
JClass Chart 3D
Programmer’s Guide

Version 6.3
for Java 2 (JDK 1.3.1 and higher)

JClass Chart 3D – Stunning, Interactive 3D Charts for Java

TM

8001 Irvine Center Drive
Irvine, CA 92618
949-754-8000
www.quest.com

April 2004 RefNo: PRGDE-JC_3D/04/2004

© Copyright Quest Software, Inc. 2004. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used or copied
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording
for any purpose other than the purchaser's personal use without the written permission of Quest Software,
Inc.

Warranty

The information contained in this document is subject to change without notice. Quest Software makes no
warranty of any kind with respect to this information. QUEST SOFTWARE SPECIFICALLY
DISCLAIMS THE IMPLIED WARRANTY OF THE MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Quest Software shall not be liable for any direct, indirect, incidental,
consequential, or other damage alleged in connection with the furnishing or use of this information.

Trademarks

JClass, JClass Chart, JClass Chart 3D, JClass DataSource, JClass Elements, JClass Field, JClass HiGrid,
JClass JarMaster, JClass LiveTable, JClass PageLayout, JClass ServerChart, JClass ServerReport,
JClass DesktopViews, and JClass ServerViews are trademarks of Quest Software, Inc. Other trademarks and
registered trademarks used in this guide are property of their respective owners.

World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com
e-mail: info@quest.com
U.S. and Canada: 949.754.8000

Please refer to our Web site for regional and international office information.

This product includes software developed by the Apache Software Foundation http://www.apache.org/.

The JPEG Encoder and its associated classes are Copyright © 1998, James R. Weeks and BioElectroMech.
This product is based in part on the work of the Independent JPEG Group.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1.Redistributions of source code must retain the above copyright notice, this list of
conditions, all files included with the source code, and the following disclaimer.

2.Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

http://www.quest.com
http://www.apache.org/

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This product includes software developed by the JDOM Project (http://www.jdom.org/). Copyright © 2000-
2002 Brett McLaughlin & Jason Hunter, all rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met:

1.Redistributions of source code must retain the above copyright notice, this list of
conditions, and the following disclaimer.

2.Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

3.The name "JDOM" must not be used to endorse or promote products derived
from this software without prior written permission. For written permission,
please contact license@jdom.org.

4.Products derived from this software may not be called "JDOM", nor may
"JDOM" appear in their name, without prior written permission from the
JDOM Project Management (pm@jdom.org).

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

http://www.jdom.org/
mailto:license@jdom.org
mailto:pm@jdom.org

Table of Contents

Preface . 1
Introducing JClass Chart 3D 1
Assumptions . 2
Typographical Conventions Used in this Manual 3
Overview of Manual . 3
API Reference . 4
Licensing . 4
Related Documents . 4
About Quest . 5
Contacting Quest Software 6
Customer Support . 6
Product Feedback and Announcements 7

Part I: Using JClass Chart 3D with the Java 2 and Java 3D API

1 JClass Chart 3D Basics .11
1.1 Terminology . 11
1.2 Startup Checklist 12
1.3 Instantiating a Chart in JClass Chart 3D 12
1.4 Data Types . 13
1.5 Chart Types . 14
1.6 Loading Data . 16
1.7 Setting and Getting Object Properties 16
1.8 Other Programming Basics 18
1.9 Outputting JClass Chart 3D 19
1.10 JClass Chart 3D Inheritance Hierarchy 20
1.11 JClass Chart 3D Object Containment 21
1.12 UseDefault Properties 22
1.13 Batching Property Updates 23
1.14 Chart Colors . 23
1.15 The JClass Chart 3D Customizer 25

2 Programming JClass Chart 3D: Common Functions 27
2.1 Properties . 27
i

2.2 Axis Controls . 28
2.3 Setting Axis Bounds 29
2.4 Legends . 29
2.5 Perspective . 37
2.6 Axis Scaling . 38
2.7 Axis Labelling and Annotation Methods 39
2.8 Gridlines . 45
2.9 Header and Footer Titles 47
2.10 Adding Header, Footer, and Labels 47

3 Programming JClass Chart 3D: Surfaces and Bars. 49
3.1 Fifteen Basic Types of Surfaces and Bars 49
3.2 Chart Types . 52
3.3 Bar Charts and Histograms 55
3.4 Contours and Zone Display 58
3.5 Mesh Controls . 61
3.6 Surface Colors . 62
3.7 Solid Surface . 63

4 Programming JClass Chart 3D:
Scatter Plots . 65
4.1 Overview . 65
4.2 Three Basic Types of Scatter Plots 66
4.3 Controlling Symbol and Drop Line Style 66
4.4 Chart Styles . 67

5 Data Sources . 69
5.1 Overview . 69
5.2 Pre-Built Chart DataSources 73
5.3 Loading Data from a File 74
5.4 Loading Data from a Swing TableModel 77
5.5 Loading Data from an XML Source 78
5.6 Data Binding using JDBCDataSource 81
5.7 JCData3dUtil class 81
5.8 Making Your Own Chart Data Source 82
5.9 HoleValueChartDataModel – Specifying Hole Values 87
5.10 Making an Updating Chart Data Source 88
5.11 Summary of JClass Chart 3D Data Interfaces 91
ii Contents

6 Advanced JClass Chart 3D Programming 93
6.1 4D Surface Graphs 93
6.2 4D Bar Charts . 94
6.3 Customizing the Contour Levels 95
6.4 Customizing Contour Styles 96
6.5 Internationalization Support 98

7 Programming User Interaction .99
7.1 Default User Interaction 99
7.2 Listeners . 104
7.3 Mapping and Picking 105
7.4 dragZValue Method 106
7.5 gridValue Method 107

8 Programming with the Java 3D API 109
8.1 Java 3D – Overview 109
8.2 System Set-up . 110
8.3 Browsers and Java 3D 111
8.4 Java 3D API . 111
8.5 SceneGraphObject class 114
8.6 Scene Graph Viewing Object Classes 119
8.7 BranchGroup and TransformGroup 119
8.8 Rendering . 122
8.9 Behaviors . 123
8.10 Java 3D-Enabled Charting Features 123

Part II: Reference Appendices

 A Interface Listing . 135
A.1 Interface Summary 135

 B Object Property Listing . 137
B.1 Chart3D . 137
B.2 Chart3d.Event . 150
B.3 Chart3d.j2d . 150
B.4 Chart3d.j3d . 150
Contents iii

 C Additional Common JClass Chart 3D 3D Methods 151
C.1 Chart3D . 151
C.2 Chart3d.Event . 159

Index . 161
iv Contents

Preface
Introducing JClass Chart 3D ■ Assumptions ■ Typographical Conventions Used in this Manual

Overview of Manual ■ API Reference ■ Licensing ■ Related Documents ■ About Quest

Contacting Quest Software ■ Customer Support ■ Product Feedback and Announcements

Introducing JClass Chart 3D

JClass Chart 3D is a powerful Java 3D charting tool. It enables developers to build 3D
data views and interactive displays, giving their applications a professional look and feel.

JClass Chart 3D allows you to create stunning 3D graphics using either the Java 2 API or
the Java 3D API. Please note that all methods, functions, an so on, relate to both APIs
unless specifically mentioned.

With JClass Chart 3D, you can add 3D functionality using Java 2 technology – meaning
that the heavyweight Java 3D API won’t need to be included in your applications.
However, JClass Chart 3D gives you the option to leverage the elegance of the Java 3D
API (3D will need to be on the client).

JClass Chart 3D is written entirely in Java. The chart component displays data
graphically in a window and can interact with a user.

The chart component can be used easily by all types of Java programmers:

■ Component users, setting JClass Chart 3D properties programmatically.

■ OO developers, instantiating and extending JClass Chart 3D objects.

■ JavaBean developers, setting JClass Chart 3D properties using a third-party
Integrated Development Environment (IDE).

JClass Chart 3D is compatible with JDK 1.4. If you are using JDK 1.4 and experience
drawing problems, you may want to upgrade to the latest drivers for your video card
from your video card vendor.

Note: The Java 3D version of JClass Chart 3D is supported only for JDK 1.3.1 with Java
3D 1.2.1_03 on Windows NT with OpenGL with an ATI RAGE XL PCI video card with
these drivers: ati2mpad.sys 4.00.1381.1006 and ati2drad.dll 4.0.0.

You can freely distribute Java applets and applications containing JClass components
according to the terms of the License Agreement that appears at install time.

Feature Overview
You can set the properties of JClass Chart 3D objects to determine how the chart will look
and behave. You can control:

■ Chart type (surface, bar, or scatter plot).
1

■ Header and footer positioning, border style, text, font, and color.

■ Number of data views, each having its own data, and chart type. Currently, only one
data view is supported.

■ Flexible data loading from files, URLs, input streams, and databases.

■ Chart styles for scatter plots: line color, fill color, point size, point style, and point
color.

■ Contour levels: Use the default linear distribution or provide your own.

■ Contour styles: Contour line styles and contour zones colors are all customizable.

■ Plot cube scaling in x, y, z directions.

■ Legend positioning, orientation, border style, layout style, distribution range limiting,
anchor, font, and color.

■ Chart positioning, border style, color, width, height and axes rotation.

■ Axis labelling using Data labels, Value labels, or pleasing precompiled values.

■ An X, Y and Z axes, each having its own minimum and maximum, gridlines,
annotation method, font, and title.

■ Control of user interaction with components including picking, mapping, Chart 3D
Customizer, rotation, scaling, and translation.

■ Ability to add a 4th dimension to the data via color.

■ Contour maps through 2D projections of data.

■ Hidden-line display, surface colors, and mesh colors.

■ 3D rotation and perspective.

Assumptions

This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming and
Java programming concepts such as classes, methods, and packages before proceeding
with this manual. See Related Documents later in this section of the manual for additional
sources of Java-related information, including useful references to the Java 3D API.
2 Preface

Typographical Conventions Used in this Manual

Overview of Manual

Part I — Using JClass Chart 3D with the Java 2 and Java 3D API – describes
programming with JClass Chart 3D using the Java 2 and the Java 3D API.

Chapter 1, JClass Chart 3D Basics, provides a programmer’s overview of
JClass Chart 3D. This chapter covers concepts and vocabulary used in
JClass Chart 3D programming, and discusses class hierarchy, object containment,
terminology, and programming basics.

Chapter 2, Programming JClass Chart 3D: Common Functions, introduces
properties, axis information (controls, scaling, labelling, and annotating), legends,
gridlines, and header and footer titles.

Chapter 3, Programming JClass Chart 3D: Surfaces and Bars, is a guide to the basic
types of surfaces and bars; meshed, shaded, and transparent plots; contoured and
zoned plots; bar charts and histograms; contours and zone display; surface colors;
and solid surfaces.

Chapter 4, Programming JClass Chart 3D: Scatter Plots, is all about scatter plots,
including the three basic types of scatter plots (3D scatter plots, 3D scatter plots with
drop lines, and 2D scatter plots), controlling symbol and drop line styles, and
developing chart styles.

Chapter 5, Data Sources, introduces you to data sources (including an extensive
overview), pre-built chart datasources, loading data from a file and from an XML

Typewriter Font ■ Java language source code and examples of file contents.
■ JClass Chart 3D and Java classes, objects, methods, properties,

constants, and events.
■ HTML documents, tags, and attributes.
■ Commands that you enter on the screen.

Italic Text ■ Pathnames, filenames, URLs, programs, and method
parameters.

■ New terms as they are introduced, and to emphasize important
words.

■ Figure and table titles.
■ The names of other documents referenced in this manual, such

as Java in a Nutshell.

Bold ■ Keyboard key names and menu references.
Preface 3

source, data binding, specifying data from databases, and making your own chart data
source and an updating chart data source.

Chapter 6, Advanced JClass Chart 3D Programming, covers advanced
JClass Chart 3D topics, including 4D surface graphs, 4D bar charts, customizing the
contour levels, customizing contour styles, and internationalization support.

Chapter 7, Programming User Interaction, provides a look at default user interaction,
listeners (data listener, Chart3d listener, and pick listener), mapping and picking, and
the interpolate method.

Chapter 8, Programming with the Java 3D API, provides an overview of the Java 3D
API, and then delves into leveraging the power of the Java 3D API with
JClass Chart 3D.

Part II — Reference Appendices – contains detailed technical reference information.

Appendix A, Interface Listing, summarizes the commonly used JClass Chart 3D
interfaces.

Appendix B, Object Property Listing, lists the properties for all commonly used classes
for the Java 2 API.

Appendix C, Additional Common JClass Chart 3D 3D Methods, lists the most
frequently used classes for JClass Chart 3D.

API Reference
The API reference documentation (Javadoc) is installed automatically when you install
JClass Chart 3D and is found in the JCLASS_HOME/docs/api/ directory.

Licensing
In order to use JClass Chart 3D, you need a valid license. Complete details about
licensing are outlined in the JClass DesktopViews Installation Guide, which is automatically
installed when you install JClass Chart 3D.

Related Documents
The following is a sample of useful references to Java and JavaBeans programming:

■ “Java Platform Documentation” at http://java.sun.com/docs/index.html and the “Java
Tutorial” at http://java.sun.com/docs/books/tutorial/index.html from Sun Microsystems

■ For an introduction to creating enhanced user interfaces, see “Creating a GUI with
JFC/Swing” at http://java.sun.com/docs/books/tutorial/uiswing/index.html
4 Preface

../api/index.html
../getstarted/index.html
http://www.javasoft.com/docs/programmer.html
http://www.javasoft.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html

■ Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc. See the O’Reilly Java
Resource Center at http://java.oreilly.com

■ Resources for using JavaBeans at http://java.sun.com/beans/resources.html

■ For a comprehensive introduction to Java 3D, VRML97, MPEG-4/BIFS, and X3D,
see Core Web3D from Prentice Hall. See the publisher’s Web site at
http://vig.prenhall.com/ or the book’s Web page at http://www.CoreWeb3D.com

■ Learn about the Web3D Consortium (provides a forum for the creation of open
standards for Web3D specifications) at http://www.web3d.org/

■ For information about the Java 3D API, please see
http://java.sun.com/products/java-media/3D/

These documents are not required to develop applications using JClass Chart 3D, but
they can provide useful background information on various aspects of the Java
programming language.

