact with a user.

The chart component can be used easily by all types of Java programmers:

■ Component users, setting JClass Chart properties programmatically.

■ OO developers, instantiating and extending JClass Chart objects.

■ JavaBean developers, setting JClass Chart properties using a third-party Integrated
Development Environment (IDE).

You can freely distribute Java applets and applications containing JClass components
according to the terms of the License Agreement that appears during the installation.

Feature Overview
You can set the properties of JClass Chart objects to determine how the chart will look
and behave. You can control:

■ Chart type (Plot, Scatter Plot, Area, Stacking Area, Bar, Stacking Bar, Pie, Hi-Lo, Hi-
Lo-Open-Close, Candle, Polar, Radar, and Area Radar).

■ Header and footer positioning, border style, text, font, and color.

■ Number of data views, each having its own data, chart type, axes, and chart styles.

■ Flexible data loading from applets, files, URLs, input streams, and databases.

■ Chart styles: line color, fill color, point size, point style, and point color.

■ Legend positioning, orientation, border style, anchor, font, and color.

■ Chart positioning, border style, color, width, height, and 3D effect (Bar, Stacking Bar,
and Pie charts only).

■ Axis labelling using Point labels, Series labels, Value labels, or Time labels.

■ Number of X- or Y-axes, each having its own minimum and maximum, axis
numbering method, numbering and ticking increment, grid increment, font, origin,
axis direction, and precision.

■ Control of user interaction with components including picking, mapping, Chart
Customizer, rotation, scaling, and translation.
1

■ Chart labels that can appear anywhere on the chart, including automatic dwell labels
for each point on the chart.

JClass Chart is compatible with JDK 1.4. If you are using JDK 1.4 and experience
drawing problems, you may want to upgrade to the latest drivers for your video card
from your video card vendor.

Assumptions

This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming and
Java programming concepts such as classes, methods, and packages before proceeding
with this manual. See Related Documents later in this section of the manual for additional
sources of Java-related information.

Typographical Conventions Used in this Manual

Overview of Manual

Part I — Using JClass Chart describes programming with JClass Chart.

Chapter 1, JClass Chart Basics, provides a programmer’s overview of JClass Chart. It
covers class hierarchy, object containment, terminology, programming basics, and
specific issues to be aware of before using JClass Chart.

Typewriter Font ■ Java language source code and examples of file contents.
■ JClass Chart and Java classes, objects, methods, properties,

constants, and events.
■ HTML documents, tags, and attributes.
■ Commands that you enter on the screen.

Italic Text ■ Pathnames, filenames, URLs, programs, and method
parameters.

■ New terms as they are introduced, and to emphasize important
words.

■ Figure and table titles.
■ The names of other documents referenced in this manual, such

as Java in a Nutshell.

Bold ■ Keyboard key names and menu references.
2 Preface

Chapter 2, Chart Types and Special Chart Properties, covers the special features of
chief JClass Chart charting types.

Chapter 3, SimpleChart Bean Tutorial, introduces basic Bean concepts, and guides
you through developing a chart application in an IDE or BeanBox.

Chapter 4, Bean Reference, is a guide to the different JClass Chart Beans. It illustrates
all of the properties available, including the different data loading methods.

Chapter 5, MultiChart, is a user’s guide for MultiChart, an advanced charting Bean.

Chapter 6, Chart Programming Tutorial, is designed to introduce you to JClass Chart
programming, by compiling and running an example program. It includes examples
of common chart programming tasks.

Chapter 7, Axis Controls, covers JClass Chart properties used when first setting up
your chart, concentrating on axis properties.

Chapter 8, Data Sources, shows how to use different pre-built data sources and
outlines how to use the data source toolkit to create your own.

Chapter 9, Text and Style Elements, covers JClass Chart properties used to customize
the appearance of a chart, including header/footer, legend, and chart styles.

Chapter 10, Advanced Chart Programming, looks at programming more advanced
aspects of the chart.

Part II — Reference Appendices – contains detailed technical reference information.

Appendix A, JClass Chart Property Listing, summarizes the properties contained in
all of the JClass Chart objects.

Appendix B, Distributing Applets and Applications, is an overview of how to deploy
applets and applications.

Appendix C, HTML Property Reference, lists the syntax of JClass Chart properties
when specified in an HTML file.

Appendix D, Porting JClass 3.6.x Applications, comprises the key changes to version
4.0 and the recommended porting strategy.

API Reference
The API reference documentation (Javadoc) is installed automatically when you install
JClass Chart and is found in the JCLASS_HOME/docs/api/ directory.
Preface 3

../api/index.html

Licensing
In order to use JClass Chart, you need a valid license. Complete details about licensing
are outlined in the JClass DesktopViews Installation Guide, which is automatically installed
when you install JClass Chart.

Related Documents
The following is a sample of useful references to Java and JavaBeans programming:

■ “Java Platform Documentation” at http://java.sun.com/docs/index.html and the “Java
Tutorial” at http://java.sun.com/docs/books/tutorial/index.html from Sun Microsystems

■ For an introduction to creating enhanced user interfaces, see “Creating a GUI with
JFC/Swing” at http://java.sun.com/docs/books/tutorial/uiswing/index.html

■ “Java in a Nutshell, 2nd Edition” from O’Reilly & Associates Inc. See the O’Reilly Java
Resource Center at http://java.oreilly.com

■ Resources for using JavaBeans at http://java.sun.com/beans/resources.html

These documents are not required to develop applications using JClass Chart, but they
can provide useful background information on various aspects of the Java programming
language.

About Quest

Quest Software, Inc. (NASDAQ: QSFT) is a leading provider of application management
solutions. Quest provides customers with Application Confidencesm by delivering
reliable software products to develop, deploy, manage and maintain enterprise
applications without expensive downtime or business interruption. Targeting high
availability, monitoring, database management and Microsoft infrastructure
management, Quest products increase the performance and uptime of business-critical
applications and enable IT professionals to achieve more with fewer resources.
Headquartered in Irvine, Calif., Quest Software has offices around the globe and more
than 18,000 global customers, including 75% of the Fortune 500. For more information on
Quest Software, visit www.quest.com.
4 Preface

http://www.quest.com
../getstarted/index.html
http://www.javasoft.com/docs/programmer.html
http://www.javasoft.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.oreilly.com
http://www.javasoft.com/beans/resources.html

Contacting Quest Software

Please refer to our Web site for regional and international office information.

Customer Support

Quest Software’s world-class support team is dedicated to ensuring successful product
installation and use for all Quest Software solutions.

You can use SupportLink to do the following:

■ Create, update, or view support requests

■ Search the knowledge base, a searchable collection of information including program
samples and problem/resolution documents

■ Access FAQs

■ Download patches

■ Access product documentation, API reference, and demos and examples

Please note that many of the initial questions you may have will concern basic installation
or configuration issues. Consult this product’s readme file and the JClass DesktopViews
Installation Guide (available in HTML and PDF formats) for help with these types of
problems.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying the
following information will help us serve you better:

■ Your name, email address, telephone number, company name, and country

E-mail sales@quest.com

Address

Quest Software, Inc.
World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
USA

Web site www.quest.com

Phone 949.754.8000 (United States and Canada)

SupportLink www.quest.com/support

E-mail support@quest.com
Preface 5

mailto:sales@quest.com
http://www.quest.com
http://www.quest.com/support
mailto:support@quest.com
../api/index.html
../../readme.html
../getstarted/index.html
../getstarted/index.html

■ The product name, version and serial number

■ The JDK (and IDE, if applicable) that you are using

■ The type and version of the operating system you are using

■ Your development environment and its version

■ A full description of the problem, including any error messages and the steps required
to duplicate it

Product Feedback and Announcements
We are interested in hearing about how you use JClass Chart, any problems you
encounter, or any additional features you would find helpful. The majority of
enhancements to JClass products are the result of customer requests.

Please send your comments to:
Quest Software
8001 Irvine Center Drive
Irvine, CA 92618

Telephone: 949-754-8000
Fax: 949-754-8999

JClass Direct Technical Support

JClass Support Email support@quest.com

Telephone 949-754-8000

Fax 949-754-8999

European Customers
Contact Information

Telephone: +31 (0)20 510-6700
Fax: +31 (0)20 470-0326
6 Preface

mailto:support@quest.com

Part
I

Using
JClass Chart

1
JClass Chart Basics

Chart Areas ■ Chart Types ■ Loading Data ■ Setting and Getting Object Properties

Other Programming Basics ■ JClass Chart Inheritance Hierarchy ■ JClass Chart Object Containment

The Chart Customizer ■ Internationalization

This chapter covers concepts and vocabulary used in JClass Chart programming, and
provides an overview of the JClass Chart class hierarchy.

1.1 Chart Areas

The following illustration shows the terms used to describe chart areas:

Figure 1 Elements contained in a typical chart.
9

1.2 Chart Types

JClass Chart can display data as one of 13 basic chart types: Plot, Scatter Plot, Area,
Stacking Area, Bar, Stacking Bar, Pie, Hi-Lo, Hi-Lo-Open-Close, Candle, Polar, Radar,
and Area Radar.

It is also possible to simulate more specialized types of charts using one of these basic
types.

Use the ChartType property to set the chart type for one ChartDataView. Each data view
managed by the chart has its own chart type. The following table lists basic information
about each chart type, including the enumeration that sets that type and the data layouts it
can display (see the next section for an introduction to data).

Chart Type Single
X-series

Multiple
X-series Notes

Plot
Draws each series as connected points of data.

■ Series appearance determined by chart style line
color, symbol shape, size, and color properties.

Scatter Plot
Draws each series as unconnected points of data.

■ Series appearance determined by chart style symbol
shape, size, and color properties.

Bar
Draws each series as a bar in a cluster. The number of
clusters is the number of points in the data. Each cluster
displays the nth point in each series.

■ X-axis generally annotated using Point labels.
■ Series appearance determined by chart style fill color

and image properties.
■ 3D effect available using depth, elevation, and

rotation properties.
10 Part I ■ Using JClass Chart

Stacking Bar
Draws each series as a portion of a stacked bar cluster,
the number of clusters being the number of data points.
Each cluster displays the nth point in each series.
Negative Y-values are stacked below the X-axis.

■ X-axis generally annotated using Point labels.
■ Series appearance determined by chart style fill color

property.
■ 3D effect available using depth, elevation, and

rotation properties.

Area
Draws each series as connected points of data, filled
below the points. Each series is layered over the
preceding series.

■ Series appearance determined by chart style fill color
property.

Stacking Area
Draws each series as connected points of data, filled
below the points. Places each Y-series on top of the last
one to show the area relationships between each series
and the total.

■ Series appearance determined by chart style fill color
property.

Pie
Draws each series as a slice of a pie. The number of pies
is the number of points in the data (values below a
certain threshold can be grouped into an other slice).
Each pie displays the nth point in each series.

■ Pies are annotated with Point labels only.
■ Series appearance determined by chart style fill color

property.
■ 3D effect available using depth and elevation

properties.

Chart Type Single
X-series

Multiple
X-series Notes
Chapter 1 ■ JClass Chart Basics 11

Hi-Lo
Draws two series together as a “high-low” bar. The
points in each series define one portion of the bar:
1st series — points are the “high” value
2nd series — points are the “low” value

■ Appearance determined by chart style line color
property in the first series of each pair.

Hi-Lo-Open-Close
Similar to Hi-Lo, but draws four series together as a
“high-low-open-close” bar. The additional series’ points
make up the other components of the bar:
3rd series – points are the “open” value
4th series – points are the “close” value

■ Appearance determined by chart style line color and
symbol size properties in the first series of each set.

Candle
A special type of Hi-Lo-Open-Close chart; draws four
series together as a “candle” bar.

■ Simple candle appearance determined by chart style
line color, fill color, and symbol size properties in the
first series of each set.

■ Complex candle appearance determined by different
chart style properties from each series of each set.

Polar
Draws each series as connected points of data on a polar
coordinate system (theta,r). X-values represent the
amount of rotation and Y-values are the distance from
the origin.

■ When using Array data, X-values are shared across
series.

■ X-axis bounds cannot be set; Y-axis bounds cannot
be set inside the data extents.

■ Appearance determined by ChartStyles’ line and
symbol properties of each series.

Chart Type Single
X-series

Multiple
X-series Notes
12 Part I ■ Using JClass Chart

1.3 Loading Data
Data is loaded into a chart by attaching one or more chart data sources to it. A chartable
data source is an object that takes real-world data and puts it into a form that JClass Chart
can use. Once your data source is attached, you can chart the data in a variety of ways.

Several stock (built-in) data sources are provided with JClass Chart, enabling you to read
data from an input stream, a file, a URL, databases, and HTML applet <PARAM> tags.
Loading data from a database is called ‘data binding’. You can also create your own data
sources. See the Data Sources, in Chapter 8 for more information on loading data, data
binding, and creating your own data sources.

1.4 Setting and Getting Object Properties
There are four ways to set (and retrieve) JClass Chart properties:

■ By calling property set and get methods in a Java program.

■ By specifying applet properties in an HTML file.

■ By using a Java IDE at design-time (JavaBeans).

■ By using the Chart Customizer at run-time.

Each method changes the same chart property. This manual therefore uses properties to
discuss how features work, rather than using the method, Customizer tab, or HTML
parameter you might use to set that property.

Radar
Draws each series as connected points along radar
“sticks” spaced equally apart. The nth stick charts the Y-
value of the nth point in each series.

■ X-axis annotated with Point-labels or integer values.
■ Appearance determined by ChartStyles’ line and

symbol properties of each series.

Area Radar
Draws each series as connected points of data, filled
inside the points. The points are the same as they would
be for a Radar chart. Each series is drawn “on top” of
the preceding series.

■ X-axis annotated with Point-labels or integer values.
■ Appearance determined by ChartStyles’ fill and line

properties.

Chart Type Single
X-series

Multiple
X-series Notes
Chapter 1 ■ JClass Chart Basics 13

Note: In most cases, you need to understand the chart’s object containment hierarchy to
access its properties. Use the Objects contained in a chart – traverse contained objects to
access properties. diagram to determine how to access the properties of an object.

1.4.1 Setting Properties with Java Code
Every JClass Chart property has a set and get method associated with it. For example, to
retrieve the value of the AnnotationMethod property of the first X-axis, the
getAnnotationMethod() method is called:

method = c.getChartArea().getXAxis(0).getAnnotationMethod();

To set the AnnotationMethod property of the same axis:

c.getChartArea().getXAxis(0).setAnnotationMethod(
JCAxis.POINT_LABELS);

These statements navigate the objects contained in the chart by retrieving the values of
successive properties, which are contained objects. In the code above, the value of the
ChartArea property is a JCChartArea object. The chart area has an XAxis property, the
value of which is a collection of JCAxis objects. The axis also has the desired
AnnotationMethod property.

For detailed information on the properties available for each object, consult the online
API reference documentation. The API is automatically installed when you install JClass
and is found in the JCLASS_HOME/docs/api/ directory.

1.4.2 Setting Applet Properties in an HTML File

Another way to set chart properties, particularly appropriate for applets, is in an HTML
file. Applets built with JClass Chart automatically parse applet <PARAM> tags and set the
chart properties defined in the file. (A pre-built applet called JCChartApplet.class is
provided with JClass Chart.) Even standalone Java applications can save the values of
chart properties to an HTML file, which can serve as a useful debugging tool.

Using HTML to set properties has the following benefits:

■ Speed — see the effect of different property values quickly without recompiling.

■ Flexibility — use a single applet class to create many different kinds of charts simply
by varying HTML properties; end-users can modify HTML properties to suit their
own needs.

Chart properties are coded in HTML as applet <PARAM> tags. The NAME element of the
<PARAM> tag specifies the property name; the VALUE element specifies the property value
to set.
14 Part I ■ Using JClass Chart

../api/index.html

This line of code
<PARAM name="chart.dataFile" value="sample_1.dat">
in the following example HTML file supplies the chart’s data in the applet.

<HTML>
<HEAD>
<TITLE>Sample Plot Chart</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFCC">

<CENTER><H2>Sample Plot Chart</H2></CENTER>
<P>
<HR COLOR=CC3333>
<P>
<BLOCKQUOTE>
Simple plot chart example.
</BLOCKQUOTE>
<CENTER>
<P>
<APPLET CODEBASE="../../.." WIDTH=400 HEIGHT=300
CODE="com/klg/jclass/chart/applet/JCChartApplet.class">
<PARAM name="chart.dataFile" value="sample_1.dat">
<PARAM name="chart.data.chartType" value="Plot">
<PARAM name="chart.data.series1.label" value="Ser. 1">
<PARAM name="chart.data.series1.symbol.shape" value="triangle">
<PARAM name="chart.data.series2.label" value="Ser. 2">
<PARAM name="chart.data.series2.symbol.shape" value="box">
<PARAM name="chart.data.series3.label" value="Ser. 3">
<PARAM name="chart.data.series3.symbol.shape" value="dot">
<PARAM name="chart.legend.visible" value="true">
<PARAM name="chart.legend.borderType" value="plain">
<PARAM name="chart.yaxis.min" value="5">
<PARAM name="chart.yaxis.max" value="25">
<PARAM name="chart.yaxis.precision" value="0">
<PARAM name="chart.yaxis.tickSpacing" value="2.5">
<PARAM name="chart.xaxis.precision" value="0">
</APPLET>
<P>
<I>More Applet Examples...</I>
</CENTER>
<!-- copyright information added -->
<P>
<HR COLOR=CC3333>
<P>
<P>Copyright©

2002 Quest Software
</BODY>
</HTML>
Chapter 1 ■ JClass Chart Basics 15

The easiest way to create a set of HTML properties is to use the JClass Chart Customizer
to save the property values to an HTML file. For more details, see the The Chart
Customizer section in this chapter.

Another way to load and save JClass Chart HTML properties is to use the convenience
methods in JCChartFactory. For example, to create a chart from the above HTML file
stored in chart.html, the following code can be used:

LoadProperties loadProps = new LoadProperties();
String inFile = "chart.html";
String chartName = "myChart";
JCChart chart = null;
try {

chart = JCChartFactory.makeChartFromFile(inFile, loadProps, chartName,
 JCChartFactory.HTML);
}
catch (JCIOException e) {

System.out.println("Error accessing external file:" + e.getMessage());
}
catch (JCParseException e) {

System.out.println("Error parsing file:" + e.getMessage());
}
catch (IOException e) {

System.out.println("Error reading " + inFile + ":" + e.getMessage());
}

where

■ chartName is the name of the chart, and is the name with which each of the properties
begins. If there is more than one chart in the HTML file, only the parameters
beginning with that name are assigned to the chart. If there is only one set of chart
parameters stored in the file, the name can be dropped and an empty String passed as
the third parameter.

■ LoadProperties is a class containing properties that specify how to load the chart (see
LoadProperties for more details).
16 Part I ■ Using JClass Chart

When a file is read in, all HTML tags, other than the PARAM tags, are ignored. This means
that chart information can be read in from a file that contains only PARAM tags. A full
listing of the syntax of JClass Chart properties when used in HTML files can be found in
Appendix C, HTML Property Reference. Many example HTML files are located in the
JCLASS_HOME/examples/chart/applet directory.

LoadProperties
The LoadProperties class contains properties that tell JCChart what to do when loading
the chart from an HTML file. This class is responsible for the following:

■ Telling the chart how to access data files and image files, given the filename. Inside an
HTML file, the file access can be specified as one of the following:

■ DEFAULT_ACCESS: The default access is ABSOLUTE.

■ ABSOLUTE: Interprets the filename as an absolute name.

■ RESOLVING_CLASS: Specifies a Class object to use as a resolving class for loading
the file. This resolving Class must be set on the LoadProperties object. The
ClassLoader of the resolving class is used to resolve the name through a call to
getResource(filename). In the resolution process, if the filename starts with “/”,
it is unchanged; otherwise, the package name of the resolving Class is added to
the front of the filename after converting “.” to “/”.

■ URL: Interprets the filename as a URL.

■ RELATIVE_URL: Interpret the filename as URL after adding a relativeURLPrefix
to the beginning of it. One must set the relativeURLPrefix on the
LoadProperties object (it defaults to the empty String).

■ Identifying what to do when there is an error that resulted from reading a data or
image source specified within the HTML file. Normally, JCChart throws a
JCIOException when this happens. However, you can tell JCChart to ignore these
exceptions and continue loading the chart by setting the
ignoreExternalResourceExceptions property to true.

■ Allowing the user to specify an object to be passed to an external java class when the
external-java-code tag is used.

Other JCChartFactory Methods
Other JCChartFactory methods that create or update JCChart's are:

■ makeChartFromStream()

■ makeChartFromReader()

■ makeChartFromString()

■ updateChartFromFile()

■ updateChartFromStream()

■ updateChartFromReader()

■ updateChartFromString()
Chapter 1 ■ JClass Chart Basics 17

Each of these methods throws a JCParseException if JCChart fails to parse the HTML
file.

1.4.3 Saving a JCChart Instance to HTML

The JCChartFactory class also has methods that save a JCChart instance to a stream, file,
or String. For example, to save a chart to the file chart.out.html, use the following code:

String outFile = "chart.out.html";
String outDataFile = "chart.dat";
ChartDataView dv = chart.getDataView(0);
if (dv != null) {

OutputDataProperties outProps = dv.getOutputDataProperties();
if (outProps == null) {

outProps = new OutputDataProperties();
}
outProps.setOutputFileName(outDataFile);
outProps.setPropertyName("file:///C:/jclass_home/" + outDataFile);
outProps.setSaveType(OutputDataProperties.DATA_FILE_TXT);
outProps.setFileAccess(OutputDataProperties.URL);
dv.setOutputDataProperties(outProps);

}
try {

JCChartFactory.saveChartToFile(chart, outFile,
JCChartFactory.HTML);

}
catch (IOException e) {

System.out.println("Error writing to " + outFile + ":" +
e.getMessage());

}

In the above code, the instance of OutputDataProperties serves two purposes. First, it
causes the chart's HTML output to specify how the data for the given ChartDataView
should be read in when it is loaded into a JCChart. This is done by specifying three
properties:

■ propertyName, which is the name of the data input source. The way this name is
interpreted depends on the saveType and fileAccess mechanism.

■ saveType, which is one of:

■ NO_DATA: This ChartDataView will have no data when the HTML file is loaded
into JCChart. Nothing concerning data is written out.

■ EMBED_DATA: The data is embedded directly into the HTML file in text format. No
external data file is needed.

■ DATA_FILE_TXT: The ChartDataView gets its data from a file and it is specified in
text format (see Section 8.9, Data Formats, for the proper format).

■ DATA_FILE_XML: The ChartDataView gets its data from a file and it is specified in
XML format (see Section 8.8, Loading Data from an XML Source, for the proper
format).
18 Part I ■ Using JClass Chart

■ fileAccess, mechanism determines how the propertyName is interpreted and dictates
which way the data file is accessed when loaded into a JCChart. See the fileAccess
types in LoadProperties.

Second, it tells JCChart whether or not it should save the data to a file. If the
outputFileName property is non-null and the save type is either DATA_FILE_TXT or
DATA_FILE_XML, the data is saved to the specified file based on the save type. Note that
outputFileName is an absolute file name.

In the previous example, the data is written as text to chart.dat. In the output file
chart.out.html, the data is specified to be read in from the URL as follows:

<param name=dataFile value="file:///C:/jclass_home/chart.dat">
<param name=dataFileType value="Text">
<param name=dataFileAccess value="Url">

Note: Images are saved in a similar fashion to data files, except that an instance of
OutputProperties is used instead of OutputDataProperties.

Other methods that save a JCChart are:

■ saveChartToStream()

■ saveChartToString()

1.4.4 Updating Charts with Data

JCChartFactory also has a method, updateChartWithData(), that updates a chart with a
new data set. In the given data view, the old data set is replaced by the new data set, with
information provided by a file or an input stream. The method definition is:

public static void
updateChartWithData(JCChart chart, int dataType, Object data,

int dataViewIndex, LoadProperties)

where

■ chart is the chart to update.

■ dataType is the type of data (either DATA_FILE_TEXT or DATA_FILE_XML).

■ data is the data object (either a Reader, a filename String or an InputStream).

■ dataViewIndex is the index of the ChartDataView on which the data is to be set (there
is also a method where the ChartDataView can be specified by name).

■ LoadProperties is a class containing properties that specify how to load the chart (see
LoadProperties for more details).

This method creates a data source from the data object, and sets this new data source on
the appropriate ChartDataView on the chart.
Chapter 1 ■ JClass Chart Basics 19

1.4.5 Setting Properties with a Java IDE at Design-Time

A JClass Chart Bean can be used with a Java Integrated Development Environment
(IDE), and its properties can be manipulated at design-time. Consult your IDE’s
documentation for details on how to load third-party Bean components into the IDE.

You can also refer to the JClass and Your IDE chapter in the JClass DesktopViews
Installation Guide.

Most IDEs list a component’s properties in a property sheet or dialog. Simply find the
property you want to set in this list and edit its value. Again, consult your IDE’s
documentation for complete details.

1.4.6 Setting Properties Interactively at Run-Time

If enabled by the developer, end-users can manipulate property values on a chart running
in your application. Clicking a mouse button launches the JClass Chart Customizer. The
user can navigate through the tabbed dialogs and edit the properties displayed.

For details on enabling and using the Customizer, see The Chart Customizer later in this
chapter.

1.5 Other Programming Basics

Working with Object Collections
Many chart objects are organized into collections. For example, the chart axes are
organized into the XAxis collection and the YAxis collection. In Beans terminology, these
objects are held in indexed properties.

To access a particular element of a collection, specify the index that uniquely identifies
this element. For example, the following code changes the maximum value of the first X-
axis to 25.1:

c.getChartArea().getAxis(0).setMax(25.1);

Note that the index zero refers to the first element of a collection. Also, note that by
default, JCChartArea contains one element in XAxis and one in YAxis.

Also note that for a Polar, Radar, and Area Radar chart, there can be only one Y-axis and
one X-axis.

Calling Methods
To call a JClass Chart method, access the object that defines the method. For example,
the following statement uses the coordToDataCoord() method, defined by the
ChartDataView collection, to convert the location of a mouse click event in pixels to their
equivalent in data coordinates:

JCDataCoord dc = c.getDataView(0).coordToDataCoord(10,15);
20 Part I ■ Using JClass Chart

../getstarted/index.html
../getstarted/index.html

Details on each method can be found in the API documentation for each class.

1.6 JClass Chart Inheritance Hierarchy
The following provides an overview of class inheritance of JClass Chart.
Chapter 1 ■ JClass Chart Basics 21

../api/index.html

Figure 2 Class hierarchy of the com.klg.jclass.chart package.
22 Part I ■ Using JClass Chart

1.7 JClass Chart Object Containment

When you create (or instantiate) a new chart, several other objects are also created. These
objects are contained in and are part of the chart. Chart programmers need to traverse
these objects to access the properties of a contained object. The following diagram shows
the object containment for JClass Chart.

Figure 3 Objects contained in a chart – traverse contained objects to access properties.

JCChart (the top-level object) manages header and footer JComponent objects, a legend
(JCLegend), and the chart area (JCChartArea). The chart also contains a collection of data
view (ChartDataView) objects and can contain the ChartLabelManager
(JCChartLabelManager) which manages a collection of chart label (JCChartLabel) objects.
Chapter 1 ■ JClass Chart Basics 23

The chart area contains most of the chart’s actual properties because it is responsible for
charting the data. It also contains and manages a collection of X-axis (JCAxis) objects and
Y-axis (JCAxis) objects (one of each by default).

The data view collection contains objects and properties (like the chart type) that are tied
to the data being charted. Each data view contains a collection of series
(ChartDataViewSeries) objects, one for each series of data points, used to store the visual
display style of each series (JCChartStyle).

Note that chart does not own the data itself, but instead merely views on the data. Each
data view also contains a data source (ChartDataModel) object. The data is owned by the
DataSource object. This is an object that your application creates and manages separately
from the chart. For more information on JClass Chart’s data source model, see Data
Sources.

1.8 The Chart Customizer

The JClass Chart Customizer enables developers (or end-users if enabled by your
program) to view and customize the properties of the chart as it runs.

Figure 4 The JClass Chart Customizer.

The Customizer can save developers a lot of time. Charts can be prototyped and shown
to potential end-users without having to write any code. Developers can experiment with
combinations of property settings, seeing results immediately in the context of a running
application, greatly aiding chart debugging.
24 Part I ■ Using JClass Chart

1.8.1 Displaying the Chart Customizer at Run-Time

By default, the Customizer is disabled at run-time. To enable it, you need to set the chart’s
AllowUserChanges and Trigger properties, for example:

chart.setAllowUserChanges(true);
chart.setTrigger(0, new EventTrigger(InputEvent.META_MASK,

EventTrigger.CUSTOMIZE);

To display the Customizer once it has been enabled, move the mouse over the chart and
click the secondary mouse button; that is, the button on your system that displays popup
menus, for example:

■ Windows — Right mouse button

■ UNIX — Middle mouse button

1.8.2 Editing and Viewing Properties

1. Select the tab that corresponds to the chart element that you want to edit. Tabs
contain one or more inner tabs that group related properties together. Select inner
tabs to narrow down the type of property you want to edit.

2. If you are editing an indexed property, select the specific object to edit from the lists
displayed in the tabs. The fields in the tab update to display the current property
values.

3. Select a property and edit its value.

Figure 5 Editing a sample chart with the Customizer.
Chapter 1 ■ JClass Chart Basics 25

As you change property values, the changes are immediately applied to the chart and
displayed. You can make further changes without leaving the Customizer. However, once
you have changed a property the only way to “undo” the change is to manually change
the property back to its previous value.

To close the Customizer, close its window (the actual steps differ for each platform).

1.9 Internationalization
Internationalization is the process of making software that is ready for adaptation to
various languages and regions without engineering changes. JClass products have been
internationalized.

Localization is the process of making internationalized software run appropriately in a
particular environment. All Strings used by JClass that need to be localized (that is,
Strings that are seen by a typical user) have been internationalized and are ready for
localization. Thus, while localization stubs are in place for JClass, this step must be
implemented by the developer of the localized software. These Strings are in resource
bundles in every package that requires them. Therefore, the developer of the localized
software who has purchased source code should augment all .java files within the
/resources/ directory with the .java file specific for the relevant region; for example, for
France, LocaleInfo.java becomes LocaleInfo_fr.java, and needs to contain the translated
French versions of the Strings in the source LocaleInfo.java file. (Usually the file is called
LocaleInfo.java, but can also have another name, such as LocaleBeanInfo.java or
BeanLocaleInfo.java.)

Essentially, developers of the localized software create their own resource bundles for
their own locale. Developers should check every package for a /resources/ directory; if one
is found, then the .java files in it will need to be localized.

For more information on internationalization, go to:
http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html.
26 Part I ■ Using JClass Chart

http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html

2
Chart Types and

Special Chart Properties
Chart Type: Polar Charts ■ Chart Type: Radar Charts

Chart Type: Area Radar Charts ■ JCPolarRadarChartFormat Class

Special Bar Chart Properties ■ Special Pie Chart Properties

Special Area Chart Properties ■ Hi-Lo, Hi-Lo-Open-Close, and Candle Charts

In this chapter, chart types are discussed and special features of chief JClass Chart
charting types are outlined.

2.1 Chart Type: Polar Charts

A polar chart draws the X- and Y-coordinates in each series as (theta,r), where theta is
amount of rotation from the X-origin and r is the distance from the Y-origin. theta may be
specified in degrees (default), radians, or gradians. Because the X-axis is a circle, the X-
axis maximum and minimum values are fixed.

Using ChartStyles, you can customize the line and symbol properties of each series.
27

2.1.1 Background Information for the Polar Charts

In order to work efficiently with Polar charts, you should understand the following basic
concepts.

Theta
Theta (θ), which is the angle from the X-axis origin, is measured in a counterclockwise
direction. In cartesian (rectangular) X- and Y-plots, theta “translates” to the X-axis.

r value
r represents the distance from the Y-axis origin. In cartesian (rectangular) X- and Y-plots,
r “translates” to the Y-axis. Multiple r values are allowed.

Angles
Angles can be measured in degrees, radians, or gradians.

X and Y Values in Polar Charts

2.1.2 Setting the Origin

All angles are relative to the origin base angle.
28 Part I ■ Using JClass Chart

The position of the X-axis origin is determined by the origin base angle. The OriginBase
property is a value between 0 and 360 degrees (if the angle unit is degrees).

In the Property Editor, the OriginBase property is located on the Polar/Radar inner
tab, located in the DataView tab’s General tab.

The Y-axis angle is the angle that the Y-axis makes with the origin base.
Chapter 2 ■ Chart Types and Special Chart Properties 29

The origin base angle is set to 0o by default. The Y-axis angle is set to 0o to the origin base
by default.

You can change the origin base angle, the Y-axis angle, or both.
30 Part I ■ Using JClass Chart

2.1.3 Data Format
The data format for Polar charts is either:

■ general – (x,y) for every series; or

■ array – only one X-value.

The X-array contains the theta values; the Y-array contains the r values. For array data,
the X-array represents a fixed theta value for each point.

For more information on general and array data, please see the discussion in Loading
Data From a File, in Chapter 6.

2.1.4 PolarChartDraw class

The PolarChartDraw class (which extends ChartDraw) is a drawable object for Polar
charts. This object is used for rendering a Polar chart based on data contained in the
dataObject.

The default constructor is PolarChartDraw().

There are two key methods in this class:

■ recalc() – recalculates the extents of related objects

■ draw() – draws related objects and takes as its parameter the graphics context to use
for drawing

2.1.5 Full or Half-Range X-Axis
Use the HalfRange property to determine whether the X-axis is displayed as one full
range from 0 to 360 degrees (HalfRange is false) or two half-ranges: from –180 degrees
to zero degrees to 180 degrees (HalfRange is true). In interval notation the range would
Chapter 2 ■ Chart Types and Special Chart Properties 31

be [0,360) when HalfRange is false and (–180, 180] when HalfRange is true. The
default value for the HalfRange property is false.

Figure 6 Half-range is On.

Figure 7 Half-range is Off.

This property is exclusive to Polar charts.

The HalfRange property is located on the Polar/Radar inner tab on the Property
Editor, in the DataView tab’s General tab.

2.1.6 Allowing Negative Values

Polar charts do not allow negative values for the Y-axis unless the Y-axis is reversed. A
negative radius is interpreted as a positive radius rotated 180 degrees.
Thus (theta, r) = (theta +180, –r)

2.1.7 Gridlines

Polar charts allow for gridlines to be turned on and off.
32 Part I ■ Using JClass Chart

Use the JCAXIS.setGridVisible() method to show or hide gridlines. The default is off.

For Polar charts, Y-gridlines will be circular while X-gridlines will be radial lines from the
center to the outside of the plot.

2.2 Chart Type: Radar Charts

A Radar chart plots data as a function of distance from a central point. A line connects the
data points for each series, forming a polygon around the chart center.

A Radar chart draws the Y-value in each data set along a radar line (the X-value is
ignored). If the data set has n points, then the chart plane is divided into n equal angle
segments, and a radar line is drawn (representing each point) at 360/n degree increments.
By default, the radar line representing the first point is drawn horizontally (at 0 degrees).

Radar charts permit easy visualization of symmetry or uniformity of data, and are useful
for comparing several attributes of multiple items. Although Radar charts look as if they
have multiple Y-axes, they have only one; hence, you cannot change the scale of just one
spoke.

Using ChartStyles, you can customize the line and symbol properties of each series.
Chapter 2 ■ Chart Types and Special Chart Properties 33

../api/com/klg/jclass/chart/JCAxis.html#setGridVisible(boolean)

2.2.1 Background Information for Radar Charts
An example of the X- and Y-values of a Radar chart is shown below; in this case, there
are seven X-values and three series of Y-values.

2.2.2 Data Format
A Radar chart uses only array data. For more information on array data, please see the
discussion in Loading Data From a File, in Chapter 6.

2.2.3 RadarChartDraw Class

The RadarChartDraw class (which extends PolarChartDraw) is a drawable object for radar
charts. This object is used for rendering a radar chart based on data contained in the
dataObject.

The default constructor is RadarChartDraw().

There are two key methods in this class:

■ recalc() – recalculates the extents of related objects

■ draw() – draws related objects and takes as its parameter the graphics context to use
for drawing
34 Part I ■ Using JClass Chart

2.2.4 Gridlines

Radar lines are represented by the X-axis gridlines. You may choose normal gridlines
(circular) or “webbed” gridlines. As with other chart types, gridlines may be displayed or
hidden (default is hidden).

Figure 8 Circular Gridlines.

Figure 9 Webbed Gridlines.
Chapter 2 ■ Chart Types and Special Chart Properties 35

2.3 Chart Type: Area Radar Charts

An area radar chart draws the Y-value in each data set along a radar line (the X-value is
ignored). If the data set has n points, the chart plane is divided into n equal angle
segments, and a radar line is drawn (representing each point) at 360/n degree increments.
Each series is drawn “on top” of the preceding series.

Area radar charts are the same as Radar charts, except that the area between the origin
and the points is filled.

Using ChartStyles, you can customize the fill and line properties of each series.
36 Part I ■ Using JClass Chart

2.3.1 Background Information for Area Radar Charts

An example of the X- and Y-values of an Area Radar chart is shown below; in this case,
there are seven X-values and three series of Y-values.

2.3.2 Data Format
An Area Radar chart uses only array data. For more information on array data, please see
the discussion in Loading Data From a File, in Chapter 6.

2.3.3 AreaRadarChartDraw Class

The AreaRadarChartDraw class (which extends RadarChartDraw) is a drawable object for
Area Radar charts. This object is used for rendering an Area Radar chart based on data
contained in the dataObject.

The default constructor is AreaRadarChartDraw().
Chapter 2 ■ Chart Types and Special Chart Properties 37

2.3.4 Gridlines
Radar lines are represented by the X-axis gridlines. You may choose normal gridlines
(circular) or “webbed” gridlines. As with other chart types, gridlines may be displayed or
hidden (default is hidden).

Figure 10 Circular Gridlines.

Figure 11 Webbed Gridlines.

2.4 JCPolarRadarChartFormat Class

The JCPolarRadarChartFormat class provides methods to get or set properties specific to
Polar, Radar, or Area Radar charts.

Origin Base
The origin base is the angle at which the theta axis origin is displayed. A value of 0
degrees corresponds to the 3 o’clock position.
38 Part I ■ Using JClass Chart

Set or get the origin base using the following public methods:

■ public void setOriginBase(int units, double angle);

■ public double getOriginBase(int units);

The units parameter can have values of JCChartUtil.DEGREES, JCChartUtil.RADIANS,
or JCChartUtil.GRADS.

Alternatively, you can call the following methods without specifying an angle unit to get
or set the origin base. In this case, the angle units are assumed to be the current value of
the chart area’s angleUnit property:

■ public void setOriginBase(double angle);

■ public double getOriginBase();

Y-Axis Angle
The Y-axis angle is the angle at which the Y-axis is displayed relative to the theta axis
origin. Set or get the Y-axis angle using the following public methods:

■ public void setYAxisAngle(int units, double angle);

■ public double getYAxisAngle(int units);

Alternatively, you can call the following methods without specifying an angle unit to get
or set the Y-axis angle. In this case, the angle units are assumed to be the current value of
the chart area’s angleUnit property:

■ public void setYAxisAngle(double angle);

■ public double getYAxisAngle();

Half-Range Flag
If the half-range flag is set, the theta axis labels range from –180 to 180 degrees. Set or get
the half-range flag using the following methods:

■ public void setHalfRange(boolean fHalfRange);

■ public boolean isHalfRange();

RadarCircularGrid
The isRadarCircularGrid property is specific to Radar and Area Radar charts. If the
circular grid flag is set, Y-gridlines will be circular; otherwise, the Y-grid will be webbed.
Set or get the isRadarCircularGrid property using the following methods:

■ public void setRadarCircularGrid(boolean fCircular);

■ public boolean isRadarCircularGrid();
Chapter 2 ■ Chart Types and Special Chart Properties 39

2.5 Special Bar Chart Properties

Bar charts display each point as one bar in a cluster. There are several properties defined
in JCBarChartFormat that control exactly how the bars are spaced and displayed. Use the
getChartFormat(JCChart.BAR)() method to retrieve and set these properties.

Cluster Overlap
Use the bar ClusterOverlap property to set the amount that bars in a cluster overlap each
other. The default value is 0. The value represents the percentage of bar overlap. Negative
values add space between bars and positive values cause bars to overlap. Valid values are
between -100 and 100. The syntax is as follows:

((JCBarChartFormat)dataView.getChartFormat()).setClusterOverlap(50)

Figure 12 Negative and positive bar cluster overlap.

Cluster Width
Use the bar ClusterWidth property to set the space used by each bar cluster. The default
value is 80. The value represents the percentage available space, with valid values
between 0 and 100. The syntax is as follows:

((JCBarChartFormat)dataView.getChartFormat()).setClusterWidth(100)

Figure 13 Setting different bar cluster widths.

100-Percent Stacking Bar Charts
The Y-axes of stacking bar charts can display a percentage interpretation of the bar data
using the 100Percent property. When set to true, each stacked bar’s total Y-values
40 Part I ■ Using JClass Chart

represents 100%. The Y-value of each bar is interpreted as its percentage of the total. This
property has no effect on bar charts. The syntax is as follows:

((JCBarChartFormat)dataView.getChartFormat()).set100Percent(true)

2.6 Special Pie Chart Properties

Pie charts are quite different from the other chart types. They do not have the concept of
a two-dimensional grid or axes. They also introduce a special category called “Other”, into
which all data values below a certain threshold can be grouped.