About Quest

Quest Software, Inc. (NASDAQ: QSFT) is a leading provider of application management
solutions. Quest provides customers with Application Confidencesm by delivering
reliable software products to develop, deploy, manage and maintain enterprise
applications without expensive downtime or business interruption. Targeting high
availability, monitoring, database management and Microsoft infrastructure
management, Quest products increase the performance and uptime of business-critical
applications and enable IT professionals to achieve more with fewer resources.
Headquartered in Irvine, Calif., Quest Software has offices around the globe and more
than 18,000 global customers, including 75% of the Fortune 500. For more information on
Quest Software, visit www.quest.com.
Preface 5

http://www.quest.com
http://java.oreilly.com
http://www.javasoft.com/beans/resources.html
http://vig.prenhall.com/
http://www.CoreWeb3D.com
http://www.web3d.org/
http://java.sun.com/products/java-media/3D/

Contacting Quest Software

Please refer to our Web site for regional and international office information.

Customer Support

Quest Software’s world-class support team is dedicated to ensuring successful product
installation and use for all Quest Software solutions.

You can use SupportLink to do the following:

■ Create, update, or view support requests

■ Search the knowledge base, a searchable collection of information including program
samples and problem/resolution documents

■ Access FAQs

■ Download patches

■ Access product documentation, API reference, and demos and examples

Please note that many of the initial questions you may have will concern basic installation
or configuration issues. Consult this product’s readme file and the JClass DesktopViews
Installation Guide (available in HTML and PDF formats) for help with these types of
problems.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying the
following information will help us serve you better:

■ Your name, email address, telephone number, company name, and country

E-mail sales@quest.com

Address

Quest Software, Inc.
World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
USA

Web site www.quest.com

Phone 949.754.8000 (United States and Canada)

SupportLink www.quest.com/support

E-mail support@quest.com
6 Preface

http://www.quest.com/support
mailto:support@quest.com
mailto:sales@quest.com
http://www.quest.com
../api/index.html
../../readme.html
../getstarted/index.html
../getstarted/index.html

■ The product name, version and serial number

■ The JDK (and IDE, if applicable) that you are using

■ The type and version of the operating system you are using

■ Your development environment and its version

■ A full description of the problem, including any error messages and the steps required
to duplicate it

Product Feedback and Announcements
We are interested in hearing about how you use JClass Chart 3D, any problems you
encounter, or any additional features you would find helpful. The majority of
enhancements to JClass products are the result of customer requests.

Please send your comments to:
Quest Software
8001 Irvine Center Drive
Irvine, CA 92618

Telephone: 949-754-8000
Fax: 949-754-8999

JClass Direct Technical Support

JClass Support Email support@quest.com

Telephone 949-754-8000

Fax 949-754-8999

European Customers
Contact Information

Telephone: +31 (0)20 510-6700
Fax: +31 (0)20 470-0326
Preface 7

mailto:support@quest.com

8 Preface

Part
I

Using JClass
Chart 3D
with the

Java 2 and
Java 3D API

1
JClass Chart 3D Basics

Terminology ■ Startup Checklist ■ Instantiating a Chart in JClass Chart 3D

Data Types ■ Chart Types ■ Loading Data ■ Setting and Getting Object Properties

Other Programming Basics ■ Outputting JClass Chart 3D ■ JClass Chart 3D Inheritance Hierarchy

JClass Chart 3D Object Containment ■ UseDefault Properties ■ Batching Property Updates

Chart Colors ■ The JClass Chart 3D Customizer

This chapter covers concepts and vocabulary used in JClass Chart 3D programming, and
provides an overview of the JClass Chart 3D class hierarchy.

1.1 Terminology

A JClass Chart 3D chart comprises four components: header, footer, chart area, and
legend. The plot cube, contained within the chart area, contains the rendered chart.

All elements mentioned in this chapter refer to both the Java 2 API
and the Java 3D, API unless specifically noted.

Using JClass Chart 3D with the Java 3D API is discussed in detail in
the chapter entitled Programming with the Java 3D API.

If a class name has “Java3d” before the .java extension, it will most likely
be specific to the Java 3D API. For instance, the JCPlotCube class in the
Java 2 API is called JCPlotCube.java, while its counterpart in the
Java 3D API, JCPlotCubeJava3d, is JCPlotCubeJava3d.java
11

The following illustration shows the terms used to describe the main components that
make up a chart:

Figure 1 Elements contained in a typical chart.

Plot Cube
The plot cube is defined to be the smallest cube which encloses the entire 3D scene
(including the axes). Some JClass Chart 3D properties, such as those that specify axis
scaling and axis font cube sizes, have definitions that depend on the plot cube size.

The plot cube has properties that include background color, foreground color, floor and
ceiling properties, and x, y, and z scaling.

1.2 Startup Checklist

Full details of how to get started with JClass Chart 3D are provided in the JClass
DesktopViews Installation Guide. The JClass DesktopViews Installation Guide is provided in
PDF and HTML formats, and is automatically installed into
JCLASS_HOME/docs/getstarted/ when you install JClass Chart 3D.

Note: A reminder that jcchart3dj2d.jar contains information for the Java 2 API version of
JClass Chart 3D, while jcchart3dj3d.jar contains information for both the Java 2 and Java
3D API versions of JClass Chart 3D. Both files are included in JClass Chart 3D.

1.3 Instantiating a Chart in JClass Chart 3D

To instantiate a chart, you may choose to use one of the three available factory methods in
JCChart3d:
12 Part I ■ Using JClass Chart 3D with the Java 2 API

../getstarted/index.html
../getstarted/index.html

■ public static JCChart3d createJava2dChart();

■ public static JCChart3d createJava3dChart();

■ public static JCChart3d createJava3dChart(boolean fallback);

The createJava2dChart() method creates an instance of the Java 2 version of
JClass Chart 3D, which is the class com.klg.jclass.chart.j2d.JCChart3dJava2d.

The createJava3dChart() method creates an instance of the Java 3D version of
JClass Chart 3D, which is the class com.klg.jclass.chart.j3d.JCChart3dJava3d

The createJava3dChart(boolean fallback) method creates an instance of the Java 3D
version of JClass Chart 3D, which is the class com.klg.jclass.chart.j3d.
JCChart3dJava3d. Note that if this class cannot be created (for instance, because Java 3D
is not installed) and if the ‘fallback’ parameter is true, then the Java 2 version of
JClass Chart 3D will be created.

All three methods will return null if JClass Chart 3D could not create the desired classes.

1.4 Data Types

In JClass Chart 3D, there are two types of data: point data and grid data.

Point data
Point data comprises one or more series of points. Each of these series can have its own
chart style.

Grid data
Grid data comprises an array of X-values, an array of Y-values, and a corresponding array
of (x,y) values.
Chapter 1 ■ JClass Chart 3D Basics 13

Note that the following figure uses grid data for plotting, and has been rotated so that the
X-Y plane is vertical.

1.5 Chart Types

JClass Chart 3D contains three chart types: surface, bar, and scatter plot.
14 Part I ■ Using JClass Chart 3D with the Java 2 API

Surface Chart
A surface chart uses only grid data.

Bar Chart
A bar chart uses only grid data.

Scatter Plot Chart
A scatter plot chart can use either grid or point data.
Chapter 1 ■ JClass Chart 3D Basics 15

1.6 Loading Data

Data is loaded into a chart by attaching one or more chart data sources to it. A chart data
source is an object that takes real-world data and puts it into a form that JClass Chart 3D
can use. Once your data source is attached, you can chart the data in a variety of ways.

Several stock (built-in) data sources are provided with JClass Chart 3D, enabling you to
read data from an input stream, a file, and a URL, and databases. Loading data from a
database is called ‘data binding’. In JClass Chart 3D, you are able to get data from a
database. You can also create your own data sources. See the Data Sources, in Chapter 5,
for more information on loading data and creating your own data sources.

1.7 Setting and Getting Object Properties

There are three ways to set (and retrieve) JClass Chart 3D properties:

■ By calling property set and get methods in a Java program.

■ By using a Java IDE at design-time (JavaBeans).

■ By using the JClass Chart 3D Customizer at run-time.

Each accessor method changes the chart property whose name matches the method. This
manual therefore uses properties to discuss how features work, rather than using the
method or Customizer tab that you might use to set that property.

Note: In most cases, you need to understand the chart’s object containment hierarchy to
access its properties. Use the JClass Chart 3D Object Containment diagram later in this
chapter to determine how to access the properties of an object.
16 Part I ■ Using JClass Chart 3D with the Java 2 API

1.7.1 Setting Properties with Java Code

Every JClass Chart 3D property has a set and get method associated with it, unless it is
read-only. For example, to retrieve the value of the AnnotationMethod property of the X-
axis, the getAnnotationMethod() method is called:

method = c.getChart3dArea().getAxis(JCAxis.AXIS_X).
getAnnotationMethod();

To set the AnnotationMethod property of the same axis, the setAnnotationMethod is
called:

c.getChart3dArea().getAxis(JCAxis.AXIS_X).setAnnotationMethod(
JCAxis.ANNOTATION_VALUES);

These statements navigate the objects contained in the chart by retrieving the values of
successive properties, which are contained objects. In the code above, the value of the
Chart3dArea property is a JCChart3dArea object. The chart area has an Axes property,
the value of which is a collection of JCAxis objects. The X-axis is indexed using the
JCAxis.AXIS_X enum value, and the axis has the desired AnnotationMethod property.
Note that for convenience, the JCChart3dArea class has a getXAxis() method.

For detailed information on the properties available for each object, consult the API
reference documentation, which is automatically installed into
JCLASS_HOME/docs/api/index.html when you install JClass Chart 3D.

1.7.2 Setting Properties with a Java IDE at Design-Time

JClass Chart 3D can be used with a Java Integrated Development Environment (IDE),
and its properties can be manipulated at design time. Consult your IDE’s documentation
for details on how to load third-party JavaBean components into the IDE.

Please refer to the JClass and Your IDE chapter in the JClass DesktopViews Installation
Guide, which outlines detailed instructions and important notes. For instance, only the
Java 2 version of the JClass Chart 3D JavaBean (chart3dJava2d) works in Borland
JBuilder 4 or higher, and you will need to add vecmath.jar to your project. The readme
file contains the most current list of supported IDEs.

Most IDEs list a component’s properties in a property sheet or dialog. Simply find the
property you want to set in this list and edit its value. Again, consult your IDE’s
documentation for complete details.

1.7.3 Setting Properties Interactively at Run-Time

If enabled by the developer, end-users can manipulate property values on a chart running
in your application. Right-clicking the mouse launches the JClass Chart 3D Customizer.
The user can navigate through the tabbed dialogs and edit the properties displayed.

For details on enabling and using the Customizer, see Section 1.15, The JClass Chart 3D
Customizer.
Chapter 1 ■ JClass Chart 3D Basics 17

../api/index.html
../getstarted/index.html
../getstarted/index.html

1.8 Other Programming Basics

1.8.1 Working with Object Collections

Many chart objects are organized into collections. For example, the contour styles are
organized into a java.util.ArrayList. In JavaBeans terminology, these objects are held
in indexed properties.

To access a particular element of a collection, you need to retrieve the collection and then
specify the index that uniquely identifies this element. For example, the following code
changes the line color of the third contour style to red.

import java.awt.Color;
import java.util.ArrayList;
import com.klg.jclass.chart3d.*;

ArrayList styles = c.getDataView(0).getContour().getContourStyles();
JCContourStyle cStyle = (JCContourStyle)styles.get(2);
cStyle.getLineStyle().setColor(Color.red);

Note that the index 0 refers to the first element of a collection.

1.8.2 Calling Methods

To call a JClass Chart 3D method, access the object that defines the method. For
example, the following statement uses the coordToDataCoord() method, defined by the
Chart3dDataView collection, to convert a pixel value to its equivalent in data coordinates:

javax.vecmath.Point3d dc = c.getDataView(0).coordToDataCoord(10,15);

Details on each method can be found in the API documentation for each class.

1.8.3 Eliminating Retained JCChart3dJava3d References

When an application or applet that has created an instance of JCChart3dJava3d is
terminated, the resources used by Java 3D are automatically released. However, if a
JCChart3dJava3d object needs to be garbage collected before the application or applet
exits, then steps must be taken to ensure that all references to the JCChart3dJava3d
instance are eliminated. At least one of the objects that are passed to Java 3D during the
creation of a JCChart3dJava3d instance contains a reference to that instance.

The dispose() method of JCChart3dJava3d eliminates all references to the
JCChart3dJava3d objects that are retained by Java 3D. It does this by calling the
removeAllLocales() method of the VirtualUniverse object that contains the Chart3d.
An application or applet must call the dispose() method at a point where the
JCChart3dJava3d object is no longer needed.
18 Part I ■ Using JClass Chart 3D with the Java 2 API

1.9 Outputting JClass Chart 3D

Many applications require that the user has a way to get an image or a hard copy of a
chart. JClass Chart 3D allows you to output your chart as a GIF, PNG, or JPEG image, to
either a file or an output stream. If you are using the Java 3D version of JClass Chart 3D,
the chart must be fully visible on the screen to be correctly encoded. This means that if
part of the image is obscured, then the obscured portion will not draw to the requested
image.

Please note that in order to enable GIF encoding, you must obtain a license from Unisys
and send a copy of this license to Quest Software. Quest Software will send the enabling
software for GIF encoding upon receipt of a valid proof of license. There are also public
sources of Java image to GIF converters.

Located in com.klg.jclass.util.swing.encode, the JCEncodeComponent class is used to
encode components into different image file formats. When you include this class in your
program, you can call one of two methods that allow you to save the chart image as a
GIF, PNG, or JPEG file, sending it to either a file or an output stream.

The parameters of the two methods are the same, except for output.

1.9.1 Encode method

The method to output to a file is:

public static void encode(JCEncodeComponent.Encoding encoding,
Component component, File file)

The method to output to an output stream is the same, except that the last parameter is
OutputStream output, that is ...Component component, OutputStream output)

The component parameter refers to the component to encode (the chart), the encoding
parameter refers to the type of encoding to use (a GIF, PNG, or JPEG), and the output
parameter refers either to the file to which to write the encoding or to the stream to which
to write the encoding.