You can customize your pie charts with the properties of JCPieChartFormat. The
following code snippet shows the syntax for setting JCPieChartFormat properties:

JCPieChartFormat pcf = (JCPieChartFormat) arr.getChartFormat();
pcf.setOtherLabel("Other Bands");
pcf.setThresholdValue(10.0);
pcf.setThresholdMethod(JCPieChartFormat.PIE_PERCENTILE);
pcf.setSortOrder(JCPieChartFormat.DATA_ORDER);
pcf.setStartAngle(90.0);

2.6.1 Building the “Other” Slice

Pie charts are often more effective if unimportant values are grouped into an “Other”
category. Use the ThresholdMethod property to select the grouping method to use.
SLICE_CUTOFF is useful when you know the data value that should be grouped into the
Chapter 2 ■ Chart Types and Special Chart Properties 41

“Other” slice. PIE_PERCENTILE is useful when you want a certain percentage of the pie to
be devoted to the “Other” slice.

Figure 14 Three JClass Charts illustrating how the “Other” slice can be used.

Use the MinSlices property to fine-tune the number of slices displayed before the
“Other” slice. For example, when set to 5, the chart tries to display 5 slices in total. This
means that, if there is an “Other” slice, the chart will display 4 slices and the “Other”
slice; if there is no “Other” slice, the chart will display 5 or more slices.

2.6.2 “Other” Slice Style and Label

The OtherStyle property allows access to the ChartStyle used to render the “Other”
slice. Use FillStyle’s Pattern and Color properties to define the appearance of the
Other slice.

Use the OtherLabel property to change the label of the “Other” slice.
42 Part I ■ Using JClass Chart

2.6.3 Pie Ordering

Use the SortOrder property to specify whether to display slices largest-to-smallest,
smallest-to-largest, or the order they appear in the data.

2.6.4 Start Angle

The position in the pie chart where the first pie slice is drawn can be specified with the
StartAngle property. A value of zero degrees represents a horizontal line from the center
of the pie to the right-hand side of the pie chart; a value of 90 degrees represents a vertical
line from the center of the pie to the top-most point of the pie chart; a value of 180
degrees represents a horizontal line from the center of the pie to the left-hand side of the
pie chart; and so on. Slices are drawn clockwise from the specified angle. Values must lie
in the range from zero to 360 degrees. The default value is 135 degrees.

2.6.5 Exploded Pie Slices

It is possible to have individual slices of a pie “explode” (that is, detach from the rest of
the pie). Exploded slices can be used in both 2D and 3D pie charts.

Two properties of JCPieChartFormat are responsible for this function: ExplodeList and
ExplodeOffset.

ExplodeList specifies a list of exploded pie slices in the pie charts. It takes pts as a
parameter, which is composed of an array of Point objects. Each point object contains
the data point index (pie number) in the X-value and the series number (slice index) in
the Y-value, specifying the pie slice to explode. To explode the “other” slice, the series
number should be OTHER_SLICE. If null, no slices are exploded.

ExplodeOffset specifies the distance a slice is exploded from the center of a pie chart. It
takes off as a parameter, which is the explode offset value.

The following code sample shows how ExplodeList and ExplodeOffset can be used to
set the list of exploded slices.

Point[] exList = new Point[3];
exList[0] = new Point(0, 0);
exList[1] = new Point(1, 5);
exList[2] = new Point(2, JCPieChartFormat.OTHER_SLICE);
pcf.setExplodeList(exList);
pcf.setExplodeOffset(10);

The following code sample shows how to set up a pick listener such that when a user
clicks on an individual pie slice, that slice explodes (and then implodes if the user clicks
on it again):

public void pick(JCPickEvent e)
{

JCDataIndex di = e.getPickResult();
if (di == null) return;
Object obj = di.getObject();
Chapter 2 ■ Chart Types and Special Chart Properties 43

ChartDataView vw = di.getDataView();
ChartDataViewSeries srs = di.getSeries();
int slice = di.getSeriesIndex();
int pt = di.getPoint();
int dist = di.getDistance();
if (vw != null && slice != -1) {

JCPieChartFormat pcf = (JCPieChartFormat)vw.getChartFormat();
Point[] exList = pcf.getExplodeList();
if (exList == null) return;
// implode existing exploded slices
for (int i = 0; i < exList.length; i++) {

if ((exList[i].x == pt) && (exList[i].y == slice)) {
Point[] newList = new Point[exList.length - 1];
for (int j = 0; j < i; j++)

newList[j] = exList[j];
for (int j = i; j < newList.length; j++)

newList[j] = exList[j + 1];
pcf.setExplodeList(newList);
return;

}
}
// explode new slice
Point[] newList = new Point[exList.length + 1];
for (int j = 0; j < exList.length; j++)

newList[j] = exList[j];
newList[exList.length] = new Point(pt, slice);
pcf.setExplodeList(newList);

}
}

The full code for this program can be found in JCLASS_HOME/examples/chart/
interactions/. For more information on pick, see Using Pick and Unpick, in Chapter 10.

Saving and Loading Exploding Pie Slices

Exploded pie slice properties can be saved or loaded to or from HTML. This is done by
passing JCPieChartFormat’s setExplodeList() method an array of Point objects which
correspond to the exploded series and points. For each Point object in the array, the X
value represents the pie (or point) number, while the Y value represents the slice (or
series) number. To specify all of the points or series, use the ALL integer; to specify that the
“other” slice should be exploded, use other as the Y value.

In HTML, the code should resemble the following:

<APPLET CODEBASE="../../" ARCHIVE="lib/jcchart.jar" WIDTH=450 HEIGHT=300
CODE="com/klg/jclass/chart/applet/JCChartApplet.class">
<PARAM name="dataFile" value="sample_1.dat">
<PARAM name="data.chartType" value="PIE">
<PARAM name="data.pie.explodeList" value="0,all|all,1|3,3|4,other">
</APPLET>

where all slices on the first pie are exploded (0,ALL), the slices corresponding to the first
dataseries are exploded on all pies (ALL,1), the slice corresponding to the third dataseries
is exploded on the fourth pie (3,3), and the fifth pie’s “other” slice is also exploded
44 Part I ■ Using JClass Chart

(4,other). Note that the pie (or point) number starts at 0; therefore, the first pie is 0, the
second is 1, and so on.

2.7 Special Area Chart Properties

Similar to the stacking bar type, a stacking area chart is provided in JClass Chart. To see
an example of a stacking area chart, launch the Area demo from
JCLASS_HOME/demos/chart/area/.

Stacking Area Charts
A stacking area chart places each Y-series on top of the last. This shows the area
relationships between each series and the total. The following example shows the same
set of data as displayed by stacking area and area types:

To create a stacking area chart, set the ChartType property to JCChart.STACKING_AREA, as
follows:

dataView.setChartType(JCChart.STACKING_AREA);

100-Percent Stacking Area Charts
When 100Percent property is set to true, the Y-axes display as an area percentage of the
total. The top of the chart is 100% (the total of all Y-values).

Use the following syntax to display data in 100-Percent mode:

((JCAreaChartFormat)dataView.getChartFormat()).set100Percent(true)
Chapter 2 ■ Chart Types and Special Chart Properties 45

2.8 Hi-Lo, Hi-Lo-Open-Close, and Candle Charts
JClass Chart’s Hi-Lo, Hi-Lo-Open-Close, and Candle financial chart types use the Y-
values in multiple series to construct each “bar”. Hi-Lo charts use every two series and Hi-
Lo-Open-Close and candle charts use every four series. Each series defines a specific
portion of the bar:

■ First series — High value

■ Second series — Low value

■ Third series (if needed) — Open value

■ Fourth series (if needed) — Close value

Figure 15 Simple Candle chart displayed by stock demo.

It is useful to think of each group of series as one “logical series”. But note that most
JClass Chart properties or methods that use a series (such as chart labels attached by
DataIndex) use the actual series index.

Hi-Lo-Open-Close Charts
When the chart type is JCChart.HILO_OPEN_CLOSE, several properties defined in
JCHLOCChartFormat control how open and close ticks are displayed:

ShowingOpen Displays or hides open tick marks

ShowingClose Displays or hides close tick marks

OpenCloseFullWidth Displays open/close ticks across both sides of the bar. This
is useful for creating error bar charts.
46 Part I ■ Using JClass Chart

Customizing Chart Styles
Because these chart types use multiple series for each “row” of Hi-Lo or Candle bars, it is
difficult to determine which chart style specifies the display attributes of a particular row
of bars. To make programming the chart styles of financial charts easier, JClass Chart
provides several methods that retrieve and set the style for a logical series. These methods
are defined in the JCHiloChartFormat, JCHLOCChartFormat, and JCCandleChartFormat
classes. Each get method returns the JCChartStyle object used for the logical series you
specify. You can customize the properties in this returned object and then use the
appropriate set method to apply them to the same logical series in the chart.

Most of the financial chart types use only one or two JCChartStyle properties. The
following table lists the properties used by each chart type (see Chart Styles, in Chapter 9
for more information on chart styles):

For every financial chart type, except complex candle, the actual chart style used is that of
the first series.

Simple and Complex Candle Charts
You can choose between a simple and complex candle chart display using the Complex
property defined in JCCandleChartFormat.

When set to false, the chart style from just one series (the first) determines the
appearance of the candle. The table above shows the properties used. A rising stock price
is indicated by making the candle transparent. A falling stock price displays in the color
specified by FillColor.

Complex candle charts (Complex is true), use elements of the chart styles of all four series,
providing complete control over every visual aspect of the candles. The convenience
methods defined in JCCandleChartFormat make it easy to retrieve/set the style that
controls the appearance of a particular aspect of the candles.

The following lists the JCChartStyle properties that control each aspect of a complex
candle, along with which of the four chart styles is used:

■ Hi-Lo line — LineColor property (first chart style).

■ Rising price candle color and width — FillColor and SymbolSize properties (second
chart style).

LineColor SymbolSize

Hi-Lo

Hi-Lo-Open-Close

Candle (simple)

Candle (complex) see below
Chapter 2 ■ Chart Types and Special Chart Properties 47

■ Falling price candle color and width — FillColor and SymbolSize properties (third
chart style).

■ Candle outline — LineColor property (fourth chart style).

Example Code
The following code sets the rising and falling candle styles of a complex candle chart:

JCChartStyle chartStyle;
JCCandleChartFormat candleFormat;

// Set candle to complex type so we can change colors
 candleFormat=(JCCandleChartFormat)chart.getDataView(1).getChartFormat();

candleFormat.setComplex(true);

// Change rising candle color
chartStyle = candleFormat.getRisingCandleStyle(0);
chartStyle.setLineColor(Color.green);
chartStyle.setFillColor(Color.red);

// Change falling candle color
chartStyle = candleFormat.getFallingCandleStyle(0);
chartStyle.setLineColor(Color.green);
chartStyle.setFillColor(Color.yellow);

Two demo programs included with JClass Chart illustrate creating financial charts: the
stock demo, located in JCLASS_HOME/demos/chart/stock/, and the financial demo, located
in JCLASS_HOME/demos/chart/financial.
48 Part I ■ Using JClass Chart

3
SimpleChart Bean Tutorial

Introduction to JavaBeans ■ SimpleChart Bean Tutorial

3.1 Introduction to JavaBeans

JClass Chart components are JavaBean-compliant. The JavaBeans specification makes it
very easy for a Java Integrated Development Environment (IDE) to “discover” the set of
properties belonging to an object. The developer can then manipulate the properties of
the object easily through the graphical interface of the IDE when constructing a program.

The three main characteristics of a Bean are:

■ the set of properties it exposes

■ the set of methods it allows other components to call; and

■ the set of events it fires

Properties control the appearance and behavior of the Bean. Bean methods can also be
called from other components. Beans fire events to notify other components that an
action has happened.

3.1.1 Properties

“Properties” are the named method attributes of a class that can affect its appearance or
behavior. Properties that are readable have a “get” (or “is” for booleans) method, which
enables the developer to read a property’s value, and those properties that are writable
have a “set” method, which enables a property’s value to be changed.

For example, the JCAxis object in JClass Chart has a property called
AnnotationMethod. This property is used to control how an axis is labelled. To set the
property value, the setAnnotationMethod() method is used. To get the property value,
the getAnnotationMethod() method is used.

For complete details on how JClass Chart’s object properties are organized, see
JClass Chart Object Containment and Setting and Getting Object Properties, in Chapter
1.
49

Setting Bean Properties at Design-Time
One of the features of any JavaBean component is that it can be manipulated interactively
in a visual design tool (such as a commercial Java IDE) to set the initial property values
when the application starts. Consult the IDE documentation for details on how to load
third-party Bean components into the IDE.

You can also refer to the JClass and Your IDE chapter in the JClass DesktopViews
Installation Guide.

Most IDEs list a component’s properties in a property sheet or dialog. Simply find the
property you want to set in this list and edit its value. Again, consult the IDE’s
documentation for complete details.

3.2 SimpleChart Bean Tutorial

This tutorial guides you through the development of an application that uses SimpleChart
to chart the financial information of “Michelle’s Microchips”. It is a good starting point
for learning basic JClass Chart features. To explore more advanced features of
JClass Chart, however, we recommend that you use the MultiChart Bean.

The tutorial does not cover all of the properties available in SimpleChart. For a complete
reference, see Bean Reference, in Chapter 4. The screen captures have all been taken
from Sun’s BeanBox and will differ slightly from your IDE’s appearance.

3.2.1 Steps in this Tutorial

This tutorial has eight steps:

1. Create a new application in your IDE and add a container.

2. Put a SimpleChart object into the container.

3. Load the data for Michelle’s Microchips.

4. Add a header, footer, and legend.

5. Add point labels to the X-axis.

6. Change the background color to white.

7. Set the chart type to bar, and add 3D effects.

8. Compile and run the application.

Step 1: Create the ‘Michelle’ Application
Create a new application in your IDE and add a container to hold a SimpleChart object.
In most IDEs this will be a panel. See your IDE’s documentation for instructions on
creating a basic application and adding a container.
50 Part I ■ Using JClass Chart

../getstarted/index.html
../getstarted/index.html

Step 2: Put a Chart Object into the Container
With the container displayed in design mode, click the SimpleChart icon and place a
SimpleChart object into the container’s area. See your IDE’s documentation for details
on placing objects into a container. The SimpleChart icon looks like this:

In your container object, you should now see a basic chart area with an X- and
Y-axis, like this:

If you open your property list (the window that displays the Bean’s properties) with the
SimpleChart area selected, you should see the property editors that are available in
SimpleChart.

Step 3: Load Data from a File
This tutorial uses data from a file named chart2.dat contained in the
JCLASS_HOME/examples/chart/intro/chart2.dat directory. To load chart2.dat into
SimpleChart, bring up the custom data source editor by clicking on the data property:

The data source editor provides two methods for loading data: editing data in the text
area, or loading data from a file. For Michelle’s Microchips, click the Load data from a
Chapter 3 ■ SimpleChart Bean Tutorial 51

file radio button. Then, enter the full path name of chart2.dat in the File Location field.
After you click Done, you should see the data displayed in the chart area as follows:

What’s in chart2.dat?
chart2.dat has financial information for Michelle’s Microchips, formatted for the file data
source method of data loading. SimpleChart accepts only .dat files, or modifications to
the default data in the editor. For more information on creating a file data source, see
Loading Data from a File, in Chapter 8.

The content of chart2.dat is:

JClass Chart also has other Beans which allow you to chart data from a database easily.
See Bean Reference, in Chapter 4, for more information.

Step 4: Add a Header, Footer, and Legend
Enter “Michelle’s Microchips” in the headerText property editor and “1963 Quarterly
Results” in the footerText property editor:

ARRAY '' 2 4
'Q1' 'Q2' 'Q3' 'Q4'
'' 1.0 2.0 3.0 4.0
'Expenses' 150.0 175.0 160.0 170.0
'Revenue' 125.0 100.0 225.0 300.0
52 Part I ■ Using JClass Chart

To add the legend, set the legendVisible property to true. The legend text is taken from
information in the data source. Notice how the plot area is resized to accommodate the
legend. You may have to resize your chart area to accommodate the changes:

For more information on legend properties, see Legends, in Chapter 4.

Step 5: Add Point Labels to the X-axis
By default, SimpleChart annotates the axes with values. You can change the annotation to
show point labels or time labels.

For Michelle’s Microchips, change the X-axis annotation from values to point labels. Do
this by setting the xAxisAnnotationMethod property to Point_Labels:

You should now see “Q1”, “Q2”, “Q3”, and “Q4” on the X-axis. These labels are
contained in the chart2.dat file, and come up automatically when Point_Labels is
selected. For more information on axis annotation, see Axis Properties, in Chapter 4.

Step 6: Change the Background Color
To change the background color to white, click the background property to bring up your
color editor:
Chapter 3 ■ SimpleChart Bean Tutorial 53

The custom color editor used by your IDE will differ from the BeanBox. Select pure
white from the options on your color editor:

Step 7: Change to Bar Chart and add 3D Effects
You can select from 13 chart types using the chartType property editor (see Chart Types,
in Chapter 4, for a complete list). For Michelle’s Microchips, select the BAR type:

To add three-dimensional visuals to your chart, click the view3D property to bring up the
View3DEditor:

There are two main settings in the View3DEditor (below): depth, and combined
elevation and rotation. They are both set either by dragging the box in the editor with a
mouse or by typing in the value in the editable box next to these settings.

First, drag the square with your mouse until you have an Elevation of 45 and a Rotation
of 45, or simply type “45” in the editable box next to these settings. Second, check the
54 Part I ■ Using JClass Chart

Change Depth box, and drag the red square until it has a depth of 31, or simply type
“31” in the editable box next to Depth. Click Done to set the changes:

Step 8: Compile and Run the Application
For the last step, compile and run the application. See your IDE’s documentation for
details. When you run the application, you should have a window with a chart, displaying
Michelle’s Microchips’ financial information.

The following example illustrates how the application appears when run:
Chapter 3 ■ SimpleChart Bean Tutorial 55

56 Part I ■ Using JClass Chart

4
Bean Reference

Choosing the Right Bean ■ Standard Bean Properties ■ Data-Loading Methods

This chapter is a reference for JClass Chart Beans and their properties. For basic Bean
concepts and a tutorial, see the SimpleChart Bean Tutorial, in Chapter 3.

4.1 Choosing the Right Bean

When creating new applications in an IDE, you can use MultiChart, SimpleChart, or
one of the data-binding Beans. Unless you are binding to a database, we recommend
using MultiChart, both for learning JClass Chart’s features and creating new applications.

The MultiChart Bean
MultiChart is JClass Chart’s most powerful Bean. It contains a richer set of features than
previous Beans, highlighting the superiority of JClass Chart as a charting application tool.
Among its features are the ability to handle multiple data sources and multiple axes. For
more information, see MultiChart, in Chapter 5.

SimpleChart
SimpleChart was designed for quick chart development in any IDE environment.
It exposes the most commonly used charting properties, and presents them in easy-to-use
property editors. SimpleChart can load data from a file or a design-time editor.

SimpleChart and the data- binding Beans share a common set of properties that are
covered in this chapter. SimpleChart and the data-binding Beans only differ in how they
load data. Therefore, this chapter is divided into Standard Bean Properties and Data-
Loading Methods.

Data-Binding Beans
If you want to load data from a database, you will have to use one of the data-binding
Beans. In order to chart data from a database, your application must be able to establish a
connection, perform necessary queries on the data, and then put the data into a chartable
format. This type of database connectivity is often called ‘data binding’.

There are data-binding Beans for JBuilder and for JClass DataSource.

Once you have set up your data handling for a specific Bean, you can then use the
Standard Bean Properties to customize your chart.
57

4.1.1 JClass Chart Beans
The following table shows all of the available JClass Beans and their uses:

4.1.2 JClass Chart Beans and JCChart
All JClass Chart Beans are subclasses of the main chart object, JCChart. This means that
the entire JClass Chart API is available to any developer using any of the Beans.

4.2 Standard Bean Properties
SimpleChart and the data-binding Beans (VBdbChart, JBdbChart, and DSdbChart) have a
set of standard properties that allow you to control the appearance and behavior of your
charts.

They only differ in the way they retrieve data. This section covers the standard
properties. See Data-Loading Methods, in Chapter 4, for information on data
management properties for the different Beans.

4.2.1 Axis Properties
JClass Chart Beans set up basic axis properties for you automatically, and adjust these
properties to your data. You can also customize your axes with the axes property editors.
You have control over the following axis properties:

■ Axis Titles

JClass Chart Bean Description

MultiChart The most powerful charting Bean.

■ Charts data from two data sources and plots them
against multiple axes.

■ Data sources can be a file, or data entered at design-
time. Also supports using Swing TableModel objects as
data sources.

■ Compatible with all IDEs.

See MultiChart, in Chapter 5, for complete details.

SimpleChart Charts data from a file or data entered at design-time. Also
supports a Swing TableModel object as a data source.
Compatible with all IDEs.

DsdbChart Binds a chart to JClass DataSource and charts data from a
database. Compatible with all IDEs and the BeanBox
(requires JClass DataSource Component).

JBdbChart Binds a chart to a JBuilder DataSet and charts data from a
database (requires Borland JBuilder 3.0+).
58 Part I ■ Using JClass Chart

■ Annotation Method

■ Axis Number Intervals

■ Axis Range

■ Axis Grids

■ Axis Hiding

■ Logarithmic Notation

■ Axis Orientation
Chapter 4 ■ Bean Reference 59

Axis Titles
Enter X- and Y-axis titles in the xAxisTitleText and yAxisTitleText property editors:

Annotation Method
Set the annotation method for the axes using the xAnnotationMethod and
yAnnotationMethod editors. By default, Value annotation is used for both:

Value_Labels notation can only be added programmatically or by using HTML
parameters; therefore, it is not very useful for Bean programming. The following
examples show the three applicable annotation methods as applied to the X-axis:

Axis Number Intervals
To specify the number interval on the axes, enter the interval into the yAxisNumSpacing
or xAxisNumSpacing property editors:

Axis Range
The axis number range is determined by the minimum and maximum values of the axes.
By default, these values are set automatically, based on the available data. You can specify
60 Part I ■ Using JClass Chart

the range by using the xAxisMinMax and yAxisMinMax property editors. Enter the
minimum value on the left of the comma, and the maximum on the right:

Logarithmic Notation
You can specify that one or both of the axes are logarithmic by setting the
xAxisLogarithmic or yAxisLogarithmic properties to true:

Hiding Axes
By default, both the X- and Y-axes are displayed. You can hide them by setting the
xAxisVisible or yAxisVisible properties to false. The following example hides the Y-
axis:

Showing Grids
Display gridlines for one or both axes by setting the xAxisGridVisible or
yAxisGridVisible properties to true. By default, the grids are hidden. The following
example sets both axes to display gridlines:

Axis Orientation
Axis orientation determines how the axes are positioned on the chart. By default, the axes
are positioned with the Y-axis left/vertical and the X-axis right/horizontal. Use the axis
Chapter 4 ■ Bean Reference 61

orientation custom editor to change how your axes are oriented. To launch the custom
editor, click the axisOrientation property:

The axis orientation editor will illustrate the eight combinations. Select the desired
orientation and click Done.

4.2.2 Chart Types

By default, JClass Chart Beans use the Plot chart type to display data. To change to
another type, use the chartType property editor. The following example selects the PIE
type:

Data Interpretation
The following examples show how data is displayed by the different chart types:

Area Bar Candle HiLo
62 Part I ■ Using JClass Chart

4.2.3 Display Properties

Font
Set the size and style of text on your chart by clicking the font property:

The font you choose will apply to all text on the chart simultaneously with the exception
of the header and footer. Note that the font editor that appears in your IDE may be
different from the example below. The following example sets the font to Courier, Bold,
24 point, with the BeanBox font editor:

Note: The different font properties all work in the same way. Font affects all text on the
chart area and legend. Header font affects the header, and Footer Font affects the footer.

Hilo_Open_Close Pie Plot Scatter_Plot

Stacking_Area Stacking_Bar Polar
Area Radar

Radar
Chapter 4 ■ Bean Reference 63

Foreground and Background Colors
Click the foreground and background properties to set the foreground and background
colors of your chart. A color editor will appear. By default, the colors are black
foreground and light-gray background:

Most IDEs have their own color editors that differ from the BeanBox. The following
example sets the background color to red:

3D Effects
To add 3D effects to your chart, click the View3D property:

This will bring up the View3DEditor. There are two main settings in the
View3DEditor: depth, and combined elevation and rotation.

You can add 3D effects either by typing a value in the editable box next to the Depth,
Elevation, and Rotation settings, or by dragging the red square in the editor until it has
the desired Elevation and Rotation. Then, check the Change Depth option box, and
drag the red square until it has the Depth you want; alternatively, simply type in the value
in the editable box next to this setting.
64 Part I ■ Using JClass Chart

The degree of depth, elevation, and rotation is displayed in numbers at the top of the
editor. Click Done to set the changes:

4.2.4 Headers and Footers

Add a header, footer, or both with the headerText and footerText property editors. The
following example sets both:

The font characteristics of the header and footer are determined by the Header Font and
Footer Font properties. See Section 4.2.3, Display Properties, for more details.

4.2.5 Legends

You can add a legend, position it, and select its layout. The legend is set up from
information in the data source. For information on how to set up legend items in the data
source, see Data Formats, in Chapter 8.
Chapter 4 ■ Bean Reference 65

Showing the Legend
To show the legend, set the legendVisible property to true:

Legend Placement
Specify where the legend will be anchored in the chart area by selecting a compass
direction from the legendAnchor property options. By default, legends are anchored on
the East. The following example anchors the legend North:

Legend Layout
Legend items can be laid out vertically or horizontally. By default the legend has a
vertical layout. To specify a horizontal layout, set the legendOrientation property to
Horizontal:

4.3 Data-Loading Methods

This section covers the data-loading methods of SimpleChart and the data-binding Beans.
For MultiChart data-loading details, see MultiChart, in Chapter 5. Select the Bean that
66 Part I ■ Using JClass Chart

best matches your data needs and follow the instructions on loading the data for that
Bean:

If you are using an IDE other than Borland JBuilder, and you want to connect to a
database, you will have to use JClass DataSource (see below). JBuilder users may still
want to use the JClass DataSource for data-binding instead of their IDE-specific solutions.

JClass DataSource
JClass DataSource is a full data-binding solution. It is a robust, hierarchical, multiple-
platform data source that you can use to bind and query any JDBC-compatible database.
It can also bind to platform-specific data solutions in JBuilder.

JClass DataSource is available only in the JClass DesktopViews suite (which also contains
JClass Chart, JClass Chart 3D, JClass Elements, JClass Field, JClass HiGrid,
JClass JarMaster, JClass LiveTable, and JClass PageLayout). Visit http://www.quest.com for
information and downloads.

4.3.1 SimpleChart: Loading Data from a File

There are two ways of loading data with the SimpleChart Bean: from a .dat file, or by
entering data directly into the custom editor. Both methods are managed by the
DataSourceEditor. To bring up the DataSourceEditor, click on the data property:

The DataSource Editor will appear (see below).

JClass Chart Bean Data Source & IDE Compatibility

SimpleChart ■ Formatted file or design-time editor.
■ Also supports using a Swing TableModel

object as the data source.
■ All IDEs.

DSdbChart ■ Data binding.
■ All IDEs (requires JClass DataSource

component).

JBdbChart ■ Data binding.
■ Borland JBuilder 3.0+.
Chapter 4 ■ Bean Reference 67

http://www.quest.com

Loading Data from a .dat File
To load data from a file, click Load data from a file, enter the name of the file in the
File Location field, and click Done:

Specify the full path of the file. The file must be pre-formatted to the JClass Chart
Standard (see Data Sources). Sample data files are located in the
JCLASS_HOME/examples/intro/chart2.dat directory.

Editing the Default Data
You can use the data provided in the editor as is, or you can modify it. To use existing
data, just check the Edit data in the text area radio button, and click Done. Change
data by deleting and inserting text in the area provided. Be careful to preserve the
punctuation surrounding the original text:

The chart below shows how the default data appears as a plot. Notice where the different
elements are positioned. Each point on the X-axis is labelled with the names specified in
the default data. The name of each series of y-values appears in the legend. The name of
the data view is positioned directly above the legend.
68 Part I ■ Using JClass Chart

In order for the default data to display this way, you must first set the xAxisAnnotation
property to Point_Labels, and the legendVisible property to true.

4.3.2 SimpleChart: Using Swing TableModel Data Objects
Your (Swing) application may have the data you want to chart contained in a Swing
TableModel-type data object. You can use this object as your data source instead of using
the JClass Chart built-in data sources if your IDE supports a TableModel editor.

Use the SwingDataModel property to specify an already-created Swing TableModel object
to use as the chart’s data source.

4.3.3 Data Binding in Borland JBuilder
Binding a chart to a database in JBuilder involves adding a database connection and
query functionality with JBuilder Components, and then using JBdbChart to connect to
the dataset and chart the data. This section walks through these steps.

Database connection and querying are handled by JBuilder components. Our coverage
of these components is only intended as a guide. For detailed information on JBuilder
database connectivity, consult your JBuilder documentation.

Before proceeding, make sure you have:

■ Borland JBuilder 3.0+.

■ JBdbChart Bean loaded in your JBuilder Palette. For details on how to load a Bean,
see the JClass DesktopViews Installation Guide (available in HTML and PDF formats)
or your JBuilder documentation.

■ Database set up properly.

■ Basic SQL command knowledge.
Chapter 4 ■ Bean Reference 69

../getstarted/index.html

Step 1: Connect to a Database
Use JBuilder’s Database Bean to add a database connection. The icon is found under the
Data Express tab.

Add an instance to your frame. Then, use the connection property to specify the URL of
the database that you want to use.

Step 2: Query the Data
To query the database, add an instance of JBuilder’s QueryDataSet to your frame. This
Bean is found under the Data Express tab.

Select columns that you may want to chart with the query property editor. Each column
will represent a series of data, or point labels. For example, to select all of the columns
from a table named MotorVehicle_Sales, you would type a statement similar to:

select * from MotorVehicle_Sales

You can include all columns at this step, and then use JBdbChart to choose which ones to
display later.

Step 3: Connect the Chart to the DataSet
With the database connection established and the query created, you can now use
JBdbChart to connect to the JBuilder DataSet and chart the data. JBdbChart’s data
binding properties are dataSet, and DataBindingMetaData.

Insert a JBdbChart into your frame.

Select a query from the dataSet property’s pull down menu. If the database connection
and query are set up properly with JBuilder components, there should be one or more
queries in the list.

You can now select the columns and range of data that will be displayed. Columns that
contain numeric data are considered ‘data series’, and can be plotted on a chart. Columns
70 Part I ■ Using JClass Chart

that have non-numeric data can be used for point labels on the X-axis. Click the
dataBindingConfig property to bring up the custom editor:

This editor allows you to set the columns and the data range of the chart. Click on column
names to select them (when they are highlighted, they are selected).

The Potential series columns are numeric. The Potential point label column is non-
numeric.

You can either set the range to all data by checking the All rows box, or you can specify
a range using the Start row and End Row fields.

In order to display the point labels on the X-axis, you have to set the
xAxisAnnotationMethod property to Point_Labels. For more information,
see Section 4.2.1, Axis Properties.
Chapter 4 ■ Bean Reference 71

You should see your data in the design frame:

With your connection established, you can then use the Standard Bean Properties to
customize and enhance your chart. In the example above, a header, footer, axis title,
legend, point labels, and 3D effects have been added.

4.3.4 Data Binding with JClass DataSource

The JClass DataSource manages all connection and query functionality for data binding.
After establishing a connection and query with JClass DataSource, you then bind
DSdbChart to JClass DataSource to chart the data.

The JClass DataSource package contains a number of Beans used for binding to
databases, including JCTreeData and JCData. This section will illustrate the process with
the JCData Bean. DSdbChart uses the same method to connect to either Bean. Consult
your JClass DataSource documentation for details on their features and how to use them.

To use this solution, you require the following:

■ Sun’s BeanBox or any IDE.

■ JClass DataSource (available only in JClass DesktopViews. Visit http://www.quest.com
for information and downloads).

■ DSdbChart loaded into the BeanBox or IDE. For details on how to load a Bean, see
the JClass DesktopViews Installation Guide (available in HTML and PDF formats) or
your JClass DataSource documentation.

■ If you are using Windows, you will need to establish an ODBC database connection.
Set this in Control Panel > ODBC. If you are using Windows 2000, establish an
ODBC database connection via Control Panel > Administrative Tools > Data
Sources (ODBC). For more information on running JClass DataSource examples,
please see the readme file.
72 Part I ■ Using JClass Chart

../../readme.html
http://www.quest.com
../getstarted/index.html

The following steps guide you through using DSdbChart to connect to JClass DataSource.
They are: connect to a database, query the data, and connect DSdbChart to the
JClass DataSource.

Step 1: Connect to a Database
Add a JCData instance to your design area. The icon looks like this:

Click the nodeProperties property to bring up the NodePropertiesEditor.

This editor manages all of the connection and query settings. The first thing you have to
do is set up a serialization file under the Serialization tab. This file saves information and
settings about the connection. You can then proceed to set up a connection and query.
Chapter 4 ■ Bean Reference 73

To set up a database connection, go to the DataModel > JDBC > Connection tab, and
specify the Server Name and Driver for the database you want to connect to. Test the
connection. If there are error messages, consult your JClass DataSource documentation.

When your connection is successful, you can then proceed to set up a query.

Step 2: Query the Data
Click the Data Model > JDBC > SQL Statement tab to show the query options:

You can create your whole SQL query using mouse clicks. First, add a table, and then
create a query by selecting columns. When you are all finished, click Set/Modify, and
then Done.

Step 3: Connect a Chart to JClass DataSource
With your database connection established, you can then bind a chart to the data. This is
done using the dataBinding and DataBindingMetaData property editors.
74 Part I ■ Using JClass Chart

First, add DSdbChart to your design area. The icon looks like this:

Click the dataBinding property to bring up the DataBindingEditor.

If the connection in JClass DataSource is properly established, you should see one or
more data sources to select from:

Select a source and click Done.
Chapter 4 ■ Bean Reference 75

You can now select the columns and range of rows to be displayed in the chart. To do this,
click the DataBindingConfig property to bring up the DataBindingConfig custom editor:

There are two lists of columns:

■ a Potential point labels column – a combo box containing the columns that can be used
for the X-axis point labels.

■ a Potential series column – a list comprising the numeric columns that can be used as the
Y-series.

In order to display the point labels on the X-axis, set the xAxisAnnotationMethod
property to Point_Labels. For more information, see Section 4.2.1, Axis Properties.

You can either set the range to all data by checking the All rows box, or you can specify
a range using the Start Point and End Point fields.

When you click Done, you should see the data displayed in the design area of the
Beanbox or IDE. Your data binding is complete.
76 Part I ■ Using JClass Chart

5
MultiChart

Introduction to MultiChart ■ Getting Started with MultiChart ■ MultiChart Property Reference

5.1 Introduction to MultiChart

MultiChart is the next generation charting Bean from JClass Chart. It contains a richer
set of features than previous Beans, highlighting the superiority of JClass Chart as a
charting application tool.

The MultiChart icon:

Highlights of the MultiChart Bean

■ Handles multiple data sources.

■ Plots data against multiple X- and Y-axes.

■ Fully customizable axes.

■ Extensive control of font, colors, borders, and styles for each chart element.
77

5.1.1 Multiple Axes

MultiChart can have two X- and two Y-axes, as in the example below:

Setting Properties on Multiple Axes
Axis properties can be set for each axis individually. At the top of each axis editor you
will see four radio buttons:

When a radio button is selected, all that follows below will apply to that axis.

5.1.2 Multiple Data Views

MultiChart allows you to load data from two different sources at the same time. When
loading data from two different sources, they are each assigned to a separate data view.

By default, both data views are showing, but you can hide or reveal data views depending
on your application’s needs. Both sets of data can be mapped to the same set of X- and Y-
axes, or, mapped to different axes.

Note: Radar, area radar, and pie charts do not support multiple data views. For more
information on Data Views, see Data Views, in Chapter 8.

5.1.3 Intelligent Defaults

MultiChart has a sophisticated set of dynamic default settings in the custom property
editors. You can override these defaults to suit your needs. When you override a default
value in a text editor, it becomes static, and will not automatically adjust anymore.

Returning to Default Values
If you want to return to default settings in the custom editors after overriding them, all
you have to do is delete the contents of the changed field, and leave it blank. The next
time you bring the editor you will see that the automatic values have returned.
78 Part I ■ Using JClass Chart

5.2 Getting Started with MultiChart

MultiChart has a sophisticated set of dynamic default settings that adjust to your data and
other settings. This means that you only have to make a minimum of settings to have a
respectable chart. The following list describes the most common start-up tasks and the
editors used for them:

■ Load Data. To load data in the chart, use the DataSource editor. This editor allows
you to load data from one or two sources. There is also a default set of data built-in
that you can use to experiment with. Alternately, you can use a Swing TableModel
data object as the chart’s data source using the SwingDataModel property.

■ Select Chart Types. For each data view, you can select a chart type and the axes that
the data will be plotted against with the DataChart editor.

■ Set BackGround Color. Use ChartAppearance to set the color of the chart
background.

■ Set Axis Annotation. By default, MultiChart uses values to annotate the axes. You
can also use value labels, point labels, or time labels by setting the annotation type
with the AxisAnnotation editor.

■ Add a Legend. Add a legend by checking the Visible box in the LegendAppearance
editor.

■ Add a Header and Footer. To add a header, use HeaderText to add the text, and
then select the Visible check box in HeaderAppearance. The footer is the same, but
uses the FooterText, and FooterAppearance editors

■ Add Extra Axes. By default a standard X-Y axis set is displayed. If you require, you
can display a second X- or Y-axis. Display them with the AxisMisc editor’s Visible
property. Then use the many axis editors, such as AxisPlacement, to set up and align
the axes.

5.3 MultiChart Property Reference
The following property reference section covers all of MultiChart’s features.

5.3.1 Axis Controls
This group of editors sets up the axes. MultiChart has a sophisticated set of automatic
default values that adjust to your data. This makes chart development fast and easy.
MultiChart is also extremely flexible, and every aspect of the axes can be adjusted.

AxisAnnotation
With the AxisAnnotation editor, you can set the annotation type for each axis, and
control how they look. Axis annotations are numbers or text that appear along the axes.
Chapter 5 ■ MultiChart 79

Options in the Method menu are: Value, Time_Labels, Point_Labels, and
Value_Labels.

For each of the labelling methods, there is a corresponding editor that gives you more
control over the behavior and appearance. For Value, use AxisScale, for Point_Labels,
use AxisPointLabels, for Time_Labels, use AxisTimeLabels, and for Value_Labels, use
AxisValueLabels.

The following examples illustrate the different label types:

With the Rotation property, you can rotate the labels on the axis. The following example
shows Value_Labels, rotated by 270 degrees and with bold, 12pt font:

Gap controls the space between annotations, in pixels. If, for example, you used point
labels, you could use the Gap property to make sure they have enough room to display
properly.

Time_Labels Value Value_Labels
80 Part I ■ Using JClass Chart

AxisGrid
Use the AxisGrid editor to set up gridlines on each of the axes. There are also controls for
color, line spacing, and line width of the gridlines.

The following example sets X Axis 1 grid and Y Axis 1 grid to Visible with Spacing = 1
and Width = 1 for the X Axis, and with Spacing = 1 and Width = 10 for the Y Axis:

AxisOrigin
The AxisOrigin editor allows you to specify an origin by coordinates, or by choosing an
option from a pull down menu. By default, axes origins are set automatically, based on
the available data.
Chapter 5 ■ MultiChart 81

To place the origin, you can select one of the locations from the pull-down menu, such as
Min or Max. If you want to set the origin to a specific value on the axis, select
Value_Anchored from the menu and then enter the value in the Origin field:

The following example anchors the origin of Y Axis 1 at 20 (default data):

Note that, by default, X Axis 1 is placed at the origin of Y Axis 1. To override this default,
use the AxisPlacement editor.

AxisPlacement
Axis placement determines the placement of an axis in relation to another. By default, this
is set automatically by MultiChart, based on the given data. Sometimes, however, you
may want to locate an axis in a different location.

Using the Placement field, select the type of placement for the axis selected. Placement
options include: Min, Max, Automatic. Origin, and Value_Anchored.
82 Part I ■ Using JClass Chart

The Axis field selects the anchor-axis that you want to place the current axis against (for
example, place X Axis 1 in relation to Y Axis 2). If you select None as an Axis,
MultiChart will use the default axis.

To place the axis at a specific value along another axis, select Value_Anchored from the
pull-down menu, and enter the value in the Location field.

The following example shows X Axis 1, with a Placement of Max in relation to Y Axis 1:

AxisMisc
Use AxisMisc to show or hide any of the axes. It also allows you to make any axis
logarithmic. The Editable property, when selected, allows zooming, editing, and
translation for the selected axis. For more information on interactive events, see Section
5.3.6, Event Controls.

The following example hides X Axis 1 from view by deselecting Visible.

AxisPointLabels
Use the AxisPointLabels editor to create point labels (applies to X1 and X2 axes only).
Point labels label specific points of data on the X-axes.

The editor reads data from the data source associated with the selected axis and provides
a list of point labels. To change the text in these labels, change the text alongside the
Chapter 5 ■ MultiChart 83

point. Note that the format is “point value then comma then the name of the label”. For
example,

3.0, PointLabel3

In order for the labels to appear on the chart, you also have to set the annotation method
to Point_Labels in the AxisAnnotation editor. See below for an example.

The following example shows how the default data’s point labels appear on
X Axis 1:

Note that if you are mapping multiple data sources against a single axis, then you will
want to use value labels instead, as the AxisPointLabels editor only uses points from the
first data source associated with the selected axis.

AxisRelationships
The AxisRelationship editor allows you to create a mathematical relationship between
two axes. For example, if you want to create a thermometer chart with Celsius values on
the left and the Fahrenheit values on the right, you could create a Celsius axis, and then
base the Fahrenheit axis values on it.
84 Part I ■ Using JClass Chart

There are three properties included in this calculation: Originator, Multiplier, and
Constant. The calculation is based on the formula:

New Axis Value = Constant + Multiplier X Originator.

To use this editor, first click on the radio button next to the Axis that you want to alter.
Next, select an axis from the Originator menu that your calculation will be based on,
and then enter a value in the Multiplier field that represents the relationship. The
Constant value is optional; its default value is 0.0.

AxisScale
The AxisScale editor controls the range on each axis, the interval of the numbering, and
Tick Spacing. It is used primarily for the Value method of axis annotation (see the
AxisAnnotation). Precision determines the numeric precision of the axis numbering.

The effect of Precision depends on whether it is positive or negative:

■ Positive values add that number of places after the decimal place. For example, a value
of 2 displays an annotation of 10 as “10.00”.

■ Negative values indicate the minimum number of zeros to use before the decimal
place. For example, a value of –2 displays annotation in multiples of 100.

The default value of Precision is calculated from the data supplied.
Chapter 5 ■ MultiChart 85

The Min and Max fields determine the range of data that is displayed on the chart. There
are intelligent defaults in this editor that adjust to your data and other chart settings. You
can override these settings with the fields provided.

AxisTimeLabels
The AxisTimeLabel editor allows you to control how the time labels appear. When you
select the annotation method with AxisAnnotations, you can select time labels, which
represent the values on the axis as units of time.

Time Base determines the date and time that the labelling starts from (default is current
time/date). Time Unit is the unit of time the labels use, such as year, month, day, minute,
second, and so on. The default time unit is minutes.
86 Part I ■ Using JClass Chart

Time Format allows you to customize the text in the time labels with a set of formatting
codes. See Axis Labelling and Annotation Methods, in Chapter 7, for a list of these codes.

The following example uses time labelling on X Axis 1, with seconds as the time unit:

AxisTitle
Using the AxisTitle editor, you can add axis titles to each axis. There are also settings for
the font, point, rotation, and placement of the title.

In the Placement field’s pull-down menu are a list of compass directions for title
placement. Not all options are available to X- and Y-axes. If you select a placement, and it
returns to the previous selection, that placement is not available for that axis. The
Chapter 5 ■ MultiChart 87

following image shows the effects of adding titles to X Axis 1 and Y Axis 1, and setting the
font to bold, with a size of 12:

AxisValueLabels
Use the AxisValueLabel editor to enter value labels for the axes. Value labels appear
along the axis at specified values. You also have to set the annotation method to
Value_Labels, in the AxisAnnotation editor before the labels will display.

To add value labels, enter the value, followed by a comma and a label (see above). The
following example shows how the labels in the editor above appear on X Axis 1.

5.3.2 Headers, Footers, and Legends

FooterText
The FooterText editor allows you to enter text that will appear at the bottom of the chart
area. You can also select a font, font style, and size for the footer.
88 Part I ■ Using JClass Chart

Note that the footer will not display unless you check the Visible box, in the
FooterAppearance editor (this editor also controls footer opacity, background, and
foreground).

The following example shows how a ‘pointless footer’ appears on the chart area:

HeaderText
The HeaderText editor allows you to enter header text, that will appear at the top of the
chart area. You can also select a font, font style, and size of the header.

Note that the header will not display unless you check the Visible box, in the
HeaderAppearance editor (which also controls header opacity, background and
foreground).
Chapter 5 ■ MultiChart 89

The following example shows how a ‘pointless header’ displays on the chart:

LegendLayout
The LegendLayout editor controls the layout of the legends. Orientation determines how
the legend items are placed in the legend (either vertically or horizontally). The Anchor
property positions the entire legend on the chart, based on compass directions.
90 Part I ■ Using JClass Chart

In order for the legend to display on your chart, the Visible checkbox in the
LegendAppearance editor must be selected.

Below are two examples of legend layout:

The example on the left uses the default settings with Anchor = East and Orientation =
Vertical. In the example on the right, Anchor = North and Orientation = Horizontal.

5.3.3 Data Source and Data View Controls
This group of editors manages the properties that control the data source, and the views
on the data. MultiChart can load data from two different sources. Each of the data
sources is assigned to a data view.
Chapter 5 ■ MultiChart 91

DataChart
The DataChart editor allows you to select the chart type of each data view, and which
axes each data view will be mapped against.

The ChartType property selects from the following chart types:

DataMisc
The DataMisc editor controls several aspects of the data views.

Area Bar Candle HiLo

Hilo_Open_Close Pie Plot Scatter_Plot

Stacking_Area Stacking_Bar Polar Area Radar

Radar
92 Part I ■ Using JClass Chart

With the Visible property, you can show or hide each data view from the display area.
Visible In Legend will show/hide a data view from the legend (but the data will still be
charted).

Automatic Labelling attaches a dwell label to every data point in the chart. A dwell
label is an interactive label that shows the value of a point, bar or slice, when a user’s
mouse moves over it. In the example below, ‘225’ appears on top of the green bar as the
cursor passes over it, indicating that the value of the bar is 225.

When Draw on Front Plane is selected, the data view will be mapped on the front plane
of a three dimensional chart space. Applies only in cases where there are multiple data
series, displayed on multiple axes, using 3D effects.

DataSource
There are three ways of loading data with the MultiChart Bean. Two are handled by this
property: from a .dat file, or by entering data directly into the custom editor. Both
methods are managed by the DataSource editor.

The third method is to use a Swing TableModel-type data object as a data source, instead
of using the JClass Chart built-in data source. See SwingDataModel below for details.

The first step is to select a data view with one of the radio buttons. Then, follow the
procedure below for each data view.
Chapter 5 ■ MultiChart 93

To load data from a file into a data view, click Load data from a file, enter the name of
the file in the File Location field, and click Done:

Specify the full path of the file. The file must be pre-formatted to the JClass Chart
Standard (see Data Sources, in Chapter 8). Sample data files are located in the
JCLASS_HOME/jclass/chart/examples directory.

You can use the data provided in the editor, as is, or you can modify it. To use existing
data, just check the Edit data in the text area radio button, and click Done. Change
data by deleting and inserting text in the area provided. Be careful to preserve the
punctuation surrounding the original text:

The chart below shows how the default data for Data View 1 appears as a plot. Notice
where the different elements are positioned. Each point on the X-axis is labelled with the
names specified in the default data. The name of each series of y-values appears in the
legend. The name of the data view is positioned directly above the legend.
94 Part I ■ Using JClass Chart

In order for the default data to display this way, you must first set the xAxisAnnotation
property to Point_Labels, and the legendVisible property to true.

SwingDataModel
Instead of using the chart’s internal data source, you can use a Swing TableModel-type
data object that you have already created for your application, if your IDE supports an
editor for TableModel. This saves reformatting your data to match the format used by
JClass Chart.

Use the SwingDataModel1 property to specify an already-created Swing TableModel
object to use as the data source for the first data view. Use SwingDataModel2 to specify a
TableModel object to use for the chart’s second data view.

5.3.4 Appearance Controls

This group of editors allows you to control the look of specific chart subcomponents. You
can control font, borders, background, and foreground for the chart, chart area, plot area,
Chapter 5 ■ MultiChart 95

header, footer, and legend. The following diagram illustrates the different chart
subcomponents.

All of the editors have the same basic functionality that apply to a specific chart
subcomponent, as follows:

Small differences in each editor will be discussed below. Note that for most of the
appearance editors, there are corresponding editors for controlling other properties of
that chart element.
96 Part I ■ Using JClass Chart

ChartAppearance
The ChartAppearance editor sets the foreground/background border, and opaque values
for the chart. This editor affects the areas behind all other chart elements.

ChartAreaAppearance
The ChartAreaAppearance editor sets the foreground/background border, visible, and
opacity values for the chart area (see diagram above).

FooterAppearance
The FooterAppearance editor sets the foreground/background border, visible, and
opaque values for the footer. When Visible is checked, the footer will be displayed in the
chart. By default the footer is not showing. The FooterAppearance editor works in
conjunction with the FooterText editor, which is used to enter the footer text.

HeaderAppearance
The HeaderAppearance editor sets the foreground/background border, visible, and
opaque values for the header. When Visible is checked, a header will be displayed in the
chart. By default the header is not showing. This editor works in conjunction with the
HeaderText editor.

LegendAppearance
The LegendAppearance editor sets the foreground/background border, visible, and
opaque values for the legend and determines if it is displayed. By default, the legend will
not appear. When Visible is checked, a legend will be displayed in the chart.

The content of the legend comes from the information in the data source. In order to
change the contents of the legend, you have to change what is in the data source. For
information on how to set up legend items in the data source, see Data Formats, in
Chapter 8.

Other legend settings are found in the LegendLayout editor.

PlotAreaAppearance
The PlotAreaAppearance editor sets the foreground and background for the plot area,
and allows you to add an Axis Bounding Box. A bounding box is a graphical feature
that closes off the axes, thus forming a square.

Font
The Font editor sets the font defaults for your chart.
Chapter 5 ■ MultiChart 97

The font you choose will apply to all text on the chart simultaneously. The following
example sets the font to Courier, Bold, 24 point:

This font editor sets up a default font for the chart (not including the header and footer).
You can, however, change font for selected elements using custom editors for each
property. For example, the HeaderText, FooterText, and AxisAnnotation editors allow
you to override the default font settings.

5.3.5 View3D
To add 3D effects to your chart, click the View3D property.

First drag the red square in the editor until it has the desired Elevation and Rotation.
Then, check the Change Depth option box, and drag the red square until it has the
98 Part I ■ Using JClass Chart

Depth you want to see on your chart. The degree of depth, elevation and rotation is
displayed in numbers at the top of the editor. Click Done to set the changes:

5.3.6 Event Controls

TriggerList
The TriggerList editor sets up what user events the chart will handle, either from a
mouse, or mouse-keyboard combination.

Actions are the available event mechanisms, such as Zoom, Rotate, Depth, Customize,
Pick, and Translate. By setting up these triggers, the end-user can examine data more
closely or visually isolate part of the chart. The following list describes these interactions:
Chapter 5 ■ MultiChart 99

■ Translate allows moving of the chart.

■ Zoom allows zooming into or out from the chart.

■ Rotate allows rotation (only for bar or pie charts displaying a 3D effect).

■ Depth allows adding depth cues to the chart (only for bar or pie charts displaying a
3D effect).

■ Customize allows the user to launch the chart Customizer. To use this feature, you
must also check the Allow User Changes box.

■ Pick allows you to set up pick events. The pick method is used to retrieve an x,y
coordinate in a Chart from user input and then translate that into the data point
nearest to it. This feature requires some non-bean programming. See Using Pick and
Unpick, in Chapter 10, for more details.

A Modifier is a keyboard event that can ‘modify’ a mouse click.

It is also possible in most cases for the user to reset the chart to its original display
parameters. The interactions described here affect the chart displayed inside the
ChartArea; other chart elements, like the header, are not affected.
100 Part I ■ Using JClass Chart

6
Chart Programming Tutorial

Introduction ■ A Basic Plot Chart ■ Loading Data From a File ■ Adding Header, Footer, and Labels

Changing to a Bar Chart ■ Inverting Chart Orientation ■ Bar3d and 3d Effect

End-User Interaction ■ Get Started Programming with JClass Chart

6.1 Introduction

This tutorial shows you how to start using JClass Chart by compiling and running an
example program. It is different from the SimpleChart Bean tutorial because it focuses on
programmatic use of JClass Chart. For a Bean tutorial, see the SimpleChart Bean Tutorial,
in Chapter 3. This program, Plot1.java, will graph the 1963 Quarterly Expenses and
Revenues for “Michelle’s Microchips”, a small company a little ahead of its time.

The following table shows the data to be displayed:

Q1 Q2 Q3 Q4

Expenses 150.0 175.0 160.0 170.0

Revenue 125.0 100.0 225.0 300.0
101

6.2 A Basic Plot Chart

When Plot1.java is compiled and run, the window shown below is displayed:

Figure 16 The Plot1.java program displayed.

The following listing displays the program Plot1.java. This is a minimal Java program that
creates a new chart component and loads data into it from a file. It can be run as an applet
or a standalone application.

Line Source

1 package examples.chart.intro;

2

3 import java.awt.GridLayout;

4 import javax.swing.JPanel;

5 import com.klg.jclass.chart.JCChart;

6 import com.klg.jclass.chart.ChartDataView;

7 import com.klg.jclass.chart.data.JCFileDataSource;

8 import com.klg.jclass.util.swing.JCExitFrame;

9

10 import demos.common.FileUtil;

11

12 /**

13 * Basic example of Chart use. Load data from
102 Part I ■ Using JClass Chart

14 * a file and displays it as a simple plot chart.

15 */

16 public class Plot1 extends JPanel {

17

18 /**

19 * Default constructor for this class. Loads data and

20 * sets up chart.

21 */

22 public Plot1() {

23 setLayout(new GridLayout(1,1));

24

25 // Create new chart instance.

26 JCChart chart = new JCChart();

27 // Load data for chart

28 try {

29 // Use JCFileDataSource to load data from specified file

30 String fname = FileUtil.getFullFileName(

31 "examples.chart.intro","chart1.dat");

32 chart.getDataView(0).setDataSource(new JCFileDataSource

33 (fname));

34 }

35 catch (Exception e) {

36 e.printStackTrace(System.out);

37 }

38 // Add chart to panel for display.

39 add(chart);

40 }

41

Line Source
Chapter 6 ■ Chart Programming Tutorial 103

Most of the code in Plot1.java should be familiar to Java programmers. The first few lines
(3–10) import the classes necessary to run Plot1.java. In addition to the standard AWT
GridLayout class and Swing JPanel class, three classes in the jclass.chart package are
needed: JCChart (the main chart class), ChartDataView (the data view object), and
JCFileDataSource (a stock data source). This example also makes use of the JCExitFrame
from JClass Elements, which is a part of the JClass DesktopViews suite. Line 16 provides
the class definition for this program, a subclass of JPanel.

Lines 22–40 define the constructor. The Layout property on line 23 lays out a simple grid
structure to display the components it holds. A new chart is then instantiated on line 26.
Lines 30-31 load data from a file named chart1.dat into a new data source object
(JCFileDataSource) and tell the chart to display this data.

Lines 42-48 define the main() method needed when the program is run as a standalone
Java application.

6.3 Loading Data From a File

A common task in any JClass Chart program is to load the chart data into a format that
the chart can use. JClass Chart uses a “model view/control” (MVC) architecture to handle
data in a flexible and efficient manner. The data itself is stored in a object that implements
the ChartDataModel interface created and controlled by your application. The chart has
a ChartDataView object that controls a view on this data source, providing properties that
control which data source to use, and how to display the data.

42 public static void main(String args[]) {

43 JCExitFrame f = new JCExitFrame("Plot1");

44 Plot1 p = new Plot1();

45 f.getContentPane().add(p);

46 f.setSize(200, 200);

47 f.setVisible(true);

48 }

49

50 }

51

Line Source
104 Part I ■ Using JClass Chart

JClass Chart includes several stock (built-in) data sources that you can use (or you can
define your own). This program uses the data source that reads data from a file:
JCFileDataSource. With this understanding we can look more closely at lines 32-33:

chart.getDataView(0).setDataSource(new JCFileDataSource
(fname));

Two things are happening here: a new JCFileDataSource object is instantiated, with the
name of the data file passed as a parameter in the constructor, and the DataSource
property of the chart’s first (default) data view is being set to use this data source.

The following shows the contents of the chart1.dat file:

ARRAY 2 4
X-values
1.0 2.0 3.0 4.0
Y-values
150.0 175.0 160.0 170.0
Y-values set 2
125.0 100.0 225.0 300.0

This file is in the format understood by JCFileDataSource. Lines beginning with a ‘#’
symbol are treated as comments. The first line tells the FileDataSource object that the
data that follows is in Array layout and is made up of two series containing four points
each. The X-values are used by all series.

There are two types of data: Array and General. Use Array layout when the series of Y-
values share common X-values. Use General when the Y-values do not share common X-
values, or when all series do not have the same number of values.

Note that for data arrays in Polar charts, (x, y) coordinates in each data set will be
interpreted as (theta, r). For array data, the X-array will represent a fixed theta value for
each point.

In Radar and Area Radar charts, only array data can be used. (x, y) points will be
interpreted in the same way as for Polar charts (above), except that the theta (that is, x)
values will be ignored. The circle will be split into nPoints segments with nSeries points
drawn on each radar line.

For complete details on using data with JClass Chart, please see Data Sources, in Chapter
8.

6.4 Adding Header, Footer, and Labels
The plot displayed by Plot1.java is not very useful to an end-user. There is no header,
footer, or legend, and the X-axis numbering is not very meaningful.
Chapter 6 ■ Chart Programming Tutorial 105

The chart below displays various changes that can be made to a chart to make it more
useful. The changes made to this chart are listed below. Full source code can be found in
the plot2.java program, located in the JCLASS_HOME/examples/chart/intro directory.

Figure 17 The program created by Plot2.java.

JClass Chart will always try to produce a reasonable chart display, even if very few
properties have been specified. JClass Chart will use intelligent defaults for all unspecified
properties.

All properties for a particular chart may be specified when the chart is created. Properties
may also be changed as the program runs by calling the property’s set method. A
programmer can also ask for the current value of any property by using the property’s
get method.

Adding Headers and Footers
To display a header or footer, we need to set properties of the Header and Footer objects
contained in the chart. For example, the following code sets the Text and Visible
properties for the footer:

// Make footer visible
chart.getFooter().setVisible(true);
// By default, footer is a JLabel - set its Text property
((JLabel)chart.getFooter()).setText("1963 Quarterly Results");

Visible displays the header/footer. Text specifies the text displayed in the header/footer.

By default, headers and footers are JLabels, although they can be any Swing JComponent.
JLabels support the use of HTML tags. The use of HTML tags overrides the default Font
and Color properties of the label.

Please note that HTML labels may not work with PDF, PS, or PCL encoding.
106 Part I ■ Using JClass Chart

Adding a Legend and Labelling Points
A legend clarifies the chart by showing an identifying label for each series in the chart. We
would also like to display more meaningful labels for the points along the X-axis. Both
types of information can be easily specified in the data file itself. The following lists
chart2.dat, a modified version of the previous data file that includes series labels (for the
legend), and point labels (for the X-axis):

ARRAY '' 2 4
Point Labels
'Q1' 'Q2' 'Q3' 'Q4'
X-values, with a blank series label ('') -- a blank series
label is required if the Y-values have series labels
'' 1.0 2.0 3.0 4.0
Y-values, with Series label (in this case, Expenses)
'Expenses' 150.0 175.0 160.0 170.0
Y-values set 2, with Series label (in this case, Revenue)
'Revenue' 125.0 100.0 225.0 300.0

Lines beginning with a ‘#’ symbol are treated as comments.

As noted in the comments within the above code, if series labels are being used for the Y-
values, then the X-data must be preceded by a blank series label (''). This blank label will
not show up on the chart. The third line specifies the point labels (for instance, “Q1”).
Subsequent lines of data begin with a Y-data series label (“Expenses” and “Revenue”).

This data file now provides the labels that we want to use, but to actually display them in
the chart, we need to set the Legend object’s Visible property and change the
AnnotationMethod property of the X-axis to annotate the axis with the point labels in the
data.
Chapter 6 ■ Chart Programming Tutorial 107

These and the previous changes are combined; now the chart is created with code that
looks like this:

// Create new chart instance.
chart = new JCChart();

// Load data for chart
try {

// Use JCFileDataSource to load data from specified file
String fname = FileUtil.getFullFileName("examples.chart.intro",

"chart2.dat");
chart.getDataView(0).setDataSource(new

JCFileDataSource(fname));
}
catch (Exception e) {

e.printStackTrace(System.out);
}
// Make header visible, and add some text
chart.getHeader().setVisible(true);
// By default, header is a JLabel šš-- set its Text property
((JLabel)chart.getHeader()).setText("Michelle's Microchips");
// Make footer visible
chart.getFooter().setVisible(true);
// By default, footer is a JLabel -- set its Text property
((JLabel)chart.getFooter()).setText("1963 Quarterly Results");

// Make legend visible
chart.getLegend().setVisible(true);

// Make X-axis use point labels instead of default value labels.
chart.getChartArea().getXAxis(0).setAnnotationMethod

(JCAxis.POINT_LABELS);

// Add chart to panel for display.
add(chart);

Because we are accessing a variable defined in JCAxis, we need to add that to the classes
imported by the program:

 import jclass.chart.JCAxis;

In the line that sets the annotation method, notice that XAxis is a collection of JCAxis
objects. A single chart can display several X- and Y-axes.
108 Part I ■ Using JClass Chart

6.5 Changing to a Bar Chart

Figure 18 The bar2.java program displayed.

A powerful feature of JClass Chart is the ability to change the chart type independently of
any other property. (Although there are interdependencies between some properties,
most properties are completely orthogonal.) For example, to change the Plot2 chart to a
bar chart, the following code can be used:

 c.getDataView(0).setChartType(JCChart.BAR);

This sets the ChartType property of the data view. Alternately, you can set the chart type
when you instantiate a new chart, for example:

 JCChart c = new JCChart(JCChart.BAR);

The full code for this program (Bar2.java) can be found in with the other examples.

JClass Chart can display data as one of 13 different chart types. For more information on
chart types, see Chart Types and Special Chart Properties, in Chapter 2.

6.6 Inverting Chart Orientation

Most graphs display the X-axis horizontally and the Y-axis vertically. It is often
appropriate, however, to invert the sense of the X- and Y-axis. This is easy to do, using
the Inverted property of the data view object.

In a plot, inverting causes the Y-values to be plotted against the horizontal axis, and the
X-values to be plotted against the vertical. In a bar chart, it causes the bars to be displayed
horizontally instead of vertically.

When programming JClass Chart, try not to assume that the X-axis is always the
horizontal axis. Determining which axis is vertical and which horizontal depends on the
value of the Inverted property.
Chapter 6 ■ Chart Programming Tutorial 109

To invert, set the data view object’s Inverted property to true. By default it is false.

 c.getDataView(0).setInverted(true);

The following shows the windows created by Plot2.java and Bar2.java when inverted:

Figure 19 Plot2 and Bar2 windows with Inverted set to true.

Full code for these examples is in the JCLASS_HOME/examples/chart/intro directory.

6.7 Bar3d and 3d Effect

Chart 3D effects can be added to bar and stacking bar charts. Three properties affect the
display of 3D information: Depth, Elevation, and Rotation. Modifying these properties
will alter the 3D effects displayed. Depth and at least one of Elevation or Rotation must
be non-zero to see any 3D effects. The properties can be set as follows:

chart.getChartArea().setElevation(20);
chart.getChartArea().setRotation(30);
chart.getChartArea().setDepth(10);
110 Part I ■ Using JClass Chart

6.8 End-User Interaction

More than simply a display tool, JClass Chart is an interactive component. Programmers
can explicitly add functions that enable an end-user to directly interact with a chart. The
following end-user interactions are possible:

■ Translation — users can move a graph or a series of graphs along the X- and/or
Y- axes.

■ Rotate — users can change the vantage point of a chart type, to better view
information contained with a JClass Chart component.

■ Zoom — users can zoom in or out of a JClass Chart component to better view
information contained within it.

■ Depth — users can change the apparent depth of a 3D chart.

■ Edit — users can change the placement of data points within a chart.

■ Customize — users can alter the other display features of a chart, (such as color, label
names, or the numerical value of data points) that comprise a chart display.

■ Pick — users can determine the position of data points displayed on a chart.

Function call

Header for the function
Description

setDepth()

public void setDepth(
int newDepth)

Controls the apparent depth of the chart; the
parameter newDepth represents the depth as a
percentage of the width; valid values are 0 to
500.

setElevation()

public void setElevation(
int newElevation)

Controls the distance above the X-axis for the
3D effect; the parameter newElevation is the
number of degrees above the X-axis that the
chart is to be positioned; valid values are
between -45 and 45.

setRotation()

public void setRotation(
int newRotation)

Controls the position of the eye relative to the
Y-axis for the 3D effect; the parameter
newRotation is the number of degrees to the
right of the Y-axis the chart is to be positioned;
valid values are between
-45 and 45.
Chapter 6 ■ Chart Programming Tutorial 111

6.9 Get Started Programming with JClass Chart

The following suggestions should help you become productive with JClass Chart as
quickly as possible:

■ Check out the sample code — the example and demo programs included with
JClass Chart are useful in showing what JClass Chart can do, and how to do it. Run
them and examine the source code. They can all be found in the
JCLASS_HOME/demos/chart and JCLASS_HOME/examples/chart directories.

■ Browse the JClass Chart API documentation – complete reference documentation on
the API is available online in HTML format. The properties, methods, and events for
each component are documented.
112 Part I ■ Using JClass Chart

../api/index.html

7
Axis Controls

Creating a New Chart in a Nutshell ■ Axis Labelling and Annotation Methods ■ Positioning Axes

Chart Orientation and Axis Direction ■ Setting Axis Bounds ■ Customizing Origins

Logarithmic Axes ■ Titling Axes and Rotating Axis Elements

Adding Gridlines ■ Adding a Second Axis

JClass Chart can automatically set properties based on the data, so axis numbering and
data display usually do not need much customizing. You can however, control any aspect
of the chart axes, depending on your requirements. This chapter covers the different axis
controls available. If you are developing your chart application using one of the
JClass Chart Beans, please refer to Bean Reference, in Chapter 4.

7.1 Creating a New Chart in a Nutshell
1. If one exists, use an existing chart as a starting point for the new one. The sample

charts provided in JCLASS_HOME/examples/chart/ are a good starting point. Load a
chart description resembling the new chart.

2. Load your data into the chart.

3. Set the chart type.

4. Annotate and format the axes and data if necessary, described as follows:

■ Axis annotation (Values [default], ValueLabels, PointLabels, TimeLabels)

■ Positioning Axis Annotations

■ Chart Orientation and Axis Direction

■ Setting Axis Bounds

■ Customizing Origins

■ Logarithmic Axes

■ Titling Axes and Rotating Axis Elements

■ Adding Gridlines

■ Adding a Second Axis
113

7.2 Axis Labelling and Annotation Methods

There are several ways to annotate the chart’s axes, each suited to specific situations.

■ The chart can automatically generate numeric annotation appropriate to the data
it is displaying.

■ You can provide a label for each point in the chart (X-axis only).

■ You can provide a label for specific values along the axis.

■ The chart can automatically generate time-based annotations.

Please note that none of the axis properties discussed in this section apply to Pie charts
because Pie charts do not have axes. To annotate a Pie Chart, use Chart Labels; for more
information, please see Chart Labels, in Chapter 9.

Whichever annotation method you choose, the chart makes considerable effort to
produce the most natural annotation possible, even as the data changes. You can fine-tune
this process using axis annotation properties.

User-set annotations support the use of HTML tags. The use of HTML tags overrides the
default Font and Color properties of the label.

Please note that HTML labels may not work with PDF, PS, or PCL encoding.

7.2.1 Choosing Annotation Method

A variety of properties combine to determine the annotation that appears on the axes.
The JCAxis AnnotationMethod property specifies the method used to annotate the axis.
The valid annotation methods are:

JCAxis.VALUE
(default)

The chart chooses appropriate axis annotation automatically
(with possible callbacks to a label generator), based on the chart
type and the data itself.

JCAxis.
POINT_LABELS

(X-axis only)

The chart spaces the points based on the X-values and
annotates them with text you specify (in the data source) for
each point.

JCAxis.
VALUE_LABELS

The chart annotates the axis with text you define for specific X-
or Y-axis coordinates.

JCAxis.
TIME_LABELS

The chart interprets the X- or Y-values as units of time,
automatically choosing time/date annotation based on the
starting point and format you specify. Not for Polar, Radar, or
Area Radar charts.
114 Part I ■ Using JClass Chart

Notes:

■ Point labels annotation (JCAxis.POINT_LABELS) is only valid for an X-axis when it
has been added to the X-axis collection in JCChartArea. This means that a new
JCAxis instance that has not yet been added to JCChartArea will not be
considered an X-axis.

■ The spokes of Area Radar and Radar charts are automatically labelled “0”, “1”,
“2”, and so forth, unless the X-annotation method is JCAxis.POINT_LABELS.

■ NumSpacing has no effect on value labels.

■ For Polar charts, the default annotation for JCAxis.VALUE depends on the angle
units specified. If it is radians, the symbol for pi will not be used (it will be
represented by 3.14 instead). Also, the X-axis will always be linear; that is, setting
the logarithmic properties to true will be ignored.

The following topics discuss setting up and fine-tuning each type of annotation.

7.2.2 Values Annotation

Values annotation produces numeric labelling along an axis, based on the data itself. The
chart can produce very natural-looking axis numbering automatically, but you can fine-
tune the properties that control this process.

Axis Annotation Increments, Numbering, and Precision

When a JCAxis is instantiated, a pair of JCAnno objects representing default labels and
ticks are automatically created and set on the axis. Those default JCAnno objects may be
modified, deleted, or augmented with other JCAnno objects.

The following describes the different properties that can be set on a JCAnno object in
order to fully customize the labels and tick marks:

Property Function

startValue Sets the value at which the annotation begins.

stopValue Sets the value where the annotation ends.

incrementValue Sets the increment between annotation along an axis.

innerExtent Defines the space, in pixels, that tick marks extend into the plot area.

outerExtent Defines the space, in pixels, that tick marks extend out of the plot area.

tickColor Determines the color of the tick marks.

drawTicks Determines whether or not the tick marks defined by JCAnno are drawn.

labelExtent Defines the distance, in pixels, of the labels from the axis.

labelColor Determines the color of the labels.
Chapter 7 ■ Axis Controls 115

When the annotation method for an axis is VALUE_LABELS, POINT_LABELS, or
TIME_LABELS, the labels are either user-supplied or internally generated without the use of
JCAnno objects. The boolean UseAnnoTicks property of a JCAxis determines how tick
marks are drawn in those cases. If UseAnnoTicks is true, tick marks are drawn at the
labels. If the value is false, ticks defined by JCAnno objects are drawn instead.

Using multiple JCAnno objects, an axis can be drawn with major and minor ticks. Labels
can be turned on or off for the individual tick series, as can the actual tick marks, enabling
further flexibility.

Figure 20 Different tick styles that can be applied to a chart axis.

Please refer to the AnnoGrid.java example included in the examples/chart/intro package to
view different tick marks in a JClass Chart example.

7.2.3 PointLabels Annotation

PointLabels annotation displays defined labels along an X-axis. This is useful for
annotating the X-axis of any chart for which all series share common X-values.
PointLabels are most useful with bar, stacking bar, and pie charts. It is possible to add,

precision Sets the number of decimal places to use when displaying a chart label
number. The effect depends on whether it is positive or negative:
■ Positive values add that number of places after the decimal place. For

example, a value of 2 displays an annotation of 10 as “10.00”.
■ Negative values indicate the minimum number of zeros to use before

the decimal place. For example, a value of -2 displays annotation in
multiples of 100.

drawLabels Determines whether or not the labels defined by JCAnno are drawn.

Property Function
116 Part I ■ Using JClass Chart

remove, and edit PointLabels. In JClass Chart, PointLabels are typically defined with
the data.

Figure 21 PointLabels X-axis annotation.

PointLabels are a collection of labels. The first label applies to the first point, the second
label applies to the second point, and so on.

The labels can also be supplied by setting the PointLabels property of the
ChartDataView object for this chart. For example, the following code specifies labels for
each of the three points on the X-axis:

String[] labels = {"Q1", "Q2", "Q3, "Q4"};
c.getChartArea().getXAxis(0).setAnnotationMethod(JCAxis.POINT_LABELS);
ChartDataView cd = c.getDataView(0);
ArrayList pLabels = new ArrayList();
for (int i = 0; i < labels.length; i++) {

pLabels.add(labels[i]);
}
cd.setPointLabels(pLabels);

For Polar, Radar, and Area Radar charts, if the X-axis annotation is POINT_LABELS and the
data is of type array, then a point label is drawn at the outside of the X-axis for each point.
(Series labels are used in the legend as usual.)

7.2.4 ValueLabels Annotation

ValueLabels annotation displays labels at the axis coordinate specified. This is useful for
displaying special text at a specific axis coordinate, or when a type of annotation that the
chart does not support is needed, such as scientific notation. You can set the axis
Chapter 7 ■ Axis Controls 117

coordinate and the text to display for each ValueLabel, and also add and remove
individual ValueLabels.

Figure 22 Using ValueLabels to annotate axes.

Every label displayed on the axis is one ValueLabel. Each ValueLabel has a Value
property and a Label property.

If the AnnotationMethod property is set to JCAxis.VALUE_LABELS, the chart places labels
at explicit locations along an axis. The ValueLabels property of JCAxis, which is a
ValueLabels collection, supplies this list of Strings and their locations. For example, the
following code sets value labels at the locations 10, 20, and 30:

String[] labels = {"Sales", "Beta Testing", "Documentation",
"Alpha Testing", "Programming",
"Production Definition"};

JCAxis y = c.getChartArea().getYAxis(0);
y.setAnnotationMethod(JCAxis.VALUE_LABELS);
JCValueLabel[] valueLabels = new JCValueLabel[labels.length];
for (int i = 0; i < labels.length; i++) {

valueLabels[i] = new JCValueLabel(10.0 * (i + 1), labels[i], y);
}
y.setValueLabels(valueLabels);

The ValueLabels collection can be indexed either by subscript or by value:

JCAxis x = c.getChartArea().getXAxis(0);
// The following retrieves the second value label
JCValueLabel v1 = x.getValueLabels(1);
// The following retrieves the closest label to chart coordinate 2.0
JCValueLabel v2 = x.getValueLabel(2.0);
118 Part I ■ Using JClass Chart

7.2.5 TimeLabels Annotation
TimeLabels annotation interprets the value data as units of time. The chart calculates and
displays a time-axis based on the starting point and format specified. A time-axis is useful
for charts that measure something in seconds, minutes, hours, days, weeks, months, or
years.

Figure 23 TimeLabels annotating X- and Y-axes.

Four properties are used to control the display and behavior of TimeLabels:

■ AnnotationMethod (set to JCAxis.TIME_LABELS to use this annotation method)

■ TimeUnit

■ TimeBase

■ TimeFormat

Time Unit
Use the TimeUnit property to specify how to interpret the values in the data. Select either
JCAxis.SECONDS, JCAxis.MINUTES, JCAxis.HOURS, JCAxis.WEEKS, JCAxis.MONTHS, or
JCAxis.YEARS. For example, when set to JCAxis.YEARS, values that range from 5 to 15
become a time-axis spanning 10 years. By default, TimeUnit is set to JCAxis.SECONDS.

Time Base
Use the TimeBase property to set the date and time that the time-axis starts from. Use the
Java Date class (java.util.Date) to specify the TimeBase. The default for TimeBase is the
current time.
Chapter 7 ■ Axis Controls 119

For example, the following statement sets the starting point to January 15, 1985:

c.getChartArea().getXAxis(0).setTimeBase(new Date(85,0,15));

Time Format
Use the TimeFormat property to specify the text to display at each annotation point. The
TimeFormatIsDefault property allows the chart to automatically determine an
appropriate format based on the TimeUnit property and the data, so it is often
unnecessary to customize the format.

TimeFormat specifies a time format. You build a time format using the Java time format
codes from the java.text.SimpleDateFormat class. The chart displays only the parts of
the date/time specified by TimeFormat. The format codes are based on the default Java
formatting provided by java.text.

Symbol Meaning Presentation Example

G era designator AD

y year Number 1997

M month in year Text & Number July 07

d day in month Number 10

h hour in am/pm (1 ~12) Number 12

H hour in day (0~23) Number 0

m minute in hour Number 30

s second in minute Number 55

S millisecond Number 978

E day in week Text Tuesday

D day in year Number 189

F day of week in month Number 2nd Wed in July

w week in year Number 27

W week in month Number 2

a am/pm marker Text PM

k hour in day (1~24) Number 24

K hour in am/pm (0~11) Number 0

z time zone Text Pacific Standard Time

’ escape for text delimiter
120 Part I ■ Using JClass Chart

The default for TimeFormat is the same as the default used by Java’s SimpleDateFormat
class (located in the java.text package).

Using Date Methods
The dateToValue() method converts a Java date value into its corresponding axis value
(a floating-point value). The valueToDate() method converts a value along an axis to the
date that it represents. Note that the axis must already be set as a time label axis.

Here is a code example showing the dateToValue() method converting a date (in this
case, February 2, 1999) to a Y-axis value, and showing the valueToDate() method
converting a Y-axis value (in this case, 3.0) to the date that it represents.

JCAxis y = chart.getChartArea().getYAxis(0);
Date d = y.valueToDate(3.0);
double val = y.dateToValue(new Date(99,1,2));

7.2.6 Custom Axes Labels

JClass Chart will label axes by default. However, you can also generate custom labels for
the axes by implementing the JCLabelGenerator interface. This interface has one method
– makeLabel() – that is called when a label is required at a particular value.

Note that the spokes of Radar and Area Radar charts will be automatically labelled “0”,
“1”, “2”, and so forth, unless the X-annotation method is JCAxis.POINT_LABELS.

To generate custom axes labels, the axis’ AnnotationMethod property, which determines
how the axis is labelled, must be set to VALUE. Also, the setLabelGenerator() method
must be called with the class that implements the JCLabelGenerator interface.

The number of labels, that is, the number of times makeLabel() is called, depends on the
NumSpacing parameter of the axis. Not all labels will be displayed if there is not enough
room.

The makeLabel() method takes two parameters: value (the axis value to be labelled) and
precision (the numeric precision to be used).

■ In the usual case, the makeLabel() method returns a String, and that String will
be used as the axis label at value.

■ If the makeLabel() method returns a ChartText object, then that ChartText
object will be used as the axis label at value.

■ If an object other than String or ChartText is returned, the String derived from
calling that object’s toString() method will be used as the axis label at value.

’’ single quote Literal

Symbol Meaning Presentation Example
Chapter 7 ■ Axis Controls 121

Here is a code example showing how to customize the labels for a linear axis by
implementing the JCLabelGenerator interface. In this case, Roman numeral labels
are going to be generated (instead of the usual Arabic labels) for the numbers
1 through 10.

class MyLabelGenerator implements JCLabelGenerator
{

public Object makeLabel(double value, int precision) {
int intvalue = (int) value;
String s = null;
switch (intvalue) {

case 1 :
s = "I";
break;

case 2 :
s = "II";
break;

case 3 :
s = "III";
break;

case 4 :
s = "IV";
break;

case 5 :
s = "V";
break;

case 6 :
s = "VI";
break;

case 7 :
s = "VII";
break;

case 8 :
s = "VIII";
break;

case 9 :
s = "IX";
break;

case 10 :
s = "X";
break;

default :
s = "";
break;

}
return s;

}
}

Note that the user will need to specify the label generator as follows:

axis.setLabelGenerator(new MyLabelGenerator());

Also note that JClass Chart calls the makeLabel() method for each needed label (recall that
each axis requests needed labels based on its NumSpacing, Min, and Max properties). Thus,
if JClass Chart needs n labels, the makeLabel() method is called n times.
122 Part I ■ Using JClass Chart

7.3 Positioning Axes

Use the Placement property to make a specific axis placement or use the
PlacementIsDefault property to specify whether the chart is meant to determine axis
placement. When making a specific axis placement, the axis may be placed against its
partner axis at the partner axis’ minimum value, maximum value, origin value, or a user-
specified value.

For example,

axis.setPlacement(JCAxis.MIN);

will place the axis against its partner axis' minimum value, and

axis.setPlacement(otherAxis, 5.0)

will place the axis against otherAxis at the value 5.0.

Note: When Placement is set to Origin, changing the axis origin will move the placed
axis to the new origin value.

Figure 24 An example of axes positioning; the X-axis is placed against the Y-axis' minimum value.

Polar Charts – Special Minimum and Maximum Values
Note that for Polar charts, the X-axis max and min values are fixed, and these fixed values
change depending on the angle unit type. The Y-axis max and min values are adjustable,
but are constrained to avoid data clipping. The Y-axis min will never be less than zero
(unless the Y-axis is reversed). (theta, –r) will be interpreted as (theta+180, r). The Y-axis
min will always be at the center unless the axis is reversed, in which case the Y-axis max
will be at the center.
Chapter 7 ■ Axis Controls 123

Radar and Area Radar Charts – Minimum Values
The minimum value for a Y-axis in Radar and Area Radar charts can be negative.

7.4 Chart Orientation and Axis Direction

A typical chart draws the X-axis horizontally from left-to-right, and the Y-axes vertically
from bottom-to-top. You can reverse the orientation of the entire chart, and/or the
direction of each axis.

7.4.1 Inverting Chart Orientation

Use the ChartDataView object’s Inverted property to change the chart orientation. When
set to true, the X-axis is drawn vertically and the Y-axis horizontally for the data view.
Any properties set on the X-axis then apply to the vertical axis, and Y-axis properties
apply to the horizontal axis.

Note: To switch the orientation of charts with multiple data views, you must set the
Inverted property of each ChartDataView object.

Figure 25 Normal and inverted orientation.
124 Part I ■ Using JClass Chart

7.4.2 Changing Axis Direction

Use the Reversed property of JCAxis to reverse the direction of an axis. By default,
Reversed is set to false.

Figure 26 Two charts depicting a normal and reversed Y- axis.

For Polar charts, data points with positive X-values will be displayed in a
counterclockwise direction starting at the origin base. When the XAxis.reversed flag is
true, positive X-values will be displayed clockwise.

7.5 Setting Axis Bounds
Normally a graph displays all of the data it contains. There are situations where only part
of the data is to be displayed. This can be accomplished by fixing axis bounds.

Min and Max
Use the Min and Max properties of JCAxis to frame a chart at specific axis values. The
MinIsDefault and MaxIsDefault properties allow the chart to automatically determine
axis bounds based on the data bounds.
Chapter 7 ■ Axis Controls 125

7.6 Customizing Origins
The chart can choose appropriate origins for the axes automatically, based on the data. It
is also possible to customize how the chart determines the origin, or to directly specify the
coordinates of the origin.

Figure 27 Defining origins for X- and Y-axes.