1.9.2 Encode example

The following code sample encodes a 3D chart into a JPEG file:

try {
JCEncodeComponent.Encoding encoding=JCEncodeComponent.JPEG;
JCEncodeComponent.encode(encoding, chart3d, new File(filename));

}
catch (EncoderException ee){

ee.printStackTrace();
}

catch (IOException IO){
IO.printStackTrace();

}

Chapter 1 ■ JClass Chart 3D Basics 19

1.10 JClass Chart 3D Inheritance Hierarchy
The following provides an overview of class inheritance of JClass Chart 3D.

Figure 2 Class hierarchy of the com.klg.jclass.chart3d package.
20 Part I ■ Using JClass Chart 3D with the Java 2 API

1.11 JClass Chart 3D Object Containment

When you create (or instantiate) a new chart, several other objects are also created. These
objects are contained in and are part of the chart. Chart programmers need to traverse
these objects to access the properties of a contained object. The following diagram shows
the object containment for JClass Chart 3D.

Figure 3 Objects contained in a chart; to access properties, traverse contained objects.
Chapter 1 ■ JClass Chart 3D Basics 21

JCChart3D (the top-level object) manages header and footer JComponent objects, a legend
(JCLegend), and the chart area (JCChart3DArea). The chart also contains a collection of
data view (Chart3DDataView) objects. Please note that currently only one
Chart3dDataView is supported.

The Chart3dArea contains many of the chart’s actual properties because it is responsible
for charting the data. It also contains and manages an xAxis, yAxis, and zAxis, all of type
JCAxis.

The data view collection contains objects and properties (like the chart type) that are tied
to the data being charted. Each data view manages two data sources: an elevation data
source and a zone data source. The elevation data source is the main data source for
plotting surfaces, bars, and scatter plots. Its two values determine the elevation of the
surface, bar, or scatter point. It can be set to either grid data or point data.

The zone data source is used to add a fourth dimension to the elevation data via color. It
can only be set to grid data and is only used if the elevation data source is also using grid
data. Thus, the elevation data source must implement either the Chart3dGridDataModel
or the Chart3dPointDataModel, while the zone data source must implement the
Chart3dGridDataModel.

Note that the chart does not own the data itself, but instead merely views on the data. The
data is owned by the DataSource object. This is an object that your application creates
and manages separately from the chart. For more information on JClass Chart 3D’s data
source model, see Data Sources, in Chapter 5.

1.12 UseDefault Properties

Three JClass Chart 3D properties have corresponding UseDefault properties:

■ The max property of JCAxis.

■ The min property of JCAxis.

■ The levels property of JCContourLevels.

UseDefault properties are Booleans that determine whether JClass Chart 3D should
calculate a default value for the property.

For example, if the minIsDefault property of a JCAxis object is true, every time the
JClass Chart 3D data is changed, JClass Chart 3D will determine a reasonable default
value for the axis minimum. If false, JClass Chart 3D will use the provided axis
minimum.

A side effect of setting any property that has a corresponding UseDefault property is that
the UseDefault property will be set to false.
22 Part I ■ Using JClass Chart 3D with the Java 2 API

The following code will freeze the value of minIsDefault at its current value. It will also
have the side effect of setting minIsDefault to false.

JCAxis yAxis = c.getChart3dArea().getAxis(JAxis.Axis_Y);
yAxis.setMin(yAxis.getMin());

The following code will revert back to the default behavior, enabling JClass Chart 3D to
calculate a default value for minIsDefault whenever it draws the graph.

yAxis.setMinIsDefault(true);

For the levels property of JCContourLevels, adding, removing, or setting a level directly
will cause the isDefault property to be set to false. Also, when isDefault is false, the
numLevels property becomes read-only.

1.13 Batching Property Updates

Normally property changes take effect immediately after the values are set. If you would
prefer to make several changes to the chart’s properties before causing a repaint, set the
setBatched() method to true. The setBatched() method sets the value of the Batched
property, which controls whether chart updates are accumulated; if set to true, chart
updates will accumulate, and if set to false, the accumulated updates are forced to be
processed.

You should normally set setBatched() to true after all your updates are made; this will
initiate a repaint.

1.14 Chart Colors

Color can powerfully enhance a chart’s visual impact. You can customize chart colors
using Java color names or RGB values. Using an interactive tool like the JClass Chart 3D
Customizer makes selecting custom colors quick and easy.

Note that the area backgrounds are transparent by default. The foreground colors default
to the chart foreground color. Also note that inherited properties of the chart or
Chart3dArea components, such as backgroundColor, are not controlled by the Batched
property.

Each of the following visual elements in the chart has a background and foreground color
that you can customize:

■ the entire chart

■ the Header and Footer titles

■ the legend

■ the chart area

■ the plot cube
Chapter 1 ■ JClass Chart 3D Basics 23

Other chart objects have color properties too, including JCGridLines and
JCChart3dStyles. You can also specify colors for the top and bottom of the mesh, for
surface shading, and for the contour lines and zone fills.

Color Defaults
All chart subcomponents are transparent by default with no background color. If made
opaque, the legend and the chart area will inherit background color from the parent
chart. The plot cube inherits its colors from the chart area. The same objects will always
inherit the foreground color from the chart.

Headers and footers are independent objects that behave according to the rules of
whatever object they are.

Please note that once the application sets the colors of an element, they do not change
when other elements’ colors change.

Specifying Foreground and Background Colors
Each chart element listed above has a Background and Foreground property that specifies
the current color of the element. The easiest way to specify a color is to use the built-in
color names defined in java.awt.Color. The following table summarizes these colors:

Alternately, you can specify a color by its RGB components, useful for matching another
RGB color. RGB color specifications are composed of a value from 0 – 255 for each of
the red, green and blue components of a color. For example, the RGB specification of
Cyan is “0-255-255” (combining the maximum value for both green and blue with no
red).

The following example sets the header background using a built-in color, and the footer
background to an RGB color (a dark shade of turquoise):

 c.getHeader().setBackground(Color.cyan);

 mycolor = new Color(95,158,160);
 c.getFooter().setBackground(mycolor);

Take care not to choose a background color that is also used to display data in the chart.
The default ContourStyles and Chart3dStyles use all of the built-in colors in the
following order: Red, Orange, Blue, Light Gray, Magenta, Yellow, Gray, Green, Dark
Gray, Cyan, Black, Pink, and White. Note that JClass Chart 3D will skip colors that

Built-in Colors in java.awt.Color

black blue cyan

darkGray gray green

lightGray magenta orange

pink red white

yellow
24 Part I ■ Using JClass Chart 3D with the Java 2 API

match background colors. For example, if the chart area background is Red, then the line,
fill, and symbol colors will start at Orange.

Transparency
If the JClass Chart 3D component is meant to have a transparent background, set the
opaque property to false; then generated JPEGs, GIFs, and PNGs will also contain a
transparent background (not currently available in the Java 3D API version of
JClass Chart 3D).

1.15 The JClass Chart 3D Customizer

The JClass Chart 3D Customizer enables developers (and end-users if enabled by your
program) to view and customize the properties of the chart as it runs.

Figure 4 The JClass Chart 3D Customizer.

The Customizer can save developers a lot of time. Charts can be prototyped and shown
to potential end-users without having to write any code. Developers can experiment with
combinations of property settings, seeing results immediately in the context of a running
application, greatly aiding chart debugging.

1.15.1 Displaying the Chart Customizer at Run-Time

By default, the Customizer is disabled at run-time. To enable it, you need to set the chart’s
AllowUserChanges property to true. For example:

chart3d.setAllowUserChanges(true);
chart3d.launchPropertyPage(new Point(x,y));
Chapter 1 ■ JClass Chart 3D Basics 25

You can also launch the Customizer through the customize action. Please
seeProgramming User Interaction, in Chapter 7, for information on how to do this.
Installing the default user interactions via the addAllDefaultActions() method causes
the Customizer to be deployed when the right mouse button is clicked.

1.15.2 Editing and Viewing Properties

1. Select the tab that corresponds to the chart element that you want to edit. Tabs
contain one or more inner tabs that group related properties together. Select inner
tabs to narrow down the type of property you want to edit.

2. If you are editing an indexed property, select the specific object to edit from the lists
displayed in the tabs. The fields in the tab update to display the current property val-
ues.

3. Select a property and edit its value.

Figure 5 Editing a sample chart with the Customizer.

As you change property values, the changes are immediately applied to the chart, and
will be displayed immediately only if the batched checkbox is not selected. You can make
further changes without leaving the Customizer. However, once you have changed a
property the only way to “undo” the change is to manually change the property back to
its previous value.

To close the Customizer, close its window (the actual steps differ for each platform).
26 Part I ■ Using JClass Chart 3D with the Java 2 API

2
Programming JClass Chart 3D: Common

Functions
Properties ■ Axis Controls ■ Setting Axis Bounds ■ Legends ■ Perspective

Axis Scaling ■ Axis Labelling and Annotation Methods ■ Gridlines ■ Header and Footer Titles

Adding Header, Footer, and Labels

2.1 Properties

“Properties” are the named method attributes of a class that can affect its appearance or
behavior. Properties that are readable have a “get” (or “is” for Booleans) method, which
enables the developer to read a property’s value, and those properties that are writable
have a “set” method, which enables a property’s value to be changed.

For example, the JClass Chart 3D JCAxis class has a property called annotationMethod,
which is used to indicate the style of annotation used on the axis. To set the property
value, the setAnnotationMethod() method is used. To get the property value, the
getAnnotationMethod() method is used.

It is not necessary to remember all the properties in order to program JClass Chart 3D
effectively. For most charts, many properties may be left with their default settings. A full
summary of the JClass Chart 3D properties for all commonly used classes is provided in
Appendix B. Scan through those tables to gather a basic understanding of the properties.
Not all the properties are used for all types of charts: some are specific for Surface and Bar
charts only, while others are for Scatter Plots only.

For complete details on how JClass Chart 3D’s object properties are organized, see
JClass Chart 3D Object Containment and Setting and Getting Object Properties, in
Chapter 1.

All elements mentioned in this chapter refer to both the Java 2 API
and the Java 3D API unless specifically noted.
27

2.1.1 Setting JavaBean Properties at Design-Time

JClass Chart 3D has two JavaBeans: chart3dJava2d for Java 2 and chart3dJava3d for the
Java 3D API.

One of the features of any JavaBean component is that it can be manipulated interactively
in a visual design tool (such as a Java IDE) to set the initial property values when the
application starts. Consult your IDE’s documentation for details on how to load third-
party JavaBean components into the IDE.

For details on JClass Chart 3D’s JavaBeans and IDEs, please refer to the JClass and Your
IDE chapter in the JClass DesktopViews Installation Guide. The JClass DesktopViews
Installation Guide is available in HTML and PDF formats, and is included when you
purchase JClass Chart 3D. The readme file contains the most current list of
supported IDEs.

Most IDEs list a component’s properties in a property sheet or dialog. Simply find the
property you want to set in this list and edit its value. Again, consult the IDE’s
documentation for complete details.

2.1.2 Setting Properties Interactively at Run-Time

If enabled by the developer, end-users can manipulate property values on a chart running
in your application. Clicking a mouse button launches the JClass Chart 3D Customizer.
The user can navigate through the tabbed dialogs and edit the properties displayed.

For details on enabling and using the Customizer, please see The JClass Chart 3D
Customizer, in Chapter 1, as well as Programming User Interaction, in Chapter 7.

2.2 Axis Controls

2.2.1 Axis Show
The show property of JCAxis tells JClass Chart 3D whether it should draw the axis at all.
If set to false, the axis will not be drawn.

2.2.2 Axis Font and Size
The axis annotation is rendered using the font specified by the annoFont property of
JCAxis. The font is scaled to be the size specified by the annoFontCubeSize property.

The annoFontCubeSize is measured in units, which are each 1/1,000 of the plot cube
length. The default annoFontCubeSize is 80, which means the characters are 8% of the
length of the plot cube high. Thus, if the plot cube changes size, so does the annotation.
28 Part I ■ Using JClass Chart 3D with the Java 2 API

../getstarted/index.html

2.2.3 Title
The JCAxis title property may be used to specify a title for each axis. Titles are
rendered using titleFont and in a size specified by titleFontCubeSize.

2.3 Setting Axis Bounds
Normally a graph displays all of the data it contains. There are situations where only part
of the data is to be displayed. This can be accomplished by fixing axis bounds.

2.3.1 Min and Max
Use the min and max properties of JCAxis to frame a chart at specific axis values. The
minIsDefault and maxIsDefault properties allow the chart to determine axis bounds
automatically, based on the data bounds.

If the minIsDefault property of a JCAxis object is true, every time the JClass Chart 3D
data is changed, JClass Chart 3D will determine a reasonable default value for the axis
minimum. If false, JClass Chart 3D will use the provided axis minimum.

Please note that there is a restriction on the min and max properties of the Z-axis; these are
not allowed inside the Z-range of the data.

A side effect of setting any property that has a corresponding UseDefault property is that
the UseDefault property will be set to false.

The following code will freeze the value of minIsDefault at its current value. It will also
have the side effect of setting minIsDefault to false.

JCAxis yAxis = c.getChart3dArea().getYAxis();
yAxis.setMin(yAxis.getMin());

The following code will revert back to the default behavior, enabling JClass Chart 3D to
calculate a default value for minIsDefault whenever it draws the graph.

yAxis.setMinIsDefault(true);

2.4 Legends
A legend itemizes the visual attributes used to identify data in the chart. You can
customize the labels in the legend and the position of the legend. The legend is a
JComponent, and all properties apply.

The getLegend() method of JCChart3d returns an instance of the abstract class JCLegend
so that any subclass may be used as a legend. To utilize some of the 3D-specific properties
described below, such as layoutStyle and distributionRange, you will need to cast the
class to JCChart3dLegend. For example:

JCChart3dLegend legend = (JCChart3dLegend) chart3d.getLegend();
Chapter 2 ■ Programming JClass Chart 3D: Common Functions 29

2.4.1 Legend Display

JClass Chart 3D will generate a legend only when the legend’s Visible property is set to
true. By default, there is no legend displayed.

If contours are drawn and zones are not, a legend listing the contour lines is generated. If
zones are drawn, the legend lists the fill colors for each level. If points are drawn, the
legend lists the symbols used for each series of points.

By default, JClass Chart 3D will attempt to list the legend contents vertically and position
the legend to the right (that is, east) of the graph area.

2.4.2 Legend Text, Orientation, and Positioning

Legend Text
How the legend displays the text depends on the type of chart and data being plotted. In
most cases, the text is based on contour levels.