Origin Placement
The easiest way to customize an origin is by controlling its placement, using the Axes’
OriginPlacement property. It has four possible values: AUTOMATIC, ZERO, MIN, and MAX.
When set to AUTOMATIC, the origin is placed at the axis minimum or at zero, if the data
contains positive and negative values or is a bar chart. ZERO places the origin at zero. MIN
places the origin at the minimum value on the axis. MAX places the origin at the maximum
value on axis.

Origin Coordinates
When the origin of a coordinate must be set to a value different from the default (0,0), use
the Axes’ Origin property. The OriginIsDefault property allows the chart to
automatically determine the origin coordinate based on the data.

Note: When an origin coordinate is explicitly set or fixed, the chart ignores the
OriginPlacement property.
126 Part I ■ Using JClass Chart

7.7 Logarithmic Axes

Axis annotation is normally interpreted and drawn in a linear fashion. It is also possible to
set any axis to be interpreted logarithmically (log base 10), as shown in the following image.
Logarithmic axes are useful for charting certain types of scientific data.

Figure 28 Logarithmic X- and Y-axes.

Because of the nature of logarithmic axes, they impose the following restrictions on the
chart:

■ any data that is less than or equal to zero is not graphed (it is treated as a data
hole), since a logarithmic axis only handles data values that are greater than zero.
For the same reason, axis and data minimum/maximum bounds and origin
properties cannot be set to zero or less.

■ axis numbering increment, ticking increment, and precision properties have no
effect when the axis is logarithmic.

■ the X-axis of bar and stacking bar charts cannot be logarithmic.

■ the annotation method for the X-axis cannot be PointLabels or TimeLabels.

Specifying a Logarithmic Axis
Use the Logarithmic property of JCAxis to make an axis logarithmic.

Note: Pie charts are not affected by logarithmic axes.
Chapter 7 ■ Axis Controls 127

7.8 Titling Axes and Rotating Axis Elements

Adding a title to an axis clarifies what is charted along that axis. You can add a title to any
axis, and also rotate the title or the annotation along the axis, as shown below.

Figure 29 Rotated axis title and annotation.

Adding an Axis Title
Use the Title property to add a title to an axis. It sets the JCAxisTitle object associated
with the JCAxis. JCAxisTitle controls the appearance of the axis title. JCAxisTitle’s
Text property specifies the title text.

Axis Title Rotation
Use the Rotation property of JCAxisTitle to set the rotation of the title. Valid values are
defined in ChartText: DEG_0 (no rotation), DEG_90 (90 degrees counterclockwise), DEG_180
(180 degrees), and DEG_270 (270 degrees).

Rotating Axis Annotation
Use the AnnotationRotation property of JCAxis to rotate the axis annotation to either
90, 180, or 270 degrees clockwise from the horizontal position. 90-degree rotation usually
looks best on a right-hand side axis.

This property can also be used to rotate the annotation at any other specified angle, if it is
set to AnnotationRotation.ROTATION_OTHER. The new angle will be determined by the
AnnotationRotationAngle property’s value. By default, the angle is 0.0 degrees.

It is important to know that some fonts may not draw properly at an angle; therefore, they
might not be visually appealing. If you are using rotated labels, your font choice should
be made with care.
128 Part I ■ Using JClass Chart

Note: In some cases, rotated labels will overlap. When labels overlap, the visible
property for the higher indexed label is cleared, and only the lower indexed label is
visible.

7.9 Adding Gridlines
Displaying a grid on a chart can make it easier to see the exact value of data points. The
spacing between lines on the grid can be defined to determine how a grid is displayed.

Figure 30 JClass Chart illustrating the effects of gridlines.

Horizontal gridlines are a property of the Y-axis. Vertical gridlines are a property of the
X-axis. Set GridVisible to true to display gridlines.

Note that for Polar charts, Y-gridlines will be circular while X-gridlines will be radial lines
from the center to the outside of the plot. For both Radar and Area Radar charts, radar
lines are represented by the X-axis gridlines. You may choose normal gridlines (circular)
or “webbed” gridlines. For the Y-axis, you may also have gridlines on (default is off).

Grid Spacing
Use the GridSpacing property to customize the grid spacing for an axis. The
GridSpacingIsDefault property allows the chart to space the grid automatically, drawing
a gridline wherever there is annotation. By default, gridlines will correspond with axis
annotations.
Chapter 7 ■ Axis Controls 129

Grid Appearance
Use the grid GridStyle properties to customize the line pattern, thickness, and color of
the gridlines. The following code fragment provides a sample of GridStyle and
GridVisible used within a program:

otherXAxis.setGridVisible(true);
otherXAxis.getGridStyle().getLineStyle().setColor(Color.green);
otherYAxis.setGridVisible(true);
otherYAxis.getGridStyle().getLineStyle().setColor(Color.green);

7.10 Adding a Second Axis
There are two ways to create a second Y-axis on a chart. The simplest way is to define a
numeric relationship between the two Y-axes, as shown in the following illustration. Use
this to display a different scale or interpretation of the same graph data.

Note that for Polar, Radar, and Area Radar charts, there is no second Y-axis.

Defining Axis Multiplier
Use the Multiplier property to define the multiplication factor for the second axis. This
property is used to generate axis values based on the first axis. The multiplication factor
can be positive or negative.

Using a Constant Value
Use the Constant axis property to define a value to be added to or subtracted from the
axis values generated by Multiplier.

Figure 31 Chart containing multiple Y-axes.

In some cases, it may be desirable to show two sets of data in the same chart that are
plotted against different axes. JClass Chart supports this by allowing each DataView to
specify its own XAxis and YAxis. For example, consider a case in which a second data set
130 Part I ■ Using JClass Chart

d2 is to be plotted against its own Y-axis. A JCAxis instance must be created and added to
the JCChartArea, as shown:

// Create a Y-axis and set it vertical
otherYAxis = new JCAxis();
otherYAxis.setVertical(true);

// Add it to the list of Y-axes in the chart area
c.getChartArea().setYAxis(1, otherYAxis);
// Add it to the data view
d2.setYAxis(otherYAxis);

Hiding the Second Axis
Set the Visible property to false to remove it from display. By default, it is set to true.

Other Second-Axis Properties
All axes have the same features. Any property can be set on any axis.
Chapter 7 ■ Axis Controls 131

132 Part I ■ Using JClass Chart

8
Data Sources

Overview ■ Data Views ■ Pre-Built Chart DataSources ■ Loading Data from a File

Loading DataSource from a URL ■ Loading Data from an Applet

Loading Data from a Swing TableModel ■ Loading Data from an XML Source ■ Data Formats

Data Binding: Specifying Data from Databases

Making Your Own Chart Data Source ■ Making an Updating Chart Data Source

8.1 Overview

Data is loaded into a chart by attaching one or more chart data sources to it. A chartable
data source is an object that takes real-world data and puts it into a form that JClass Chart
can use. Once your data source is attached, you can chart the data in a variety of ways.

The design of JClass Chart makes it possible to chart data from virtually any real-world
source. There is a toolkit you can use to create custom chartable objects (data sources) for
your real-world data.

Creating your own data sources can be time consuming. For that reason, JClass Chart
provides pre-built chartable data sources for most common real-world data: files, URLs,
applets, Strings, and databases.

This chapter describes how to use the pre-built data sources and how to create your own.

8.2 Data Views

DataSources are added to JClass Chart through Data Views, which are encapsulated by
the ChartDataView object. ChartDataView organizes data as a collection of
ChartDataViewSeries objects, one ChartDataViewSeries for each series of data points.

In most cases, your charts will require only one Data View. However, JClass Chart allows
you to load data from multiple data sources at the same time, assigning each source to a
separate Data View. By default, all Data Views are showing, but each may be hidden or
revealed depending on the needs of your application. Data Views may be mapped to the
same set of X- and Y-axes, or to different axes.

Note: Radar, area radar, and pie charts do not support multiple Data Views.
133

8.3 Pre-Built Chart DataSources

The pre-built DataSources for JClass Chart are located in the
com.klg.jclass.chart.data package. Their names and descriptions follow.

8.4 Loading Data from a File

An easy way to bring data into a chart is to load it from a formatted file using
JCFileDataSource. To load data this way, you create a data file that follows JClass Chart’s
standard format, as outlined in Section 8.9, Data Formats.

Then, you instantiate a JCFileDataSource object and attach it to a view in your chart
application. The following example shows how to instantiate and attach a
JCFileDataSource:

chart.getDataView(0).setDataSource(new JCFileDataSource("file.dat"));

8.5 Loading DataSource from a URL

You can chart data from a URL address using JCURLDataSource. To load data this way,
you create a data file that follows JClass Chart’s standard format, as outlined in Section
8.9, Data Formats.

DataSource name Description

BaseDataSource A very simple container for chart data.

JCAppletDataSource Used to load data from an applet parameter tag.

JCChartSwingDataSource Used to extract data from a Swing TableModel.

JCDefaultDataSource An extension of BasicDataSource.

JCEditableDataSource An editable version of JCDefaultDataSource.

JCFileDataSource Used to load data from a file.

JCInputStreamDataSource Used to load data from any stream.

JCStringDataSource Used to load data from a String.

JCURLDataSource Used to load data from a URL.

JDBCDataSource Used to load data from a JDBC Result Set.
134 Part I ■ Using JClass Chart

Then, you instantiate JCURLDataSource and attach it to a view in your chart. The
following example uses data from a file named plot1.dat:

chart.getDataView(0).setDataSource(new
JCURLDataSource(getDocumentBase(), "plot1.dat"));

Parameter options for JCURLDataSource:
The following are valid parameter combinations for JCURLDataSource:

■ URL

■ base, file

■ host, file

host: The WWW hostname.
file: The fully qualified name of the file on the server.
URL: The URL address of a data file, eg, http://www.quest.com/datafile.dat.
base: A URL object representing the directory where the file is located.

In the example above, the first parameter passed is getDocumentBase(), a method that
returns the path where the current applet is located.

8.6 Loading Data from an Applet

You can chart data from an applet using JCAppletDataSource.

To prepare the data, put it into the standard format, (see Data Formats), and insert it into
the HTML file that calls your applet. The HTML syntax is as follows:

<Applet>
...
<PARAM NAME=Your_Data_Name VALUE="formatted data... ">
...
</Applet>

“Your_Data_Name” is used by your applet to select the right set of information. Use the
same name in the applet and the HTML source. If a name is not provided “data” is
assumed.

With your data in the HTML file, instantiate an JCAppletDataSource and attach it to a
view in your chart as follows:

chart.getDataView(0).setDataSource(new JCAppletDataSource(applet,
"Your_Data_Name"));

You can also chart data from an HTML file. For a listing of the syntax of JClass Chart
properties when specified in an HTML file, please see Appendix C.
Chapter 8 ■ Data Sources 135

Example of Data in an HTML file
<APPLET CODEBASE="../../../.."
CODE="jclass/chart/demos/labels/labels.class"

<PARAM NAME=data VALUE="

 ARRAY 'Oblivion Inc. 1996 Results' 2 4
 'Q1' 'Q2' 'Q3' 'Q4'
 'Quarter' 1 2 3 4
 'Expenses' 150.2 182.1 152.1 170.6
 'Revenue ' 125.5 102.7 225.0 300.9
">
</APPLET>

8.7 Loading Data from a Swing TableModel

The JCChartSwingDataSource class enables you to use any type of Swing TableModel
data object for the chart. TableModel is typically used for Swing JTable components, so
your application may already have created this type of data object.

JCChartSwingDataSource “wraps” around a TableModel object, so that the data appears
to the chart in the format it understands.

This data source is available through the SwingDataModel property in the SimpleChart
and MultiChart Beans. To use it, prepare your data in a Swing TableModel object and set
the SwingDataModel property to that object.

8.8 Loading Data from an XML Source

8.8.1 XML Primer

XML – eXtensible Markup Language – is a scaled-down version of SGML (Standard
Generalized Markup Language), the standard for creating a document structure. XML
was designed especially for Web documents, and allows designers to create customized
tags (“extensible”), thereby enabling common information formats for sharing both the
format and the data on the Internet, intranets, et cetera.

XML is similar to HTML in that both contain markup tags to describe the contents of a
page or file. But HTML describes the content of a Web page (mainly text and graphic
images) only in terms of how it is to be displayed and interacted with. XML, however,
describes the content in terms of what data is being described. This means that an XML
file can be used in various ways. For instance, an XML file can be utilized as a convenient
way to exchange data across heterogeneous systems. As another example, an XML file
can be processed (for example, via XSLT [Extensible Stylesheet Language
Transformations]) in order to be visually displayed to the user by transforming it into
HTML.
136 Part I ■ Using JClass Chart

Please note that in XML, certain special characters need to be “escaped” if you want
them to be displayed. For example, you cannot simply put and ampersand (&) or a
greater than sign (>) into a block of text; these special characters are represented as &
and > respectively. For details on this topic, please see
http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/sax/4_refs.html#chars.

Further Information About XML
Here are links to more information on XML.

http://www.w3.org/XML/ – another W3C site; contains exhaustive information on
standards.

http://www.ucc.ie/xml – an extensive FAQ devoted to XML

http://www.java.sun.com/docs/index.html – Sun’s XML site

8.8.2 Using XML in JClass

In order to work with XML in your programs or even to compile the JClass XML
examples, you will need to have jaxp.jar and crimson.jar in your CLASSPATH; these files
are distributed with JClass Chart – you can find them in JCLASS_HOME/lib/.

JClass Chart can accept XML data formatted to the specifications outlined in
com.klg.jclass.chart.data.JCXMLDataInterpreter. This public class extends
JCDataInterpreter and implements an interpreter for the JClass Chart XML data
format. JCXMLDataInterpreter relies on an input stream reader to populate the specified
BaseDataSource class.

Data can be specified either by series or by point. This is fully explained below.

Examples of XML in JClass
For XML data source examples, see the XMLArray, XMLArrayTrans, and XMLGeneral
examples in JCLASS_HOME/examples/chart/datasource. These use the array.xml,
arraytrans.xml, and general.xml data files, respectively.

Interpreter
The interpreter, which converts incoming data to the internal format used by
JClass Chart, must be explicitly set by the user when loading XML-formatted data. The
interpreter to use for this purpose is com.klg.jclass.chart.data.JCXMLDataInterpreter.

Many constructors in the various data sources in JClass Chart take the abstract class
JCDataInterpreter, which is extended by JCXMLDataInterpreter. It is possible for the
user to create a custom data format and a custom data interpreter by extending
JCDataInterpreter.
Chapter 8 ■ Data Sources 137

http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/sax/4_refs.html#chars
http://www.w3.org/XML/
http://www.ucc.ie/xml
http://www.java.sun.com/docs/index.html

Here are a few code examples that load XML data using JClass Chart’s XML interpreter,
JCXMLDataInterpreter:

ChartDataModel cdm = new JCFileDataSource(fileName,
new JCXMLDataInterpreter());

ChartDataModel cdm = new JCURLDataSource(codeBase, fileName,
new JCXMLDataInterpreter());

ChartDataModel cdm = new JCStringDataSource(string,
new JCXMLDataInterpreter());

8.8.3 Specifying Data by Series

When “specifying by series”, there can be any number of <data-series> tags. Within
each <data-series> tag, there can be an optional <data-series-label> tag. Within each
<data-series> tag, there can be any number of <x-data> tags (these tags represent the X-
values for that series). If there are no <x-data> tags in any <data-series> tag, a single X-
array is generated, starting at 1 and proceeding in increments of 1.

If only one series has <x-data> tags, then that list of X-data is used for all series. If more
than one series has <x-data> tags, those tags are used only for the series in which they are
located.

Within each <data-series> tag, there must be at least one <y-data> tag (generally there
will be many). <y-data> tags represent the Y-values for that series.

If the number of X-values and Y-values do not match within one series, the one with the
fewer number of values is padded out with Hole values.
138 Part I ■ Using JClass Chart

Here is an example of an XML data file specifying data by series.

<?xml version="1.0"?>
<!DOCTYPE chart-data SYSTEM "JCChartData.dtd">
<chart-data Name="My Chart" Hole="MAX">

<data-point-label>Point Label 1</data-point-label>
<data-point-label>Point Label 2</data-point-label>
<data-point-label>Point Label 3</data-point-label>
<data-point-label>Point Label 4</data-point-label>
<data-series>

 <data-series-label>Y Axis #1 Data</data-series-label>
 <x-data>1</x-data>
 <x-data>2</x-data>
 <x-data>3</x-data>
 <x-data>4</x-data>
 <y-data>1</y-data>
 <y-data>2</y-data>
 <y-data>3</y-data>
 <y-data>4</y-data>

</data-series>
<data-series>

 <data-series-label>Y Axis #2 Data</data-series-label>
 <y-data>1</y-data>
 <y-data>4</y-data>
 <y-data>9</y-data>
 <y-data>16</y-data>

</data-series>
</chart-data>

This format is similar to both the array and the general formats of the default chart data
source.

8.8.4 Specifying Data by Point

In the “specifying by point” format, there can be any number of <data-point> tags.
Within each <data-point> tag, there can be one optional <data-point-label> tag.
Within each <data-point> tag, there can be one optional <x-data> tag (these tags
represent the X-value of that point). If there are no <x-data> tags in any of the <data-
point> tags, X-values are generated, starting at 1 and then increasing in increments of 1.

If some <data-point> tags have <x-data> tags but others do not, the missing ones will be
replaced with Hole values.

Within each <data-point> tag, there must be at least one <y-data> tag (in general, there
will be many). <y-data> tags represent the Y-values of each series at this point.

There should always be the same number of <y-data> tags within each <data-point> tag.
If there are not, then the largest number of <y-data> tags in any one <data-point> tag is
used as the number of series, and the other lists of Y-values will be padded with Hole
values.
Chapter 8 ■ Data Sources 139

Here is an example of an XML data file specifying data by point.

<?xml version="1.0"?>
<!DOCTYPE chart-data SYSTEM "JCChartData.dtd">
<chart-data Name="MyChart">
<data-series-label>Y Data</data-series-label>
<data-series-label>Y 2 Data</data-series-label>
<data-point>

<data-point-label>Point Label 1</data-point-label>
<x-data>1</x-data>
<y-data>1</y-data>
<y-data>1</y-data>

</data-point>
<data-point>

<data-point-label>Point Label 2</data-point-label>
<x-data>2</x-data>
<y-data>2</y-data>
<y-data>4</y-data>

</data-point>
<data-point>

<data-point-label>Point Label 3</data-point-label>
<x-data>3</x-data>
<y-data>3</y-data>
<y-data>9</y-data>

</data-point>
<data-point>

<data-point-label>Point Label 4</data-point-label>
<x-data>4</x-data>
<y-data>4</y-data>
<y-data>16</y-data>

</data-point>
</chart-data>

This format is similar to the transposed array format of the default chart data source.

8.8.5 Labels and Other Parameters

<data-point-label> and <data-series-label> tags
<data-point-label> and <data-series-label> tags are optional with both the
specifying by series or specifying by point methods. If there are more point labels than
data points, or more series labels than data series, the extra labels are ignored. If there are
more data points than point labels, or more data series than series labels, then the list is
padded with blank labels. If there are no point labels or no series labels at all, the chart
default is used – no point labels and series labels containing “Series 1”, “Series 2”, et
cetera.

Name and Hole parameters
The Name and Hole parameters of the JCChartData tag are also optional. Name can be any
String. Hole can be a value, the String MIN (meaning Double.MIN_VALUE) or the String MAX
(meaning Double.MAX_VALUE). To represent virtual hole values in an X-data or y-data tag,
140 Part I ■ Using JClass Chart

use the word Hole. Any X-data or y-data tag can contain a value, the String MIN, the String
MAX, or the String Hole.

See the “Specifying Data by Series” and “Specifying Data by Point” sections to view these
elements in code samples.

8.9 Data Formats

JCFileDataSource, JCURLDataSource, JCInputStreamDataSource, JCStringDataSource,
and JCAppletDataSource all require that data be pre-formatted. The following table
illustrates the formatting requirements of data for pre-built data sources. There are two
main ways to format data: Array and General.

Array-formatted data shares a single series of X-data among one or more series of Y-data.
General-formatted data specifies a series of X-data for every series of Y-data.

Array format is the recommended standard, because it works well with all of the chart
types. General Format may not display data properly in Stacking Bar, Stacking
Area, Pie Charts, and Bar Charts.

Note that for data arrays in Polar charts, (x, y) coordinates in each data set will be
interpreted as (theta, r). For array data, the X-array will represent a fixed theta value for
each point.

In Radar and Area Radar charts, only array data can be used. (x, y) points will be
interpreted in the same way as for Polar charts (above), except that the theta (that is, x)
values will be ignored. The circle will be split into nPoints segments with nSeries points
drawn on each radar line.

General format is intended for use in cases where you want to display multiple X-axis
values on the same chart.

The following table shows four formatted data examples. An explanation of each element
follows.
Chapter 8 ■ Data Sources 141

8.9.1 Formatted Data Examples

8.9.2 Explanation of Format Elements

Initialization – Data Layout, Data Size, Hole Value
The first (non-comment) line must begin with either “ARRAY” or “GENERAL” followed by

Array Data Format (Recommended)

ARRAY 2 3 # 2 series of 3 points
HOLE 10000 # Use only if custom hole value needed
’Point 0’ ’Point 1’ ’Point 2’ # Optional Point-labels
X-values common to all points
 1.0 2.0 3.0
Y-values
’Series 0’ 50.0 75.0 60.0 # Series-label is optional
’Series 1’ 25.0 10.0 50.0

Transposed Array Data Format (same data as previous)

ARRAY 2 3 T # 2 series of 3 points, Transposed
HOLE 10000
 ’’ ’Series 0’ ’Series 1’ # Optional Series-labels
X-values Y0-values Y1-values
’Point 0’ 1.0 50.0 25.0 # Point-labels are optional
’Point 1’ 2.0 75.0 10.0
’Point 2’ 3.0 60.0 50.0

General Data Format (Use if X-data is different for each series)

GENERAL 2 4 # 2 series, max 4 points in each
HOLE -10000 # Use only if custom hole value needed
’Series 0’ 2 # 2 points, optional series label
 1.0 3.0 # X-values
 50.0 60.0 # Y-values
’Series 1’ 4 # 4 points
 2.0 2.5 3.5 5.0 # X-values
 45.0 60.0 HOLE 70.0 # Y-values, including data hole

Transposed General Data Format (same data as previous)

GENERAL 2 4 T # 2 series, max 4 points in each, Transposed
HOLE -10000
’Series 0’ 2 # 2 points, optional series label
X Y
 1.0 50.0
 3.0 60.0
’Series 1’ 4 # 4 points
X Y
 2.0 45.0
 2.5 60.0
 3.5 HOLE
 5.0 70.0
142 Part I ■ Using JClass Chart

two integers specifying the number of series and the number of points in each series. For
example:

 # This is an Array data file containing 2 series of 4 points
 ARRAY 2 4

The only difference with General data is that the second integer specifies the maximum
number of points possible for each series:

 # A General data file, 5 series, maximum 10 points
 GENERAL 5 10

The second line can optionally specify a data hole value. A hole value is the number that is
interpreted by the chart as missing data. There should be only one hole value per
ChartDataView class. Use a hole value if you know that a particular value in the data
should be ignored in the chart:

 HOLE 10000

You can also indicate that any particular point is a hole by specifying the word “HOLE” for
that X- or Y-value. For example:

 50.0 75.0 HOLE 70.0

Note: If the hole value is later changed in the data view, values in the X- and Y-data
previously set with hole values will not change their values and will now draw.

Adding Comments
You can use comments throughout the data file to make it easier for people to understand.
Any text on a line following a “#” symbol are treated as comments and are ignored.

Point Labels
The third line can optionally specify text labels for each data point, which can be used to
annotate the X-axis. Point-labels are generally only useful with Array data; if specified for
General data they apply to the first series. The following shows how to specify Point-
labels:

 ’Point 1’ ’Point 2’ ’Point 3’ # Optional Point-labels

The Data – Array layout
The rest of the file contains the data to be charted. Array layout uses the first line of data
as X-values that are common to all points. Subsequent lines specify the Y-values for each
data series:

 1.0 2.0 3.0 4.0 # X-values
 150.0 175.0 160.0 170.0 # Y-values, series 0
 125.0 100.0 225.0 300.0 # Y-values, series 1
 # Y-values continue, until end of data

The Data – General layout
General layout provides more flexibility. For each series, the first line of data specifies the
number of points in the series (this cannot be greater than the maximum number of
Chapter 8 ■ Data Sources 143

points defined earlier). The second line specifies the X-values for that series; the third line
specifies the Y-values:

 4 # Series 0, 4 points
 50.0 75.0 60.0 70.0 # X-values
 25.0 10.0 25.0 30.0 # Y-values
 # Next series follows, until end of data

Series Labels
You can optionally specify text labels for each series, which can be displayed in the legend.
Series labels are enclosed in single-quotes. In Array data, the label appears at the start of
each line of Y-values, for example:

 ’Series label’ 150.0 175.0 160.0 170.0 # Y-values, series 0

In General data, the label appears at the start of the line defining the number of points in
that series, for example:

 ’Series label’ 4 # Series 0, 4 points
 50.0 75.0 60.0 70.0 # X-values
 25.0 10.0 25.0 30.0 # Y-values

Transposed Data
JClass Chart can also interpret transposed data, where the meaning of the data series and
points is switched. Note that transposing data also transposes series and point labels. To
indicate that the data is transposed, add a “T” to the first line specifying the data layout
and size. The following illustrates how data is interpreted when transposed:

 ARRAY 2 3 T
 # X-values Y0-values Y1-values
 1.0 150.0 125.0
 2.0 175.0 100.0
 3.0 160.0 225.0

8.10 Data Binding: Specifying Data from Databases

In order to chart data from a database, your application must be able to establish a
connection, perform necessary queries on the data, and then put the data into a chartable
format.

This type of database connectivity is often called ‘data binding’ and components that can
be connected to a database are considered ‘data bound’. JClass Chart is a data bound
component.

Perhaps the easiest way to bind a chart to a database is to use one of the data binding
Beans (DSdbChart or JBdbChart) in an IDE or the BeanBox. There are Beans for
connecting to a database using Borland JBuilder and the JClass DataSource. See the Bean
Reference for complete details on using these Beans in an IDE.
144 Part I ■ Using JClass Chart

More complex chart features, however, can only be accessed programmatically. To do
data binding programmatically, you can use one of the solutions listed in the table below:

The following sections provide a brief outline of these different data binding methods.

8.10.1 Data Binding using JDBCDataSource

JDBCDataSource is not a full data binding solution. It is a data source that you can use to
chart data from an SQL Result Set. It does not perform any binding operations such as
connecting to or querying the database. You will have to provide that functionality.

To use it, you just attach an instance of JDBCDataSource to your chart and pass it a Result
Set from your application, as follows:

chart.getDataView(0).setDataSource(new JDBCDataSource(resultSet));

Class Use with:

JCChart ■ JDBCDataSource

■ An application that provides connection to database and passes an SQL
result set to JCDBCDataSource

DSdbChart ■ JClass DataSource component

JBdbChart ■ Borland JBuilder 3.0+ components
Chapter 8 ■ Data Sources 145

8.10.2 Data Binding with JBuilder

JBdbChart allows you to bind to JBuilder’s DataSet, for a full data binding solution. The
following example illustrates how to connect to the necessary JBuilder components:

package examples.chart.db.jbuilder;

import java.awt.*;
import javax.swing.JFrame;
import com.borland.dx.sql.dataset.*;

import com.klg.jclass.chart.db.jbuilder.*;
import com.klg.jclass.chart.db.DataBindingConfigWrapper;

/**
 * This file was generated using JBuilder data binding. It is intended
* to demonstrate the code generated when using JBuilder's
* QueryDataSet and JBdbChart.
 *
 * (Code has been reindented to conform to Quest Software coding standard.)
 */
public class JBuilderDBChart extends JFrame {

Database database1 = new Database();
QueryDataSet queryDataSet1 = new QueryDataSet();
JBdbChart jBdbChart1 = new JBdbChart();

public JBuilderDBChart()
{

try {
jbInit();

}
catch(Exception e) {

e.printStackTrace();
}

}

private void jbInit() throws Exception
{

QueryDescriptor qd =
new QueryDescriptor(database1,

"SELECT OrderDetails.OrderDetailID,OrderDetails.OrderID," +
"OrderDetails.ProductID,OrderDetails.DateSold," +
"OrderDetails.Quantity,OrderDetails.UnitPrice," +
"OrderDetails.SalesTax,OrderDetails.LineTotal " +
"FROM OrderDetails",
null, true, Load.ALL);

queryDataSet1.setQuery(qd);
ConnectionDescriptor cd=

new ConnectionDescriptor("jdbc:odbc:JClassDemo", "dba", "sql",
false, sun.jdbc.odbc.JdbcOdbcDriver");

database1.setConnection(cd);
jBdbChart1.setDataSet(queryDataSet1);
DataBindingConfigWrapper cw=

new DataBindingConfigWrapper(false, 0, 100, "OrderDetailID",
new String[]{"UnitPrice",
146 Part I ■ Using JClass Chart

"SalesTax"});
jBdbChart1.setDataBindingConfig(cw);
this.getContentPane().add(jBdbChart1, BorderLayout.NORTH);

}
public static void main(String args[])
{

JBuilderDBChart f = new JBuilderDBChart();
f.pack();
f.show();

}
}

8.10.3 Data Binding with JClass DataSource

JClass DataSource is a full data binding solution. It is a robust hierarchical, multiple-
platform data source that you can use to bind and query any JDBC compatible database.
It can also bind to platform-specific data solutions in JBuilder.

JClass DataSource is available only in JClass DesktopViews (which also contains
JClass Chart, JClass Chart 3D, JClass Elements, JClass Field, JClass HiGrid,
JClass JarMaster, JClass DataSource, and JClass PageLayout). Visit http://www.quest.com
for information and downloads.

To bind a chart to a database through JClass DataSource, use DSdbChart.
Chapter 8 ■ Data Sources 147

http://www.quest.com

The following example illustrates the main parts of binding with DSdbChart:

package examples.chart.db.datasource;
//JDK specific
import java.awt.BorderLayout;
import java.awt.Event;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;

import javax.swing.JPanel;
import javax.swing.JFrame;

//JClass datasource specific
import com.klg.jclass.datasource.TreeData;
import com.klg.jclass.datasource.swing.DSdbJNavigator;
import examples.datasource.jdbc.DemoData;

//JClass Chart specific
import com.klg.jclass.chart.JCAxis;
import com.klg.jclass.chart.EventTrigger;
import com.klg.jclass.chart.db.datasource.DSdbChart;

import com.klg.jclass.util.swing.JCExitFrame;

public class DataBoundChart extends JPanel {

protected DSdbChart chart = null;
protected DSdbJNavigator navigator = null;
protected TreeData treeData = null;
protected int currentRow = 0;

public DataBoundChart() {
setLayout(new BorderLayout());

// Create DataSource data-bound Chart instance
chart = new DSdbChart();
// Chart formatting
makeAFancyChart();

// Create DataSource instance
 treeData = new DemoData();

// Connect Chart instance to DataSource instance
chart.setDataSource(treeData, "Orders|OrderDetails");
// Select point label column from DataSource meta data
chart.setPointLabelsColumn("OrderDetailID");
chart.setName("Order Details");

navigator = new DSdbJNavigator();
navigator.setDataBinding(treeData, "Orders");

add(navigator, BorderLayout.SOUTH);
add(chart, BorderLayout.CENTER);

}

/**
148 Part I ■ Using JClass Chart

 * Setting some of the chart parameters to make it look fancy
 */
protected void makeAFancyChart()
{

JCAxis xAxis = chart.getChartArea().getXAxis(0);
xAxis.setAnnotationMethod(JCAxis.POINT_LABELS);
chart.getLegend().setVisible(true);
chart.setForeground(java.awt.Color.yellow);
chart.setBackground(java.awt.Color.gray);
chart.getDataView(0).setChartType(DSdbChart.STACKING_AREA);
chart.getHeader().setVisible(true);
chart.getFooter().setVisible(true);

String name = "com.klg.jclass.chart.customizer.ChartCustomizer";
chart.setCustomizerName(name);
chart.setAllowUserChanges(true);
chart.setTrigger(0, new EventTrigger(Event.META_MASK,

 EventTrigger.CUSTOMIZE));
}

/**
 * main function
 */
public static void main(String[] args)
{

DataBoundChart dbChart = new DataBoundChart();
JCExitFrame frame = new JCExitFrame("This is a data bound chart");

frame.getContentPane().add(dbChart);
frame.pack();
frame.setSize(500, 400);
frame.show();

}

}

8.11 Making Your Own Chart Data Source

8.11.1 The Simplest Chart Data Source Possible

In order for a data source object to work with JClass Chart, it must implement the
ChartDataModel interface. The EditableChartDataModel interface is an extension of
ChartDataModel and can be used when you want to allow the data source to be editable.
The LabelledChartDataModel and the HoleValueChartDataModel interfaces can be used
in conjunction with ChartDataModel to extend the functionality of ChartDataModel to
allow for label values (via the LabelledChartDataModel interface) and hole values (via the
HoleValueChartDataModel interface).
Chapter 8 ■ Data Sources 149

The ChartDataModel interface is intended for use with existing data objects. It allows
Chart to ask the data source for the number of data series, and the X-values and y-values
for each data series. The interface looks like this:

public double[] getXSeries(int index);
public double[] getYSeries(int index);
public int getNumSeries();

Basically, JClass Chart organizes data based on data series. Each series has X-values and
y values, returned by getXSeries() and getYSeries(), respectively. It is expected that,
for a given series index, the X-series and Y-series will be the same length.

If the X-data is the same for all Y-data, then the same X-series can be returned for each
value. JClass Chart will automatically re-use the array.
150 Part I ■ Using JClass Chart

As an example, consider SimplestDataSource in the examples.chart.datasource example:

/**
 * This example shows the simplest possible chart data source.
 * The data source contains two data series, held in "xvalues"
 * and "yvalues" below.
 */
public class SimplestDataSource extends JPanel implements ChartDataModel {

// X values for chart.
protected double xvalues[] = { 1, 2, 3, 4 };
// Y values.
protected double yvalues[][] = { {20, 10, 30, 25}, {30, 22, 10, 40}};

/**
 * Retrieves the specified x-value series
 * In this example, the same x values are used regardless of
 * the index.
 * @param index data series index
 * @return array of double values representing x-value data
 */
public double[] getXSeries(int index) {

return xvalues;
}
/**
 * Retrieves the specified y-value series
 * In this example, yvalues contains the y data.
 * @param index data series index
 * @return array of double values representing x-value data
 */
public double[] getYSeries(int index) {

return yvalues[index];
}

/**
 * Retrieves the number of data series.
 * In this example, there are only two data
 * series.
 */
public int getNumSeries() {

return yvalues.length;
}

There are two series in this example. The X-data is repeated for both series, and is stored
in an array of doubles (xvalues). The Y-data is stored in an array of arrays of doubles
(yvalues). Each sub-array is the same length as xvalues.

Note: You can run this example from
JCLASS_HOME/Examples/Chart/DataSource/SimplestDataSource.
Chapter 8 ■ Data Sources 151

8.11.2 LabelledChartDataModel – Labelling Your Chart

Sometimes it is important to label each data series and each point in a graph.
This information can be added to a data source using the LabelledChartDataModel
interface.

The LabelledChartDataModel interface allows specification of series and point labels for
your data. It is an optional part of the chart data model, but is very commonly used:

public int getNumSeries();
public String[] getPointLabels();
public String[] getSeriesLabels();
public String getDataSourceName();

The getPointLabels() call returns the point labels for all points in the chart. The size of
the String array should correspond with the number of items in the XSeries and YSeries
arrays.

The getSeriesLabels() call returns the series labels for the chart. The size of the String
array should correspond to the value returned by getNumSeries(). Series labels appear in
the legend.

The getDataSourceName() returns the name of the data source. This appears in the chart
as the title of the legend.
152 Part I ■ Using JClass Chart

As an example, consider LabelledDataSource in JCLASS_HOME/examples/chart/
datasource/.

/**
 * This example shows how to add point and series labelling
 * to a data source. It extends SimplestDataSource and
 * implements the LabelledChartDataModel interface to add
 * this information. The result can be seen on the X-axis
 * (point labels representing quarters) and in the legend
 * (title, series names).
 */
public class LabelledDataSource extends SimplestDataSource implements
LabelledChartDataModel {

// Point labels
protected String pointLabels[] = { "Q1", "Q2", "Q3", "Q4" };

// Series labels
protected String seriesLabels[] = { "West", "East" };

/*
 * Retrieves the labels to be used for each point in a
 * particular data series.
 * @return array of point labels
 */
public String[] getPointLabels() {

return pointLabels;
}
/**
 * Retrieves the labels to be used for each data series
 */
public String[] getSeriesLabels() {

return seriesLabels;
}

/**
 * Retrieves the name for the data source
 */
public String getDataSourceName() {

return "Sales By Region";
}

As noted, this data source extends SimplestDataSource, adding in the required methods
for returning point labels – getPointLabels() – and series labels –getSeriesLabels().

Note that the number of items in the array returned by getSeriesLabels() should equal
the number returned by getNumSeries().

Note that the number of items in the array returned by getPointLabels() should equal
the number of items in the array returned by getXSeries() and getYSeries(). (In cases
where the X-data is unique for each series and each series has a possibly different number
of points, the point labels are applied to the first series.)

Note: You can run this example from
JCLASS_HOME/Examples/Chart/DataSource/LabelledDataSource.
Chapter 8 ■ Data Sources 153

8.11.3 EditableChartDataModel – Modifying Your Data

If you want to allow users to modify data using the edit trigger in JClass Chart, your data
source must implement EditableChartDataModel. The EditableChartDataModel
interface extends ChartDataModel, adding a single method that allows Chart to modify
data in the data source:

public boolean setDataItem(int seriesIndex, int pointIndex,
double newValue);

The seriesIndex and pointIndex values are used to save the data sent in newValue. Note
that EditableChartDataModel only allows for Y-values to be changed. In other words,
newValue is a Y-value!

As an example, consider EditableDataSource in JCLASS_HOME/examples/chart/
datasource/.

/**
 * This example shows how to make a data source editable
 * by adding the EditableChartDataModel interface to
 * the object.
 */
public class EditableDataSource extends LabelledDataSource implements
EditableChartDataModel {

/**
 * Change the specified y data value.
 * In this example, the series and point indices index
 * into the yvalues array originally defined in SimplestDataSource.
 *
 * @param seriesIndex series index for the point to be changed.
 * @param pointIndex point index for the point to be changed.
 * @param newValue new y value for the specified point
 * @return boolean value indicating whether the new value was
 * accepted. "true" means value was accepted.
 */
public boolean setDataItem(int seriesIndex, int pointIndex, double

newValue) {
if (newValue < 0) return false;
yvalues[seriesIndex][pointIndex] = newValue;
return true;

}

In this example, the value is saved back into the yvalues array from SimplestDataSource,
using the seriesIndex and pointIndex values to index to the appropriate array member.

This example extends LabelledDataSource, adding the setDataItem() method to allow
chart to modify the data in the data source.

Note: You can run this example from
JCLASS_HOME/Examples/Chart/DataSource/SimplestDataSource.
154 Part I ■ Using JClass Chart

8.11.4 HoleValueChartDataModel – Specifying Hole Values
If you want to supply a specific hole value along with your data, your data source must
implement the HoleValueChartDataModel interface.

As noted in Section 8.9.2, Explanation of Format Elements, a hole value is a particular
value in the data that should be ignored by the chart. There should be only one hole
value per data source.

The HoleValueChartDataModel interface has one method, getHoleValue(). This method
retrieves the hole value for the data source.

Note: The default hole value is Double.MAX_VALUE.

8.12 Making an Updating Chart Data Source
Quite often, the data shown in JClass Chart is dynamic. This kind of data requires
creation of an updating data source. An updating data source is capable of informing
chart that a portion of the data has been changed. Chart can then act on the change.

JClass Chart uses the standard AWT/Swing event/listener mechanism for passing
changes between the chart data source and JClass Chart. At a very high level,
JClass Chart is a listener to data source events that are fired by the data source.

8.12.1 Chart Data Source Support Classes
There are a number of data source related support classes included with JClass Chart.
These classes make it easier to build updating data sources.

ChartDataEvent and ChartDataListener
The ChartDataListener interface is implemented by objects interested in receiving
ChartDataEvents. Most often, the only ChartDataListener is JClass Chart itself.
ChartDataEvent and ChartDataListener give data sources away to send update
messages to Chart.

The ChartDataListener interface has only one method:

public void chartDataChange(ChartDataEvent e);

This method is used by the data source to inform the listener of a change. In most systems,
only JClass Chart need implement this interface.

The ChartDataEvent object has three immutable properties: Type, SeriesIndex, and
PointIndex. SeriesIndex and PointIndex are used to specify the data affected by the
posted change. If all data is affected, the enum values ALL_SERIES and ALL_POINTS can be
used.
Chapter 8 ■ Data Sources 155

../api/com/klg/jclass/chart/HoleValueChartDataModel.html

Type is used to specify the kind of update:

ChartDataManageable and ChartDataManager

This interface is used by a data source to tell Chart that it will be sending
ChartDataEvents to Chart. Without this interface, there is no way for Chart to know that
it has to attach itself as a ChartDataListener to the data source.

The only method in ChartDataManageable returns a ChartDataManager:

public abstract ChartDataManager getChartDataManager();

Message Meaning

ADD_SERIES A new data series has been added to the end of the
existing series in the data source.

APPEND_DATA Used in conjunction with the FastUpdate feature, this
tells the listener that data has been added to the existing
series. Please see FastUpdate, in Chapter 10, for full
details.

CHANGE_CHART_TYPE A request from the data source to change the chart type.
The chart type is held inside seriesIndex.

INSERT_SERIES A new data series has been added; seriesIndex indicates
where the series should be added.

RELOAD The data has completely changed; the difference here is
that the dimensions of the data source (that is, number of
data series and number of points) has not changed.

RELOAD_ALL_POINT_LABELS Tells the listener to reload all point labels.

RELOAD_ALL_SERIES_LABLES Tells the listener to reload all series labels.

RELOAD_DATA_SOURCE_NAME Tells the listener the data source name has changed.

RELOAD_POINT Single data value has changed, as specified by
seriesIndex and pointIndex.

RELOAD_POINT_LABEL Tells the listener to reload the point label specified by
pointIndex.

RELOAD_SERIES An entire data series has changed, as specified by
seriesIndex (pointIndex ignored).

RELOAD_SERIES_LABEL Tells the listener to reload the series label specified by
seriesIndex.

REMOVE_SERIES Removes the series at seriesIndex.

RESET The data source has completely changed.
156 Part I ■ Using JClass Chart

A ChartDataManager is an object that knows how to register and deregister
ChartDataListeners. Chart uses this object to register itself as a listener to events from
the data source.

The quickest way to get a data source set up is to extend or use ChartDataSupport.

ChartDataSupport

ChartDataSupport provides a default implementation of ChartDataManager. It will
manage a list of ChartDataListeners. It also provides two convenience methods for
firing events to the listeners:

public void fireChartDataEvent(int type, int seriesIndex, int
pointIndex)

public void fireChartDataEvent(ChartDataEvent evt)

The first method listed above is the most convenient. Given a ChartDataEvent Type,
SeriesIndex, and PointIndex, it constructs and fires a ChartDataEvent to all listeners.
The second method requires that you construct the ChartDataEvent yourself.

Creating an Updating Data Source
If your datasource either extends or contains ChartDataSupport, sending updates from
the data source to the chart is easy. Simple call fireChartDataEvent() with the event you
wish to send.

fireChartDataEvent(ChartDataEvent.RESET, 0, 0);

To have JClass Chart automatically added as a listener, your data source needs to
implement the ChartDataManageable interface and to return the ChartDataSupport
instance in the getChartDataManager() method.
Chapter 8 ■ Data Sources 157

Chart Data Source Hierarchy
158 Part I ■ Using JClass Chart

9
Text and Style Elements

Header and Footer Titles ■ Legends ■ Chart Labels ■ Chart Styles

OutlineStyle ■ Borders ■ Fonts ■ Colors

Positioning Chart Elements ■ 3D Effect ■ Anti-Aliasing

This chapter describes the different formatting elements available within JClass Chart,
and how they can be used. If you are developing your chart application using one of the
JClass Chart Beans, please refer to Bean Reference, in Chapter 4.

9.1 Header and Footer Titles
A chart can have two titles, called the header and footer. By default they are JLabel
instances and behave accordingly (A JLabel class is a Swing class.) A JLabel object can
display text, an image, or both.

You can specify where in the label’s display area the label’s contents are aligned by setting
the vertical and horizontal alignment. By default, labels are vertically centered in their
display area. Text-only labels are left-aligned by default. Image-only labels are
horizontally centered by default.

A title consists of one or more lines of text with an optional border, both of which you can
customize. You can also set the text alignment, positioning, colors, and font used for the
header or footer.

See “How to Use Labels” in the Java Tutorial for further documentation.
159

9.2 Legends
A legend shows the visual attributes (or ChartStyle) used for each series in the chart, with
text that labels the series. You can customize the series label and positioning. The legend
is a JComponent, and all properties such as border, colors, font, and so on, apply.

Figure 32 Vertically oriented legend anchored NorthEast.

New Location for the Legend Classes
In order to make the legend classes more accessible to the JClass products, all four legend
classes – JCLegend, JCGridLegend, JCMultiColLegend, and JCLegendItem – have been
moved from com.klg.jclass.chart to com.klg.jclass.util.legend.

How will this affect you?

For most users, all you will need to do when converting from 4.0.x to 4.5 and higher, is to
change the import statements to import the legend classes (JCLegend, JCGridLegend,
JCMultiColLegend, and JCLegendItem) from the com.klg.jclass.util.legend package.

This converting can be done either by hand or via running the provided porting script
(please see the second bullet). Each method will yield the same result.

■ Convert the import statements by hand by changing these import statements
import com.klg.jclass.chart.JCLegend;
import com.klg.jclass.chart.JCGridLegend;
import com.klg.jclass.chart.JCMultiColLegend;
import com.klg.jclass.chart.JCLegendItem;
import com.klg.jclass.chart.*;
160 Part I ■ Using JClass Chart

to

import com.klg.jclass.util.legend.JCLegend;
import com.klg.jclass.util.legend.JCGridLegend;
import com.klg.jclass.util.legend.JCMultiColLegend;
import com.klg.jclass.util.legend.JCLegendItem;
import com.klg.jclass.chart.*; import com.klg.jclass.util.legend.*;

■ Convert the import statements via running the porting script. This Perl script
changes the above import statements automatically. The porting script is named
legend4to45.pl and is provided at JCLASS_HOME/bin/. You must have Perl installed on
your system for the script to work.

Here is an example of how one would run the script:

perl legend4to45.pl filename

where filename is the name of the file you want to convert from 4.0.x to 4.5 or higher.

As noted, for most users the above changes to the import statements are all that is
required when converting from 4.0.x to 4.5 or higher. However, for users who are already
overriding JCLegend and implementing custom layouts, converting may require dealing
with changes to JClass Chart’s JCLegend and JCLegendItem classes. These items are not
covered by the porting script so will need to be done manually.

1. These fields have been added to JCLegendItem:

■ int drawType (determines drawing type; takes as its parameter one of
JCLegend.NONE, JCLegend.BOX, JCLegend.IMAGE, JCLegend.IMAGE_OUTLINED,
JCLegend.CUSTOM_SYMBOL, or JCLegend.CUSTOM_ALL)

■ Object itemInfo (refers to data related to this legend item – in JClass Chart, this is a
JCDataIndex object containing the data view and series to which this legend item is
related)

2. The new Object itemInfo field replaces these three fields:

■ ChartDataView view (the view associated with the ChartDataView)

■ ChartDataViewSeries series (the series associated with the ChartDataViewSeries)

■ int seriesIndex (the series index associated with the ChartDataViewSeries)

3. JCLegend’s drawLegendItem(Graphics gc, JCChart chart, Font useFont, JCLeg-
endItem thisItem) has been changed to:

■ drawLegendItem(Graphics gc, Font useFont, JCLegendItem thisItem)

Legend Text and Orientation
The legend displays the text contained in the Label property of each Series in a
DataView. The VisibleInLegend property of the series determines whether the Series
will appear in the Legend.
Chapter 9 ■ Text and Style Elements 161

SeriesLabels support the use of HTML tags. The use of HTML tags overrides the
default Font and Color properties of the label. Please note that HTML labels may not
work with PDF, PS, or PCL encoding.

Use the legend Orientation property to lay out the legend horizontally or vertically.

Legend Positioning
Use the legend Anchor property to specify where to position the legend relative to the
ChartArea. You can select from eight compass points around the ChartArea.

See Section 9.9, Positioning Chart Elements, for more information.

9.2.1 Customizing Legends

JClass provides two types of legend objects: JCGridLegend (the default) for a single-
column layout and JCMultiColLegend for a multiple-column layout. If these legends do
not provide the desired functionality, the user can customize the legend using the
JCLegend Toolkit.

Single-Column Legends
The classic single-column legend layout is provided by JCGridLegend. This is the default
layout in JClass Chart.

Multi-Column Legends
Multi-column legend layout is available using JCMultiColumnLegend. To designate this
layout, follow these steps:

1. Create an instance.

2. Set the number of rows and columns.

3. Set the legend property of the JClass Chart to this instance to create a multi-column
legend.

Multi-Column Legends example
JCMultiColLegend mcl = new JCMultiColLegend();
mcl.setNumColumns(2);
c.setLegend(mcl);

This example will create a legend for the current chart that has two columns. The number
of rows depends on the number of items in the legend. To fix the number of rows, use
setNumRows(). Both the number of rows and the number of columns are variable by
default.

To reset the number of rows and columns to a variable state after they have been fixed,
call the appropriate set method with a negative value. If both the NumRows and
NumColumns properties are set to fixed values, the legend will be of that exact size and will
ignore any extra items.
162 Part I ■ Using JClass Chart

../api/com/klg/jclass/util/legend/JCGridLegend.html
../api/com/klg/jclass/util/legend/JCMultiColLegend.html

JCLegend Toolkit
The JCLegend Toolkit allows you the freedom to design your own legend
implementations. The options range from simple changes, such as affecting the order of
the items in the legend, to providing more complex layouts.

The JCLegend Toolkit consists of a JCLegend class that can be subclassed to provide
legend layout rules and two interfaces: JCLegendPopulator and JCLegendRenderer.
JCLegendPopulator is implemented by classes wishing to populate a legend with data,
and JCLegendRenderer is implemented by a class that wishes to help render the legend’s
elements according to the user’s instructions. Examples of how to use the JCLegend
Toolkit are provided in JCLASS_HOME/examples/chart/legend/ .

JCChartLegendManager is the class used by JClass Chart to implement both the
JCLegendPopulator and JCLegendRenderer interfaces, and to provide a built-in
mechanism for itemizing range objects in a legend.

Custom Legends – Layout
JClass provides a Legend Toolkit that allows creation of custom legend implementations.
JCLegend is an abstract class that can be subclassed by users wishing to customize the
legend layout or other legend behavior.

To provide a custom layout, override the method:

public abstract Dimension layoutLegend(List itemList, boolean
vertical, Font useFont)

The itemlist argument is a List containing a Vector for each data view contained in the
chart. Each of these sub-vectors contains one JCLegendItem instance for each series in the
data view and one instance for the data view title.

The vertical argument is true if the orientation of the legend is vertical, and false if the
orientation of the legend is horizontal.

The useFont argument contains the default font to use for the legend.

Each item in the legend consists of a text portion and a symbol portion. For example, in a
Plot Chart, the text portion is the name of the series, and is preceded by the symbol used
to mark a point on the chart. For the title of the data view, the text portion is the name of
the data view and there is no symbol.

JCLegendItem is a class that encapsulates an item in the legend with the properties.

Property name Description

Point pos; Position of this legend item within the legend.

Point symbolPos; Position of the symbol within the legend item.

Point textPos; Position of the text portion within the legend item.

Dimension dim; Full size of the legend item.
Chapter 9 ■ Text and Style Elements 163

When the itemList is passed to layoutLegend, it has been filled in with JCLegendItem
instances representing each data series and data view title. These instances will have the
symbolDim, textDim, symbol, contents, itemInfo, and drawType already filled in.

The value of drawType will determine whether a particular default symbol type will be
drawn or whether user-provided drawing methods will be called.

The layoutLegend() method is expected to calculate and fill in the pos, symbolPos,
textPos, and dim fields. Additionally, the method must return a Dimension object
containing the overall size of the legend. Optionally, it may also calculate the
pickRectangle member of the JCLegendItem class. The pickRectangle is used in pick
operations to specify the region in the legend that is associated with the series that this
legend item represents. If left null, a default pickRectangle will be calculated using the
dim and pos members.

Any of the public methods in the JCLegend class may be overridden by a user requiring
custom behavior. One such method is:

public int getSymbolSize()

getSymbolSize() returns the size of the legend-calculated symbols to be drawn in the
legend. Default JCLegend behavior sets the symbol size to be equal to the ascent of the
default font that is used to draw the legend text. It is overridable by users who wish to use
a different symbol size. One possible implementation is to use a symbol size identical to
that which appears on the actual chart.

Dimension symbolDim; Size of the symbol; provided by JCLegend.

Dimension textDim; Size of the text portion; provided by JCLegend.

Rectangle
pickRectangle;

The rectangle to use for pick operations; optional.

int drawType; Determines drawing type; one of JCLegend.NONE,
JCLegend.BOX, JCLegend.IMAGE,
JCLegend.IMAGE_OUTLINED, JCLegend.CUSTOM_SYMBOL, or
JCLegend.CUSTOM_ALL.

Object itemInfo Data related to this legend item. In JClass Chart, this is a
JCDataIndex object containing the data view and series to
which the legend item is related.

Object symbol; The symbol if other than the default type; usually null
(means drawLegendItem decides).

Object contents; The text portion; a String or JCString.

Property name Description
164 Part I ■ Using JClass Chart

Custom Legends – Population
JCLegendPopulator is an interface that can be implemented by any user desiring to
populate the legend with custom items. This interface comprises two methods that need
to be implemented:

public List getLegendItems(FontMetrics fm)
public boolean isTitleItem(JCLegendItem item)

getLegendItems() should return a List object containing any number of Vector objects
where each Vector object represents one column in the legend. Each Vector object
contains the JCLegendItem objects for that column. In JClass Chart, each column
generally represents one data view.

isTitleItem() should return true or false, depending on whether the passed
JCLegendItem object represents a title for the column. This is used to determine whether
a symbol is drawn for a particular legend item.

If implemented, the legend should be notified of the new populator with the
setLegendPopulator() method of JCLegend.

Custom Legends – Rendering
JCLegendRenderer is an interface that can be implemented by any user desiring to
custom render legend items. This interface consists of four methods that need to be
implemented:

public void drawLegendItem(Graphics gc, Font useFont,
JCLegendItem thisItem)

public void drawLegendItemSymbol(Graphics gc, Font useFont,
JCLegendItem thisItem)

public Color getOutlineColor(JCLegendItem thisItem)
public void setFillGraphics(Graphics gc, JCLegendItem thisItem)

JCLegendRenderer also has the capacity to implement custom text objects for drawing,
and is called when the legend cannot interpret an object placed in the contents field of
the JCLegendItem. This interface consists of one method that needs to be implemented:

void drawLegendItemText (Graphics gc, Font useFont, JCLegendItem
thisItem);

drawLegendItem() provides a way for a user to define a custom drawing routine for an
entire legend item. It is called when a legend item’s draw type has been set to
JCLegend.CUSTOM_ALL.

drawLegendItemSymbol() provides a way for a user to define a custom drawing routine
for a legend item’s symbol. It is called when a legend item’s draw type has been set to
JCLegend.CUSTOM_SYMBOL.

getOutlineColor() should return the outline color to be used to draw the legend item’s
symbol. If null is returned, the legend’s foreground color will be used.
getOutlineColor() is called when a legend item’s draw type has been set to either
JCLegend.BOX or JCLegend.IMAGE_OUTLINED.
Chapter 9 ■ Text and Style Elements 165

setFillGraphics() should set the appropriate fill properties on the provided Graphics
object for drawing the provided legend item. setFillGraphics() is called when the
legend item’s draw type has been set to JCLegend.BOX.

If implemented, the legend should be notified of the new renderer with the
setLegendRenderer() method of JCLegend.

Examples of Simple Custom Legends
The easiest way to perform simple legend customizations is to extend an existing legend.
This is clearly demonstrated in the Reversed Legend example in
JCLASS_HOME/examples/chart/legend/. This example overrides the JCChartLegendManager
class (the class that implements the JCLegendPopulator and JCLegendRenderer interfaces
in JClass Chart) to reverse the order of the legend items. This class overrides the
getLegendItems() method, first calling the superclass’ method to get the list of legend
items and then rearranging the order before returning the newly reversed list of legend
items.

Figure 33 The Reversed Legend example, which extends JCChartLabelManager to reverse the order of
the legend items.
166 Part I ■ Using JClass Chart

Here’s the pertinent code:

public ReverseLegend() {

setLayout(new GridLayout(1,1));

// replace standard legend with custom legend that reverses
// the order of the legend items
JCChart c = new JCChart(JCChart.PLOT);

...
RevLegendManager legMan = new RevLegendManager(c);
c.getLegend().setLegendPopulator(legMan);
c.getLegend().setLegendRenderer(legMan);
c.getLegend().setVisible(true);

...
}

/** RevLegendManager overrides the standard legend representation
 * to reverse the drawing order of the legend items. It does this by
 * overriding getLegendItems() method of the JCChartLabelManager
 * class to reverse the order of the items in the legend
 * vector.
 */

class RevLegendManager extends JCChartLegendManager
{

RevLegendManager(JCChart chart)
{

super(chart);
}
/** Override getLegendItems(). Reverse order of items in legend
 * vector.
 */
public List getLegendItems(FontMetrics fm)
{

// get the list of legend items from the superclass
List itemList = super.getLegendItems(fm);

// reverse the list
for (int i = 0; i < itemList.size(); i++) {

List viewItems = (List) itemList.get(i);

List reverseView = new Vector();
for (int j = viewItems.size() - 1; j >= 0; j--) {

JCLegendItem thisItem = (JCLegendItem) viewItems.get(j);

// reverse items in list, but keep the title at the top.
 if (isTitleItem(thisItem)) {

reverseView.add(0, thisItem);
} else {

reverseView.add(thisItem);
}

}
itemList.set(i, reverseView);
Chapter 9 ■ Text and Style Elements 167

}
// now that we've set up the list correctly, let the superclass
// position it
return itemList;

}

}

The Separator Legend example in JCLASS_HOME/examples/chart/legend/ shows how to
place a separator between the data view title and the series beneath it. Similar to the
Reversed Legend example, the Separator Legend example overrides the
JCChartLegendManager class.

In the Separator Legend example, a new JCLegendItem is inserted into the list after the
data view title item as part of the layoutLegend() method. This new JCLegendItem has
only its textDimension filled in with the size of the separator, but the actual contents
field remains null – which is how one recognizes the separator when it is time to draw it.

The drawType field of the JCLegendItem is set to JCLegend.CUSTOM_ALL to ensure that the
drawLegendItem() method will be called. Finally, the example returns the item list with
the newly added item and lets the superclass do the positioning and sizing calculations.

The drawLegendItem() method is also overridden so that the separator can be drawn.
Before drawing, however, it is first determined whether the provided legend item is,
indeed, the separator created above.

Figure 34 The Separator Legend example places a separator between the data view title and the series
beneath it, and extends JCChartLabelManager.
168 Part I ■ Using JClass Chart

Here’s the relevant code:

public SeparatorLegend() {

setLayout(new GridLayout(1,1));

// replace standard legend with custom legend that draws a
// separator between the title and the body

 JCChart c = new JCChart(JCChart.BAR);
...

SepLegendManager sepMan = new SepLegendManager(c);
c.getLegend().setLegendPopulator(sepMan);
c.getLegend().setLegendRenderer(sepMan);

c.getLegend().setVisible(true);
...
}

/** sepLegendManager overrides the standard legend populator and
 * renderer implementations to draw a separator between the legend
 * title and body. It does this by overriding the
 * JCChartLegendManager's getLegendItem() method (to insert an item
 * to take the place of a separator) and drawLegendItem() (to draw
 * the separator) methods.
 */
public class SepLegendManager extends JCChartLegendManager
{

public SepLegendManager(JCChart chart)
{

super(chart);
}

/** Override getLegendItems() to insert separator item into
 * legend vector.
 */
public List getLegendItems(FontMetrics fm)
{

// get the list of legend items from the superclass
List itemList = super.getLegendItems(fm);

// go through the list to find the spot for the separator
for (int i = 0; i < itemList.size(); i++) {

List viewItems = (List) itemList.get(i);

for (int j = 0; j < viewItems.size(); j++) {
JCLegendItem thisItem = (JCLegendItem) viewItems.get(j);

// Insert separator item after title item
// our separator is identified by having null contents
// but an existing text dimension. Make the separator as
// wide as the text portion of the title.

 if (isTitleItem(thisItem)) {
JCLegendItem newItem = new JCLegendItem();
boolean vertical = chart.getLegend().getOrientation() ==

JCLegend.VERTICAL;
Chapter 9 ■ Text and Style Elements 169

if (vertical) {
newItem.textDim = new Dimension(thisItem.textDim.

width, 3);
} else {

newItem.textDim = new Dimension(3,
thisItem.textDim.height);

}
// make sure to set draw type as CUSTOM_ALL so that
// drawLegendItem() will be called.
newItem.drawType = JCLegend.CUSTOM_ALL;
viewItems.add(j+1, newItem);
break;

}
}

}

// now that the list is set up, let the superclass worry about
// positioning everything
return itemList;

}

/** Override drawLegendItem() to draw the separator item
 * when encountered.
 */
public void drawLegendItem(Graphics gc, Font useFont,

JCLegendItem thisItem)
{

// if our separator, draw it
if (thisItem.contents == null && thisItem.textDim != null) {

 if (gc.getColor() != getForeground())
gc.setColor(getForeground());

gc.fillRect(thisItem.pos.x + thisItem.textPos.x,
thisItem.pos.y + thisItem.textPos.y,
thisItem.textDim.width,
thisItem.textDim.height);

}
}
}

Remember to use the setLegendPopulator() and setLegendRenderer() methods of the
JCLegend class to notify the legend of the new class.

Examples of Complex Legends
More complex customizations are also possible. Legends that require full-scale changes to
the rules of layout can override the JCLegend class and create their own implementation.
Have a look at JCLASS_HOME/examples/chart/legend/FlowLegend for an example of a
custom legend layout.
170 Part I ■ Using JClass Chart

9.3 Chart Labels
Chart labels allow you to add more information to your chart. There are static labels that
display continuously and interactive labels that pop-up when a cursor moves over a data
item. Labels can be attached to different parts of a chart: absolute coordinates,
coordinates in the plotting area, or a specific data item. To see a wide range of label uses,
browse the demos in the JCLASS_HOME/demos/chart/labels/ directory.

9.3.1 Label Implementation
JClass Chart contains a list of labels, managed by the ChartLabelManager. This property
is initially null. By calling getChartLabelManager(), JClass Chart will create a manager
class with an empty list of labels. When you create a label, you must add it to the manager
with addChartlabel(). Labels are instances of the JCChartLabel class.

9.3.2 Adding Labels to a Chart
Labels are added to a chart in two ways: with the AutoLabels property of ChartDataView,
or by attaching an instance of JCChartLabel to a chart element.

Individual labels are attached in three ways: to coordinates on the chart area
(ATTACH_COORD), coordinates on the plot area (ATTACH_DATACOORD), or to a data item
(ATTACH_DATAINDEX). Interactive labels must use the ATTACH_DATAINDEX method.

Each label on the chart below uses a different attachment method. The “Point(100,50)”
label, is attached to coordinates originating from the top left corner of the chart area.
“Value(2,220)” is attached to axes coordinates, and “Data(Set0,Point2)” is attached to a
specific data item.

Attaching a Label to a Data Item
To attach a label to a point, bar or slice, set the AttachMethod property to
ATTACH_DATAINDEX. The labels move with the data element; the labels also move when
the chart is resized. Note that the points and series are zero-based. The following example
puts a label on a chart next to the fourth data point in the second data series.

cl = new JCChartLabel("Fourth data point");
cl.setDataIndex(new JCDataIndex(view, series, 1, 3));
cl.setAttachMethod(JCChartLabel.ATTACH_DATAINDEX);
cl.setAnchor(JCChartLabel.AUTO);
chart.getChartLabelManager().addChartLabel(cl)
Chapter 9 ■ Text and Style Elements 171

Attaching a Label to Chart Area Coordinates
To attach a label to a point on the chart area, set the AttachMethod property to
ATTACH_COORD. The coordinate origin for this method is the top left corner of the chart
area.

JCChartLabel cl = new JCChartLabel("Point(100.50)");
cl.setAttachMethod(JCChartLabel.ATTACH_COORD);
cl.setCoord(new Point(100, 50));
chart.getChartLabelManager().addChartLabel(cl)

Attaching a Label to Plot Area Coordinates
To attach a label to coordinates on the plot area, set the AttachMethod property to
ATTACH_DATACOORD. The plot area is defined by the chart’s X- and Y-axes. The following
example places a label in the plot area at X-value 2.5, y-value 160.

JCChartLabel cl = new JCChartLabel("Attached to the data coordinate",
false);
cl.setDataCoord(new JCDataCoord(2.5, 160));
cl.setAnchor(JCChartLabel.NORTH);
cl.setAttachMethod(JCChartLabel.ATTACH_DATACOORD);
cl.setBorderType(Border.ETCHED_OUT);
cl.setBorderWidth(5);
chart.getChartLabelManager().addChartLabel(cl)

9.3.3 Interactive Labels
You can have labels pop-up as a cursor dwells over a point, bar or slice (a dwell label).
This allows you to create an interactive chart where information is hidden until the user
wants to see it. The AutoLabel property will set up a complete series of dwell labels for
your chart. In the example below, ‘225’ appears on top of the bar as the cursor passes
over it, to indicate the value of the bar.

Automatically Generated Labels
The AutoLabel property of ChartDataView will generate a complete series of dwell labels
if set to true. It attaches dwell labels to every data index. The following code adds
automatic dwell labels to the data:

chart.getDataView(0).setAutoLabel(true);

Adding Individual Dwell Labels
Attaching an individual dwell label follows the same procedure as attaching a static label
to a data item, except that the DwellLabel property is set to true:

cl.setDwellLabel(true);
172 Part I ■ Using JClass Chart

A dwell label can only be used when the AttachMethod property is set to
ATTACH_DATAINDEX.

9.3.4 Adding and Formatting Label Text

JCChartLabel is just a holder for any JComponent. By default it is a JLabel instance, and
text can be set the same way you would set text on a JLabel. You can access the
component portion of the chart label with the getComponent() method.

JLabels support the use of HTML tags. The use of HTML tags overrides the default Font
and Color properties of the label. Please note that HTML labels may not work with PDF,
PS, or PCL encoding.

Adding Label Text
You can add text to a label by passing it to the constructor, or by using the Text property.
To add text to a label when it is constructed, include the text in the constructor’s
argument, as follows:

JCChartLabel cl = new JCChartLabel("I’m a Label", false);

To add text using the Text property, use the setText method, as follows:

((JLabel)cl.getComponent()).setText("I’m a Label");

Formatting Label Text
Font f = new Font("timesroman", Font.BOLD, 24);
cl.getComponent(),setFont(f)

JComponent properties such as fonts, borders, colors, an so on, are set in the same manner.

9.3.5 Positioning Labels

The Anchor property determines the position of the label, relative to the point of
attachment. Valid positions include: NORTH, NORTHEAST, NORTHWEST, EAST, WEST,
SOUTHEAST, SOUTHWEST, and SOUTH. The following example shows the syntax:

cl.setAnchor(JCChartLabel.EAST);
Chapter 9 ■ Text and Style Elements 173

9.3.6 Adding Connecting Lines
You can add lines that connect a label to its point of attachment. This can help the end-
user pinpoint what a label refers to on a chart.

To add a connecting line to a label, set the Connected property to true, as follows:

cl.setConnected(true);

9.4 Chart Styles

Chart styles define all of the visual attributes of how data appears in the chart, including:

■ Lines and points in plots and financial charts.

■ Color of each bar in bar charts.

■ Slice colors in pie charts.

■ Color of each filled area in area charts.

Each series in a data view has its own JCChartStyle object; as new series are added, new
JCChartStyle objects are created automatically by the chart. JClass Chart automatically
defines a set of visually different styles for up to 13 series, so while you can customize any
chart style, you may not need to.

Every ChartStyle has a FillStyle, a LineStyle, and a SymbolStyle. FillStyles are
used for Area, Bar, Candle, Hi-Lo, Hi-Lo-Open-Close, Pie, and Stacking Bar charts.
LineStyles and SymbolStyles are used for plots.

Figure 35 Types of ChartStyles available.

ChartStyle is an indexed property of ChartDataView that “owns” the JCChartStyle
objects for that data view. It can be manipulated like any other indexed property, for
example:

 arr.setChartStyle(0, new JCChartStyle());
174 Part I ■ Using JClass Chart

This adds the specified ChartStyle to the indexed property at the specified index. If the
ChartStyle is null, the JCChartStyle at the specified point is removed. The following
lists some of the other ways ChartStyle can be used:

■ getChartStyle(index) — retrieves the chart style at the specified index.

■ setChartStyle(List) — replaces all existing chart styles.

■ List getChartStyle() — retrieves a copy of the array of chart styles.

Normally, you will not need to add or remove JCChartStyle objects from the collection
yourself. If a JCChartStyle object already exists when its corresponding series is created,
the previously created JCChartStyle object is used to display the data in this series.

Customizing Existing ChartStyles
Each JCChartStyle object contains three smaller objects that control different aspects of
the style: JCFillStyle, JCLineStyle, and JCSymbolStyle.

The most common chart style sub-properties are repeated in JCChartStyle. For example,
FillColor is a property of JCChartStyle that corresponds to the Color property of
JCFillStyle object. The following lists all of the repeated properties:

■ LinePattern, LineWidth, and LineColor repeat JCLineStyle properties

■ SymbolShape, SymbolColor, SymbolSize, and SymbolCustomShape repeat JCSymbol
properties

■ FillColor, FillPattern, and FillImage repeat JCFillStyle properties.

FillStyle
JCFillStyle controls the fills used in bar, pie, area, and candle charts. Its properties
include Color and Pattern. Use Pattern to set the fill drawing pattern and Color to set
the fill color. The default pattern is solid fill.

For JDK 1.3.1 and higher, available fill patterns include none, solid, 25%, 50%, 75%,
horizontal stripes, vertical stripes, 45 degree angle stripes, 135 degree angle stripes,
diagonal hatched pattern, cross hatched pattern, custom fill, custom paint, or, for bar
charts only, custom stack fill.

Custom fill and custom stack fill draw using the image set in the Image property. Custom
paint draws using the TexturePaint object, which is set in the CustomPaint property.

Note that filled areas are not supported for Polar charts.

LineStyle
JCLineStyle controls line drawing, used in line and hi-lo charts. Its properties are Color,
Pattern and Width. Use Pattern to set the line drawing pattern, Color to set the line
color, and Width to set the line width.

Custom line patterns can be set with a setPattern() method that specifies the line
pattern arrays to use.
Chapter 9 ■ Text and Style Elements 175

SymbolStyle
JCSymbolStyle controls the symbol used to represent points in a data series, used in plot
or scatter plot charts. Its properties are Shape, Color and Size. Use Shape to set the
symbol type, Size to set its size, and Color to set the symbol color.

Valid symbols are shown below:

Figure 36 Symbols available in JCSymbolStyle.

You can also provide a custom shape by implementing an abstract class JCShape and
assigning it to the CustomShape property.

Customizing All ChartStyles
By looping through the JCChartStyle indexed property, you can quickly change the
appearance of all of the bars, lines, or points in a chart. For example, the following code
lightens all of the bars in a chart whenever the mouse is clicked:

for (Iterator i = c.getDataView(1).getChartStyle().listIterator();
i.hasNext();)

{
JCChartStyle cs = (JCChartStyle) i.next();
JCFillStyle fs = cs.getFillStyle();
fs.setColor(fs.getColor().brighten);

}

9.5 OutlineStyle

The ChartDataView’s OutlineStyle property controls the outlines of area, stacking area,
area radar, bar, stacking bar, and pie charts. It is of type JCLineStyle and thus the
properties of the line can be controlled by getting the JCLineStyle object using
getOutlineStyle() and setting its properties.

The default outline style is a solid line of width one in the chart area’s foreground color.
176 Part I ■ Using JClass Chart

9.6 Borders

One way to highlight important information or improve the chart’s appearance is to use a
border. You can customize the border of the following chart objects:

■ Header and Footer titles

■ Legend

■ ChartArea

■ each ChartLabel added to the chart

■ the entire chart

Border properties are set using the standard JComponent border facilities, getBorder()
and setBorder().

9.7 Fonts
A chart can have more impact when you customize the fonts used for different chart
elements. You may also want to change the font size to make an element better fit the
overall size of the chart. Any font available when the chart is running can be used. You
can set the font for the following chart elements:

■ Header and Footer titles

■ Legend

■ Axis annotation and title

■ each ChartLabel added to the chart

Changing a Font
Font properties are set using the standard JComponent font facilities, getFont() and
setFont().

Use the font properties to set the font, style, and size attributes.

9.8 Colors
Color can powerfully enhance a chart’s visual impact. You can customize chart colors
using Java color names or RGB values. Using an interactive tool like The Chart
Customizer can make selecting custom colors quick and easy. Each of the following visual
elements in the chart has a background and foreground color that you can customize:

■ the entire chart

■ Header and Footer titles

■ Legend

■ Chart Area
Chapter 9 ■ Text and Style Elements 177

■ Plot Area (foreground colors JCChartArea’s AxisBoundingBox)

■ each ChartLabel added to the chart

Other chart objects have color properties too, including ChartDataView (bar/pie outline
color) and ChartStyles.

Color Defaults
All chart subcomponents are transparent by default with no background color. If made
opaque, the legend, chart area and plot will inherit background color from the parent
chart. The same objects will always inherit the foreground color from the chart.

Headers and footers are independent objects and behave according to the rules of
whatever object they are.

However, once the application sets the colors of an element, they do not change when
other elements’ colors change.

Specifying Foreground and Background Colors
Each chart element listed above has a Background and Foreground property that specifies
the current color of the element. The easiest way to specify a color is to use the built-in
colornames defined in java.awt.Color. The following table summarizes these colors:

Alternately, you can specify a color by its RGB components, useful for matching another
RGB color. RGB color specifications are composed of a value from 0 – 255 for each of
the red, green and blue components of a color. For example, the RGB specification of
Cyan is “0-255-255” (combining the maximum value for both green and blue with no
red).

The following example sets the header background using a built-in color, and the footer
background to an RGB color (a dark shade of Turquoise):

 c.getHeader().setBackground(Color.cyan);

 mycolor = new Color(95,158,160);
 c.getFooter().setBackground(mycolor);

Take care not to choose a background color that is also used to display data in the chart.
The default ChartStyles use all of the built-in colors in the following order: Red, Orange,
Blue, Light Gray, Magenta, Yellow, Gray, Green, Dark Gray, Cyan, Black, Pink, and

Built-in Colors in java.awt.Color

black blue cyan

darkGray gray green

lightGray magenta orange

pink red white

yellow
178 Part I ■ Using JClass Chart

White. Note that JClass Chart will skip colors that match background colors. For
example, if the chart area background is Red, then the line, fill, and symbol colors will
start at Orange.

For all JClass Chart charts, the foreground and background colors of the plot area are
adjustable.

Transparency
If the JClass Chart component is meant to have a transparent background, set the Opaque
property to False; then generated GIFs and PNGs will also contain a transparent
background.

9.9 Positioning Chart Elements

Each of the main chart elements (Header, Footer, Legend, and ChartArea) has properties
that control its position and size. While the chart can automatically control these
properties, you can also customize the following:

■ positioning of any element

■ size of any element

When the chart controls positioning, it first allows space for the Header, Footer, and
Legend, if they exist (size is determined by contents, border, and font). The ChartArea is
sized and positioned to fit into the largest remaining rectangular area. Positioning adjusts
when other chart properties change.

ChartLabels do not figure into the overall Chart layout. Instead, they are positioned
above all other Chart elements.

Changing the Location and Size
To specify the absolute location and size of a chart element, call setLayoutHints() in
JClass Chart with the object you wish to move and a rectangle containing its desired X-
and Y-location, width, and height. If you desire any of those values to be calculated rather
than set, make them equal to Integer.MAX_VALUE.

For example,

chart.setLayoutHints(legend, newRectange(0,150,200,200))

will set the legend to be 200 x 200 and place it at (0,150), while

chart.setLayoutHints(legend, Rectange(0,150,
Integer.MAX_VALUE,Integer.MAX_VALUE, Integer.MAX_VALUE))

will leave the legend’s size alone but still move it to (0,150).
Chapter 9 ■ Text and Style Elements 179

9.10 3D Effect

Data in bar, stacking bar and pie charts can be displayed with a three-dimensional
appearance using several JCChartArea properties:

■ Depth — Specifies the apparent depth as a percentage of the chart’s width. No 3D
effect appears unless this property is set greater than zero.

■ Elevation — Specifies the eye’s position above the horizontal axis, in degrees.

■ Rotation — Specifies the number of degrees the eye is positioned to the right of the
vertical axis. This property has no effect on pie charts.

You can set the visual depth and the “elevation angle” of the 3D effect. You can also set
the “rotation angle” on bar and stacking bar charts. Depth, Rotation, and Elevation are
all properties of the ChartArea.

Figure 37 Four JClass Charts illustrating 3D effects.

9.11 Anti-Aliasing

Anti-aliasing is the process of smoothing out lines and curves to remove the pixelated
appearance of text and graphics. The smoothing is done by padding pixels with
180 Part I ■ Using JClass Chart

intermediate colors. For example, a black and white image would be smoothed out using
gray.

Figure 38 The appearance of text with and without anti-aliasing.

JClass Chart is equipped with the antiAliasing property which can turn anti-aliasing on
or off when the chart and its subcomponents are painted.

■ JCChart.ANTI_ALIASING_ON turns on anti-aliasing for the chart;

■ JCChart.ANTI_ALIASING_OFF turns off anti-aliasing for the chart;

■ JCChart.ANTI_ALIASING_DEFAULT, which is the default value, ensures that the
graphics object will be untouched with respect to anti-aliasing when the chart is
painted.
Chapter 9 ■ Text and Style Elements 181

182 Part I ■ Using JClass Chart

10
Advanced Chart Programming

Outputting JClass Charts ■ Batching Chart Updates ■ Coordinate Conversion Methods

FastAction ■ FastUpdate ■ Programming End-User Interaction ■ Image-Filled Bar Charts

Pick ■ Using Pick and Unpick ■ Unpick

Controlling the chart in an application program is generally straightforward once you are
familiar with the programming basics and the object hierarchy. For most JClass Chart
objects, all the information needed to program them can be found in the API. In addition,
extensive information on how they can be used can be found in the numerous example
and demonstration programs provided with JClass Chart.

This chapter covers more advanced programming concepts for JClass Chart and also
looks at more complex chart programming tasks.

10.1 Outputting JClass Charts

Many applications require that the user has a way to get an image or a hard copy of a
chart. JClass Chart allows you to output your chart as a GIF, PNG, or JPEG image, to
either a file or an output stream.

(If you have JClass PageLayout installed, you can also encode your charts as an EPS, PS,
PCL, or PDF file [in addition to GIF, PNG, or JPEG]. For more information, please see
the JClass PageLayout Programmer’s Guide. Refer to Quest Software’s web site for information
on evaluating or purchasing JClass PageLayout.)

Please note that in order to enable GIF encoding, you must obtain a license from Unisys
and send a copy of this license to Quest Software. Quest will send the enabling software
for GIF encoding upon receipt of a valid proof of license. There are also public sources of
Java image to GIF converters.

Located in com.klg.jclass.util.swing.encode, the JCEncodeComponent class is used
to encode components into different image file formats. When you include this class in
your program, you can call one of two methods that allow you to save the chart image as
a GIF, PNG, or JPEG file, sending it to either a file or an output stream.

The parameters of the two methods are the same, except for output.
183

../api/index.html
../api/com/klg/jclass/util/swing/encode/Encoder.html
http://www.quest.com

10.1.1 Encode method
The method to output to a file is:

public static void encode(JCEncodeComponent.Encoding encoding,
Component component, File file)

The method to output to an output stream is the same, except that the last parameter is
OutputStream output, that is ...Component component, OutputStream output)

The component parameter refers to the component to encode, that is, the chart; the
encoding parameter refers to the type of encoding to use (a GIF, PNG, or JPEG; if you
have JClass PageLayout installed, you can also encode your chart as an EPS, PS, PCL, or
PDF file); and the output parameter refers either to the file to which to write the
encoding or to the stream to which to write the encoding.

10.1.2 Encode example

To see this encode method in action, please look at the Encode example, found in the
“Example & Demo Gallery” that was installed automatically with JClass Chart. This
example appears in the Advanced folder.

In this example, you can alter the encoding type by selecting a different encoding type
from the drop-down menu. Another option provided is your choice of file name. Also,
you can right-click the example to bring up the Property Editor and further manipulate
the properties of the chart.
184 Part I ■ Using JClass Chart

10.1.3 Code example

The following code snippet was used to create the example above.

public void actionPerformed(ActionEvent evt) {
int typeIndex = encTypesCB.getSelectedIndex();
String fileName = encFileTF.getText();
if (evt.getSource() == encButton) {

// if encode button pressed, get the encoding type and file name
// and use them to encoding the chart

if (typeIndex >= 0 && !(fileName.equals(""))) {
// Call chart's encoding method, but make sure to catch
// possible exception
try {

JCEncodeComponent.encode (JCEncodeComponent.ENCODINGS
[typeIndex], chart, new File(fileName));

} catch (EncoderException ee) {
ee.printStackTrace();

}
catch (IOException io) {

io.printStackTrace();
}

}
}

10.2 Batching Chart Updates
Normally, the chart is repainted immediately after a property is set. To make several
changes to a chart before causing a repaint, set the Batched property of the JCChart
object to true. Property changes do not cause a repaint until Batched is reset to false.

The Batched property is also defined for the ChartDataView object. This Batched
property is independent of JCChart.Batched. It is used to control the update requests sent
from the DataSource to the chart.

Note: It is highly recommended that you batch around the creation or updating of
multiple chart labels.

10.3 Coordinate Conversion Methods

The ChartDataView object provides methods that enable you to do the following:

■ Convert from data coordinates (x and Y-data values) to pixel coordinates (where these
data coordinates appear on screen) and vice versa.

■ Determine the pixel coordinates of a given data point in a series, or the closest point
to a given set of pixel coordinates.
Chapter 10 ■ Advanced Chart Programming 185

The following table outlines which method or functional equivalent to use for each action.

10.3.1 CoordToDataCoord and DataIndexToCoord

To convert from data coordinates to pixel coordinates, call the dataCoordToCoord()
method. For example, the following code obtains the pixel coordinates corresponding to
the data coordinates (5.1, 10.2):

 Point p=c.getDataView(0).dataCoordToCoord(5.1,10.2);

This works in the same way as unmap. Note that the pixel coordinate positioning is relative
to the upper left corner of the JCChart component display.