If a scatter chart is plotting point data, the text is based on the label property of each
series in the data view. If a scatter chart is plotting grid data with both zones and contours
turned off, the text is based on the name property of the grid data object.

Legend Orientation
Use the legend Orientation property to lay out the legend horizontally or vertically.

Legend Positioning
The JCChart3dLegend class positions items in a grid wherein every row has the same
height and every column the same width. JCChart3dLegend is a subclass of the abstract
class JCLegend, and all of JCLegend's properties are inherited by JCChart3dLegend.
30 Part I ■ Using JClass Chart 3D with the Java 2 API

Use the legend Anchor property to specify where to position the legend relative to the
chart3dArea. You can select from eight compass points around the chart3dArea.

Figure 6 Vertically oriented legend anchored NorthEast.

2.4.3 Scatter Plot Charts

Scatter Plots of Point Data
For scatter plots of point data, the legend labels are derived from each
Chart3dPointSeries label property (found in the Chart3dPointData object). Each
label’s corresponding symbol is determined from the SymbolStyle located in the series’
ChartStyle property.

Scatter Plots of Grid Data
For scatter plots of grid data, the legend style depends on whether the contouring
information has been computed (that is, if either of the contoured and zoned properties of
the dataView’s contour object are true, the contours are computed). If contouring
information has been computed, the legend entries are the same as they would be for
surface plots and bar charts (see Section 2.4.4, Surface and Bar Charts). For each contour
level there is also a symbol that is plotted (retrieved from the SymbolStyle property of the
contour style for this level).

If the contours are not computed, the LineStyle and SymbolStyle from the
Chart3dGridData object’s ChartStyle property are used to draw a single legend entry.
The label for this entry is derived from the Name property of the Chart3dGridData object.

2.4.4 Surface and Bar Charts

For surface and bar charts, the legend labels are determined by the value of the contours
being used by the chart, while the color swatch is determined by each contour’s
Chapter 2 ■ Programming JClass Chart 3D: Common Functions 31

contourStyle object. There are also variations, depending on selected properties
(detailed below) of the chart and legend.

When applicable, the LayoutStyle property of the legend determines the type of layout
that the legend will use. Please see later in this section for more information.

Possible values for the LayoutStyle property are CONTINUOUS and STEPPED. CONTINUOUS is
the default and displays the contour style fill colors as a continuous range, with contour
level values placed at the transition points. STEPPED breaks down this continuous range
into a series of smaller ranges defined by each contour level color.

Figure 7 Continuous (left) and Stepped (right) Legends.

For example, an item in a STEPPED legend will show a box of color followed by a String of
the form “min .. max”. The min and max values are determined by the values of the
contour levels that bound this range. The color is determined by the fill color of the
contour style of the top contour level in the range. In most cases, the existing contour
ranges will be extended to the min and max of the data.

This LayoutStyle property is ignored when other properties interfere with the way things
can be laid out. For example, if zones are not being drawn (isZoned()=false on the
JCContour or JCProjection objects), the legend will be drawn as a series of items, each
representing one contour line. The color of the line in the legend is derived from the
LineStyle of the JCContourStyle of the contour being referenced.

If shading is not being done (isShaded()=false on the JCElevation object), then the
items in the legend will appear as a series of lines, each representing a different contour
zone. The color is determined from the FillStyle of the JCContourStyle of the contour
zone.

The DistributionRange property determines the range of contour levels to be displayed
in the legend. If using the default contours, the DistributionRange property has no
effect. If the user has specified contour levels, a value of RANGE_DATA (the default) will
restrict the contour levels in the legend to those in the range specified by the data min and
max. A value of RANGE_ALL will cause all user-set contour levels to display.
32 Part I ■ Using JClass Chart 3D with the Java 2 API

There is also a modest number of small properties of JCChart3dLegend that the user can
set to change the layout of legend items:

■ MarginGap – the distance between the edge of the legend and the first legend item.

■ GroupGap – the distance between groups of legend items; for instance, columns.

■ HorizontalItemGap – the distance between legend items in a horizontal legend.

■ VerticalItemGap – the distance between legend items in a vertical legend.

■ InsideItemGap – the distance between the symbol and text portion of the legend
item.

2.4.5 Overriding Labels

There are two ways a user may override the default labels generated for the legend:

In the first method, the Labels property takes a List object that contains a List object for
each data view. (Currently, JClass Chart 3D supports only one data view.) Each internal
List contains a series of String or JCMultiFieldString objects that are to be used to
override the default legend labels.

The labels are to be placed in sequence, from bottom to top legend item. For example,
the first label in the List will be used to represent the bottom item in the legend. If the
user does not give enough labels to cover those needed, JCChart3dLegend will use default
labels for the remainder of the unspecified labels.

In the second method, the LabelGenerator property takes any class that has
implemented the JCChart3dLegendLabelGenerator interface. This interface has one
method:

Object generateLegendLabel(JCChart3d chart3d, int level,
double zmin, double zmax, Object label)

where chart3d is the JCChart3d instance to which this legend is attached, level is the
contour level this label represents, zmin is the minimum value of the contour level range,
zmax is the maximum value of the contour level range, and label is the value of the
legend item’s label so far (that is, either the default generated label or the label specified
by the user with the Labels property). Please note that in some cases, zmin and zmax will
be equal.

Any String or JCMultiFieldString returned by the implementor of this method will be
used to label the legend item for the specified contour level. If null is returned, no legend
item will be created for the specified contour level.

2.4.6 JCMultiFieldString
The JCMultiFieldString class handles multifield Strings, where each field may have a
different alignment of text within its field. This class is used by the JCChart3dLegend class
to manage specialized legend text.
Chapter 2 ■ Programming JClass Chart 3D: Common Functions 33

JCMultiFieldString encapsulates a String that has multiple String fields, each with a
potentially different alignment. Here is an example of how it is created:

new JCMultiFieldString("\\rRight Text\\cCenter Text\\lLeft Text");

where \r represents right alignment of the field, \c represents center alignment of the
field, and \l represents left alignment of the field. Each alignment character marks the
beginning of a new field.

The JCMultiFieldString class converts this encoded String into an internal
representation that can be drawn by JCChart3dLegend such that all fields are aligned as
indicated. Any number of fields may be present.

This object may be included in either the Labels property or the Object that is returned
by the method implementing the JCChart3dLegendLabelGenerator interface.

2.4.7 JCLegend Toolkit
The JCLegend Toolkit allows you the freedom to design your own legend
implementations. The options range from simple changes, such as affecting the order of
the items in the legend, to providing more complex layouts.

The JCLegend Toolkit consists of a JCLegend class that can be subclassed to provide
legend layout rules and two interfaces: JCLegendPopulator and JCLegendRenderer.
JCLegendPopulator is implemented by classes wishing to populate a legend with data,
and JCLegendRenderer is implemented by a class that wishes to help render the legend’s
elements according to the user’s instructions.

JCChart3dLegendManager is the class used by JClass Chart 3D to implement both the
JCLegendPopulator and JCLegendRenderer interfaces, and to provide a built-in
mechanism for itemizing range objects in a legend.

Custom Legends – Layout
To provide a custom layout, override the method:

public abstract Dimension layoutLegend(List itemList, boolean,
vertical, Font useFont)

The itemlist argument is a List containing a Vector for each data view contained in the
chart. Each of these sub-vectors contains one JCLegendItem instance for each series in the
data view and one instance for the data view title.

The vertical argument is true if the orientation of the legend is vertical, and false if the
orientation of the legend is horizontal.

The useFont argument contains the default font to use for the legend.

Each item in the legend consists of a text portion and a symbol portion. For example, in a
JCChart3d STEPPED legend, the text portion is the range between two contour levels,
while the symbol portion is the box of color used to represent such values on the chart.
34 Part I ■ Using JClass Chart 3D with the Java 2 API

For the title of the data view, the text portion is the name of the data view, and there is no
symbol.

JCLegendItem is a class that encapsulates an item in the legend with the properties.

When the itemList is passed to layoutLegend, it has been filled in with JCLegendItem
instances representing each data series and data view title. These instances will have the
symbolDim, textDim, symbol, contents, itemInfo, and drawType already filled in.

The value of drawType will determine whether a particular default symbol type will be
drawn, or whether user-provided drawing methods will be called.

The layoutLegend() method is expected to calculate and fill in the pos, symbolPos,
textPos, and dim fields. Additionally, the method must return a Dimension object
containing the overall size of the legend. Optionally, it may also calculate the
pickRectangle member of the JCLegendItem class. The pickRectangle is used in pick
operations to specify the region in the legend that is associated with the data that this

Property name Description

Point pos; Position of this legend item within the legend.

Point symbolPos; Position of the symbol within the legend item.

Point textPos; Position of the text portion within the legend item.

Dimension dim; Full size of the legend item.

Dimension symbolDim; Size of the symbol; provided by legend populator.

Dimension textDim; Size of the text portion; provided by legend populator.

Rectangle
pickRectangle;

The rectangle to use for pick operations; optional.

int drawType; Determines drawing type; one of JCLegend.NONE,
JCLegend.BOX, JCLegend.IMAGE,
JCLegend.IMAGE_OUTLINED,
JCLegend.CUSTOM_SYMBOL,JCLegend.BOX_PLAIN,
JCLegend.LINE, or JCLegend.CUSTOM_ALL.

Object itemInfo; Data related to this legend item; in JCChart3d, this is an
instance of the LegendEntry class, which contains
information on the data represented by the legend item
and the style objects used to draw it.

Object symbol; The symbol if other than the default type; usually null
(means drawLegendItem decides).

Object contents; The text portion; in JCChart3d, this is either a String or a
JCMultiFieldString.
Chapter 2 ■ Programming JClass Chart 3D: Common Functions 35

legend item represents. If left null, a default pickRectangle will be calculated using the
dim and pos members.

Any of the public methods in the JCLegend class may be overridden by a user requiring
custom behavior. One such method is:

public int getSymbolSize()

getSymbolSize() returns the size of the legend-calculated symbols to be drawn in the
legend. Default JCLegend behavior sets the symbol size to be equal to the ascent of the
default font that is used to draw the legend text. It is overridable by users who wish to use
a different symbol size. One possible implementation is to use a symbol size identical to
that which appears on the actual chart.

The easiest way to change default legend behavior without implementing all of the above
is to subclass the existing JCChart3dLegend class. It implements all the above methods to
lay out legend items in a straightforward grid.

Custom Legends – Population
JCLegendPopulator is an interface that can be implemented by any user desiring to
populate the legend with custom items. This interface comprises two methods that need
to be implemented:

public List getLegendItems(FontMetrics fm)
public boolean isTitleItem(JCLegendItem item)

getLegendItems() should return a List object containing any number of Vector objects
where each Vector object represents one column in the legend. Each Vector object
contains the JCLegendItem objects for that column. In JClass Chart 3D, each column
generally represents one data view.

isTitleItem() should return true or false depending on whether the passed
JCLegendItem object represents a title for the column. This is used to determine whether
a symbol is drawn for a particular legend item.

If implemented, the legend should be notified of the new populator with the
setLegendPopulator() method of JCLegend.

Custom Legends – Rendering
JCLegendRenderer is an interface that can be implemented by any user desiring to
custom render legend items. This interface consists of five methods that need to be
implemented:

public void drawLegendItem(Graphics gc, Font useFont,
JCLegendItem thisItem)

public void drawLegendItemSymbol(Graphics gc, Font useFont,
JCLegendItem thisItem)

public Color getOutlineColor(JCLegendItem thisItem)
public void setFillGraphics(Graphics gc, JCLegendItem thisItem)
public void drawLegendItemText (Graphics gc, Font useFont,

JCLegendItem this Item);
36 Part I ■ Using JClass Chart 3D with the Java 2 API

drawLegendItem() provides a way for a user to define a custom drawing routine for an
entire legend item. It is called when a legend item’s draw type has been set to
JCLegend.CUSTOM_ALL.

drawLegendItemSymbol() provides a way for a user to define a custom drawing routine
for a legend item’s symbol. It is called when a legend item’s draw type has been set to
JCLegend.CUSTOM_SYMBOL.

getOutlineColor() should return the outline color to be used to draw the legend item’s
symbol. If null is returned, the legend’s foreground color will be used.
getOutlineColor() is called when a legend item’s draw type has been set to either
JCLegend.BOX or JCLegend.IMAGE_OUTLINED.

setFillGraphics() should set the appropriate fill properties on the provided Graphics
object for drawing the provided legend item. setFillGraphics() is called when the
legend item’s draw type has been set to JCLegend.BOX, JCLegend.BOX_PLAIN, or
JCLegend.LINE.

drawLegendItemText() provides a way for the user to define drawing for custom text
objects. When the legend does not recognize the object in the contents field of a
JCLegendItem (that is, it is not a String), this method will be called.

If implemented, the legend should be notified of the new renderer with the
setLegendRenderer() method of JCChart3dLegend.

2.5 Perspective
The JCView3d class’ Perspective property controls the perspective effect observed by
projecting the plot cube onto the screen (the default value is 2.5). Small values exaggerate
Chapter 2 ■ Programming JClass Chart 3D: Common Functions 37

the perspective effect, while large values diminish it. Valid values are between 1 and
JCView3d.MAX_PERSPECTIVE which is 500.

Figure 8 Perspective Depth Measurement.

2.6 Axis Scaling

The JCPlotCube class can be used to adjust the X, Y and Z dimensions of the unit cube
relative to one another for Surface, Bar, or Scatter Plot charts. For example, if you would
like the 3D display to be twice as long in the Y direction as in the X, set the Y scale to
twice the X-scale. The default value of each Scale property is 1.0.

Here is a code snippet showing how to produce the right most chart of Figure 9:

JCPlotCube plotcube=c.getChart3dArea().getPlotCube();
plotcube.setXScale(2.0);
plotcube.setZScale(0.5);

Perspective = 1.5 Perspective = 10
38 Part I ■ Using JClass Chart 3D with the Java 2 API

Setting the Z scale higher or lower has the effect of flattening or stretching the surface
view.

.

Figure 9 Axis scaling using various X: Y: Z ratios.

2.7 Axis Labelling and Annotation Methods

There are several ways to annotate the chart’s axes, each suited to specific situations. The
chart can automatically generate numeric annotation appropriate to the data it is
displaying; you can provide a label for each grid point in the chart (X- and Y-axis for grid
data only); you can provide a label for specific values along the axis.