To convert from pixel coordinates to data coordinates, call coordToDataCoord(). For
example, the following converts the pixel coordinates (225, 92) to their equivalent data
coordinates:

 JCDataCoord cd=c.getDataView(0).coordToDataCoord(225,92);

This works in the same manner as map. So, coordToDataCoord() returns a JCDataCoord
object containing the X- and Y-values in the data space.

To determine the pixel coordinates of a given data point, call dataIndexToCoord(). For
example, the following code obtains the pixel coordinates of the third point in the first
data series:

JCDataIndex di=new JCDataIndex(3,c.getDataView(0).getSeries(0));
Point cdc=c.getDataView(0).dataIndexToCoord(di);

To determine the closest data point to a set of pixel coordinates, call
coordToDataIndex():

JCDataIndex di=c.getDataView(0).coordToDataIndex(225,92,
ChartDataView.PICK_FOCUSXY);

Essentially, these last two examples demonstrate that dataIndexToCoord() works in
much the same way as pick and unpick. The third argument passed to
coordToDataIndex() specifies how the nearest series and point value are determined.

Method Functional equivalent Action

dataCoordToCoord() unmap Converts from data coordinates to
pixel coordinates

coordToDataCoord() map Converts from pixel coordinates to
data coordinates

dataIndexToCoord() unpick Determines the pixel coordinates of a
given data point in a series

coordToDataIndex() pick Determines the closest point in pixels
to a given data point in a series
186 Part I ■ Using JClass Chart

This argument can be one of ChartDataView.PICK_FOCUSXY,
ChartDataView.PICK_FOCUSX, or ChartDataView.PICK_FOCUSY. For more information on
the pick and unpick methods, please see Section 10.9, Using Pick and Unpick.

JCDataIndex contains the series and point value corresponding to the closest data point,
and also returns the distance in pixels between the pixel coordinates and the point.
coordToDataIndex() returns a JCDataIndex instance.

10.3.2 Map and Unmap

map and unmap are functionally equivalent to the coordToDataCoord() and
dataIndexToCoord() methods. They are provided as convenience methods, and are
more in keeping with typical Java terminology than coordToDataCoord() and
dataIndexToCoord().

For Polar charts, the X- and Y-values are interpreted as (theta, r) coordinates. The X-units
used will depend on the current value of angle unit. The case for Radar and Area Radar
charts is similar, except that X-values will be ignored.

10.4 FastAction
The FastAction property determines whether chart actions will use an optimized mode
in which it does not bother to update display axis annotations or gridlines during a chart
action. Default value is false.

Using FastAction can greatly improve the performance of a chart display, because
relatively more time is needed to draw such things as axis annotations or gridlines than
for simply updating the points on a chart. It is designed for use in dynamic chart displays,
such as charts that enable the user to perform translation or rotation actions.

The following line of code shows how FastAction can be used in a program:

 c.getChartArea().setFastAction(true);

10.5 FastUpdate

The FastUpdate property optimizes chart drawing – if possible, only new data that has
been added to the datasource is drawn when the chart updates, with little recalculating
and redrawing of existing points. (Please see Making Your Own Chart Data Source, in
Chapter 8, for a guide on how to build an updating chart data source.) However, if the
new data goes outside of the current axis boundaries, then a full redraw is done.

Using FastUpdate can improve the performance of a chart display, especially with
dynamic chart displays.
Chapter 10 ■ Advanced Chart Programming 187

The following line of code shows how FastUpdate can be used in a program:

 c.getDataView(0).setFastUpdate(true);

A chart using the fast update feature will not draw correctly when the chart object is
placed within an JInternalFrame object or when items from a JPopupMenu overlay the
chart.

Please see the FastUpdate demo, found in JCLASS_HOME/demos/chart/fastupd/, for a
demonstration of this feature.

Note: This feature is not supported in Area Radar or Radar charts. For Polar charts, there
is no need to check the axis bounds in the X-direction. The routines for checking axis
bounds can still be used for the y-direction.

10.6 Programming End-User Interaction
An end-user can interact with a chart more directly than using the Customizer. Using the
mouse and keyboard, a user can examine data more closely or visually isolate part of the
chart. JClass Chart provides the following interactions:

■ moving the chart

■ zooming into or out of the chart

■ rotation (only for bar or pie charts displaying a 3D effect)

■ adding depth cues to the chart

■ interactively change data points (using the pick feature)

It is also possible in most cases for the user to reset the chart to its original display
parameters. The interactions described here affect the chart displayed inside the
ChartArea; other chart elements, such as the header, are not affected.

Note: The keyboard/mouse combinations that perform the different interactions can be
changed or removed by a programmer. The interactions described here may not be
enabled for your chart.

A chart action is a user event that causes some interactive action to take place in the
control. In JClass Chart, actions like zoom, translate and rotate can be mapped to a
mouse button and a modifier. For example, it is possible to bind the translate event to the
combination of mouse button 2 and the Control key. Whenever the user hits Control
and mouse button 2 and drags the mouse, the chart will move.

10.6.1 Event Triggers

An event trigger is a mapping of a mouse operation and/or a key press to a chart action.
In the example above, the trigger for translate is a combination of mouse button 2 and the
Control key.
188 Part I ■ Using JClass Chart

An event trigger has two parts:

■ the modifier, which specifies the combination of meta keys and mouse buttons that
will trigger the action

■ the action, which specifies the combination of chart action that will occur

Valid actions include EventTrigger.CUSTOMIZE, EventTrigger.DEPTH,
EventTrigger.EDIT, EventTrigger.PICK, EventTrigger.ROTATE,
EventTrigger.TRANSLATE, and EventTrigger.ZOOM.

10.6.2 Valid Modifiers

The value of a modifier is specified using java.AWT.event modifiers, as shown in the
following list:

■ InputEvent.SHIFT_MASK

■ InputEvent.CTRL_MASK

■ InputEvent.ALT_MASK

■ InputEvent.META_MASK

You can also specify the mouse button using one of the following modifiers:

■ InputEvent.BUTTON1_MASK

■ InputEvent.BUTTON2_MASK

■ InputEvent.BUTTON3_MASK

10.6.3 Programming Event Triggers

To program an event trigger, use the setTrigger method to add the new action mapping
to the collection.

For example, the following tells JClass Chart to add a zoom operation as its first trigger
(first trigger denoted by 0) when Shift and mouse button are pressed:

c.setTrigger(0,newEventTrigger(Event.SHIFT_MASK,
EventTrigger.ZOOM);

10.6.4 Removing Action Mappings

To remove an existing action mapping, set the trigger to null, as in the following example:

c.setTrigger(0,null);

10.6.5 Calling an Action Directly

In JClass Chart, it is possible to force some actions by calling a method of JCChart. The
following is a list of the methods that can be called upon to force a particular action:

■ Translation – translateStart(), translate(), translateEnd()
Chapter 10 ■ Advanced Chart Programming 189

■ Rotation – rotateStart(), rotate(), rotateEnd()

■ Zoom – zoomStart(), zoom(), zoomEnd()

■ Scale – scale()

■ Reset – reset()

10.6.6 Specifying Action Axes

Actions like translation occur with respect to one or more axes. In JClass Chart, the axes
can be set using the HorizActionAxis and VertActionAxis properties of JCChartArea, as
the following code fragment illustrates:

ChartDataView arr = c.getDataView(0);
c.getChartArea().setHorizActionAxis(arr.getXAxis());
c.getChartArea().setVertActionAxis(arr.getYAxis());

Note that it is possible to have a null value for an action axis. This means that chart
actions like translation do not have any effect in that direction. By default, the
HorizActionAxis is set to the default X-axis, and the VertActionAxis is set to the default
Y-axis.

10.7 Image-Filled Bar Charts

It is possible to use image files as chart elements within a bar chart. This is accomplished
by using the Image in JCFillStyle. Image sets the image used to paint the fill region of
bar charts. It takes img as a parameter, which is an AWT Image class representing the
image to be used to paint image fills. If set to null, no image fill is done.
190 Part I ■ Using JClass Chart

The following code fragment shows how Image can be incorporated into a program:

String imageStrings[] = {"cd.gif", "tape.gif"};
List seriesList = arr.getSeries();
Iterator iter = seriesList.iterator();
for (int i = 0; iter.hasNext(); i++) {

ChartDataViewSeries thisSeries = (ChartDataViewSeries)
iter.next();

if (i < seriesLabels.length) {
if (imageStrings[i] != null) {

Class cl = getClass();
URL url = cl.getResource("/examples/chart/intro/"+

imageStrings[i]);
if (url != null) {

ImageIcon icon = new ImageIcon(url);
thisSeries.getStyle().getFillStyle().

setImage(icon.getImage());
thisSeries.getStyle().getFillStyle().

setPattern(JCFillStyle.CUSTOM_STACK);
}

}
}

}

The effects can be seen in the ImageBar demonstration program (in the
JCLASS_HOME/examples/chart/intro/ImageBar.java directory), which comes with
JClass Chart.

Figure 39 The ImageBar demonstration program.

The image is clipped at the point of the highest value indicated for the bar chart.
Chapter 10 ■ Advanced Chart Programming 191

Image only tiles the image along a single axis. For example, if the bars were widened in
the above illustration, it would still tile along the vertical Y-axis only, and would not fill in
the image across the horizontal X-axis. This same principle applies (though along
different axes) when the bar chart is rotated 90 degrees.

Note: Image can only be used with the image formats that can be used in Java.

10.8 Pick
The pick() method is used to translate a pixel coordinate on a chart to the data point that
is closest to it. The method takes a Point object containing a pixel coordinate and an
optional ChartDataView object to check against, and returns the resulting data point
encapsulated in a JCDataIndex object.

For pick() to work correctly, the JCChart instance must first be laid out. This is
automatically done whenever a chart is drawn, such as when the snapshot() method is
called. Alternately, layout can be accomplished manually by called the doLayout()
method of JCChart.

Pick Methods for Polar and Radar Charts
The pick() method for Polar and Radar charts is implemented in two stages. The data
point closest to the pick point is identified in a primary search, thus obeying the specified
pick focus rule. In some cases (for example, Radar charts with more than one series),
there may be two or more data points that have the same X- or Y-value. The primary
search result may be ambiguous if the pick focus rule is PICK_FOCUS_X or PICK_FOCUS_Y.
To determine which of those points is the desired one, a secondary search is carried out
using the PICK_FOCUS_XY rule.

Pick Methods for Area Radar Charts
The pick behavior for Area Radar charts differs from that of Polar or Radar charts. If the
user clicks on a point within a filled polygon, the search for the closest point (again,
obeying the pick focus rule) is limited to the data series represented by that polygon. Pick
points within a polygon have the JCDataIndex.distance variable set to 0. If the pick
point is not within a filled polygon (that is, the user clicked on a point outside of the
largest polygon), then the smallest distance from the pick point to the polygon is taken. As
with the Polar and Radar chart types, primary and secondary searches are conducted to
resolve ambiguities that may arise for PICK_FOCUS_X or PICK_FOCUS_Y.

10.9 Using Pick and Unpick
The pick method is used to retrieve an x,y coordinate in a Chart from user input and then
translate that into selecting the data point nearest to it. For example, if a user clicks within
a single bar within a bar chart, pick takes the coordinates of the mouse-click and selects
that bar for any action within the program. Similarly, if a user clicks in an area
192 Part I ■ Using JClass Chart

immediately above a bar chart, pick is used to select the bar that is closest to the mouse
click.

To use the pick listener, you must first set up a PICK event trigger on the chart. See
Section 10.6.3, Programming Event Triggers, for more details.

Consider the following code listing (the code that comprises the DrillDown
demonstration program that comes with JClass Chart, in
JCLASS_HOME/demos/chart/drilldown/) that demonstrates how pick can be used to “drill
down” to reveal more information.
Chapter 10 ■ Advanced Chart Programming 193

Note: This example assumes that a data.class file exists that understands different data
levels.

package demos.chart.drilldown;

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Event;
import java.awt.GridLayout;
import javax.swing.JComponent;
import javax.swing.JPanel;
import javax.swing.JLabel;
import javax.swing.JEditorPane;
import javax.swing.BorderFactory;

import java.util.Iterator;
import java.util.List;

import com.klg.jclass.chart.ChartDataView;
import com.klg.jclass.chart.ChartDataViewSeries;
import com.klg.jclass.chart.EventTrigger;
import com.klg.jclass.chart.JCAxis;
import com.klg.jclass.chart.JCPickListener;
import com.klg.jclass.chart.JCPickEvent;
import com.klg.jclass.chart.JCChartStyle;
import com.klg.jclass.chart.JCLineStyle;
import com.klg.jclass.chart.JCChart;
import com.klg.jclass.chart.ChartText;
import com.klg.jclass.chart.JCDataIndex;
import com.klg.jclass.chart.JCChartArea;
import com.klg.jclass.util.swing.JCExitFrame;
import com.klg.jclass.util.legend.JCLegend;

/*
* This demo demonstrates using pick to drill down to more
* refined data
*/
public class DrillDown extends javax.swing.JPanel

implements JCPickListener {

protected Data d = null;
protected JCChart c = null;

public DrillDown()
{

setLayout(new BorderLayout(10,10));
setPreferredSize(new Dimension(600,400));

d = new Data();

Color Turquoise = new Color(64,224,208);
Color DarkTurquoise = new Color(0x00,0xce,0xd1);

c = new JCChart();
c.setTrigger(0, new EventTrigger(0, EventTrigger.PICK));
194 Part I ■ Using JClass Chart

c.setBackground(DarkTurquoise);

JCChartArea area = c.getChartArea();
area.getPlotArea().setBackground(Turquoise);
area.setOpaque(true);
area.setBorder(BorderFactory.createEtchedBorder());

JComponent header = c.getHeader();
header.setBackground(Turquoise);

((JLabel)header).setText("<html><center>
Drill Down

Demo<P>Independent Comic Book
Sales 1996</center>");

header.setBorder(BorderFactory.createRaisedBevelBorder());
header.setVisible(true);

JCLegend legend = c.getLegend();
legend.setVisible(true);
legend.setBackground(Turquoise);
legend.setForeground(Color.black);
legend.setBorder(BorderFactory.createLoweredBevelBorder());

ChartDataView dataView = c.getDataView(0);
c.setBatched(false);
dataView.setDataSource(d);
dataView.setChartType(JCChart.BAR);
dataView.setHoleValue(-1000);
dataView.getOutlineStyle().setColor(Color.darkGray);

JComponent footer = c.getFooter();
footer.setVisible(true);

((JLabel)footer).setText("<html>
<CENTER><i>Drill Down -> Mouse Down

on Bar or Legend<P>Drill Up ->
Mouse Down on Other Area of

Graph</i></CENTER>");

area.setDepth(10);
area.setElevation(20);
area.setRotation(20);

JCAxis yAxis = area.getYAxis(0);
yAxis.setGridVisible(true);
yAxis.getGridStyle().getLineStyle().setColor(new

Color(154,154,229));

// Set colors for each data series
setSeriesColor();

// Set up pick and rotate trigger
c.setTrigger(0, new EventTrigger(0, EventTrigger.PICK));
c.setTrigger(1, new EventTrigger(Event.SHIFT_MASK,

EventTrigger.ROTATE));
Chapter 10 ■ Advanced Chart Programming 195

c.setTrigger(2, new EventTrigger(Event.META_MASK,
EventTrigger.CUSTOMIZE));

c.setAllowUserChanges(true);

// Add listener for pick events
c.addPickListener(this);

add("Center",c);
}

void setSeriesColor()
{

// Set colors for each data series
Color colors[] = {Color.red, Color.blue, Color.white,

Color.magenta, Color.green, Color.cyan,
Color.orange, Color.yellow};

ChartDataView dataView = c.getDataView(0);
List seriesList = dataView.getSeries();
Iterator iter = seriesList.iterator();
for (int i = 0; iter.hasNext(); i++) {

ChartDataViewSeries series =
(ChartDataViewSeries)iter.next();
series.getStyle().setFillColor(colors[i]);

}
}

/**
* Pick event listener. Upon receipt of a pick event, it either
* drills up or down to more general or refined data.
*/
public void pick(JCPickEvent e)
{

boolean doLevel = false;
boolean doUpLevel = true;
JCDataIndex di = e.getPickResult();
int srs = 0;

// If clicked on bar or legend item, drill down. If clicked on
// any other area of chart, drill up.
if (di != null) {

Object obj = di.getObject();
ChartDataView vw = di.getDataView();
srs = di.getSeriesIndex();
int pt = di.getPoint();
int dist = di.getDistance();

if (vw != null && srs != -1) {
if (srs >= 0) {

if ((obj instanceof JCLegend) ||
(obj instanceof JCChartArea && dist == 0))

{
doLevel = true;
doUpLevel = false;

}
else {

doLevel = true;
196 Part I ■ Using JClass Chart

}
}

}
else {

doLevel = true;
}

}
else {

doLevel = true;
}

if (doLevel) {
c.setBatched(true);
if (doUpLevel) {

d.upLevel();
}
else {

d.downLevel(srs);
}
setSeriesColor();
c.setBatched(false);

}
}

public static void main(String args[])
{

JCExitFrame f = new JCExitFrame("Basic Drilldown example");
DrillDown tc = new DrillDown();
f.getContentPane().add(tc);
f.pack();
f.setVisible(true);

}

}

Chapter 10 ■ Advanced Chart Programming 197

When compiled and run, the DrillDown.class program displays the following:

Figure 40 The DrillDown demonstration program displayed.

When a bar or legend within this chart is clicked by the user, the program “drills down”
to reveal more refined data comprising that bar. If an area outside of the bars is clicked
upon, then the program “drills up” to reveal more general data.

pick is key to this program, determining the way the program interacts with the user.
pick requires an event trigger and listener to work, as the following code fragment shows:

c.setTrigger(0, new EventTrigger(0, EventTrigger.PICK));
c.addPickListener(this);

public void pick(JCPickEvent e)
{

JCDataIndex di = e.getPickResult();
}

When a user clicks in the DrillDown demonstration program, the event is triggered, and
the x,y coordinates are passed along to the pick event listener, which in turn takes the
information and performs the indicated action. The pick() method returns a
JCDataIndex, which encapsulates the point index and data series of the selected point.

It is also possible to send a pick event to objects manually. When the sendPickEvent()
method is called, it sends a pick event to all objects listening for it.

10.9.1 Pick Focus

pick normally takes an x,y coordinate value, but it can take an X- or Y-value only, which
is useful for specific chart types. This can be specified using the PickFocus property of
ChartDataView, which specifies how distance is determined for pick operations. When set
to PICK_FOCUS_XY (default), a pick operation will use the actual distance between the point
198 Part I ■ Using JClass Chart

and the drawn data. When set to values of PICK_FOCUS_X or PICK_FOCUS_Y, only the
distance along the X- or Y-axis is used.

This is a particularly useful method within programs that display typical bar charts. In
most cases it is more desirable to know which bar the user is over than which bar the user
is closest to when the user clicks their mouse over a chart.

For example, a user may click over a relatively small bar in a bar chart, with the intention
of raising the value of the bar displayed. If an adjacent bar in the chart is closer to the area
of the mouse click along the Y-axis than the X-axis, then the adjacent bar could be
selected instead of the intended target bar.

To overcome this, use PickFocus and select the axis whose values are to be reported back
to the program. For example, the following line of code sets PickFocus to only report the
X-coordinate of a pick event:

arr.setPickFocus(ChartDataVies.PICK_FOCUS_X);

10.10 Unpick

The unpick() method essentially functions in the opposite manner of pick: given a data
series and a data point within that series, unpick returns the pixel co-ordinates of that
point relative to the chart area. It takes two sets of parameters: pt for the point index, and
series for the data series. For bar charts it returns the top-middle location for a given bar,
and the middle of an arc for a pie chart. unpick can be used to display information at a
given point in a chart, and can be used for attaching labels to chart regions.

For unpick() to work correctly, the JCChart instance must first be laid out. This is
automatically done whenever a chart is drawn, such as when the snapshot() method is
called. Alternately, layout can be accomplished manually by calling the doLayout()
method of JCChart.
Chapter 10 ■ Advanced Chart Programming 199

200 Part I ■ Using JClass Chart

Part
II

Reference
Appendices

Appendix A
JClass Chart Property Listing

ChartDataView ■ ChartDataViewSeries ■ ChartText ■ JCAreaChartFormat ■ JCAxis

JCAxisFormula ■ JCAxisTitle ■ JCBarChartFormat ■ JCCandleChartFormat ■ JCChart

JCChartArea ■ JCChartLabel ■ JCChartLabelManager ■ JCChartStyle ■ JCFillStyle

JCGridLegend ■ JCHLOCChartFormat ■ JCLegend ■ JCLineStyle ■ JCMultiColLegend

JCPieChartFormat ■ JCPolarRadarChartFormat ■ JCSymbolStyle

JCValueLabel ■ PlotArea ■ SimpleChart

This appendix summarizes the JClass Chart properties for all commonly-used classes, in
alphabetical order.

A.1 ChartDataView

Name Description

AutoLabel The AutoLabel property determines if the chart
automatically generates labels for each point in each series.
The default is false. The labels are stored in the
AutoLabelList property. They are created using the Label
property of each series.

Batched The Batched property controls whether the ChartDataView
is notified immediately of data source changes, or if the
changes are accumulated and sent at a later date.

BufferPlotData The BufferPlotData property controls whether plot data is
to be buffered to speed up the drawing process. This
property is applicable for Plot, Scatter, Area, Hilo, HLOC,
and Candle chart types only. Normally it is true. The
property is ignored if the FastUpdate property is true. Plot
data will be buffered for FastUpdate.

ChartFormat The ChartFormat property represents an instance of
JCAreaChartFormat, JCBarChartFormat,
JCCandleChartFormat, JCHiloChartFormat,
JCHLOCChartFormat, or JCPieChartFormat, depending on
the current chart type.
203

Changed The Changed property manages whether the data view
requires recalculation. If set to true, a recalculation may be
triggered. Default value is true.

ChartStyle The ChartStyle property contains all the ChartStyles for
the data series in this data view. Default value is generated.

ChartType The ChartType property of the ChartData object specifies
the type of chart used to plot the data. Valid values are
JCChart.AREA, JCChart.AREA_RADAR, JCChart.BAR,
JCChart.CANDLE, JCChart.HILO,
JCChart.HILO_OPEN_CLOSE, JCChart.PIE, JCChart.PLOT
(default), JCChart.POLAR, JCChart.RADAR,
JCChart.SCATTER_PLOT, JCChart.STACKING_AREA, and
JCChart.STACKING_BAR.

ColorHandler The ColorHandler property specifies a class used to
override the default color determination. The ColorHandler
property must implement JCDrawableColorHandler.

DataSource The DataSource property, if non-null, is used as a source for
data in the ChartDataView. The object must implement
ChartDataModel.

DrawFrontPlane The DrawFrontPlane property determines whether a data
view that has both axes on the front plane of a 3d chart will
draw on the front or back plane of that chart. If true, it will
draw on the front plane; if false it will draw on the back
plane. If either axis associated with the data view is on the
back plane, this property will be ignored and the data view
will automatically be drawn on the back plane. This
property is also ignored for 3d chart types such as bar and
stacking bars that automatically appear on the front plane.

DrawingOrder The DrawingOrder property determines the drawing order
of items. When the DrawingOrder property is changed, the
order properties of all ChartDataView instances managed by
a single JCChart object are normalized.

FastUpdate The FastUpdate property controls whether column appends
to the data are performed quickly, only recalculating and
redrawing the newly-appended data.

Name Description
204 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

HoleValue The HoleValue property is a floating point number used to
represent a hole in the data. Internally, ChartDataView
places this value in the X- and Y-arrays to represent a
missing data value. Note that if the HoleValue is changed,
values in the X- and Y-data previously set with HoleValues
will not change their values but will now draw.

Inverted If the Inverted property is set to true, the X-axis becomes
vertical, and the Y-axis becomes horizontal. Default value is
false.

Name The Name property is used as an index for referencing
particular ChartDataView objects.

NumPointLabels The NumPointLabels property determines the number of
labels in the PointLabels property. The PointLabels
property is an indexed property consisting of a series of
Strings representing the desired label for a particular data
point.

NumSeries The NumSeries property determines how many data series
there are in a ChartDataView.

OutlineColor The OutlineColor property determines the color with
which to draw the outline around a filled chart item (e.g.
bar, pie).

PickFocus The PickFocus property specifies how distance is
determined for pick operations. When set to
PICK_FOCUS_XY, a pick operation will use the actual distance
between the point and the drawn data. When set to values of
PICK_FOCUS_X or PICK_FOCUS_Y, the distance only along the
X- or Y-axis is used.

PointLabel Sets a particular PointLabel from the PointLabels property
(see below).

PointLabels The PointLabels property is an indexed property
comprising a series of Strings representing the desired label for
a particular data point.

Series The Series property is an indexed property that contains
all data series for a particular ChartDataView. The order of
ChartDataViewSeries objects in the series array
corresponds to the drawing order.

Visible The Visible property determines whether the dataview is
showing or not. Default value is true.

Name Description
Appendix A ■ JClass Chart Property Listing 205

A.2 ChartDataViewSeries

VisibleInLegend The VisibleInLegend property determines whether or not
the view name and its series will appear in the chart legend.

XAxis The XAxis property determines the X-axis against which the
data in ChartDataView is plotted.

YAxis The YAxis property determines the Y-axis against which the
data in ChartDataView is plotted.

Name Description

DrawingOrder The DrawingOrder property determines the order of display of
data series. When the DrawingOrder property is changed,
ChartDataView will normalize the order properties of all the
ChartDataViewSeries objects that it manages.

FirstPoint The FirstPoint property controls the index of the first point
displayed in the ChartDataViewSeries.

Included The Included property determines whether a data series is
included in chart calculations (like axis bounds).

Label The Label property controls the text that appears next to the
data series inside the legend.

LastPoint The LastPoint property controls the index of the first point
displayed in the ChartDataViewSeries.

LastPointIsDefault The LastPointIsDefault property determines whether the
LastPoint property should be calculated from the data.

Name The Name property represents the name of the data series. In
JClass Chart, data series are named, and can be retrieved by
name.

Style The Style property defines the rendering style for the data
series.

Visible The Visible property determines whether the data series is
showing in the chart area. Note that data series that are not
showing are still used in axis calculations. See the Included
property for details on how to omit a data series from chart
calculations.

Name Description
206 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

A.3 ChartText

VisibleInLegend The VisibleInLegend property determines whether or not this
series will appear in the chart legend.

Name Description

Adjust The Adjust property determines how text is justified
(positioned) in the label. Valid values include
ChartText.LEFT, ChartText.CENTER, and ChartText.RIGHT.
The default value is ChartText.LEFT.

Background The Background property determines the background color
used to draw inside the chart region. Note that the
Background property is inherited from the parent
ChartRegion.

Font The Font property determines what font is used to render text
inside the chart region. Note that the Font property is
inherited from the parent ChartRegion.

Foreground The Foreground property determines the foreground color
used to draw inside the chart region. Note that the
Foreground property is inherited from the parent
ChartRegion.

Height The Height property determines the height of the
ChartRegion. The default value is calculated.

HeightIsDefault The HeightIsDefault property determines whether the
height of the chart region is calculated by Chart (true) or
taken from the Height property (false). The default value is
true.

Insets The Insets property specifies the space that a container must
leave at each of its edges. The space can be a border, a blank
space, or a title.

Left The Left property determines the location of the left of the
ChartRegion. The default value is calculated.

LeftIsDefault The LeftIsDefault property determines whether the left
position of the chart region is calculated by Chart (true) or
taken from the Left property (false). The default value is
true.

Name Description
Appendix A ■ JClass Chart Property Listing 207

A.4 JCAreaChartFormat

Name The Name property specifies a String identifier for the
ChartRegion object.

Rotation The Rotation property controls the rotation of the label.
Valid values include ChartText.DEG_90, ChartText.DEG_180,
ChartText.DEG_270, and ChartText.DEG_0. The default value
is ChartText.DEG_0.

Text The Text property is a String property that represents the text
to be displayed inside the chart label. Default value is “ ”
(empty String).

Top The Top property determines the location of the top of the
ChartRegion. The default value is calculated.

TopIsDefault The TopIsDefault property determines whether the top
position of the chart region is calculated by Chart (true) or
taken from the Top property (false). The default value is
true.

Visible The Visible property determines whether the associated
ChartRegion is currently visible. Default value is true.

Width The Width property determines the width of the ChartRegion.
The default value is calculated.

WidthIsDefault The WidthIsDefault property determines whether the width
of the chart region is calculated by Chart (true) or taken from
the Width property (false). The default value is true.

Name Description

100Percent The 100Percent property determines whether a
stacking area will be charted versus an axis representing
a percentage between 0 and 100. Default value is
false.

Name Description
208 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

A.5 JCAxis

Name Description

AnnotationMethod The AnnotationMethod property determines how axis
annotations are generated. Valid values are
JCAxis.VALUE (annotation is generated by Chart, with
possible callbacks to a label generator),
JCAxis.VALUE_LABELS (annotation is taken from a list of
value labels provided by the user – a value label is a
label that appears at a particular axis value),
JCAxis.POINT_LABELS (annotation comes from the data
source’s point labels that are associated with particular
data points), and JCAxis.TIME_LABELS (Chart generates
time/date labels based on the TimeUnit, TimeBase and
TimeFormat properties). Default value is JCAxis.VALUE.

AnnotationRotation The AnnotationRotation property specifies the
rotation of each axis label. Valid values are
JCAxis.ROTATE_90, JCAxis.ROTATE_180,
JCAxis.ROTATE_270, or JCAxis.ROTATE_NONE. Default
value is JCAxis.ROTATE_NONE.

Background The Background property determines the background
color used to draw inside the chart region. Note that the
Background property is inherited from the parent
ChartRegion.

Editable The Editable property determines whether the axis
can be affected by edit/translation/zooming. Default
value is true.

Font The Font property determines what font is used to
render text inside the chart region. Note that the Font
property is inherited from the parent ChartRegion.

Foreground The Foreground property determines the foreground
color used to draw inside the chart region. Note that the
Foreground property is inherited from the parent
ChartRegion.

Formula The Formula property determines how an axis is related
to another axis object. If set, the Formula property
overrides all other axis properties. See JCAxisFormula
for details.

Gap The Gap property determines the amount of space left
between adjacent axis annotations, in pixels.
Appendix A ■ JClass Chart Property Listing 209

GeneratedValueLabels The GeneratedValueLabels property reveals the value
label at the specified index in the list of value labels
generated for this axis.

GridSpacing The GridSpacing property controls the spacing
between gridlines relative to the axis. Default value is
0.0.

GridSpacingIsDefault The GridSpacingIsDefault property determines
whether Chart is responsible for calculating the grid
spacing value. If true, Chart will calculate the grid
spacing. If false, Chart will use the provided grid
spacing. Default value is true.

GridStyle The GridStyle property controls how grids are drawn.
The default value is generated.

GridVisible The GridVisible property determines whether a grid is
drawn for the axis. Default value is false.

Height The Height property determines the height of the
ChartRegion. The default value is calculated.

HeightIsDefault The HeightIsDefault property determines whether the
height of the chart region is calculated by Chart (true)
or taken from the Height property (false). Default
value is true.

LabelGenerator The LabelGenerator property holds a reference to an
object that implements the JCLabelGenerator interface.
This interface is used to externally generate labels if the
AnnotationMethod property is set to JCAxis.VALUE.
Default value is null.

Left The Left property determines the location of the left of
the ChartRegion. The default value is calculated.

LeftIsDefault The LeftIsDefault property determines whether the
left position of the chart region is calculated by Chart
(true) or taken from the Left property (false). Default
value is true.

Logarithmic The Logarithmic property determines whether the axis
will be logarithmic (true) or linear (false). Default
value is false.

Name Description
210 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

Max The Max property controls the maximum value shown
on the axis. The data max is determined by Chart.
Default value is calculated.

MaxIsDefault The MaxIsDefault property determines whether Chart
is responsible for calculating the maximum axis value.
If true, Chart calculates the axis max. If false, Chart
uses the provided axis max. Default value is true.

Min The Min property controls the minimum value shown
on the axis. The data min is determined by Chart.
Default value is calculated.

MinIsDefault The MinIsDefault property determines whether Chart
is responsible for calculating the minimum axis value. If
true, Chart will calculate the axis minimum. If false,
Chart will use the provided axis minimum. Default
value is true.

Name The Name property specifies a String identifier for the
ChartRegion object. Note that the Name property is
inherited from the parent ChartRegion.

NumSpacing The NumSpacing property controls the interval between
axis labels. The default value is calculated.

NumSpacingIsDefault The NumSpacingIsDefault property determines
whether Chart is responsible for calculating the
numbering spacing. If true, Chart will calculate the
spacing. If false, Chart will use the provided
numbering spacing. Default value is true.

Origin The Origin property controls location of the origin
along the axis. The default value is calculated.

OriginIsDefault The OriginIsDefault property determines whether
Chart is responsible for positioning the axis origin. If
true, Chart calculates the axis origin. If false, Chart
uses the provided axis origin value. Default value is
true.

Name Description
Appendix A ■ JClass Chart Property Listing 211

OriginPlacement The OriginPlacement property specifies where the
origin is placed. Note that the OriginPlacement
property is only active if the Origin property has not
been set. Valid values include AUTOMATIC (places origin
at minimum value). ZERO (places origin at zero), MIN
(places origin at minimum value on axis), or MAX (places
origin at maximum value on axis). Default value is
AUTOMATIC.

OriginPlacementIsDefault The OriginPlacementIsDefault property determines
whether Chart is responsible for determining the
location of the axis origin. If true, Chart calculates the
origin positioning. If false, Chart uses the provided
origin placement.

Placement The Placement property determines the method used to
place the axis. Valid values include JCAxis.AUTOMATIC
(Chart chooses an appropriate location), JCAxis.ORIGIN
(appears at the origin of another axis, specified via the
PlacementAxis property), JCAxis.MIN (appears at the
minimum axis value), JCAxis.MAX (appears at the
maximum axis value), or JCAxis.VALUE_ANCHORED
(appears at a particular value along another axis,
specified via the PlacementAxis property). Default
value is AUTOMATIC.

PlacementAxis The PlacementAxis property determines the axis that
controls the placement of this axis. In JCChart, it is
possible to position an axis at a particular position on
another axis (in conjunction with the
PlacementLocation property or the Placement
property). Default value is null.

PlacementIsDefault The PlacementIsDefault property determines whether
Chart is responsible for determining the location of the
axis. If true, Chart calculates the axis positioning. If
false, Chart uses the provided axis placement.

PlacementLocation The PlacementLocation property is used with the
PlacementAxis property to position the current axis
object at a particular point on another axis. Default
value is 0.0.

Precision The Precision property controls the number of zeros
that appear after the decimal place in chart-generated
axis labels. The default value is calculated.

Name Description
212 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

PrecisionIsDefault The PrecisionIsDefault determines whether Chart is
responsible for calculating the numbering precision. If
true, Chart will calculate the precision. If false, Chart
will use the provided precision. Default value is true.

Reversed The Reversed property of JCAxis determines if the axis
direction is reversed. Default value is false.

TickSpacing The TickSpacing property controls the interval
between tick lines on the axis. Note: if the
AnnotationMethod property is set to POINT_LABELS, tick
lines appear at point values. The default value is
calculated.

TickSpacingIsDefault The TickSpacingIsDefault property determines
whether Chart is responsible for calculating the tick
spacing. If true, Chart will calculate the tick spacing. If
false, Chart will use the provided tick spacing. Default
value is true.

TimeBase The TimeBase property defines the start time for the
axis. Default value is the current time.

TimeFormat The TimeFormat property controls the format used to
generate time labels for time labelled axes. The formats
supported are the same as in Java's SimpleDateFormat
class. Default value is calculated based on TimeUnit.

TimeFormatIsDefault The TimeFormatIsDefault property determines
whether a time label format is generated automatically,
or the user value for TimeFormat is used. Default value
is true.

TimeUnit The TimeUnit property controls the unit of time used
for labelling a time labelled axis. Valid TimeUnit values
include JCAxis.SECONDS, JCAxis.MINUTES,
JCAxis.HOURS, JCAxis.DAYS, JCAxis.WEEKS,
JCAxis.MONTHS, and JCAxis.YEARS. Default value is
JCAxis.SECONDS.

Title The Title property controls the appearance of the axis
title.

Top The Top property determines the location of the top of
the ChartRegion. The default value is calculated.

Name Description
Appendix A ■ JClass Chart Property Listing 213

A.6 JCAxisFormula

TopIsDefault The TopIsDefault property determines whether the
top position of the chart region is calculated by Chart
(true) or taken from the Top property (false). Default
value is true.

ValueLabels The ValueLabels property is an indexed property
containing a list of all annotations for an axis. Default
value is null, no value labels.

Vertical The Vertical property determines whether the
associated Axis is vertical. Default value is false.

Visible The Visible property determines whether the
associated Axis is currently visible. Default value is
true. Note that the Font property is inherited from the
parent ChartRegion.

Width The Width property determines the width of the
ChartRegion. The default value is calculated.

WidthIsDefault The WidthIsDefault property determines whether the
width of the chart region is calculated by Chart (true)
or taken from the Width property (false). Default value
is true.

Name Description

Constant The Constant property specifies the “c” value in the axis
relationship y2 = my + c.

Multiplier The Multiplier property specifies the “m” value in the
relationship y2 = my + c.

Originator The Originator property specifies an object representing the
axis that is related to the current axis by the formula y = mx + c.
The originator is “x”.

Name Description
214 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

A.7 JCAxisTitle

Name Description

Adjust The Adjust property determines how text is justified
(positioned) in the label. Valid values include ChartText.LEFT,
ChartText.CENTER, and ChartText.RIGHT. Default value is
ChartText.LEFT.

Background The Background property determines the background color
used to draw inside the chart region. Note that the Background
property is inherited from the parent ChartText.

Font The Font property determines what font is used to render text
inside the chart region. Note that the Font property is inherited
from the parent ChartText.

Foreground The Foreground property determines the foreground color
used to draw inside the chart region. Note that the Foreground
property is inherited from the parent ChartText.

Height The Height property defines the height of the chart region.
The default value is calculated.

HeightIsDefault The HeightIsDefault property determines whether the height
of the chart region is calculated by Chart (true) or taken from
the Height property (false).

Left The Left property determines the location of the left of the
chart region. This property is read-only.

LeftIsDefault The LeftIsDefault property determines whether the left
position of the chart region is calculated by Chart (true) or
taken from the Left property (false).

Placement The Placement property controls where the JCAxis title is
placed relative to the “opposing” axis. Valid values include
JCLegend.NORTH or JCLegend.SOUTH for horizontal axes, and
JCLegend.EAST, JCLegend.WEST, JCLegend.NORTHEAST,
JCLegend.SOUTHEAST, JCLegend.NORTHWEST, or
JCLegend.SOUTHEAST for vertical axes. The default value is
calculated.

PlacementIsDefault The PlacementIsDefault property determines whether Chart
is responsible for calculating a reasonable default placement
for the axis title. Default value is true.
Appendix A ■ JClass Chart Property Listing 215

A.8 JCBarChartFormat

Rotation The Rotation property controls the rotation of the label. Valid
values include ChartText.DEG_90, ChartText.DEG_180,
ChartText.DEG_270, and ChartText.DEG_0. Default value is
ChartText.DEG_0.

Text The Text property is a String property that represents the text
to be displayed inside the chart label. Default value is “ ”
(nothing).

Top The Top property determines the location of the top of the
chart region. This property is read-only.

TopIsDefault The TopIsDefault property determines whether the top
position of the chart region is calculated by Chart (true) or
taken from the Top property (false).

Visible The Visible property determines whether the associated Axis
is currently visible. Default value is true.

Width The Width property defines the width of the chart region. The
default value is calculated.

WidthIsDefault The WidthIsDefault property determines whether the width
of the chart region is calculated by Chart (true) or taken from
the Width property (false).

Name Description

100Percent The 100Percent property determines whether stacking bar charts
will be charted versus an axis representing a percentage between 0
and 100. Default value is false.

ClusterOverlap The ClusterOverlap property specifies the overlap between bars.
Valid values are between -100 and 100. Default value is 0.

ClusterWidth The ClusterWidth property determines the percentage of
available space which will be occupied by the bars. Valid values
are between 0 and 100. Default value is 80.

Name Description
216 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

A.9 JCCandleChartFormat

A.10 JCChart

Name Description

CandleOutlineStyle The CandleOutlineStyle determines the candle outline style
of the complex candle chart.

Complex The Complex property determines whether candle charts use
the simple or the complex display style. When false, Chart
only uses the style referenced by getHiLoStyle() for the
candle appearance. When set to true, all four styles are used.
Default value is false.

FallingCandleStyle The FallingCandleStyle determines the candle style of the
falling candle style of the complex candle chart.

HiloStyle The HiloStyle determines the candle style of the simple
candle or the HiLo line of the complex candle chart.

RisingCandleStyle The RisingCandleStyle determines the rising candle style of
the complex candle chart.

Name Description

About The About property displays contact information for Quest
Software in the bean box.

AllowUserChanges The AllowUserChanges property determines whether the user
viewing the graph can modify graph values. Default value is
false.

Background The Background property determines the background color
used to draw inside the chart region. Note that the Background
property is inherited from the parent JCComponent.

Batched The Batched property controls whether chart updates are
accumulated. Default value is false.

CancelKey The CancelKey property specifies the key used to perform a
cancel operation.

Changed The Changed property determines whether the chart requires
recalculation. Default value is false.

ChartArea The ChartArea property controls the object that controls the
display of the graph. Default value is null.
Appendix A ■ JClass Chart Property Listing 217

ChartLabelManager The ChartLabelManager property manages all chart labels.

CustomizerName The CustomizerName property specifies the full class name of
the Chart Customizer. Default is
com.klg.jclass.chart.customizer.ChartCustomizer.

DataView The DataView property is an indexed property that contains all
the data to be displayed in Chart. See ChartDataView for
details on data format. By default, one ChartDataView is
created.

FillColorIndex The FillColorIndex property controls the fill color index.
Default value is 0.

Font The Font property determines what font is used to render text
inside the chart region. Note that the Font property is inherited
from the parent JCComponent.

Footer The Footer property controls the object that controls the
display of the footer. Default value is a JLabel instance

Foreground The Foreground property determines the foreground color
used to draw inside the chart region. Note that the Foreground
property is inherited from the parent JCComponent.

Header The Header property controls the object that controls the
display of the header. Default value is a null.

LayoutHints The LayoutHints property sets layout hints for a child
component of JClass Chart.

Legend The Legend property controls the object that controls the
display of the legend. Default value is an instance of
JCGridLegend.

LineColorIndex The LineColorIndex property controls the line color index.
Default value is 0.

NumData The NumData property indicates how many ChartDataView
objects are stored in JCChart. This is a read-only property.
Default value is 1.

NumTriggers The NumTriggers property indicates how many event triggers
have been specified.

ResetKey The ResetKey property specifies the key used to perform a
reset operation.

SymbolColorIndex The SymbolColorIndex property controls the symbol color
index. Default value is 0.

Name Description
218 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

A.11 JCChartArea

SymbolShapeIndex The SymbolShapeIndex property controls the symbol shape
index. Default value is 1.

Trigger The Trigger property is an indexed property that contains all
the information necessary to map user events into Chart
actions. The Trigger property is made up of a number of
EventTrigger objects. Default value is empty.

WarningDialog The WarningDialog property determines whether JClass Chart
will display a warning dialogue when required.

Name Description

AngleUnit The AngleUnit property determines the unit of all angle values.
Default value is DEGREES.

AxisBoundingBox The AxisBoundingBox property determines whether a box is
drawn around the area bound by the inner axes.

Background The Background property determines the background color
used to draw inside the chart region. Note that the Background
property is inherited from the parent JCChart.

Depth The Depth property controls the apparent depth of a graph.
Default value is 0.0.

Elevation The Elevation property controls distance from the X-axis.
Default value is 0.0.

FastAction The FastAction property determines whether chart actions will
use an optimized mode in which it does not bother to display
axis annotations or gridlines. Default value is false.

Font The Font property determines what font is used to render text
inside the chart region. Note that the Font property is inherited
from the parent JCChart.

Foreground The Foreground property determines the foreground color used
to draw inside the chart region. Note that the Foreground
property is inherited from the parent JCChart.

HorizActionAxis The HorizActionAxis property determines the axis used for
actions (zooming, translating) in the horizontal direction.
Default value is null.

Name Description
Appendix A ■ JClass Chart Property Listing 219

A.12 JCChartLabel

PlotArea The PlotArea property represents the region of the ChartArea
that is inside the axes. This property is read-only.

Rotation The Rotation property controls the position of the eye relative
to the Y-axis. Default value is 0.0.

VertActionAxis The VertActionAxis property determines the axis used for
actions (zooming, translating) in the vertical direction. Default
value is null.

Visible If true, the ChartRegion will appear on the screen. If false, it
will not appear on the screen. (Legend, header, footer and chart
area are all ChartRegion instances.) Default value is true.

XAxis The XAxis property is an indexed property that contains all the
X-axes for the chart area. Default value is one X-axis.

YAxis The YAxis property is an indexed property that contains all the
y axes for the chart area. Default value is one Y-axis.

Name Description

Anchor Specifies how the label is to be positioned relative to the specified
point. Valid values are JCChartLabel.NORTHEAST, JCChartLabel.
NORTHWEST, JCChartLabel.NORTH, JCChartLabel.EAST,
JCChartLabel.WEST, JCChartLabel.SOUTHEAST,
JCChartLabel.SOUTHWEST, and JCChartLabel.SOUTH.

AttachMethod Specifies how the label is attached to the chart. Valid values are
JCChartLabel.ATTACH_COORD (attach label to an absolute point
anywhere on the chart), JCChartLabel.ATTACH_DATACOORD (attach
label to a point in the data space on the chart area), and
JCChartLabel.ATTACH_DATAINDEX (attach the label to a specific
point/bar/slice on the chart).

Component The Swing component used as the chart label. By default, this is a
JLabel instance.

Coord The coordinate in the chart's space where the label is to be
attached.

DataCoord The coordinate in the chart area's data space where the label is to
be attached.

Name Description
220 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

A.13 JCChartLabelManager

A.14 JCChartStyle

DataIndex A data index representing the point/bar/slice in the chart to which
the label is to be attached.

DataView For labels using ATTACH_DATACOORD, this property specifies which
ChartDataView's axes should be used.

DwellLabel When DwellLabel is set to true, the label is only displayed when
the cursor is over the point/bar/slice that the label is attached to.
This property is only used when the label is attached using
ATTACH_DATAINDEX. When set to false (the default), the label is
always displayed.

Offset Offset specifies where the label should be positioned relative to
the position the labels thinks it should be, depending on what the
label's attachMethod is.

ParentManager The ParentManager property is the ChartLabelManager instance
that controls the JCChartLabel.

Text The Text property controls the text displayed inside the label.

Name Description

AutoLabelList The AutoLabelList property is a two-dimensional array
of automatically-generated JCChartLabel instances, one
for every point and series. The inner array is indexed by
point; the outer array by series. Default is empty.

Name Description

FillColor The FillColor property determines the color used to fill
regions in chart. Default value is generated.

FillImage The FillImage property determines the image used to paint the
fill region of Bar and Area charts. Default value is null.

FillPattern The FillPattern property determines the fill pattern used to fill
regions in chart. This is only supported in JDK 1.3.1 and higher.
Default value is JCFillStyle.SOLID.

Name Description
Appendix A ■ JClass Chart Property Listing 221

FillStyle The FillStyle property controls the appearance of filled areas
in chart. See JCFillStyle for additional properties. Note that all
JCChartStyle properties of the format Fill* are virtual
properties that map to properties of JCFillStyle.

LineCap The LineCap property specifies the cap style used to end a line.
This is only supported in JDK 1.3.1 and higher. Valid values
include BasicStroke.CAP_BUTT, BasicStroke.CAP_ROUND, and
BasicStroke.CAP_SQUARE.

LineColor The LineColor property determines the color used to draw a
line. Default value is generated.

LineJoin The LineJoin property specifies the join style used to join two
lines. This is only supported in JDK 1.3.1 and higher. Valid
values include BasicStroke.JOIN_MITER,
BasicStroke.JOIN_BEVEL, and BasicStroke.JOIN_ROUND.

LinePattern The LinePattern property dictates the pattern used to draw a
line. Valid values include JCLineStyle.NONE,
JCLineStyle.SOLID, JCLineStyle.LONG_DASH,
JCLineStyle.SHORT_DASH, JCLineStyle.LSL_DASH, and
JCLineStyle.DASH_DOT. This is only supported in JDK 1.3.1 and
higher. Default value is JCLineStyle.SOLID.

LineStyle The LineStyle property controls the appearance of lines in
chart. See JCLineStyle for additional properties.

LineWidth The LineWidth property controls the line width. This is only
supported in JDK 1.3.1 and higher. Default value is 1.

SymbolColor The SymbolColor property determines the color used to paint
the symbol. Default value is generated.

SymbolCustomShape The SymbolCustomShape property contains an object derived
from JCShape that is used to draw points. See JCShape for
details. Default value is null.

SymbolShape The SymbolShape property determines the type of symbol that
will be drawn. Valid values include JCSymbolStyle.NONE,
JCSymbolStyle.DOT, JCSymbolStyle.BOX,
JCSymbolStyle.TRIANGLE, JCSymbolStyle.DIAMOND,
JCSymbolStyle.STAR, JCSymbolStyle.VERT_LINE,
JCSymbolStyle.HORIZ_LINE, JCSymbolStyle.CROSS,
JCSymbolStyle.CIRCLE, and JCSymbolStyle.SQUARE. Default
value is generated.

Name Description
222 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

A.15 JCFillStyle

SymbolSize The SymbolSize property determines the size of the symbol.
Default value is 6.

SymbolStyle The SymbolStyle property controls the symbol that represents
an individual point. See JCSymbolStyle for additional
properties. Note that all JCChartStyle properties of the format
Symbol* are virtual properties that map to properties of
JCSymbolStyle.

Name Description

Background The Background property determines the background color used when
painting patterned fills.

Color The Color property determines the color used to fill regions in chart.
The default value is generated.

CustomPaint The CustomPaint property specifies the TexturePaint object used to
paint the fill region when the pattern is set to CUSTOM_PAINT. This is
only supported in JDK 1.3.1 and higher.

Image The Image property determines the image used to paint the fill region
when the pattern is set to CUSTOM_FILL or CUSTOM_STACK. The default
value is null.

Pattern The Pattern property determines the fill pattern used to fill regions in
chart. This is only supported in JDK 1.3.1 and higher. The default
value is JCFillStyle.SOLID.

Available fill patterns are: NONE, SOLID, 25_PERCENT, 50_PERCENT,
75_PERCENT, HORIZ_STRIPE, VERT_STRIPE, 45_STRIPE, 135_STRIPE,
DIAG_HATCHED, CROSS_HATCHED, CUSTOM_FILL, CUSTOM_PAINT, or, for
bar charts only, CUSTOM_STACK.

Name Description
Appendix A ■ JClass Chart Property Listing 223

A.16 JCGridLegend

Name Description

Anchor The Anchor property determines the position of the legend relative
to the ChartArea. Valid values include JCLegend.NORTH,
JCLegend.SOUTH, JCLegend.EAST, JCLegend.WEST,
JCLegend.NORTHWEST, JCLegend.SOUTHWEST, JCLegend.NORTHEAST,
and JCLegend.SOUTHEAST. The default value is JCLegend.EAST.

Background The Background property determines the background color used
to draw inside the legend. Note that the Background property is
inherited from the parent JCChart.

Font The Font property determines what font is used to render text
inside the legend. Note that the Font property is inherited from the
parent JCChart.

Foreground The Foreground property determines the foreground color used to
draw inside the legend. Note that the Foreground property is
inherited from the parent JCChart.

GroupGap The GroupGap property determines the gap between groups of
items in the chart legend (e.g. the columns/rows associated with a
data view).

InsideItemGap The InsideItemGap property determines the gap between the
symbol and text portions of a legend item.

ItemGap The ItemGap property determines the gap between the legend
items in the same group.

MarginGap The MarginGap property determines the gap between the edge of
the legend and the start of the item layout.

Orientation The Orientation property determines how legend information is
laid out. Valid values include JCLegend.VERTICAL and
JCLegend.HORIZONTAL. The default value is JCLegend.VERTICAL.

SymbolSize The SymbolSize property determines the size of the symbol.
Default value is 6.

Visible The Visible property determines the gap between the legend
items in the same group.
224 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

A.17 JCHLOCChartFormat

A.18 JCLegend

Name Description

OpenCloseFullWidth The OpenCloseFullWidth property indicates whether the
open and close tick indications are drawn across the full
width of the Hi-Lo bar or just on one side. The default value
is false.

ShowingClose The ShowingClose property indicates whether the close tick
indication is shown or not. The tick appears to the right of
the Hi-Lo line. The default value is true.

ShowingOpen The ShowingOpen property indicates whether the open tick
indication is shown or not. The tick appears to the left of the
Hi-Lo line. The default value is true.

TickSize The TickSize property specifies the tick size for open and
close ticks.

Name Description

Anchor The Anchor property determines the position of the legend
relative to the ChartArea. Valid values include JCLegend.NORTH,
JCLegend.SOUTH, JCLegend.EAST, JCLegend.WEST,
JCLegend.NORTHWEST, JCLegend.SOUTHWEST,
JCLegend.NORTHEAST, and JCLegend.SOUTHEAST. The default
value is JCLegend.EAST.

Background The Background property determines the background color used
to draw inside the legend. Note that the Background property is
inherited from the parent JCChart.

Border The Border property sets the border of a component. Note that
the Border property is inherited from JComponent.

Font The Font property determines what font is used to render text
inside the legend. Note that the Font property is inherited from
the parent JCChart.

Foreground The Foreground property determines the foreground color used
to draw inside the legend. Note that the Foreground property is
inherited from the parent JCChart.
Appendix A ■ JClass Chart Property Listing 225

A.19 JCLineStyle

Opaque The Opaque property determines the background color. If the
component is completely opaque, the background will be filled
with the background color. Otherwise, the background is
transparent, and whatever is underneath will show through.
Note, that the Opaque property is inherited from JComponent.

Orientation The Orientation property determines how legend information
is laid out. Valid values include JCLegend.VERTICAL and
JCLegend.HORIZONTAL. The default value is JCLegend.VERTICAL.

Visible The Visible property determines whether the legend is
currently visible. Default value is false.

Name Description

Cap The Cap property specifies the cap style used to end a line. This is only
supported in JDK 1.3.1 and higher. Valid values include
BasicStroke.CAP_BUTT, BasicStroke.CAP_ROUND, and
BasicStroke.CAP_SQUARE.

Color The Color property determines the color used to draw a line. The
default value is generated.

Join The Join property specifies the join style used to join two lines. This is
only supported in JDK 1.3.1 and higher. Valid values include
BasicStroke. JOIN_MITER, BasicStroke.JOIN_BEVEL, and
BasicStroke. JOIN_ROUND.

Pattern The Pattern property dictates the pattern used to draw a line. Valid
values include JCLineStyle.NONE, JCLineStyle.SOLID,
JCLineStyle.LONG_DASH, JCLineStyle.SHORT_DASH,
JCLineStyle.LSL_DASH, and JCLineStyle.DASH_DOT. This is only
supported in JDK 1.3.1 and higher. The default value is
JCLineStyle.SOLID.

Width The Width property controls the line width. This is only supported in
JDK 1.3.1 and higher. The default value is 1.

Name Description
226 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

A.20 JCMultiColLegend

Name Description

Anchor The Anchor property determines the position of the legend
relative to the ChartArea. Valid values include
JCLegend.NORTH, JCLegend.SOUTH, JCLegend.EAST,
JCLegend.WEST, JCLegend.NORTHWEST, JCLegend.SOUTHWEST,
JCLegend.NORTHEAST, and JCLegend.SOUTHEAST. The default
value is JCLegend.EAST.

Background The Background property determines the background color
used to draw inside the legend. Note that the Background
property is inherited from the parent ChartRegion.

Border The Border property sets the border of a component. Note
that the Border property is inherited from JComponent.

Font The Font property determines what font is used to render
text inside the legend. Note that the Font property is
inherited from the parent JCChart.

Foreground The Foreground property determines the foreground color
used to draw inside the legend. Note that the Foreground
property is inherited from the parent JCChart.

GroupGap The GroupGap property determines the gap between groups
of items in the chart legend (e.g. the columns/rows associated
with a data view).

Insets The Insets property specifies the space that a container
must leave at each of its edges. The space can be a border, a
blank space, or a title.

InsideItemGap The InsideItemGap property determines the gap between
the symbol and text portions of a legend item.

ItemGap The ItemGap property determines the gap between the
legend items in the same group.

MarginGap The MarginGap property determines the gap between the
edge of the legend and the start of the item layout.

NumColumns The NumColumns property determines the number of columns
in this legend. If the number of columns is set to zero (the
default), then the NumColumns will be adjusted automatically.

NumRows The NumRows property determines the number of rows in this
legend. If the number of rows is set to zero (the default), the
number of rows will be adjusted automatically.
Appendix A ■ JClass Chart Property Listing 227

A.21 JCPieChartFormat

Orientation The Orientation property determines how legend
information is laid out. Valid values include
JCLegend.VERTICAL and JCLegend.HORIZONTAL. The default
value is JCLegend.VERTICAL.

SymbolSize The SymbolSize property determines the size of the symbol.
Default value is 6.

Name Description

ExplodeList The ExplodeList property specifies a list of exploded pie slices in
the pie charts. Default value is an empty list.

ExplodeOffset The ExplodeOffset property specifies the distance a slice is
exploded from the center of a pie chart. Default value is 10.

MinSlices The MinSlices property represents the minimum number of pie
slices that Chart will try to display before grouping slices into the
other slice. Default value is 5.

OtherLabel The OtherLabel property represents the label used on the “other”
pie slice. As with other point labels, the “other” label is a
ChartText instance. Default value is “ ” (empty String).

OtherStyle The OtherStyle property specifies the style used to render the
“other” pie slice.

SortOrder The SortOrder property determines the order in which pie slices
will be displayed. Note that the other slice is always last in any
ordering. Valid values include
JCPieChartFormat.ASCENDING_ORDER,
JCPieChartFormat.DESCENDING_ORDER, and
JCPieChartFormat.DATA_ORDER. Default value is
JCPieChartFormat.DATA_ORDER.

Name Description
228 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

A.22 JCPolarRadarChartFormat

StartAngle The position in the pie chart where the first pie slice is drawn. A
value of zero degrees represents a horizontal line from the center
of the pie to the right-hand side of the pie chart; a value of 90
degrees represents a vertical line from the center of the pie to the
top-most point of the pie chart; a value of 180 degrees represents a
horizontal line from the center of the pie to the left-hand side of
the pie chart; and so on. Slices are drawn clockwise from the
specified angle. Values must lie in the range from zero degrees to
360 degrees. The default value is 135 degrees.

ThresholdMethod The ThresholdMethod property determines how the
ThresholdValue property is used. If the method is SLICE_CUTOFF,
the ThresholdValue is used as a cutoff to determine what items
are lumped into the other slice. If the method is PIE_PERCENTILE,
items are groups into the other slice until it represents
“ThresholdValue” percent of the pie. Default value is
SLICE_CUTOFF.

YAxisAngle The YAxisAngle property determines the angle that the Y-axis
makes with the axis origin base. Default value is 0 degrees.

Name Description

HalfRange The HalfRange property determines whether the X-axis for
Polar charts consists of two half-ranges or one full range from 0
to 360 degrees.

OriginBase The OriginBase property determines the angle of the theta axis
origin in Polar, Radar, and Area Radar charts. Angles are based
on zero degrees pointing east (the normal rectangular X-axis
direction) with positive angles going counter-clockwise. The
angle units are assumed to be the current value of the chart
area’s angleUnit property.

RadarCircularGrid The YAxisGridCircular property determines whether gridlines
are circular or “webbed” for Radar and Area Radar charts.

YAxisAngle The YAxisAngle property determines the angle of the Y-axis in
Polar, Radar, and Area Radar charts. Angles are relative to the
current origin base. The angle units are assumed to be the
current value of the chart area’s angleUnit property.

Name Description
Appendix A ■ JClass Chart Property Listing 229

A.23 JCSymbolStyle

A.24 JCValueLabel

A.25 PlotArea

Name Description

Color The Color property determines the color used to paint the symbol.
The default value is generated.

CustomShape The CustomShape property contains an object derived from JCShape
that is used to draw points. See JCShape for details. The default value
is null.

Shape The Shape property determines the shape of symbol that will be
drawn. Valid values include JCSymbolStyle.NONE,
JCSymbolStyle.DOT, JCSymbolStyle.BOX, JCSymbolStyle.TRIANGLE,
JCSymbolStyle.DIAMOND, JCSymbolStyle.STAR,
JCSymbolStyle.VERT_LINE, JCSymbolStyle.HORIZ_LINE,
JCSymbolStyle.CROSS, JCSymbolStyle.CIRCLE and
JCSymbolStyle.SQUARE. The default value is JCSymbolStyle.DOT.

Size The Size property determines the size of the symbol. The default
value is 6.

Name Description

ChartText The ChartText property controls the ChartText associated with this
Value label. The default value is a ChartText instance.

Text The Text property specifies the text displayed inside the label. The
default value is “ ” (empty String).

Value The Value property controls the position of a label in data space along
a particular axis. The default value is 0.0.

Name Description

Background The Background property determines the background color used
to draw inside the chart region. Note that the Background is
inherited from the parent ChartRegion.

Bottom The Bottom property determines the location of the bottom of the
PlotArea
230 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

A.26 SimpleChart

BottomIsDefault The BottomIsDefault property determines whether the Bottom of
the chart region is calculated by Chart (true) or taken from the
Bottom property (false).

Foreground The Foreground property determines the color used to draw the
axis bounding box controlled by JCChartArea. Note that the
Foreground property is inherited from the parent ChartRegion.

Left The Left property determines the location of the left of the
PlotArea

LeftIsDefault The LeftIsDefault property determines whether the left position
of the chart region is calculated by Chart (true) or taken from the
Left property (false).

Right The Right property determines the Right of the PlotArea.

RightIsDefault The RightIsDefault property determines whether the Right of
the chart region is calculated by Chart (true) or taken from the
Right property (false).

Top The Top property determines the location of the top of the
PlotArea.

TopIsDefault The TopIsDefault property determines whether the top position
of the chart region is calculated by Chart (true) or taken from the
Top property (false).

Name Description

AxisOrientation The AxisOrientation property determines if the X- and Y-
axes are inverted and reversed.

Background The Background property determines the background color
used to draw inside the chart region. Note that the
Background property is inherited from the parent
JCComponent.

ChartType The ChartType property determines the chart type of the
first set of data in the chart.

Data The Data property controls the file or URL used for the first
set of data in chart.

Name Description
Appendix A ■ JClass Chart Property Listing 231

Font The Font property determines what font is used to render
text inside the chart region. Note that the Font property is
inherited from the parent JCComponent.

FooterFont The FooterFont property determines what font is used to
render text inside the footer region.

FooterText The FooterText property holds the text that is displayed in
the footer. The default value is “ ” (empty String).

Foreground The Foreground property determines the foreground color
used to draw inside the chart region. Note that the
Foreground property is inherited from the parent
JCComponent.

HeaderFont The HeaderFont property determines what font is used to
render text inside the header region.

HeaderText The HeaderText property holds the text that is displayed in
the header. The default value is “ ” (empty String).

LegendAnchor The LegendAnchor property determines the position of the
legend relative to the ChartArea. Valid values include NORTH,
SOUTH, EAST, WEST, NORTHWEST, SOUTHWEST, NORTHEAST, and
SOUTHEAST. The default value is EAST.

LegendOrientation The LegendOrientation property determines how legend
information is laid out. Valid values include VERTICAL and
HORIZONTAL. The default value is VERTICAL.

LegendVisible The LegendVisible property determines whether the legend
is currently visible. Default value is false.

SwingDataModel Sets the chart’s data source to use a specified Swing
TableModel object, instead of using the Data property.

View3D The View3D property combines the values of the Depth,
Elevation, and Rotation properties defined in JCChartArea.
Depth controls the apparent depth of a graph. Elevation
controls the distance above the X-axis for the 3D effect.
Rotation controls the position of the eye relative to the
Y-axis for the 3D effect. The default value is “0.0,0.0,0.0”.

Name Description
232 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

XAxisAnnotationMetho
d

The XAxisAnnotationMethod property determines how axis
annotations are generated. Valid values include VALUE
(annotation is generated by Chart, with possible callbacks to
a label generator), VALUE_LABELS (annotation is taken from a
list of value labels provided by the user – a value label is a
label that appears at a particular axis value), POINT_LABELS
(annotation comes from the data source's point labels that
are associated with particular data points), and TIME_LABELS
(Chart generates time/date labels based on the TimeUnit,
TimeBase and TimeFormat properties). The default value is
VALUE.

XAxisGridVisible The XAxisGridVisible property determines whether a grid
is drawn for the axis. The default value is false.

XAxisLogarithmic The XAxisLogarithmic property determines whether the
first X-axis will be logarithmic (true) or linear (false). The
default value is false.

XAxisMinMax The XAxisMinMax controls both the XAxisMin and XAxisMax
properties. The XAxisMin property controls the minimum
value shown on the axis. If a null String is used, Chart will
calculate the axis minimum. The data minimum is
determined by Chart. The default value is calculated. The
XAxisMax property controls the maximum value shown on
the axis. If a null String is used, Chart will calculate the axis
maximum. The data maximum is determined by Chart. The
default value is calculated.

XAxisNumSpacing The XAxisNumSpacing property controls the interval
between axis labels. If a null String is used, Chart will
calculate the interval. The default value is calculated.

XAxisTitleText The XAxisTitleText property specifies the text that will
appear as the X-axis title. The default value is “ ” (empty
String).

XAxisVisible The XAxisVisible property determines whether the first X-
axis is currently visible. Default value is true.

Name Description
Appendix A ■ JClass Chart Property Listing 233

YAxisAnnotationMetho
d

The YAxisAnnotationMethod property determines how axis
annotations are generated. Valid values include VALUE
(annotation is generated by Chart, with possible callbacks to
a label generator), VALUE_LABELS (annotation is taken from a
list of value labels provided by the user – a value label is a
label that appears at a particular axis value), POINT_LABELS
(annotation comes from the data source's point labels that
are associated with particular data points), and TIME_LABELS
(Chart generates time/date labels based on the TimeUnit,
TimeBase and TimeFormat properties). The default value is
VALUE.

YAxisGridVisible The YAxisGridVisible property determines whether a grid
is drawn for the axis.

YAxisLogarithmic The YAxisLogarithmic property determines whether the
first Y-axis will be logarithmic (true) or linear (false). The
default value is false.

YAxisMinMax The YAxisMinMax controls both the YAxisMin and YAxisMax
properties. The YAxisMin property controls the minimum
value shown on the axis. If a null String is used, Chart will
calculate the axis min. The data min is determined by Chart.
The default value is calculated. The YAxisMax property
controls the maximum value shown on the axis. If a null
String is used, Chart will calculate the axis max. The data
max is determined by Chart. The default value is calculated.

YAxisNumSpacing The YAxisNumSpacing property controls the interval
between axis labels. If a null String is used, Chart will
calculate the interval. The default value is calculated.

YAxisTitleText The YAxisTitleText property specifies the text that will
appear as the Y-axis title. The default value is “ ” (empty
String).

YAxisVisible The YAxisVisible property determines whether the first Y-
axis is currently visible. Default value is true.

Name Description
234 Part II ■ Reference Appendices

Appendix B
Distributing Applets and Applications

Using JClass JarMaster to Customize the Deployment Archive

B.1 Using JClass JarMaster to Customize the Deployment Archive

The size of the archive and its related download time are important factors to consider
when deploying your applet or application.

When you create an applet or an application using third-party classes such as JClass
components, your deployment archive will contain many unused class files unless you
customize your JAR. Optimally, the deployment JAR should contain only your classes
and the third-party classes you actually use. For example, the jcchart.jar, which you used
to develop your applet or application, contains classes and packages that are only useful
during the development process and that are not referenced by your application. These
classes include the Property Editors and BeanInfo classes. JClass JarMaster helps you
create a deployment JAR that contains only the class files required to run your
application.

JClass JarMaster is a robust utility that allows you to customize and reduce the size of the
deployment archive quickly and easily. Using JClass JarMaster you can select the classes
you know must belong in your JAR, and JarMaster will automatically search for all of the
direct and indirect dependencies (supporting classes).

When you optimize the size of the deployment JAR with JClass JarMaster, you save
yourself the time and trouble of building a JAR manually and determining the necessity
of each class or package. Your deployment JAR will take less time to load and will use less
space on your server as a direct result of excluding all of the classes that are never used by
your applet or application.

For more information about using JarMaster to create and edit JARs, please consult its
online documentation.

JClass JarMaster is installed automatically as part of the install process for
JClass DesktopViews. For more details please refer to Quest Software’s Web site.
235

http://www.quest.com

236 Part II ■ Reference Appendices

Appendix C
HTML Property Reference

ChartDataView Properties ■ ChartDataViewSeries Properties

JCAreaChartFormat Properties ■ JCAxis X- and Y-axes Properties

JCBarChartFormat Properties ■ JCCandleChartFormat Properties

JCChart Properties ■ JCChartArea Properties ■ JCChartLabel Properties

JCDataIndex Properties ■ JCHLOCChartFormat Properties

JCHiLoChartFormat Properties ■ JCLegend Properties

JCPieChartFormat Properties ■ JCPolarRadarChartFormat Properties

Header and Footer Properties ■ Example HTML File

This appendix lists the syntax of JClass Chart properties when specified in an HTML file.
For example, the following HTML code sets the X-axis annotation method property:

 <PARAM NAME="xaxis.annotationMethod" VALUE="POINT_LABELS">
237

C.1 ChartDataView Properties

Java Property HTML Syntax Value Type

Auto Label data.autoLabel boolean

Buffer Plot
Data

data.bufferPlotData boolean

Character Set data.fileCharset String

Chart Type data.chartType enum

Data data AppletDataSource

Data File dataFile, data1File, or
data2File

URLDataSource,
FileDataSource

Data Name dataNamen String1

Draw Front
Plane

data.drawFrontPlane boolean

Fast Update data.fastUpdate boolean

File Access data.fileAccess String

File Type data.fileType ■ XML
■ Text

Hole Value data.holeValue double

Inverted data.inverted boolean

Outline Color data.line.color Color

Outline Cap data.line.cap enum

Outline Join data.line.join enum

Outline
Pattern

data.line.pattern enum

Outline Width data.line.width int

Point Labels data.pointLabels String

Visible data.visible boolean

Visible In
Legend

data.visibleInLegend boolean

X Axis data.xaxis X axis name

Y Axis data.yaxis Y axis name
238 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

1n is the data view number; not needed for first data view.

Note: data is the name of the first dataset, generated when chart properties are saved to
an HTML file; additional datasets are named data1, data2, datan.
Appendix C ■ HTML Property Reference 239

C.2 ChartDataViewSeries Properties

Note: data is the name of the first dataset, generated when chart properties are saved to
an HTML file; additional datasets are named data1, data2, datan.

Java Property HTML Syntax Value Type

File Name data.seriesn.fill.image.fileName String

File Access Type data.seriesn.fill.image.fileAcce
ss

String

Fill Background data.seriesn.fill.background enum

Fill Color data.seriesn.fill.color Color

Fill Color Index data.seriesn.fill.colorIndex int

Fill Image data.seriesn.fill.image Image

Fill Pattern data.seriesn.fill.pattern enum

First Point data.seriesn.firstPoint int

Included data.seriesn.Included boolean

Label data.seriesn.label String

Last Point data.seriesn.lastPoint int

Line Color data.seriesn.line.color Color

Line Color Index data.seriesn.line.colorIndex int

Line Cap data.seriesn.line.cap enum

Line Join data.seriesn.line.join enum

Line Pattern data.seriesn.line.pattern enum

Line Width data.seriesn.line.width int

Symbol Color data.seriesn.symbol.color Color

Symbol Color Index data.seriesn.symbol.colorIndex int

Symbol Shape data.seriesn.symbol.shape enum

Symbol Shape Index data.seriesn.symbol.symbolIndex int

Symbol Size data.seriesn.symbol.size int

Visible data.seriesn.visible boolean

Visible In Legend data.seriesn.visibleInLegend boolean
240 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

C.3 JCAreaChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved to
an HTML file; additional datasets are named data1, data2, datan.

Java Property HTML Syntax Value Type

100 Percent data.Area.100Percent boolean
Appendix C ■ HTML Property Reference 241

C.4 JCAxis X- and Y-axes Properties

Java Property HTML Syntax Value Type

Annotation
Method

[xy]axis.annotationMethod enum

Annotation
Rotation

[xy]axis.annotationRotation enum

Editable [xy]axis.editable boolean

Font [xy]axis.font Font

Foreground [xy]axis.foreground Color

Formula
Constant

[xy]axis.formula.constant double

Formula
Multiplier

[xy]axis.formula.multiplier double

Formula
Originator

[xy]axis.formula.originator Axis Name, eg, xaxis1

Gap [xy]axis.gap int

Grid Color [xy]axis.grid.color Color

Grid Visible [xy]axis.grid.visible boolean

Grid Spacing [xy]axis.grid.spacing double

Logarithmic [xy]axis.logarithmic boolean

Max [xy]axis.max double

Min [xy]axis.min double

Num Spacing [xy]axis.numSpacing double

Origin [xy]axis.origin double

Origin
Placement

[xy]axis.originPlacement enum

Placement [xy]axis.placement enum

Placement Axis [xy]axis.placementAxis Axis Name, eg. xaxis1

Placement
Location

[xy]axis.placementLocation double

Precision [xy]axis.precision int

Reversed [xy]axis.reversed boolean
242 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

Note: xaxis and yaxis are the names of the first axes, generated when chart properties
are saved to an HTML file; additional axes are named [xy]axis1, [xy]axis2, [xy]axisn.

C.5 JCBarChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved to
an HTML file; additional datasets are named data1, data2, datan.

Tick Spacing [xy]axis.tickSpacing double

Time Base [xy]axis.timeBase Date

Time Format [xy]axis.timeFormat String

Time Unit [xy]axis.timeUnit enum

Title Adjust [xy]axis.title.adjust enum

Title
Background

[xy]axis.title.background Color

Title Font [xy]axis.title.font Font

Title
Foreground

[xy]axis.title.foreground Color

Title Placement [xy]axis.title.placement enum

Title Rotation [xy]axis.title.rotation 0, 90, 180, 270

Title Text [xy]axis.title.text String

Title Visible [xy]axis.title.visible boolean

Value Labels [xy]axis.valueLabels String[]
(values separated by “;”)

Visible [xy]axis.visible boolean

Java Property HTML Syntax Value Type

100 Percent data.Bar.100Percent boolean

Cluster Overlap data.Bar.clusterOverlap int

Cluster Width data.Bar.clusterWidth int

Java Property HTML Syntax Value Type
Appendix C ■ HTML Property Reference 243

C.6 JCCandleChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved to
an HTML file; additional datasets are named data1, data2, datan.

Java Property HTML Syntax Value Type

Complex data.Candle.Complex boolean
244 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

C.7 JCChart Properties

1String of format bordertype|param1|param2|...
2labeln is the number of Chart Labels when chart properties are saved to HTML.

Note: Valid values for any Trigger property are NONE, CTRL, SHIFT, ALT, or META
(equivalent to right-mouse-click).

Java Property HTML Syntax Value Type

Allow User
Changes

allowUserChanges boolean

Background background Color

Batched batched boolean

Border border String1

Cancel Key cancelKey int

Customize
Trigger

customizeTrigger enum
(see Note for details)

Depth Trigger depthTrigger enum
(see Note for details)

Edit Trigger editTrigger enum
(see Note for details)

Font font Font

Foreground foreground Color

Label Name labeln String2

Opaque opaque boolean

Parameter File paramFile File from which to load additional
properties

Pick Trigger pickTrigger enum
(see Note for details)

Reset Key resetKey int

Rotate Trigger rotateTrigger enum
(see Note for details)

Translate
Trigger

translateTrigger enum
(see Note for details)

Zoom Trigger zoomTrigger enum
(see Note for details)
Appendix C ■ HTML Property Reference 245

C.8 JCChartArea Properties

Java Property HTML Syntax Value Type

Angle Unit chartArea.angleUnit enum

Axis Bounding Box chartArea.axisBoundingBox boolean

Background chartArea.background Color

Border chartArea.border String1

Depth chartArea.depth int

Elevation chartArea.elevation int

Fast Action chartArea.fastAction boolean

Font chartArea.font Font

Foreground chartArea.foreground Color

Height chartArea.height int

Horiz Action Axis chartArea.horizActionAxis Axis Name, eg. xaxis1

Insets chartArea.insets Insets

Opaque chartArea.opaque boolean

Plot Area
Background

chartArea.plotArea.background Color

Plot Area Bottom chartArea.plotArea.bottom int

Plot Area
Foreground

chartArea.plotArea.foreground Color

Plot Area Left chartArea.plotArea.left int

Plot Area Right chartArea.plotArea.right int

Plot Area Top chartArea.plotArea.top int

Rotation chartArea.rotation int

Vert Action Axis chartArea.vertActionAxis Axis Name, eg. xaxis1

Visible chartArea.visible boolean

Width chartArea.width int

X chartArea.x int

Y chartArea.y int
246 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

1String of format bordertype|param1|param2|...

C.9 JCChartLabel Properties

1The index of the last label. Used as the upper boundary on labels and data indices
during load. Only needs to be explicitly specified if n is greater than 99.

Note: label1 is the name of the first Chart Label, generated when chart properties are
saved to an HTML file; additional labels are named label2, label3, labeln.

Java Property HTML Syntax Value Type

Anchor labeln.anchor enum

Attach Method labeln.attachMethod enum

Background labeln.background Color

Connected labeln.connected boolean

Coord labeln.coord Point

Data Attach X labeln.dataAttachX int

Data Attach Y labeln.dataAttachY int

Data Index labeln.dataIndex DataIndex Name, eg. indexName

Data View labeln.dataView ChartDataView

Dwell Label labeln.dwellLabel boolean

Font labeln.font Font

Foreground labeln.foreground Color

Label Name labelNamen String (where n is the label
number)

Last Label Index lastLabelIndex int1

Offset labeln.offset Font

Text labeln.text String

Visible labeln.visible boolean
Appendix C ■ HTML Property Reference 247

C.10 JCDataIndex Properties

Note: n is the index number.

C.11 JCHLOCChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved to
an HTML file; additional datasets are named data1, data2, datan.

C.12 JCHiLoChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved to
an HTML file; additional datasets are named data1, data2, datan.

Java Property HTML Syntax Value Type

Data View indexn.dataView ChartDataView

Distance indexn.distance int

Index Name indexNamen String

Point indexn.point Font

Series Index indexn.seriesIndex int

Java Property HTML Syntax Value Type

Line Color data.HLOC.seriesn.hilo.line.color Color

Line Width data.HLOC.seriesn.hilo.line.width int

Open Close Full
Width

data.HLOC.openCloseFullWidth boolean

Showing Close data.HLOC.showingClose boolean

Showing Open data.HLOC.showingOpen boolean

Tick Size data.HLOC.seriesn.tickSize int

Java Property HTML Syntax Value Type

Line Color data.Hilo.seriesn.line.color Color

Line Width data.Hilo.seriesn.line.width int
248 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

C.13 JCLegend Properties

1String of format bordertype|param1|param2|...

Java Property HTML Syntax Value Type

Anchor legend.anchor enum

Background legend.background Color

Border legend.border String1

Font legend.font Font

Foreground legend.foreground Color

Height legend.height int

Opaque legend.opaque boolean

Orientation legend.orientation enum

Visible legend.visible boolean

Width legend.width int

X legend.x int

Y legend.y int
Appendix C ■ HTML Property Reference 249

C.14 JCPieChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved to
an HTML file; additional datasets are named data1, data2, datan.

Java Property HTML Syntax Value Type

Explode Offset data.Pie.explodeOffset int

Min Slices data.Pie.minSlices int

Other Fill
Background

data.Pie.other.fill.background enum

Other Fill Color data.Pie.other.fill.color Color

Other Fill Color
Index

data.Pie.other.fill.colorIndex int

Other Fill Image data.Pie.other.fill.image Image

Other Fill Image
File Name

data.Pie.other.fill.image.
fileName

String

Other Fill Image
File Access

data.Pie.other.fill.image.
fileAccess

String

Other Fill
Pattern

data.Pie.other.fill.pattern enum

Other Label data.Pie.other.label String

Sort Order data.Pie.sortOrder ASCENDING,
DESCENDING

Start Angle data.Pie.startAngle double

Threshold Method data.Pie.thresholdMethod enum

Threshold Value data.Pie.thresholdValue int
250 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

C.15 JCPolarRadarChartFormat Properties

Note: data is the name of the first dataset, generated when chart properties are saved to
an HTML file; additional datasets are named data1, data2, datan.

C.16 Header and Footer Properties

1String of format bordertype|param1|param2|...