Whichever annotation method you choose, the chart makes considerable effort to
produce the most natural annotation possible, even as the data changes. You can fine-tune
this process using axis annotation properties.

2.7.1 Choosing Annotation Method
A variety of properties combine to determine the annotation that appears on the axes.
The JCAxis AnnotationMethod property specifies the method used to annotate the axis.
The valid annotation methods are:

JCAxis.ANNOTATION_VALUES
(default)

The chart chooses appropriate axis
annotation automatically (with possible
callbacks to a label generator), based on the
data.

JCAxis.ANNOTATION_DATA_LABELS The chart spaces the points based on the X-
and Y-grid values and annotates them with
text you specify (in the grid data source) for
each point.

1 : 1 : 1 1 : 1 : 1/2 2 : 1 : 1/2
Chapter 2 ■ Programming JClass Chart 3D: Common Functions 39

The following topics discuss setting up and fine-tuning each type of annotation.

2.7.2 Values Method
When the annotationMethod property is set to ANNOTATION_VALUES, JClass Chart 3D will
automatically annotate the axis based on the range of data. This is the default annotation
method. It is most suitable for the Z-axis, and for the X- and Y-axes when the chart type is
surface.

2.7.3 Data Labels Method
If grid data is being plotted, individual lines in a surface, or a row/column of bars, can be
labelled using the ANNOTATION_DATA_LABELS method.

This annotation method uses an array of Strings supplied as xLabels or yLabels through
the LabelledChart3dGridDataModel interface to annotate each line from the grid. If a
String in the list is null, a label is not drawn for that grid value, but the corresponding tick
is drawn. The xLabels and yLabels array can also be set directly through methods
provided in the Chart3dGridData class. Labels can be set as a list of Strings or as an
ArrayList of objects of type String, JCValueLabel, or any other object whose
toString() value is meant to be used as the label.

Data Label Clustering
Consecutive data labels can be combined into one label (in other words, when data labels
are aggregated into a label cluster where only one label is displayed). In order for this to
happen, ensure that:

■ the annotation method is set to JCAxis.ANNOTATION_DATA_LABELS

■ the combineLabels property of the corresponding JCAxis object is set to true

■ the list of data labels contains one or more sub-lists of identical labels.

If data labels are specified via a list of String objects, and m consecutive labels are
identical (they must point to the exact same String), they form a cluster of m labels, from
which one is used to draw the label. If m is odd, the middle label of the cluster is used as
the label. If m is even, a new label is positioned at the average value of the labels. The tick
marks and gridlines in the cluster range are still drawn as if there was no clustering.

If data labels are specified via a list of JCValueLabel objects, the label property of the
valueLabels in the same cluster must point to the same String object. In the same way
that data labels are handled with a list of String objects, if consecutive valueLabels do
not contain to the same label object, they will not belong to the same cluster (even if the
equals method would return true). This allows the user to have two consecutive identical
Strings without forcing them to be in the same cluster.

JCAxis.ANNOTATION_VALUE_LABELS The chart annotates the axis with text you
define for specific X-, Y-, or Z-axis
coordinates.
40 Part I ■ Using JClass Chart 3D with the Java 2 API

2.7.4 ValueLabels Annotation
ValueLabels annotation displays labels at the axis coordinate specified. This is useful for
displaying special text at a specific axis coordinate, or when a type of annotation that the
chart does not support is needed, such as scientific notation. You can set the axis
coordinate and the text to display for each ValueLabel, and also add and remove
individual ValueLabels.

Figure 10 Using ValueLabels to annotate axes.

Every label displayed on the axis is one ValueLabel. Each ValueLabel has a Value
property and a Label property. Additionally, the tickDrawn, labelDrawn, and minorTick
properties control the display of the label and tick of the value label. The background and
foreground of each label can also be set. These are null by default (in other words, no
background is drawn, and the foreground color of the plot cube is used).

Please note that background colors for labels is currently not available in the Java 3D API
version of JClass Chart 3D.

If the AnnotationMethod property is set to JCAxis.ANNOTATION_VALUE_LABELS, the chart
places labels at explicit locations along an axis. The ValueLabels property of JCAxis,
which is a collection of ValueLabels, supplies this list of Strings and their locations. For
example, the following code sets value labels at the locations 10, 20 and 30:

 JCAxis x=c.getChart3dArea().getXAxis();
 x.setValueLabels(0, new JCValueLabel(10, "Label"));
 x.setValueLabels(1, new JCValueLabel(20, "Label 2"));
 x.setValueLabels(2, new JCValueLabel(30, "Label 3"));

The ValueLabels collection can be indexed either by subscript or by value:

 JCValueLabel v1
 // this retrieves the label for the second Value-label
Chapter 2 ■ Programming JClass Chart 3D: Common Functions 41

 v1=c.getChart3dArea().getXAxis().
 getValueLabels(1);
 // this retrieves the label at chart coordinate 2.0
 v1=c.getChart3dArea().getXAxis().
 getValueLabels(2.0);

2.7.5 Custom Axes Labels

JClass Chart 3D will label axes by default. However, you can also generate custom labels
for the axes by implementing the JCLabelGenerator interface. This interface has one
method – makeLabel() – that is called when a label is required at a particular value.

To generate custom axes labels, the axis’ AnnotationMethod property, which determines
how the axis is labelled, must be set to ANNOTATION_VALUES. Also, the axis’
setLabelGenerator() method must be called with the class that implements the
JCLabelGenerator interface.

The makeLabel() method is called for each label and tick that gets generated along the
axis.

The makeLabel() method takes one parameter: vLabel (the internal value label that will
be used to annotate the value). The user can then modify the label and the other
properties of the value label.

■ The tickDrawn property controls whether a tick mark is drawn for this value label.

■ The labelDrawn property controls whether a label is drawn for this value label.

■ The minorTick property determines whether a major or minor tick is drawn for this
value label. If set to true, a minor tick is drawn. If set to false (the default value), a
major tick is drawn instead. Please note that nothing is drawn if the tickDrawn
property has been set to false.

■ The foreground and background colors can be set for this value label.
42 Part I ■ Using JClass Chart 3D with the Java 2 API

Here is a code example showing how to customize the labels for a linear axis by
implementing the JCLabelGenerator interface. In this case, Roman numeral labels are
going to be generated (instead of the usual Arabic labels) for the numbers 1 through 10.

class MyLabelGenerator implements JCLabelGenerator
{
 public void makeLabel(JCValueLabel vLabel) {
 int intvalue = (int) vLabel.getValue();
 String s = null;
 switch (intvalue) {
 case 1 :
 s = "I";
 break;
 case 2 :
 s = "II";
 break;
 case 3 :
 s = "III";
 break;
 case 4 :
 s = "IV";
 break;
 case 5 :
 s = "V";
 break;
 case 6 :
 s = "VI";
 break;
 case 7 :
 s = "VII";
 break;
 case 8 :
 s = "VIII";
 break;
 case 9 :
 s = "IX";
 break;
 case 10 :
 s = "X";
 break;
 default :
 s = "";

 vLabel.setTickOnly(true);
 return;
 }
 vLabel.setLabel(s);

 vLabel.setTickOnly(false);
 }
}

Note that you will need to specify the label generator as follows:

axis.setLabelGenerator(new MyLabelGenerator());
Chapter 2 ■ Programming JClass Chart 3D: Common Functions 43

Also note that JClass Chart 3D calls the makeLabel() method for each needed label and
tick. Thus, if JClass Chart 3D needs n labels and ticks, the makeLabel() method is called n
times.

2.7.6 Rotating Axis Labels

The annotationRotation property allows you to specify the rotation of a chart’s axis
labels. The default value is ANNOTATION_ROTATION_DEFAULT. When explicitly setting the
annotation rotation for an axis, please note that the number of labels may not change
from the default case, even if more will fit on the axis.

Note: If the axis annotation rotation is explicitly set to horizontal or vertical, there may
be overlapping labels.

2.7.7 Label Selection and Clustering

Users can select labels through the normal “pick” mechanism of JClass Chart 3D. If the
user instantiates a pick listener (this is part of the standard user actions; please see
Mapping and Picking, in Chapter 7), the chart will return a JCData3dLabelIndex object if
a label has been selected. The JCData3dLabelIndex has labelIndex and valueLabel
properties which respectively store the selected label's index and the internal value label
corresponding to the selected label. Note that in the event of label clustering the
labelIndex will be the index of the first label in the cluster.

Please note that this is currently not available in the Java 3D API version of
JClass Chart 3D.

JCAxis.ANNOTATION_ROTATION_
HORIZONTAL

The given axis annotation will be horizontal (parallel
to the axis).

JCAxis.ANNOTATION_ROTATION_
VERTICAL

The given axis annotation will be vertical
(orthogonal to the axis).

JCAxis.ANNOTATION_ROTATION_
DEFAULT

JClass Chart 3D determines the axis annotation
orientation.
If the chart is a projection, the annotation orientation
for the X-axis is horizontal and the annotation
orientation for the Y-axis is vertical.
If the chart is not a projection, the annotation
method plays a roll in determining the annotation
orientation. If the annotation method is Values, the
axis annotation will be horizontal. If the annotation
method is ValueLabels or DataLabels, the
orientation is horizontal when the maximum label
length is 1; otherwise, the orientation is vertical.
44 Part I ■ Using JClass Chart 3D with the Java 2 API

2.8 Gridlines

Gridlines can be displayed on each of the three primary planes – the XY plane, the XZ
plane, and the YZ plane – using the properties of the JCGridLines class. This class
specifies which gridlines are drawn for a given axis, via a plane mask. Planes are selected
by “or”ing in the appropriate plane constants.

These constants of the JCGridLines class specify the possible planes:

For instance, the X-axis controls gridlines that are perpendicular to the X-axis in the XY
and the XZ plane.

To draw X-gridlines in all applicable planes, set JCGridLines to the value (XY_PLANE |
XZ_PLANE). To remove gridlines completely, set the value to 0.

As another example, here is a code sample showing how to set a plane mask:

JCGridLines gl=c.getChart3dArea().getZAxis().getGridLines();
gl.setPlaneMask(XZ_PLANE|YZ_PLANE);

Gridlines are drawn where annotation is drawn on the axis, regardless of the annotation
method.

2.8.1 Gridline Styles

The gridline’s style – color, pattern, and width – are controlled by the JCLineStyle class.
A JCGridLines object initializes its lineStyle so that by default, a solid black line of
width 1 is drawn. The properties of the initial default lineStyle can be changed or a new
lineStyle can be set on the JCGridLines object.

Here’s an example showing the code to set the Y-axis gridlines to blue, have a dash_dot
pattern, and be 4 pixels in width:

JCGridLines g1=c.getChart3dArea().getYAxis().getGridLines();
g1.setLineStyle(new JCLineStyle(4,Color.blue,JCLineStyle.DASH_DOT));

Constant Value Description

XY_PLANE 1 The XY plane.

XZ_PLANE 2 The XZ plane.

YZ_PLANE 4 The YZ plane.
Chapter 2 ■ Programming JClass Chart 3D: Common Functions 45

Color
To set the color of the gridlines, choose the AWT color class representing the color to be
used to draw the lines. If null, the current color of the Graphics object is used. The
following table summarizes the built-in color names defined in java.awt.Color:

Alternately, you can specify a color by its RGB components, useful for matching another
RGB color. RGB color specifications are composed of a value from 0 – 255 for each of
the red, green and blue components of a color. For example, the RGB specification of
Cyan is “0-255-255” (combining the maximum value for both green and blue with no
red).

Take care not to choose a gridline color that is also used to display data in the chart. The
default JCLineStyle use all of the built-in colors in the following order: Red, Orange,
Blue, Light Gray, Magenta, Yellow, Gray, Green, Dark Gray, Cyan, Black, Pink, and
White. Note that JClass Chart 3D will skip colors that match background colors. For
example, if the chart area background is Red, then the line, fill, and symbol colors will
start at Orange.

Pattern
To set the pattern, use the Pattern property, which dictates the pattern used to draw a
line. Choices for gridline pattern are:

■ none

■ solid

■ long_dash

■ short_dash

■ lsl_dash

■ dash_dot

You can also create a custom user-defined pattern for the gridlines. Here is a method
declaration showing how to do this:

public void setPattern(float[] patternArray, float[]
legendPatternArray)

where patternArray is an array of floats representing the pattern to use when drawing
this line, and legendPatternArray is an array of floats representing the pattern to use

Built-in Colors in java.awt.Color

black blue cyan

darkGray gray green

lightGray magenta orange

pink red white

yellow
46 Part I ■ Using JClass Chart 3D with the Java 2 API

when drawing this line in the legend. A note of caution: if the values get too small,
nothing will be drawn.

Width
The width of the gridlines can be set using the setWidth() method. A positive integer is
required.

2.9 Header and Footer Titles

JClass Chart 3D can have two titles, called the header and footer. By default they are
JLabel instances and behave accordingly (a JLabel class is a Swing class). A JLabel
object can display text, an image, or both.

You can specify where in the label’s display area the label’s contents are aligned by setting
the vertical and horizontal alignment. By default, labels are vertically centered in their
display area. Text-only labels are left-aligned, by default. Image-only labels are
horizontally centered by default.

A title consists of one or more lines of text with an optional border, both of which you can
customize. You can also set the text alignment, positioning, colors, and font used for the
header or footer.

See “How to Use Labels” in the Java Tutorial (http://java.sun.com/docs/books/tutorial/
uiswing/components/label.html) for further information.

2.10 Adding Header, Footer, and Labels

JClass Chart 3D will always try to produce a reasonable chart display, even if very few
properties have been specified. JClass Chart 3D will use intelligent defaults for all
unspecified properties.

All properties for a particular chart may be specified when the chart is created. Properties
may also be changed as the program runs by calling the property’s set() method. A
programmer can also ask for the current value of any property by using the property’s
get() method.

Adding Headers and Footers
To display a header or footer, the properties of the Header and Footer objects contained
in the chart need to be set. For example, the following code sets the Text and Visible
properties for the footer:

// Make footer visible
chart3d.getFooter().setVisible(true);
// By default, footer is a JLabel – set its Text property
((JLabel)chart3d.getFooter()).setText("1963 Quarterly Results");
Chapter 2 ■ Programming JClass Chart 3D: Common Functions 47

http://java.sun.com/docs/books/tutorial/uiswing/components/label.html
http://java.sun.com/docs/books/tutorial/uiswing/components/label.html
http://java.sun.com/docs/books/tutorial/uiswing/components/label.html

The Visible property controls whether the header or footer is displayed. Text specifies
the text displayed in the header or footer.

By default, the header and footer are instances of JLabel.
48 Part I ■ Using JClass Chart 3D with the Java 2 API

3
Programming JClass Chart 3D:

Surfaces and Bars
Fifteen Basic Types of Surfaces and Bars ■ Chart Types ■ Bar Charts and Histograms

Contours and Zone Display ■ Mesh Controls ■ Surface Colors ■ Solid Surface

3.1 Fifteen Basic Types of Surfaces and Bars

One of the types of data that can be attached to JClass Chart 3D is grid data. Grid data
that has been attached to the chart can be displayed in a surface, bar, or scatter plot
representation. Grid data is supplied to the chart via Chart3dDataView’s
elevationDataSource property. The chart then processes the data and stores it in an
internal data object of type Chart3dGridData. For elevation data, this internal object can
be referenced via the elevationData property. The user can retrieve this internal object,
query it for data values, and set certain properties on it.

The chart uses elevation data to draw a surface plot, bar plot, or scatter plot, depending
on the chartType, which will be SURFACE, BAR, or SCATTER.

An elevationDataSource must implement the Chart3dDataModel interface. To be grid
data, it must also implement the Chart3dGridDataModel interface. This promises the
chart that it can supply an xGrid array, a yGrid array, and a doubly indexed zValues
array. If the datasource wants to provide X- and Y-data labels to the chart, it should
implement the LabelledChart3dGridDataModel interface. Similarly, a hole value, other
than the default, can be provided through the HoleValueChart3dDataModel. Data values
can be edited through the EditableChart3dDataModel and data changes can be
monitored if the datasource implements the Chart3dDataManager interface.

The elevationDataSource can also take points as its data type. This type of data can only
be used for scatter plots.

All elements mentioned in this chapter refer to both the Java 2 API
and the Java 3D API, unless specifically noted.
49

Note that using a data set of type point with a chart type of SURFACE or BAR will produce a
blank plot.

When grid data is used and the chart type is either SURFACE or BAR, JClass Chart 3D’s four
basic display Boolean properties — Meshed, Shaded, Contoured, and Zoned — combine to
create 15 different basic surface and bar displays. No graph is displayed when all four
Booleans are false.

3.1.1 JCElevation: Meshed, Shaded, and Transparent Plots
The JCElevation object determines whether surface and bar plots are Meshed, Shaded,
or Transparent. The JCElevation constructor initializes the Meshed, Shaded, and
Transparent properties (each of which takes a Boolean value). The defaults for each of
these are Meshed=true, Shaded=false, and Transparent=false.

Meshed
Surfaces: When Meshed is true, JClass Chart 3D displays the X-Y grid projected onto the
3D surface in a 3D view with a Z-axis. You can use the xMeshShow and yMeshShow
properties of JCSurface to individually control whether the X- and Y-mesh lines are
showing.

The xMeshFilter and yMeshFilter properties of JCSurface allow every nth mesh line to
be drawn. By default, the chart chooses a pleasing filtering. The meshTopColor and
meshBottomColor properties allow the user to control the top and bottom colors of the
mesh lines.

Bars: When Meshed is true, JClass Chart 3D will draw the outline of all the bars. All bars
with a value greater than or equal to the origin of the Z-axis will be outlined using the
meshTopColor, and all bars with a value less than the origin will be outlined using the
meshBottomColor. When Transparent is true, all the lines of every bar will be visible.

Shaded
Surfaces: When Shaded is true, JClass Chart 3D displays the data as a flat shaded surface
in a 3D view with a Z-axis. The surface color is controlled with the shadedTopColor and
the shadedBottomColor properties (not currently available in the Java 3D API version of
JClass Chart 3D).

Bars: When Shaded is true, JClass Chart 3D draws each bar as a solid bar. All bars with a
value greater than or equal to the origin of Z-axis will be drawn using the
shadedTopColor, while all bars with a value less than the origin will be drawn using the
surfaceTopColor.

The following code snippet shows setting these properties:

JCElevation elevation=c.getDataView(0).getElevation();
elevation.setMeshed(true);
elevation.setShaded(true);
elevation.setTransparent(false);
50 Part I ■ Using JClass Chart 3D with the Java 2 API

3.1.2 JCContour: Contoured and Zoned Plots

The JCContour class deals with information about contours and zones. Two of its
properties are Contoured and Zoned. Both default to false.

Contoured
Surfaces: When Contoured is true, JClass Chart 3D examines the distribution of the
data, using the JCContourLevels class, and draws contour lines demarcating each of the
contour levels. The contour line style, thickness, and color are controlled with the
contourStyles property.

Bars: When Contoured is true, JClass Chart 3D examines the distribution of the data,
using the JCContourLevels class, and draws contour lines around the bars, demarcating
each of the contour levels. The contour line style, thickness, and color are controlled with
the contourStyles property.

Zoned
Surfaces: When Zoned is true, JClass Chart 3D examines the distribution of the data,
using the JCContourLevels class, and fills each level with a solid color. (Unless Meshed is
true and Shaded is false, in which case the fill color is used to draw each level’s mesh
lines.) The color for each level is specified with the contourStyles property.

Bars: When Zoned is true, JClass Chart 3D examines the distribution of the data, using
the JCContourLevels class, and fills each level within each bar with a solid color. (Unless
Meshed is true and Shaded is false, in which case the fill color is used to draw each level’s
mesh lines.) The color for each level is specified with the contourStyles property. If
zoneDataSource is supplied to the data view, each bar is filled with a solid color.
Otherwise, the bar is segmented by height according to the contour levels.
Chapter 3 ■ Programming JClass Chart 3D: Surfaces and Bars 51

3.2 Chart Types

The following table shows the 15 basic graph types:
Gr

ap
hC

ha
rt

Ty
pe

M
es

he
d

Sh
ad

ed

Co
nt

ou
re

d

Zo
ne

d
Surface Example Bar Example Comments

1 T F F F
Meshed.
Displays surface
as a mesh and
bars in outline.

2 F T F F
Shaded.
Displays surface
and bars in a flat
shade. Top and
bottom colors
may be set.

3 F F T F
Contoured.
Contour lines are
automatically
drawn between
distribution levels
in the data.

4 F F F T
Zoneda.
Similar to
Contoured,
except that each
distribution level
is displayed in a
solid color.
52 Part I ■ Using JClass Chart 3D with the Java 2 API

5 T T F F
Meshed,
Shaded.
Draws surface as a
mesh and bars in
outline. Surface
and bars are flat
shaded.

6 T F T F
Meshed,
Contoured.
Displays surface
as a mesh and
bars in outline.
Also draws
contour lines
along borders
between
distribution levels
in the data.

7 T F F T
Meshed, Zoned.
Displays surface
as a mesh and
bars in outline.
Uses zoning
colors for mesh
and bar outlines.

8 F T T F
Shaded,
Contoured.
Displays a flat-
shaded surface or
bars with contour
lines
superimposed.

Gr
ap

hC
ha

rt
Ty

pe

M
es

he
d

Sh
ad

ed

Co
nt

ou
re

d

Zo
ne

d

Surface Example Bar Example Comments
Chapter 3 ■ Programming JClass Chart 3D: Surfaces and Bars 53

9 F T F T
Shaded, Zoned.
Zone colors are
used to flat shade
the surface or
bars.

10 F F T T
Contoured,
Zoneda.
Displays contour
lines and flat
shaded zone
colors to
demarcate levels
in the data.

11 T T F T
Meshed,
Shaded, Zoned.
Similar to Shaded,
Zoned, but with a
mesh or bar
outlines
superimposed.

12 T T T F
Meshed,
Shaded,
Contoured.
Similar to
Meshed, Shaded,
but contour lines
are superimposed.

Gr
ap

hC
ha

rt
Ty

pe

M
es

he
d

Sh
ad

ed

Co
nt

ou
re

d

Zo
ne

d

Surface Example Bar Example Comments
54 Part I ■ Using JClass Chart 3D with the Java 2 API

3.3 Bar Charts and Histograms

When chartType is BAR, the elevation data will be displayed as a bar chart (if grid data is
supplied). Each data point will be represented by a single bar. The spacing between
adjacent elements in the grid is honored.

Bar Z Origin
Bars start from the z Axis origin, which can be controlled through JCAxis’ origin
property. The default value of the origin is 0.0. When Shaded is true, bars that have
values greater than the origin are rendered in the shadedTopColor property of the

13 F T T T
Shaded,
Contoured,
Zoned.
Similar to Shaded,
Zoned, but
contour lines are
superimposed.

14 T F T T
Meshed,
Contoured,
Zoned.
Similar to
Meshed, Zoned,
but with contours
superimposed.

15 T T T T
Meshed,
Shaded,
Contoured,
Zoned.
The sum of all
basic options.

a. In this release, Zoned is the same as Zoned and Shaded for bar charts. Application developers are urged to use the Zoned
and Shaded combination for this view, since the interpretation of the Zoned combination may change in a future release.

Gr
ap

hC
ha

rt
Ty

pe

M
es

he
d

Sh
ad

ed

Co
nt

ou
re

d

Zo
ne

d

Surface Example Bar Example Comments
Chapter 3 ■ Programming JClass Chart 3D: Surfaces and Bars 55

JCElevation class. Negative bars (that is, bars with values less than the origin) are
rendered in the shadedBottomColor.

Bar Spacing
The amount of space occupied by a bar, as a percentage of the maximum amount
possible, is controlled through the xSpacing and ySpacing properties of the JCBar class.
The default is 80%. Setting it smaller results in thinner bars. Setting bar spacing to 100% (the
maximum) results in bars that about one another.

Figure 11 Fixed Bar Chart with X-Spacing set to 1% and Y Spacing set to 100%.

Histograms
To display a histogram, set both the xFormat and yFormat properties of JCBar to
HISTOGRAM (default is FIXED). Thus, the X-axis and Y-axis can be independently switched
between fixed and histogram formats.

If the X-axis is switched to a histogram, each bar’s left edge will be drawn aligned with
corresponding X-values in the data. The width of each bar will be the distance between
subsequent X-values in the data. Since the width of each bar is derived from the spacing
between its neighbors, there is always one fewer bar along a histogram axis than there is if
the same data is displayed along a fixed axis.
56 Part I ■ Using JClass Chart 3D with the Java 2 API

Histograms usually make good use of data whose grid values are not equally spaced. This
gives control over spacing in the data grid.

Figure 12 Fixed versus Histogram Display of Identical Data.

Grid Colors
If Shaded is true and Zoned is false, the colors of the individual bars can be controlled.
Normally, all bars with a value below the origin are colored with shadedBottomColor,
and all others are colored with shadedTopColor. However, in some situations, it is useful
to color a row, column, or individual bar in the chart with a distinct color.

The JCGridColor class is used to specify the fill color of a group of bars, or of an
individual bar. The Chart3dDataView class’ gridColors property stores a list of
JCGridColor objects.

The JCGridColor class has a dataIndex property and a color property. The dataIndex is
a reference to a JCData3dGridIndex object which stores an index to a bar or group of
bars. The color property indicates what color to make the bars referenced by the
dataIndex.

An individual bar can be colored by specifying its indices in the dataIndex object. For
example, to set the bar in the third X-data line, second point to red, set the xIndex
property of the dataIndex to 2, the yIndex to 1, and the color to Color.red.

To specify the color of an entire row of bars, set the other index to JCData3dIndex.ALL.
For instance, the entire fifth X line of bars is set to green by setting the xIndex property of
the dataIndex to 4, the yIndex to JCData3dIndex.ALL, and the color to Color.green. To
set the color of all the bars, set both the xIndex and yIndex of the dataIndex to
JCData3dIndex.ALL.

Chart3dDataView has several convenience methods for manipulating the list of
JCGridColors. It has addGridColor() and removeGridColor() for adding and removing
grid colors. It also has a findGridColor() method which retrieves the first grid color that
matches a given (xIndex, yIndex) index starting from the end of the list; this is what the
Chapter 3 ■ Programming JClass Chart 3D: Surfaces and Bars 57

chart uses to determine the color of a given bar. If findGridColor() returns null, the bar
color falls back to either the shadedTopColor or the ShadedBottomColor.

JClass Chart 3D’s Chart3dDataView will only maintain one entry per (xIndex, yIndex)
combination. Whenever a second entry for the same indices is supplied, the first entry is
removed. Later entries take precedence over earlier entries.

The following code created the bar coloring in Figure 13:

dataView.addGridColor(JCData3dIndex.ALL, JCData3dIndex.ALL,
new Color(255, 208, 0));

dataView.addGridColor(1, JCData3dIndex.ALL, Color.blue);
dataView.addGridColor(JCData3dIndex.ALL, 1, new Color(176, 32, 240));
dataView.addGridColor(1, 1, Color.red);

Figure 13 3D Chart demonstrating numerous grid colors.

Note that even though the index of the bar at (1, 1) matches every entry in the list, the bar
is colored red because it matches the last entry in the list.

3.4 Contours and Zone Display

When Contoured or Zoned is true, JClass Chart 3D marks each contour level from an
array of 100 built-in contour styles.

Each contour style contains information about the contour line style, width, pattern,
color, and zone color (used to mark each level). Contour styles can be customized by an
application. Please see Customizing Contour Styles, in Chapter 6 for details.
58 Part I ■ Using JClass Chart 3D with the Java 2 API

Contour Styles Used
JClass Chart 3D determines which contour style to use for a particular level
automatically, evenly distributing the styles through the number of levels, as shown by
Figure 14.

Figure 14 A Sampling of Supplied Contour Styles Used as Needed.

By implementing the JCContourMapping interface and using the setContour.Mapping()
method of the JCContour class, you can override the default level to contour style
mapping.

Also, by using the JCContourLevels class, you can specify your own contour levels (such
as an array of doubles). You can also use your own contour styles by setting the
contourStyles property of the JCContour class. For further information, please see
Advanced JClass Chart 3D Programming, in Chapter 6.

Contour/Zone Projection
The JCProjection class specifies information about the Contoured and Zoned
projections on the top and bottom of the plot cube. For instance, you can use the
setContoured method to set the projection to be Contoured, and you can use the
setZoned method to set the projection to be Zoned.