Java Property HTML Syntax Value Type

HalfRange data.PolarRadar.halfRange boolean

OriginBase data.PolarRadar.originBase double

RadarCircularGrid data.PolarRadar.radarCircularGrid boolean

YAxisAngle data.PolarRadar.yAxisAngle double

Java Property HTML Syntax Value Type

Background header.background
footer.background

Color

Border border String1

Font header.font
footer.font

Font

Foreground header.foreground
footer.foreground

Color

Height height int

Opaque opaque boolean

Text header.orientation
footer.orientation

String

Visible header.visible
footer.visible

boolean

Width width int

X x int

Y y int
Appendix C ■ HTML Property Reference 251

C.17 Example HTML File

The following HTML file defines the chart shown below:

<HTML>
<HEAD>
<TITLE>JClass Chart</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFCC">

<CENTER><H2>Bar/Plot Combination</H2></CENTER>
<P>
<HR COLOR=CC3333>
<P>
<BLOCKQUOTE>
</BLOCKQUOTE>
<P>
<CENTER>
<APPLET CODE=com/klg/jclass/chart/applet/JCChartApplet.class ARCHIVE="lib/jcchart.jar"
CODEBASE="../../.." HEIGHT=420 WIDTH=550>
<PARAM NAME=background VALUE="210-180-140">
<PARAM NAME=foreground VALUE="black">
<PARAM NAME=font VALUE="Dialog-PLAIN-12">
<PARAM NAME=CustomizeTrigger VALUE="Meta">
<PARAM NAME=allowUserChanges VALUE="true">
<PARAM NAME=footer.y VALUE="55">
<PARAM NAME=footer.font VALUE="TimesRoman-PLAIN-20">
<PARAM NAME=footer.text VALUE="Profits have recovered but share prices remain low">
<PARAM NAME=footer.visible VALUE="true">
<PARAM NAME=header.border VALUE="bevel|raised">
<PARAM NAME=header.font VALUE="TimesRoman-BOLD-24">
252 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

<PARAM NAME=header.background VALUE="245-222-180">
<PARAM NAME=header.text VALUE="Yoyodyne snaps back">
<PARAM NAME=header.visible VALUE="true">
<PARAM NAME=legend.y VALUE="345">
<PARAM NAME=legend.border VALUE="etched|raised">
<PARAM NAME=legend.font VALUE="Dialog-PLAIN-14">
<PARAM NAME=legend.background VALUE="245-222-180">
<PARAM NAME=legend.visible VALUE="true">
<PARAM NAME=legend.anchor VALUE="South">
<PARAM NAME=legend.orientation VALUE="Horizontal">
<PARAM NAME=chartArea.y VALUE="90">
<PARAM NAME=chartArea.border VALUE="bevel|lowered">
<PARAM NAME=chartArea.background VALUE="245-222-180">
<PARAM NAME=chartArea.plotArea.background VALUE="255-232-190">
<PARAM NAME=xaxis.annotationMethod VALUE="Value_Labels">
<PARAM NAME=xaxis.placement VALUE="Min">
<PARAM NAME=xaxis.placementAxis VALUE="yaxis">
<PARAM NAME=xaxis.grid.Color VALUE="210-180-140">
<PARAM NAME=xaxis.valueLabels VALUE="1.0; '93; 2.0; '94; 3.0; '95; 4.0; '96; 5.0; '97">
<PARAM NAME=xaxis.title.visible VALUE="false">
<PARAM NAME=yaxis.placement VALUE="Min">
<PARAM NAME=yaxis.grid.visible VALUE="true">
<PARAM NAME=yaxis.grid.Color VALUE="210-180-140">
<PARAM NAME=yaxis.title.font VALUE="TimesRoman-BOLD-12">
<PARAM NAME=yaxis.title.text VALUE="$millions">
<PARAM NAME=chartArea.yaxisName1 VALUE="yaxis1">
<PARAM NAME=yaxis1.placement VALUE="Max">
<PARAM NAME=yaxis1.min VALUE="4.0">
<PARAM NAME=yaxis1.max VALUE="22.0">
<PARAM NAME=yaxis1.grid.Color VALUE="black">
<PARAM NAME=yaxis1.title.font VALUE="TimesRoman-BOLD-12">
<PARAM NAME=yaxis1.title.text VALUE="share prices ">
<PARAM NAME=data.chartType VALUE="BAR">
<PARAM NAME=data.line.color VALUE="black">
<PARAM NAME=data.series1.line.colorIndex VALUE="0">
<PARAM NAME=data.series1.line.width VALUE="8">
<PARAM NAME=data.series1.fill.colorIndex VALUE="0">
<PARAM NAME=data.series1.fill.color VALUE="0-84-255">
<PARAM NAME=data.series1.fill.pattern VALUE="Per_25">
<PARAM NAME=data.series1.symbol.colorIndex VALUE="0">
<PARAM NAME=data.series1.symbol.color VALUE="255-165-0">
<PARAM NAME=data.series1.symbol.size VALUE="7">
<PARAM NAME=data.series1.label VALUE="Profits">
<PARAM NAME=data.Bar.clusterWidth VALUE="50">
<PARAM NAME=data VALUE="
 ARRAY ' ' 1 5
 1.0 2.0 3.0 4.0 5.0
 24.0 30.2 36.4 -19.8 10.6
 ">
<PARAM NAME=dataName1 VALUE="data1">
<PARAM NAME=data1.outlineColor VALUE="black">
<PARAM NAME=data1.series1.line.colorIndex VALUE="1">
<PARAM NAME=data1.series1.line.color VALUE="red">
<PARAM NAME=data1.series1.line.width VALUE="7">
<PARAM NAME=data1.series1.fill.colorIndex VALUE="1">
<PARAM NAME=data1.series1.symbol.colorIndex VALUE="1">
Appendix C ■ HTML Property Reference 253

<PARAM NAME=data1.series1.symbol.color VALUE="255-165-0">
<PARAM NAME=data1.series1.symbol.shape VALUE="Dot">
<PARAM NAME=data1.series1.symbol.size VALUE="14">
<PARAM NAME=data1.series1.label VALUE="Share Prices">
<PARAM NAME=data1.yaxis VALUE="yaxis1">
<PARAM NAME=data1 VALUE="
ARRAY ' ' 1 5
 1.0 2.0 3.0 4.0 5.0
 20.5 12.3 14.8 6.2 5.75
 ">
</APPLET>
<P>
<I>More Applet Demos...</I>
<P>
</CENTER>
<!-- copyright information added -->
<P>
<HR COLOR=CC3333>
<P>
<P><A HREF="
http://www.quest.com/corporate/copyright.html">Copyright©
2002 Quest Software
</BODY>
</HTML>
254 Part II ■ Reference Appendices

Appendix D
Porting JClass 3.6.x Applications

Overview ■ Swing-like API ■ New Data Model ■ New Data Subpackage ■ New Beans Subpackage

Data Binding Changes ■ New Applet Subpackage ■ Pluggable Header/Footer ■ JCChartLabelManager

Chart Label Components ■ Use of Collection Classes ■ No More JCString

D.1 Overview

The major changes are listed in the table below. Each change is discussed in more detail
with a recommended porting strategy.

Change Rationale

applet subpackage Makes it easier to find applet load/save code. Important for
users who wish to remove the applet code from
deployment JARs.

beans subpackage Makes it easier to find beans. Important for users who wish
to remove the beans from deployment JARs.

Chart label components Chart labels are no longer derived from components.
Instead, they contain components. This is a more flexible
scheme, since any JComponent-derived object can be used
as a chart label.

Data Binding Changes The data binding for Chart has been rewritten, resulting in
some minor API changes.

data subpackage Makes it easier to find stock data sources. Stock data
sources now include the JC prefix.

JCChartLabelManager Not every user requires chart labels. To reduce download,
chart label management is deferred to an object called
JCChartLabelManager.

New data model Old model dated back to JDK 1.0.2. New model is easier to
understand.

No more JCString JCString has been replaced by HTML in cells.

Package name change
 (com.klg.jclass.chart)

Old package name pre-dated naming standard.
255

D.2 Swing-like API

Chart's header, footer, chart area, and legend, and the chart itself are all derived from
JComponent. The following changes to methods apply:

Pluggable header/footer Header and footer are now JComponents. This allows re-
use of Swing code, and adds flexibility to the product. It
also adds casts to your code.

Swing-like API JClass 4 is Swing-based. Applies to applet PARAM tags as
well.

Use of collection classes Collection classes weren't available for JDK 1.0.2. Use of
collection classes adds flexibility.

Chart 3.* Chart 4.* and higher

get/setBorderType() Replaced by JComponent.setBorder()
Note that enum-based replacements for standard Swing
borders from BorderFactory may be created.

get/setBorderWidt
h()

In Swing, borders have their own width.

get/setHeight() All replaced by JComponent.setBounds().

get/setHeight()
get/setWidth()
get/setLeft()
get/setTop()
Related IsDefault
methods

All replaced by JComponent.setBounds(),
JComponent.setLocation() and JComponent.setSize(). In
Chart 4.* and higher, layout options for chart area, legend,
header and footer are somewhat more limited. However,
JCChart will now accept new layout managers. Also, JCChart
allows specification of layout hints for header, footer, chart
area and legend using JCChart.setLayoutHints().

setInets() No direct equivalent. Use borders.

get/setIsShowing() JComponent.get/setVisible()

draw() Now using Swing's paint mechanism.

Change Rationale
256 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

In general, any property in Chart 3.* that started with “Is” has been modified. Changes
include:

D.3 New Data Model

The data model for Chart 4 is a change to a data series-based model from a table-based
model used in Chart 3.

As an example, consider charting the following data points:

(1,20)
(2,70)
(3,50)

Category Chart 3.* Chart 4.* and higher

IsShowingVisible ChartDataViewSeries.IsShowing ChartDataViewSeries.
visible

ChartDataViewSeries.IsShowing
InLegend

ChartDataViewSeries.
visibleInLegend

ChartDataView.IsShowingInLeg
end

ChartDataView.
visibleInLegend

JCAxis.GridIsShowing JCAxis.GridVisible

JCAxis.IsShowing JCAxis.visible

JCAxisTitle.IsShowing JCAxisTitle.visible

IsIncluded ChartDataViewSeries.IsIncluded ChartDataViewSeries.
Included

IncludedIs
Editable

JCAxis.IsEditable JCAxis.Editable
Appendix D ■ Porting JClass 3.6.x Applications 257

In Chart 3.*, the data model would have looked like:

import jclass.chart.Chartable;
import java.util.Vector;

public class simple implements Chartable {

double xdata[] = {1, 2, 3,};
double ydata[] = {20, 70, 50,};

public int getDataInterpretation() {
return Chartable.ARRAY;

}

public Object getDataItem(int row, int column) {
if (row == 0) {

return new Double(xdata[column]);
}
else if (row == 1) {

return new Double(ydata[column]);
}
return null;

}

public Vector getRow(int row) {
Vector rval = new Vector();
if (row == 0) {

for (int i = 0; i < xdata.length; i++) {
rval.addElement(new Double(xdata[i]));

}
}
else if (row == 1) {

for (int i = 0; i < ydata.length; i++) {
rval.addElement(new Double(xdata[i]));

}
}
return rval;

}

public int getNumRows() {
return 2;

}

public String[] getPointLabels() {
return pointLabels;

}
}

(Note that the series and point label methods are not shown.)
258 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

In Chart 4.* and higher, the corresponding code is much simpler:

import com.klg.jclass.chart.ChartDataModel;

public class simple implements ChartDataModel {
double xdata[] = {1, 2, 3,};
double ydata[] = {20, 70, 50,};

public double[] getXSeries(int index) {
return xdata;

}

public double[] getYSeries(int index) {
return ydata;

}

public int getNumSeries() {
return 1;

}
}

Most important to note is the different focus. In Chart 3.*, the model viewed data as a
table. Depending on the data interpretation, each row was either an X-series or a Y-series.
In Chart 4.* and higher, the X- and Y-data series are returned explicitly. Also, Double
objects are no longer used. (Chart simply converted them to double.)

Chart 3.* allowed data models to update chart via Observer/Observable or
event/listener. Chart 4.* and higher only allows event/listener.

Listed below are Chart 3.* data model classes, and their equivalent in Chart 4.* and
higher

Chart 3.* Chart 4.* and higher

Chartable ChartDataModel and LabelledChartDataModel

EditableChartable EditableChartDataModel

ChartDataModel No equivalent. Observer/Observable is no longer used for
updated chart data sources.

ChartDataListener ChartDataListener

ChartDataEvent ChartDataEvent

ChartDataSupport ChartDataSupport

No equivalent ChartDataManageable
Tells JCChart that an object can manage ChartDataListeners

No equivalent ChartDataManager
Manages ChartDataListeners
Appendix D ■ Porting JClass 3.6.x Applications 259

D.4 New Data Subpackage

All stock data sources have been moved into a data subpackage. Some of the data source
names have been changed. The next table explains the changes.

D.5 New Beans Subpackage

All the beans have been moved to the beans subpackage. There has been no bean
property changes.

D.6 Data Binding Changes

The data binding beans remain in the same places. However, the dataBindingMetaData
property has been replaced by dataBindingConfig.

D.7 New Applet Subpackage

All code dealing with loading or saving of Chart as HTML PARAM tags has been moved
to an applet subpackage. This change should be transparent to users. Deployment JARs

Chart 3.* (jclass.chart) Chart 4.* and higher (com.klg.jclass.chart.data)

No equivalent BaseDataSource
Common base class for most stock data sources.

AppletDataSource JCAppletDataSource

ChartSwingDataSource JCChartSwingDataSource

VectorDataSource JCDefaultDataSource
Note that JCDefaultDataSource provides functionality
that VectorDataSource did not.

No equivalent JCEditableDataSource
Editable version of JCDefaultDataSource
JCFileDataSource

InputStreamDataSource JCInputStreamDataSource

StringDataSource JCStringDataSource

URLDataSource JCURLDataSource

JDBCDataSource JDBCDataSource
260 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

for users not using HTML load/save can be made smaller by removing the applet
subpackage.

Some parameter changes were necessary, mostly as a result of core chart API changes.

These changes are shown below:

Chart 3.* Chart 4.* and higher

LeftMargin, TopMargin,
BottomMargin, RightMargin

No equivalent

BorderType No equivalent

BorderWidth No equivalent

DoubleBuffer No equivalent

Offset No equivalent

IsShowing IsVisible

IsShowingInLegend VisibleInLegend

IsIncluded Included

No equivalent Join, Cap and Background in series.line

axis.IsVertical axis.Vertical

axis.IsLogarithmic axis.Logarithmic

axis.IsReversed axis.Reversed

axis.GridIsShowing axis.grid.visible

axis.Grid* axis.grid.*
Note that axis.grid now supports all line
style properties, including patterns

axis.IsEditable axis.editable

chartLabel.attachX/Y chartLabel.coord format: x,y

chartLabel.IsConnected chartLabel.connected

chartLabel.IsDwellLabel chartLabel.dwellLabel

candleChartFormat.isComplex candleChartFormat.complex

HLOCChartFormat.isShowingOpen HLOCChartFormat.showingOpen

HLOCChartFormat.isShowingClose HLOCChartFormat.showingClose

HLOCChartFormat.isOpenCloseFull
Width

HLOCChartFormat.openCloseFullWidth
Appendix D ■ Porting JClass 3.6.x Applications 261

D.8 Pluggable Header/Footer

Headers and footers can now be any JComponent-derived object. By default,
JCChart.getHeader() and JCChart.getFooter() return a JLabel. However, both
methods return objects of type JComponent. This means a cast is required. Code that
used to look like this:

chart.getHeader().setText("Foo")

can be converted to look like this:

JLabel header = (JLabel)chart.getHeader();
header.setText("Foo");

The full API for headers and footers is now defined by the JComponent-derived object
used for header/footer. By default, this is JLabel. Refer to the JLabel API for more
details.

D.9 JCChartLabelManager

As previously mentioned, chart label management has been removed to a delegate
object. The delegate must be of type JCChartLabelManager. A default implementation
called JCDefaultChartLabelManager is provided.

Use of the delegate results in a smaller deployment JAR for users who don't use chart
labels. It also helps focus the JCChart API by removing the chart label-related methods.

 3.* (JCChart) 4.* and higher (JCChartLabelManager)

void addChartLabel(JCChartLabel
label)

Moved to JCChartLabelManager

void removeChartLabel(JCChartLabel
label)

Moved to JCChartLabelManager

int getNumChartLabels() Moved to JCChartLabelManager

void removeAllChartLabels() Moved to JCChartLabelManager

JCChartLabel getChartLabels(int
index)

Moved to JCChartLabelManager

void setChartLabels(int index,
JCChartLabel label)

Moved to JCChartLabelManager

JCChartLabel[] getChartLabels() List
JCChartLabelManager.getChartLabels
()
262 Part II ■ Reference Appendices

R
Reference Appendices
eference Appendices

D.10 Chart Label Components

JCChartLabel is no longer a component, but contains a component. Therefore, all of the
usual component methods like getBackground(), getFont(), and so on, need to be
changed and prefaced by a call to getComponent()

e.g. getComponent().getBackground()

D.11 Use of Collection Classes

JClass Chart aggregates objects like JCAxis, ChartDataView and ChartDataViewSeries
using collections. In Chart3.*, Vectors were used. The API has been updated to take
advantage of the flexibility offered by collections.

In most cases, Chart would build the object arrays manually. Collections (and their
iterators) allow Chart to expose the internal collection directly.

Changes include:

void setChartLabels(JCChartLabel[] s) void
JCChartLabelManager.setChartLabels
(List s)

Chart 3.* Chart 4.* and higher

String[]
ChartDataView.getPointLabels()

List ChartDataView.getPointLabels()

ChartDataViewSeries[]
ChartDataView.getSeries()

List ChartDataView.getSeries()

JCChartStyle[]
ChartDataView.getChartStyle()

List ChartDataView.getChartStyle()

ChartDataView[]
JCChart.getDataView()

List JCChart.getDataView()

JCChartLabel[]
JCChart.getChartLabels()

List JCChartLabelManager.
getChartLabels()

List JCDefaultChartLabelManager.
getChartLabels()

JCAxis[]
JCChartArea.getXAxis()

List JCChartArea.getXAxes()

 3.* (JCChart) 4.* and higher (JCChartLabelManager)
Appendix D ■ Porting JClass 3.6.x Applications 263

For convenience, many of the index-based accessors remain. For example, you can still
grab axes based on an index:

JCAxis xaxis = chart.getChartArea().getXAxis(1);

Collections allow users to take advantage of iterators. In Chart 3.*, iterating over all the
X-axes required the following code:

JCAxis[] xaxes = chart.getChartArea().getXAxis();
for (int i = 0; i < xaxes; i++) {

JCAxis xaxis = xaxes[i];
// Do something interesting

}

In Chart 4.* and higher, iterators can be used:

for (ListIterator li = chart.getChartArea().getXAxes().listIterator();
i.hasNext();) {
JCAxis xaxis = (JCAxis)li.next();

}

D.12 No More JCString
JCStrings have been replaced by HTML in cells. This is supported by Swing, and has
been added to Chart where appropriate.

You can now put raw HTML into headers and footers, as long as the text starts with
“<html>”. HTML is also valid in axis annotations, axis titles and legend elements.

JCAxis[]
JCChartArea.getYAxis()

List JCChartArea.getYAxes()

Chart 3.* Chart 4.* and higher
264 Part II ■ Reference Appendices

Index

“other” slice 41

style and label 42
100 percent axis

area chart 45
bar chart 40

3D effects 64, 98, 180
Depth 64
Elevation 64
Rotation 64
View3DEditor 64

A
action

axes
specifying 190

calling directly 189
programming 188
removing mappings 189

add a database connection 70
AllowUserChanges property 25
annotation

values 115
API 3
applet

HTML parameter listing 237
loading data 135
set properties 14

area chart 11
100 percent axis 45
special properties 45

area radar chart 13
axis 20
data array 141
FastUpdate 188
gridlines 38, 129
mapping 187
min value 124
picking 192
point labels 117

array data
format 141
layout 13

array layout 143
ATTACH_COORD 171
ATTACH_DATACOORD 171

ATTACH_DATAINDEX 171
automatic labelling 93
axis

adding second Y 130
annotation

choosing a method 114
overview 114
PointLabels 116
TimeLabels 119
ValueLabels 117
Values 115

area radar chart 20
bounding box 97
bounds 125
custom label 121
direction 124
gridlines 129
labelling 114

value annotation 115
logarithmic 127
min and max 125
origins 126
polar chart 20
rotating annotation 128
rotating title 128
title 128

AxisGrid 81
AxisMisc 83
AxisOrigin 81
AxisPlacement 82
AxisPointLabels 83
AxisScale 85
AxisTimeLabels 86
AxisTitle 87

B
background color 178
bar chart 10

100 percent axis 40
3D effect 180
cluster overlap 40
cluster width 40
image fill 190
origin placement 126
special properties 40
265

Bar3d and 3d Effect 110
BaseDataSource

pre-built DataSource 134
basic chart information 9
batching chart updates 185
Bean 49

data binding 57
data loading methods 66
data loading with JClass DataSource 67
JDBC 67
MultiChart 57, 77
overview 49
properties 49

setting at design-time 50
reference 57
SimpleChart 57
tutorial 49

BeanBox 50
borders

using 177

C
calling

an action 189
methods 20

candle chart 12, 46
ChartStyle properties used 47
customizing chart styles 47
logical series 46
simple and complex display 47

chart
areas 9
basics 9
element positioning 179
labels 171
orientation 124
outputting 183
polar 27
setting type 10
terminology 9
user interaction 188

chart customizer
editing properties 25
enabling 25
using 24
viewing properties 25

chart type
area 11
area radar 13
bar 10
candle 12
hi-lo 12
hi-lo-open-close 12
PIE 62

pie 11
plot 10
polar 12
radar 13
scatter plot 10
stacking area 11
stacking bar 11

chartable data source 13, 133
ChartArea

positioning 179
ChartDataEvent 155
ChartDataListener 155
ChartDataManageable 156
ChartDataManager 156
ChartDataModel 24
ChartDataSupport 157
ChartDataView 171

ChartType property 10
containment hierarchy 23
converting coordinates 185
HTML property syntax 238
IsInverted property 124
PointLabels 117
programming ChartStyles 174
property summary 203

ChartDataViewSeries 24
HTML property syntax 240
property summary 206

ChartStyles
area charts 174
bar charts 174
customizing 174
customizing existing ChartStyles 175
pie charts 174
plot and financial charts 174
use in financial chart types 47

ChartText
property summary 207

ChartType property 10
ChartDataView 10

choosing chart type 10
cluster overlap

bar chart 40
cluster width

bar chart 40
collections of objects 20
color

background 178
foreground 178
setting 177

comments 143
comments on product 6
container 50
converting

4.0.x to 4.5 160
converting coordinates 185
266 Index

coordinate conversion 185
CoordToDataCoord 186
coordToDataCoord() method 186
coordToDataIndex() method 186
custom

axes label 121
CUSTOM_FILL 223
CUSTOM_PAINT 223
CUSTOM_STACK 223
customizer

displaying 25
editing properties 25
using 24
viewing properties 25

customizing chart styles
candle chart 47
hi-lo chart 47

CustomPaint 223

D
data

array
area radar chart 141
layout 13
polar chart 141
radar chart 141

general
layout 13

layout 13
min and max 125

data binding 144
Beans 57
DSdbChart 147
JBdbChart 146
JBuilder 146
JClass DataSource 72, 147
JDBCDataSource 145
specifying data from databases 144
using Borland JBuilder 69

data bound 125, 144
data format 141
data formatting 134, 141
data layout 142

introduction 13
data loading

JClass DataSource 67
data loading from XML source 136
data size 142
data source

hierarchy 158
making your own 149
support classes 155
the simplest one possible 149
updating 155

data view 92, 133
database connection

adding 70
DataChart 92
dataCoordToCoord() method 186
DataIndexToCoord 186
dataIndexToCoord() method 186
DataSource 24, 93
DataSources

pre-built 134
DataView, multiple axes 130
date methods 121
dateToValue() method 121
draw on front plane 93
drawLegendItem() 165
drawLegendItemSymbol() 165
DSdbChart 72

data binding 147
DSdbChart Bean 75
dwell labels 93, 172

automatically generated 172
individual 172

E
EditableChartDataModel 154
encode

chart as image 183
method 184

Encode example 184
Encode method 184
Encode method code example 185
end-user interaction 111
EPS file format 183, 184
error bar charts 46
event trigger 188

programming 189
exploded slices

pie chart 43

F
FAQs 6
FastAction 187
FastUpdate 187
FileDataSource

tutorial 105
financial charts, ChartStyle properties used 47
fonts

choosing 177
footer 105

HTML property syntax 251
positioning 179
titles 159
Index 267

foreground color 178
formatted file 134
full-range X-axis

polar charts 31

G
gap 80
general

data format 141
data layout 13
layout 143

get object properties 13
Java code 14

getOutlineColor() 165
GIF 179
GIF file format 183, 184
gridlines 61, 81, 129

H
half-range X-axis

polar charts 31
header 105

HTML property syntax 251
positioning 179
titles 159

headers and footers 159
HeaderText 89
hi-lo chart 12, 46

ChartStyle properties used 47
customizing chart styles 47
logical series 46

hi-lo-open-close chart 12, 46
hole value 142

specifying 155
HoleValueChartDataModel 155
HTML property syntax

ChartDataView 238
ChartDataViewSeries 240
Footer 251
Header 251
JCAreaChartFormat 241
JCAxis X- and Y-axes 242
JCBarChartFormat 243
JCCandleChartFormat 244
JCChart 245
JCChartArea 246
JCChartLabel 247
JCDataIndex 248
JCHiLoChartFormat 248
JCHLOCChartFormat 248
JCLegend 249
JCPieChartFormat 250

JCPolarRadarChartFormat 251
Hypertext Markup Language (HTML) 14

I
IDE

setting properties 20
image formats 183
images

transparent 179
inheritance hierarchy 21
initialization 142
intelligent defaults 78
interacting with the chart 188
interactive

chart 172
labels 172

interactively
setting properties 20

internationalization 26
introduction to JClass Chart 1
inverting a chart 124
inverting X- and Y-axis 109
IsOpenCloseFullWidth

using for error bar charts 46

J
JavaBeans 49

overview 49
JBdbChart

data binding 146
JBdbChart Bean 70
JBuilder 67
JCAppletDataSource

pre-built DataSource 134
JCAreaChartFormat

HTML property syntax 241
property summary 208

JCAxis
AnnotationRotation property 128
containment hierarchy 24
IsLogarithmic property 127
IsReversed property 125
Min and Max properties 125
property summary 209
second Y-axis 131

JCAxis X- and Y-axes
HTML property syntax 242

JCAxis.POINT_LABELS 114
JCAxis.TIME_LABELS 114
JCAxis.VALUE 114
JCAxis.VALUE_LABELS 114
JCAxisFormula
268 Index

property summary 214
JCAxisTitle 128

property summary 215
Rotation property 128
Text property 128

JCBarChartFormat
HTML property syntax 243
property summary 216

JCCandleChartFormat 47
HTML property syntax 244
property summary 217

JCChart
HTML property syntax 245
object hierarchy 23
property summary 217

JCChartApplet 14
JCChartArea 23

3D effect properties 180
HTML property syntax 246

JCChartLabel 23, 171
HTML property syntax 247
property summary 220

JCChartLabelManager 23
property summary 221

JCChartLegendManager 166, 168
JCChartStyle 24, 174

property summary 221
JCChartSwingDataSource

pre-built DataSource 134
JCDataIndex 187

HTML property syntax 248
returned by pick() method 198

JCDefaultDataSource
pre-built DataSource 134

JCEditableDataSource
pre-built DataSource 134

JCEncodeComponent class 183
JCFileDataSource 134

pre-built DataSource 134
JCFillStyle 175

property summary 223
JCGridLegend 160, 162

property summary 224
JCHiLoChartFormat

HTML property syntax 248
JCHiloChartFormat 47
JCHLOCChartFormat 47

HTML property syntax 248
property summary 225

JCInputStreamDataSource
pre-built DataSource 134

JCLabelGenerator interface 121
JClass Chart

feature overview 1
overview 1

JClass Chart Beans 57, 58

JClass DataSource 67, 147
data binding 72

JClass JarMaster 235
JClass technical support 5

contacting 5
JCLegend 23, 160, 163

HTML property syntax 249
property summary 225

JCLegend Toolkit 163
JCLegendItem 160, 161, 163, 168
JCLegendPopulator 163, 165, 166
JCLegendRenderer 163, 165, 166
JCLineStyle 175

property summary 226
JCMultiColLegend 160

property summary 227
JCMultiColumnLegend 162
JComponent 23
JCPieChartFormat 41, 43

HTML property syntax 250
property summary 228

JCPolarRadarChartFormat
HTML property syntax 251
property summary 229

JCPolarRadarChartFormat class 38
half-range flag 39
origin base 38
RadarCircularGrid 39
Y-Axis angle 39

JCStringDataSource
pre-built DataSource 134

JCSymbolStyle 176
property summary 230

JCURLDataSource
parameter options 135
pre-built DataSource 134

JCValueLabel
property summary 230

JDBC
data binding 147

JDBCDataSource
data binding 145
pre-built DataSource 134

JPEG file format 183, 184

L
label 105

adding connecting lines 174
adding labels to a chart 171
adding text 173
attaching to a data item 171
attaching to chart area coordinates 172
attaching to plot area coordinates 172
attachment method 171
Index 269

automatically generated dwell labels 172
demos 171
dwell 172
formatting text 173
implementation 171
individual dwell labels 172
interactive 171
LabelledChartDataModel 152
positioning 173
static 171

LabelledChartDataModel 152
labelling points 107
learning JClass Chart 112
legend

class location 160
classes 160
custom 163
custom legends 162
custom, population 165
custom, rendering 165
customizing 162
layout 163
multiple-column 162
positioning 162, 179
single-column 162
using 160

LegendLayout 90
license 4
licensing 4
listener

adding JClass Chart 157
loading data

applet 135
from a file 134
from a URL 134

loading data from a file 104
logarithmic axis 127
logical series

candle chart 46
hi-lo chart 46

M
map 186, 187
methods

calling 20
modifying data 154
MultiChart 77

3D Depth 99
3D effects 98
3D Elevation 98
3D planes 93
3D Rotation 98

actions
customize 99
depth 99
pick 99
rotation 99
translate 99
zoom 99

adding footer text 88
adding header text 89
appearance controls 95
automatic dwell labels 93
axis

annotation 79
bounding 97
controls 79
number precision 85
numbering 85
origin 81
placement 82
precision 84
range 84, 85
tick marks 84
title 87

AxisMisc 83
AxisPointLabels 83
AxisRelationships 84
AxisScale 85
background 95
bounding box 97
chart areas 95
chart types 92
ChartAppearance 97
ChartAreaAppearance 97
controlling 3D planes 93
data view 92, 93
DataMisc 92
draw on front plane 93
Editable 83
events 99
Font 97
foreground 95
gap 80
get started 79
gridlines 81
hiding an axis 83
intelligent defaults 78
label rotation 80
legend layout 90
loading data from a file 94
multiple axes 78
multiple data views 78
point labels 83
property reference 79
selecting axes for a data view 92
setting multiple axes properties 78
tick spacing 85
270 Index

time base 86
time format 87
time labels 86
time unit 86
TriggerList 99
value labels 88

MultiChart Bean 57
MultiChart showing a data view 93
multiple axes

MultiChart 78
setting properties 78

multiple data views
MultiChart 78

multiple x-axes 141

O
object collections 20
object containment hierarchy 23
object properties

get 13
get with Java code 14
set 13
set with Java code 14

ODBC database connection 72
origin

setting in polar charts 28
Origin property 126
OriginBase property 29
OriginPlacement property 126
origins 126
other slice

pie charts 41
style and label 42

outputting charts 183
outputting charts to images 183

P
PCL file format 183, 184
PDF file format 183, 184
pick 186, 192
pick focus 198
pie chart 11

3D effect 180
exploded pie slices 43
labelling pies with PointLabels 116
other slice 41
other slice style and label 42
pie ordering 43
special properties 41
start angle 43
thresholding 41
use with unpick() method 199

plot chart type 10
plot1.java demo program 101
plot2.java demo program 106
PlotArea

property summary 230
PNG 179
PNG file format 183, 184
point labels 143
PointLabels axis annotation 116
PointLabels, use with pie charts 116
polar chart 12, 27

angles 28
array data 31
axis 20
axis direction 125
background information 28
data array 141
data format 31
FastUpdate 188
general data 31
gridlines 32, 129
half-range 31
mapping 187
max value 123
min value 123
negative values 32
OriginBase property 29
picking 192
point labels 117
PolarChartDraw class 31
r value 28
setting origin 28
theta 28
X and Y values 28

PolarChartDraw class 31
porting JClass 3.6.x applications 255

chart label components 263
data binding changes 260
JCChartLabelManager 262
JCString 264
new applet subpackage 260
new Beans subpackage 260
new data model 257
new data subpackage 260
pluggable header and footer 262
Swing-like API 256
use of collection classes 263

positioning axes 123
positioning chart elements 179
pre-formatted data 141
product feedback 6
programming actions 188
programming basics

collections 20
properties

100Percent 40, 45
Index 271

access in IDE 20
Anchor 162, 173
AnnotationMethod 14, 49, 107, 114, 119
AnnotationRotation 128
AttachMethod 171, 172
AutoLabel 172
AutoLabels 171
AxisAnnotation 79
axisOrientation 62
Background 178
background 64
Bean property overview 49
ChartLabels 171
ChartType 10, 45, 109
chartType 62
ClusterOverlap 40
ClusterWidth 40
Color 42, 175, 176, 177, 178
Constant 85
CustomShape 176
DataBinding 75
DataBindingMetaData 76
dataBindingMetaData 71
dataSet 70
DataView 161
Depth 180
Editable 83
editing and viewing in the customizer 25
Elevation 180
ExplodeList 43
ExplodeOffset 43
FastAction 187
FastUpdate 187
FillStyle 175
Font 177
font 63
footerText 65
Foreground 178
foreground 64
GridIsShowing 129
GridSpacing 129
GridStyle 130
HalfRange 31
headerText 65
HorizActionAxis 190
IsBatched 185
IsComplex 47
IsConnected 174
IsInverted 124
IsLogarithmic 127
IsOpenCloseFullWidth 46
IsReversed 125
IsShowing 106, 131
IsShowingClose 46
IsShowingOpen 46
legendAnchor 66

legendIsShowing 66
legendOrientation 66
LineStyle 175
Max 125
Min 125
MinSlices 42
MultiChart reference 79
Multiplier 85
Orientation 162
Origin 126
Originator 85
OriginPlacement 126
OtherLabel 42
OtherStyle 42
OutlineStyle 176
Pattern 42, 175
Placement 123
PlotArea 178
query (JBuilder) 70
Rotation 128, 180
rotation 80
setting interactively at run-time 20
Shape 176
Size 176
SortOrder 43
StartAngle 43
SwingDataModel 136
SymbolStyle 176
Text 106, 128, 173
ThresholdMethod 41
TimeBase 119
TimeFormat 119, 120
TimeUnit 119
Title (axis) 128
ValueLabels 118
VertActionAxis 190
View3D 64, 98
VisibleInLegend 161
Width 175
xAnnotationMethod 60
xAxisGridIsShowing 61
xAxisIsLogarithmic 61
xAxisIsShowing 61
xAxisMinMax 61
xAxisNumSpacing 60
xAxisTitleText 60
yAnnotationMethod 60
yAxisGridIsShowing 61
yAxisIsLogarithmic 61
yAxisIsShowing 61
yAxisMinMax 61
yAxisNumSpacing 60
yAxisTitleText 60

property summary
ChartDataView 203
ChartDataViewSeries 206
272 Index

ChartText 207
JCAreaChartFormat 208
JCAxis 209
JCAxisFormula 214
JCAxisTitle 215
JCBarChartFormat 216
JCCandleChartFormat 217
JCChart 217
JCChartLabel 220
JCChartLabelManager 221
JCChartStyle 221
JCFillStyle 223
JCGridLegend 224
JCHLOCChartFormat 225
JCLegend 225
JCLineStyle 226
JCMultiColLegend 227
JCPieChartFormat 228
JCPolarRadarChartFormat 229
JCSymbolStyle 230
JCValueLabel 230
PlotArea 230
SimpleChart 231

PS file format 183, 184

Q
QueryDataSet (JBuilder) 70
Quest Software technical support

contacting 5

R
radar 20
radar chart 13, 33

background information 34
data array 141
data format 34
FastUpdate 188
gridlines 35, 129
mapping 187
min value 124
picking 192
point labels 117
RadarChartDraw class 34

RadarChartDraw class 34
related documents 4
reversing an axis 124
rotation 80
run-time

setting properties 20

S
scatter plot chart type 10
series labels 144
set applet properties 14
set object properties 13

Java code 14
set properties

IDE 20
interactively 20
run-time 20

setFillGraphics() 166
setLegendPopulator() 170
setLegendRenderer() 170
setText 173
setting properties in an IDE 20
setting properties interactively at run-time 20
SimpleChart

3D effects 64
axis annotation method 60
axis number intervals 60
axis orientation 61
axis properties 58
axis range 60
axis titles 60
Bean 57
chart types 62
data interpretation 62
data loading 67, 93
font 63
footer 65
foreground and background colors 64
header 65
hiding axes 61
legend layout 66
legend placement 66
legends 65
logarithmic notation 61
property summary 231
showing grids 61
showing the legend 66
tutorial 50
using Swing TableModel data object 95
using Swing TableModel data objects 69

SimpleChart Bean tutorial 49
special terms 9
specifying data from databases 144
SQL query 74
stacking area chart 11

overview 45
stacking bar chart type 11
StartAngle property 250
support 5, 6

contacting 5
FAQs 6

Swing TableModel object
Index 273

use with SimpleChart 69, 93, 95

T
TableModel 136

use with SimpleChart 69
TableModel, use with SimpleChart 93, 95
technical support 5, 6

contacting 5
FAQs 6

terminology 9
TexturePaint 223
Title property (axis) 128
titles 159
transparency 179
transparent images 179
transposed data 144
trigger property 25
tutorial 101

SimpleChart Bean 49
typographical conventions 2

U
unmap 186, 187
unpick 186, 199
updating chart data source 155

V
valid modifier 189
value annotation 60
Value_Labels notation 60
ValueLabels 117
ValueLabels axis annotation 117
values annotation 115

numbering precision 115
valueToDate() method 121

X
X-axis

full or half-range 31
when chart inverted 124
when logarithmic 127

XML 136
examples in JClass 137
further information 137
hole parameter 140
interpreter 137
labels 140
name parameter 140
other parameters 140

primer 136
special characters 137
specifying data by point 139
specifying data by series 138
using in JClass 137

Y
Y-axis

second Y-axis 130
when chart inverted 124
274 Index

	JClass Chart
	Preface
	Introducing JClass Chart
	Assumptions
	Typographical Conventions Used in this Manual
	Overview of Manual
	API Reference
	Licensing
	Related Documents
	About Quest
	Contacting Quest Software
	Customer Support
	Product Feedback and Announcements

	Using JClass Chart
	JClass Chart Basics
	1.1 Chart Areas
	1.2 Chart Types
	1.3 Loading Data
	1.4 Setting and Getting Object Properties
	1.5 Other Programming Basics
	1.6 JClass Chart Inheritance Hierarchy
	1.7 JClass Chart Object Containment
	1.8 The Chart Customizer
	1.9 Internationalization

	Chart Types and Special Chart Properties
	2.1 Chart Type: Polar Charts
	2.2 Chart Type: Radar Charts
	2.3 Chart Type: Area Radar Charts
	2.4 JCPolarRadarChartFormat Class
	2.5 Special Bar Chart Properties
	2.6 Special Pie Chart Properties
	2.7 Special Area Chart Properties
	2.8 Hi-Lo, Hi-Lo-Open-Close, and Candle Charts

	SimpleChart Bean Tutorial
	3.1 Introduction to JavaBeans
	3.2 SimpleChart Bean Tutorial

	Bean Reference
	4.1 Choosing the Right Bean
	4.2 Standard Bean Properties
	4.3 Data-Loading Methods

	MultiChart
	5.1 Introduction to MultiChart
	5.2 Getting Started with MultiChart
	5.3 MultiChart Property Reference

	Chart Programming Tutorial
	6.1 Introduction
	6.2 A Basic Plot Chart
	6.3 Loading Data From a File
	6.4 Adding Header, Footer, and Labels
	6.5 Changing to a Bar Chart
	6.6 Inverting Chart Orientation
	6.7 Bar3d and 3d Effect
	6.8 End-User Interaction
	6.9 Get Started Programming with JClass Chart

	Axis Controls
	7.1 Creating a New Chart in a Nutshell
	7.2 Axis Labelling and Annotation Methods
	7.3 Positioning Axes
	7.4 Chart Orientation and Axis Direction
	7.5 Setting Axis Bounds
	7.6 Customizing Origins
	7.7 Logarithmic Axes
	7.8 Titling Axes and Rotating Axis Elements
	7.9 Adding Gridlines
	7.10 Adding a Second Axis

	Data Sources
	8.1 Overview
	8.2 Data Views
	8.3 Pre-Built Chart DataSources
	8.4 Loading Data from a File
	8.5 Loading DataSource from a URL
	8.6 Loading Data from an Applet
	8.7 Loading Data from a Swing TableModel
	8.8 Loading Data from an XML Source
	8.9 Data Formats
	8.10 Data Binding: Specifying Data from Databases
	8.11 Making Your Own Chart Data Source
	8.12 Making an Updating Chart Data Source

	Text and Style Elements
	9.1 Header and Footer Titles
	9.2 Legends
	9.3 Chart Labels
	9.4 Chart Styles
	9.5 OutlineStyle
	9.6 Borders
	9.7 Fonts
	9.8 Colors
	9.9 Positioning Chart Elements
	9.10 3D Effect
	9.11 Anti-Aliasing

	Advanced Chart Programming
	10.1 Outputting JClass Charts
	10.2 Batching Chart Updates
	10.3 Coordinate Conversion Methods
	10.4 FastAction
	10.5 FastUpdate
	10.6 Programming End-User Interaction
	10.7 Image-Filled Bar Charts
	10.8 Pick
	10.9 Using Pick and Unpick
	10.10 Unpick

	Reference Appendices
	JClass Chart Property Listing
	A.1 ChartDataView
	A.2 ChartDataViewSeries
	A.3 ChartText
	A.4 JCAreaChartFormat
	A.5 JCAxis
	A.6 JCAxisFormula
	A.7 JCAxisTitle
	A.8 JCBarChartFormat
	A.9 JCCandleChartFormat
	A.10 JCChart
	A.11 JCChartArea
	A.12 JCChartLabel
	A.13 JCChartLabelManager
	A.14 JCChartStyle
	A.15 JCFillStyle
	A.16 JCGridLegend
	A.17 JCHLOCChartFormat
	A.18 JCLegend
	A.19 JCLineStyle
	A.20 JCMultiColLegend
	A.21 JCPieChartFormat
	A.22 JCPolarRadarChartFormat
	A.23 JCSymbolStyle
	A.24 JCValueLabel
	A.25 PlotArea
	A.26 SimpleChart

	Distributing Applets and Applications
	B.1 Using JClass JarMaster to Customize the Deployment Archive

	HTML Property Reference
	C.1 ChartDataView Properties
	C.2 ChartDataViewSeries Properties
	C.3 JCAreaChartFormat Properties
	C.4 JCAxis X- and Y-axes Properties
	C.5 JCBarChartFormat Properties
	C.6 JCCandleChartFormat Properties
	C.7 JCChart Properties
	C.8 JCChartArea Properties
	C.9 JCChartLabel Properties
	C.10 JCDataIndex Properties
	C.11 JCHLOCChartFormat Properties
	C.12 JCHiLoChartFormat Properties
	C.13 JCLegend Properties
	C.14 JCPieChartFormat Properties
	C.15 JCPolarRadarChartFormat Properties
	C.16 Header and Footer Properties
	C.17 Example HTML File

	Porting JClass 3.6.x Applications
	D.1 Overview
	D.2 Swing-like API
	D.3 New Data Model
	D.4 New Data Subpackage
	D.5 New Beans Subpackage
	D.6 Data Binding Changes
	D.7 New Applet Subpackage
	D.8 Pluggable Header/Footer
	D.9 JCChartLabelManager
	D.10 Chart Label Components
	D.11 Use of Collection Classes
	D.12 No More JCString

	Index