The JCPlotCube floor property is a JCProjection that indicates whether a projection
should be drawn on the bottom of the plot cube. If either the Contoured or Zoned
Chapter 3 ■ Programming JClass Chart 3D: Surfaces and Bars 59

property of the floor projection is true, a projection is drawn. Similarly, the ceiling
projection controls what type of projection is drawn on the top of the plot cube.

These properties do not depend on the values of Contoured and Zoned of the JCContour
class. However, any other property that affects contour generation or rendering affects
projected contours/zones. Floor and ceiling projections are ignored in 2D graphs, bar
charts, and scatter plots.

Figure 15 Projecting Contours and Zones.

Zone Method
An application can control the method used to fill each zone region by leveraging the
ZoneMethod property of the JCContour class. By default, JClass Chart 3D fills between
each contour interval (ZONE_CONTOURS). When set to ZONE_CELLS_AVERAGE,
JClass Chart 3D fills entire cells in the grid based on the average of the four corners of the
cell. Figure 16 illustrates the difference visually. When set to ZONE_CELLS_CORNER, entire
cells are filled using the value at the bottom left corner of the cell.
60 Part I ■ Using JClass Chart 3D with the Java 2 API

Cell zoning produces a coarser-looking surface, but offers significant performance
advantages over contour zoning. However, the visual difference between the two types of
zoning diminishes with larger grids.

Figure 16 Contour Zoning (left) and Cell Average Zoning (right).

3.5 Mesh Controls

Mesh Colors
Mesh colors are controlled by methods in the JCElevation class.

The bottom and top colors of the mesh drawn when Meshed is true can be set with
setMeshTopColor and setMeshBottomColor. They are both “black” by default. See Chart
Colors, in Chapter 1 for details on setting colors.

Mesh Filtering
Methods in the JCSurface class control mesh filtering. This class contains properties that
pertain to surface plots.

The xMeshFilter and yMeshFilter properties specify how the mesh is filtered before
being displayed. By default, no filtering is performed. When set to 0, JClass Chart 3D
automatically filters the mesh to provide a pleasing display, and changes the filter as the
graph is scaled or the data changes.
Chapter 3 ■ Programming JClass Chart 3D: Surfaces and Bars 61

You can hard-code a mesh filter by setting these properties to any positive integer. For
example, a value of 5 filters the mesh so that every 5th line is drawn.

Figure 17 Effect of Mesh Filtering.

Hidden Mesh Lines
When Meshed is true and Shaded is false, grid and contour lines that are obscured from
view by intervening portions of the scene are not displayed by default. To display these
lines, set the Transparent property of JCElevation is to true.

Figure 18 Hidden line removal.

3.6 Surface Colors

The bottom and top colors of the shaded surface drawn when Shaded is true can be set
with shadedTopColor and shadedBottomColor of the JCElevation class. By default the
bottom color is “dim grey” or RGB(112,112,112) and the top color is “light grey” or
RGB(211,211,211). See Chart Colors, in Chapter 1 for details on setting colors. Please note
that shadedTopColor and shadedBottomColor are currently not available for surfaces in
the Java 3D API version of JClass Chart 3D.

Filter = 1 Filter = 0 Filter = 10
62 Part I ■ Using JClass Chart 3D with the Java 2 API

3.7 Solid Surface

Setting the Solid property of JCSurface to true will cause JClass Chart 3D to draw a
skirt around the data, thereby joining the edge of the surface to a plane at the minimum Z
value, as shown in Figure 19.

Figure 19 Setting Solid Surface On and Off.
Chapter 3 ■ Programming JClass Chart 3D: Surfaces and Bars 63

64 Part I ■ Using JClass Chart 3D with the Java 2 API

4
Programming JClass Chart 3D:

Scatter Plots
Overview ■ Three Basic Types of Scatter Plots

Controlling Symbol and Drop Line Style ■ Chart Styles

4.1 Overview

As noted in the previous chapter, if grid data is provided to the chart via the
elevationDataSource property of the Chart3dDataView class, then surface, bar, or scatter
plots can be drawn. The previous chapter dealt with surface charts and bar charts; this
chapter deals with scatter plots.

A scatter plot can be drawn using grid data, but the most usual way of providing data to a
scatter plot is to provide the elevationDataSource with point data. This type of data
supports an arbitrary number of series, each containing an arbitrary number of points.

An object can be a point data source if it implements the Chart3dPointDataModel. When
a point data source is passed to a Chart3dDataView object, the data is extracted and stored
in an internal point data object of type Chart3DPointData. This object can be retrieved
via the elevationData property of Chart3dDataView.

More sophisticated point data sources can implement the
LabelledChart3dPointDataModel, EditableChart3dDataModel,
HoleValueChart3dDataModel, and the Chart3dDataManager interfaces.

Please see Data Sources, in Chapter 5, for further details.

Each series can have a symbol that makes it distinct from that of the other series. When a
chart of type SCATTER is used in conjunction with grid data, each grid point will define a
point in the scatter plot.

All elements mentioned in this chapter refer to both the Java 2 API and the
Java 3D API, unless specifically noted.
65

4.2 Three Basic Types of Scatter Plots

JClass Chart 3D offers three basic types of scatter plots: 3D scatter plots, 3D scatter plots
with drop lines, and 2D scatter plots. (3D scatter plots with drop lines are not currently
available in the Java 3D API version of JClass Chart 3D.)

Figure 20 Scatter Plot examples.

Drop lines are lines drawn from each point on the 3D scatter plot down to the matching
(x,y) position on the Z-axis origin of the plot cube. The drop line joins the point (x, y, z) to
the matching point (x, y, origin). Drop lines are not used for 2D scatter plots. To draw
drop lines on 3D scatter plots, set the dropLines property of the JCScatter class to true.

2D scatter plots use only the X- and Y-values, and ignore the z components. They are
“flat” charts. These plots are created by setting both the meshed and the shaded
properties of the JCElevation object to false.

4.3 Controlling Symbol and Drop Line Style

4.3.1 Point Data

The style of symbols and drop lines used in scatter plots is determined on a per series
basis. The chartStyle property of the Chart3dPointSeries specifies the line and symbol
style information for a series.

A list of Chart3dPointSeries objects can be obtained from the series property of the
internal point data object. This object, of type Chart3dPointData, can be retrieved via the
data view’s elevationData property.

3D Scatter Plot 3D Scatter Plot with Drop Lines 2D Scatter Plot
66 Part I ■ Using JClass Chart 3D with the Java 2 API

Here is a code sample that changes the line style of the third series of a scatter plot. This
code sample assumes that a point data source has already been set on the data view.

Chart3dPointData pointData=(Chart3dPointData)dataView.getElevationData();
ArrayList series=pointData.getSeries();
Chart3dPointSeries pointSeries=(Chart3dPointSeries)series.get(2);
JCChartStyle chartStyle=pointSeries.getChartStyle();
chartStyle.setLineStyle(new JCLineStyle(2, color.blue, JCLineStyle.SOLID));

Line pattern, color, and width are controlled by the chart style’s LineStyle property, and
symbol color, size, and pattern by the chart style’s SymbolStyle property.

4.3.2 Grid Data

If either the zoned or contoured properties of JCContour are true, the symbol color and
style, along with the dropline style, will be chosen through the appropriate contourStyle
for the contour level to which the point belongs.

Note: This makes use of the JCContourStyle class’ lineStyle and symbolStyle
properties.

If both zoned and contoured are false, the symbol color and style, along with the
dropline style, will be chosen through the chartStyle property if the internal
Chart3dGridData object is associated with the grid data.

4.4 Chart Styles

In a scatter plot, how a data value looks when it is displayed (for instance, color, line
pattern, symbol style, line thickness, and so forth) depends on the chart style that has
been defined for that data value. For example, the values in the third series of data will be
rendered on screen using the chart style associated with the third series of the point data.

4.4.1 Default Chart Styles
When a new Chart3dPointSeries object is created, a default chartStyle is created that
possesses default line and symbol styles. The defaults are cycled, so consecutive calls will
return different chart styles. A user may choose to override these defaults.

The JCChartStyle class has two main components: a JCSymbolStyle object that stores
symbol information and a JCLineStyle object that stores line style information. For
convenience, the user can either set or get the symbolStyle or lineStyle properties of
the JCChartStyle class, or the user can set the individual symbolStyle or lineStyle
properties directly on the chartStyle.

For example, the following line of code:

chartStyle.setLineWidth(2);

will change the line width of the chartStyle’s lineStyle object.
Chapter 4 ■ Programming JClass Chart 3D: Scatter Plots 67

The JCChart3dStyle data structure contains all the information about how a set of data
will be represented graphically. The properties are broken down as follows:

The following method will print out the symbol size being used for the series of data, and
double it:

public void double SymbolSize (Chart3dDataView dataView, int seriesIndex)
{

Chart3dPointData pointData=(Chart3dPointData)dataView.
getElevationData();

ArrayList series=pointData.getSeries();
Chart3dPointSeries pointSeries=(Chart3dPointSeries)series

(seriesIndex);
JCChartStyle chartStyle=pointSeries.getChartStyle();
system.out.println("symbol size:"+chartStyle.getSymbolSize());
chartStyle.setSymbolStyle(2*chartStyle.getSymbolSize());

}

4.4.2 Grid Data

For grid data, the JCSymbolStyle object and the JCLineStyle object that determine how
each point is drawn are obtained from either a JCContourStyle object or a JCChartStyle
object. See Grid Data, in Chapter 4, for more information.

 symbol color The color used when drawing symbols.

 symbol size The size is the diameter in pixels of the scatter symbol. It must
be greater than or equal to 1.

 symbol shape The shape of the symbol. For example, JCSymbolStyle.DOT.
Available shapes are dot, box, triangle, diamond, star, vertical
line, horizontal line, cross, circle, square, and rectangle for the
Java 2 API version of JClass Chart 3D, and sphere, cube, cone,
point, cylinder, and tetrahedron for the Java 3D API version of
JClass Chart 3D.

 line pattern The line pattern used for drop lines. Available line patterns are
none, solid, long dash, short dash, long-short-long dash, and
dash-dot. Default is solid. Custom patterns are also possible.

 line color The color used when drawing drop lines.

 line width The line width used for drop lines. Must be greater than or
equal to 1.
68 Part I ■ Using JClass Chart 3D with the Java 2 API

5
Data Sources

Overview ■ Pre-Built Chart DataSources ■ Loading Data from a File

Loading Data from a Swing TableModel ■ Loading Data from an XML Source

Data Binding using JDBCDataSource ■ JCData3dUtil class ■ Making Your Own Chart Data Source

HoleValueChartDataModel – Specifying Hole Values

Making an Updating Chart Data Source ■ Summary of JClass Chart 3D Data Interfaces

5.1 Overview

Data is loaded into a chart by attaching one or more data sources to it. A chartable data
source is an object that takes real-world data and puts it into a form that JClass Chart 3D
can use. Once your data source is attached, you can chart the data in a variety of ways.

The design of JClass Chart 3D makes it possible to chart data from virtually any real-
world source. There is a toolkit you can use to create custom chartable objects (data
sources) for your real-world data.

Creating your own data sources can be time-consuming. For that reason, JClass Chart 3D
provides pre-built chartable data sources for most common real-world data: files, XML
sources, and databases.

To understand data sources better, it is important to differentiate between point data and
grid data. To refresh your understanding, please review Data Types, in Chapter 1.

This chapter describes how to use the pre-built data sources and how to create your own.

Before delving into how to use the pre-built data sources and how to create your
own, a quick review of key elements is important. Please read all of this
overview section before proceeding.

All elements mentioned in this chapter refer to both the Java 2 API
and the Java 3D API, unless specifically noted.
69

5.1.1 Nomenclature

A data model is an abstract model, ie, an interface. A data source is an implementation
of the data model. It is the object that actually creates and manipulates the data.

5.1.2 Chart Data Model Hierarchy

5.1.3 Responsibility for Data
It is the application’s responsibility to create and manage all required data objects.

The application creates a data source by implementing a data model or set of data
models. The application then sets the data source on the Chart3dDataView via either its
elevationDataSource or zoneDataSource property. The data view then extracts the data
from the data source and stores references to it in an internal data object. The data is not
copied.

The application can then get a reference to the internal data object through the data
view’s elevationData and zoneData properties. The application can then query the
internal object for its data values and set certain properties on it.

Grid Data Versus Point Data
A grid data source must implement the Chart3DGridDataModel. When it is set on the
data view, an internal data object of type Chart3dGridData is created. A
Chart3dGridData object allows you to query its data values and to set certain properties,
such as the xLabels, yLabels, and chartStyle.

A point data source must implement the Chart3DPointDataModel. When it is set on the
data view, an internal data object of type Chart3dPointData is created. A
Chart3dPointData object allows you to query its data values (stored in
Chart3dPointSeries objects) and to set certain properties on the Chart3dPointSeries
objects, such as its label and its chartStyle.

Note that the elevationDataSource property can take either a grid data source or a point
data source, whereas the zoneDataSource property can take only a grid data source. Also,
if you set the zoneDataSource property, it must have the same number of X- and Y-values
as the elevationDataSource property.
70 Part I ■ Using JClass Chart 3D with the Java 2 API

5.1.4 Changing data

Changing data uses an event mechanism. There are two ways to alert the chart to
changes:

■ use the setElevationDataSource and setZoneDataSource methods (the
recommended way)

■ through the Chart3dDataEvent mechanism

In the first method, you change the data in the data source object and then reset the data
on the data view. The data is re-extracted and the chart will update.

The second option uses the Chart3dDataEvent mechanism. In the data source, when the
data changes, a data event is sent to a data listener, and a reaction to the event occurs.
Chart3dDataView is registered as a data listener for all the data sources it currently
references via the elevationDataSource or the zoneDataSource. Your data source must
implement the Chart3dDataManager interface for this mechanism to work.

(As an aside, while you can change the data reference to the data source without setting
the data source [without calling a listener], it is strongly not recommended, in that the
effects will not be known until a redraw is done.)

5.1.5 Internal data

Internal data is meant as a read-only object. You should not set data values through
internal data objects. However, you may use internal data to:

■ set chart styles

■ set data labels – (x,y) for grid data; (series) for point data

5.1.6 Chart3DDataModel interface

In order for a data source object to work with JClass Chart 3D, it must implement the
Chart3dDataModel interface. The simplest of these are the Chart3dPointDataModel
interface and the Chart3dGridDataModel interface.

Chart3dPointDataModel interface
The Chart3dPointDataModel interface is the core point data model interface for
JClass Chart 3D. In JClass Chart 3D, point data is specified in terms of a doubly
subscripted array of Point3d objects.

The Chart3dPointDataModel interface has a single method: getPoints(), which retrieves
a doubly subscripted array of Point3d objects (arranged by series):

import javax.vecmath.Point3d;
public Point3d[][] getPoints();

Thus, if:

Point3d[][] points=getPoints();
Chapter 5 ■ Data Sources 71

then the third point of the second series is referred to by:

points[1][2]

When the data view extracts data from the data source, it creates a Chart3dPointSeries
for each series of points and stores a singly subscripted array of points in each one.

Here is a code sample that gets the point list for the second series from the internal data
object.

Chart3dPointData pointData=(Chart3dPointData) dataView.getElevationData();
ArrayList series=pointData.getSeries();
Chart3dPointSeries pointSeries=(Chart3dPointSeries) series.get(1);
Point3d[] pointSecond=pointSeries.getPoints();

Chart3dGridDataModel interface
The Chart3dGridDataModel interface is the core grid data model interface for
JClass Chart 3D. In JClass Chart 3D, grid data is specified in terms of an X-array of grid
values, a Y-array of grid values, and a doubly subscripted array of z data values.

There are three methods associated with the Chart3dGridDataModel interface:

■ getXGrid() – retrieves the X-grid values array, returning an array of double values
representing X-grid points. The values in this array must be strictly increasing.

■ getYGrid() – retrieves the Y-grid values array, returning an array of double values
representing Y-grid points. The values in this array must be strictly increasing.

■ getZValues() – retrieves the z values -- one for each (x,y) grid point, returning doubly
subscripted array of double values representing the z values

When the data view extracts data from a grid data source, references to the xGrid, yGrid,
and zValue arrays are stored in a Chart3dGridData object. The application can retrieve
these from a Chart3dGridData object if desired.

The following table outlines the differences between point and grid data – this concept is
crucial in working with JClass Chart 3D.

Point Data JClass Chart 3D Data Grid Data

Chart3DPointData Base data model Chart3DGridData

Chart3DPointDataModel Interface Chart3DGridDataModel

series, points Basic elements X grid, Y-grid, Z values

Point3D[][]points Data types double [] xGrid
double [] yGrid
double [][] zValues
72 Part I ■ Using JClass Chart 3D with the Java 2 API

5.2 Pre-Built Chart DataSources

The pre-built DataSources for JClass Chart 3D are located in the
com.klg.jclass.chart3d.data package. Their names and descriptions follow.

elevationData
elevationDataSource

Relevant
Chart3DDataView
properties

elevationData
elevationDataSource
zoneData
zoneDataSource

Chart3DPointData Internal data Chart3DGridData

Chart3DPointSeries
--> chartStyle
-->label

Internal data
setable properties

chartStyle
xLabels
yLabels
xLabelsArrayList
yLabelsArrayList

Scatter chart Chart Types Bar, surface, or scatter chart

DataSource name Description

Base3dDataSource Empty base class that implements the
Chart3dDataModel and the
HoleValueChart3dDataModel. It extends the
Chart3dDataSupport class which implements the
Chart3dDataManager interface.

Base3dGridDataSource Base for any data source that chooses to store data
internally using the data arranged in a grid. It
implements the Chart3dGridDataModel.

Base3dPointDataSource Base for any data source that chooses to store data
internally using a series of points. It implements
Chart3dPointDataModel.

JCDefault3dGridDataSource Extends Base3dGridDataSource to create a more
useful default container for JClass Chart 3D data.

JCDefault3dPointDataSource Extends Base3dPointDataSource to create a more
useful default container for JClass Chart 3D data.

JCEditable3dGridDataSource Extends JCDefault3dGridDataSource with
convenience methods that permit data editing. It
implements EditableChart3dDataModel.

Point Data JClass Chart 3D Data Grid Data
Chapter 5 ■ Data Sources 73

5.3 Loading Data from a File

Data that is read from a file is read as regular grid data or irregular grid data.

5.3.1 Regular and Irregular Grid Data
Basically, regular grid data has X- and Y-values at regular intervals. Irregular grid data
does not.

JCEditable3dPointDataSource Extends JCDefault3dPointDataSource with
convenience methods that permit editing of data. It
implements EditableChart3dDataModel.

JCFile3dDataSource Convenience class that parses data from a file.

JCSwing3dDataSource A 3d DataSource that converts a Swing TableModel
into a form usable by JClass Chart 3D. Extends the
JCEditable3dGridDataSource.

JCXML3dDataSource Parses data from an XML file. Extends the
JCDefault3dGridDataSource.

JDBC3dDataSource Extends JCDefault3dDataSource to create a data
source for use with JDBC.

DataSource name Description
74 Part I ■ Using JClass Chart 3D with the Java 2 API

An easy way to bring data into a chart is to load it from a formatted file using
JCFile3dDataSource. To load data this way, you create a data file that follows
JClass Chart 3D’s standard format, as outlined in Section 5.3.2, Standard file format.

Then you call JCFile3dDataSource’s static createDataSourceFromFile method to create
a data source from a file. Here’s a code snippet showing this action:

Chart3dDataModel dataSource=JCFile3dDataSource.createDataSourceFromFile
("file.dat"));

or

chart3d.getDataView(0).setElevationDataSource(JCFile3dDataSource.create
createDataSourceFromFile ("igrid.dat"));

5.3.2 Standard file format

The JCFile3dDataSource class is a convenience class that parses data from a file. Do not
create an instance of this class; rather, use the static method
createDataSourceFromFile(String fileName) as described in the previous section.

This method returns an object of type Base3dDataSource which must be cast to the
appropriate type (either JCEditable3dGridDataSource or
JCEditable3dPointDataSource). The input file can either contain an irregular or regular
Chapter 5 ■ Data Sources 75

grid data or point data. The key words GRID, IGRID, or POINT identify the data
format the file contains.

A regular grid file has the following format:

Comments use the # sign
For this example the grid has 5 by 3 points
The grid dimensions are optionally followed by xLabels and yLabels
GRID
5 'A A' 'B' 'C' 'D' 'E'

3 'Y1' 'Y2' Y3'

Holes have value 100.0
The Grid increases in
X steps of 1.0 and Y steps of 2.0
The origin of the Grid is x = -20.0 and y = 50.0
100.0 1.0 2.0 -20.0 50.0

15 data points would follow, 1 for each point
49.875000 43.765625 38.50000 33.984375 30.12400
26.828125 24.0000 21.656875 19.375000 17.39062 16.222 18.444 23.555
58.664 37.894564

An Irregular Grid would supply all the X- and Y-values as well as the data points. An
irregular grid file has the following format:

Irregular grid has 5 by 3 points
The grid dimensions are optionally followed by xLabels and yLabels
IGRID
5 'A A' 'B' 'C' 'D' 'EE'

3 'Y1' 'Yahoo' 'Y3'

Holes have value 100.0
100.0

5 x values are given
3 y values are given
20 21.1 22.3 23 24.4
50.3 51.3 52.6

15 Data values follow
23.34343 12.89239 11.99423 15.781212 18.18989
26.828125 24.0000 21.656875 19.375000 17.39062 16.222 18.444 23.555
58.664 37.894564
76 Part I ■ Using JClass Chart 3D with the Java 2 API

A point data file would look like this:

There are 3 series
The series number is optionally followed by series labels
The hole value is -1000
POINT 3 'Series 1' 'Series 2' 'Series 3'
-1000

The are 5 points in series 1
5 points follow in (x, y, z) format
5
5.65 6.24 1.78
7.41 7.26 4.21
5.45 5.44 1.43
0.97 9.66 3.41
3.86 1.42 0.20

The are 4 points in series 2
4
6.57 7.43 8.37
3.79 3.63 2.65
7.89 3.48 5.65
0.78 7.03 0.65

The are 6 points in series 3
6
9.91 7.54 1.74
6.53 4.62 1.99
8.41 3.49 5.06
7.85 9.16 0.64
6.96 9.18 8.95
3.47 3.19 6.29

5.4 Loading Data from a Swing TableModel

The JCSwing3dDataSource class enables you to use any data object that implements
Swing’s TableModel interface as a JClass Chart 3D data source. The TableModel interface
is typically used for Swing JTable components, so your application may already have
created a data object of this type.

JCSwing3dDataSource “wraps” around a TableModel object, so that the data appears to
the chart in the format it understands.

This data source is available through the elevationSwingDataModel1 and the
zoneSwingDataModel1 properties in JClass Chart 3D’s JavaBeans. To use them, prepare
your data in a Swing TableModel object and set the SwingDataModel property to that
object.
Chapter 5 ■ Data Sources 77

5.5 Loading Data from an XML Source

5.5.1 XML Primer
XML – eXtensible Markup Language – is a scaled-down version of SGML (Standard
Generalized Markup Language), the standard for creating a document structure. XML
was designed especially for Web documents, and allows designers to create customized
tags (“extensible”), thereby enabling common information formats for sharing both the
format and the data on the Internet, intranets, and so on.

XML is similar to HTML in that both contain markup tags to describe the contents of a
page or file. But HTML describes the content of a Web page (mainly text and graphic
images) only in terms of how it is to be displayed and interacted with. XML, however,
describes the content in terms of what data is being described. This means that an XML
file can be used in various ways. For instance, an XML file can be utilized as a convenient
way to exchange data across heterogeneous systems. As another example, an XML file
can be processed (for example, via XSLT [Extensible Stylesheet Language
Transformations]) in order to be visually displayed to the user by transforming it into
HTML.

Here are links to more information on XML.

■ http://www.w3.org/XML/ – another W3C site; contains exhaustive information on
standards. Of particular note are the XML schema 1 (structures) and XML schema 2
(datatypes) working drafts. They make up an extension that specifies how to constrain
XML documents to particular schema. This is important if you want to represent
database data or object-oriented data as XML.

■ http://www.java.sun.com/docs/index.html – Sun’s XML site

■ http://www.oasis-open.org/cover/xml.html – thorough list of links to XML papers and
ongoing work

5.5.2 Using XML in JClass
In order to work with XML in your programs or even to compile the JClass XML
examples, you will need to have jaxp.jar in your CLASSPATH. Additionally, you will
need at least a DOM level 2 parser, such as crimson.jar. Both of these JAR files are
distributed with JClass Chart 3D – you can find them in JCLASS_HOME/lib/.

Please note that XML may be used for grid data only, not point data.

The JCXML3dDataSource class parses data in XML format. Specification for the XML data
can be found in the chart3d.dtd file (JCLASS_HOME/com/klg/jclass/xml-dtd/).

Example of XML in JClass
For an XML data source example, the XML Chart example is in
JCLASS_HOME/examples/chart3d/j2d/data. This example uses the 3d.xml data file.
78 Part I ■ Using JClass Chart 3D with the Java 2 API

http://www.w3.org/XML/
http://www.java.sun.com/docs/index.html
http://www.oasis-open.org/cover/xml.html

XML Constructor
The JCXML3dDataSource constructor takes an InputStream in XML form and may also
take a Reader that contains XML, a file, a String, or other input source.
Chapter 5 ■ Data Sources 79

Example XML data file
Here is an example of an XML data file specifying chart data according to the supported
.DTD file. Labels are optional, as are hole and name. Grids are required, and each must
contain at least one val element.

<?xml version="1.0"?>
<!DOCTYPE data SYSTEM "chart3d.dtd">
<data hole="-100" name="my data">

 <xgrid>
 <xval>0.78</xval>
 <xval>1.565</xval>
 <xval>2.00</xval>
 </xgrid>

 <ygrid>
 <yval>1.00</yval>
 <yval>2.0</yval>
 <yval>3.0</yval>
 <yval>4.0</yval>
 <yval>5.0</yval>
 /ul>
 </ygrid>

 <zgrid>
 <zval>15.64</zval>
 <zval>23.4546</zval>
 <zval>45.4545</zval>
 <zval>20.4546</zval>
 <zval>14.4545</zval>
 </zgrid>

 <zgrid>
 <zval>18.5656</zval>
 <zval>23.884</zval>
 <zval>35.6454</zval>
 <zval>21.47</zval>
 <zval>37.45</zval>
 </zgrid>

 <zgrid>
 <zval>16.58</zval>
 <zval>10.5656</zval>
 <zval>17.65</zval>
 <zval>19.645</zval>
 <zval>34.4561</zval>
 </zgrid>

 <xlabel>January</xlabel>
 <xlabel>February</xlabel>
 <xlabel>March</xlabel>

 <ylabel>Orcs</ylabel>
 <ylabel>Zombies</ylabel>
 <ylabel>Skeletons</ylabel>
80 Part I ■ Using JClass Chart 3D with the Java 2 API

 <ylabel>Vampires</ylabel>
 <ylabel>Werewolves</ylabel>
 </data>

5.6 Data Binding using JDBCDataSource

JDBC3dDataSource is not a full data binding solution. It is a data source that you can use
to chart data from an SQL Result Set. It does not perform any binding operations such as
connecting to or querying the database. You will have to provide that functionality in
your application.

To use it, you just attach an instance of JDBC3dDataSource to your chart and pass it a
Result Set from your application, as follows:

chart.getDataView(0).setElevationDataSource(new JCDBC3dDataSource
(myResultSet));

5.7 JCData3dUtil class

The JCData3dUtil class (com.klg.jclass.chart3d.data.JCData3dUtil) is a utility class
that contains convenience methods for manipulating, filtering, and copying
JClass Chart 3D data models.

The source for all of the following methods is the Chart3dGridDataModel class.

■ Use the createDataCopy() method to create a copy of Chart3dGridDataModel's X-
grid, Y-grid, and Z values.

■ Use the dataCopy() method to copy the xGrid, yGrid and zValues from a source to a
destination data model.

■ Use createShadedDataModel (double sweepAngle, double riseAngle, double
brightness, double ambient) to create a data model that simulates light reflecting
off the surface of the source data model with Z values ranging from 0 (no reflection) to
1 (full reflection), as well as an ambient light source. The data model returned from
this method may then be used as zone data for the source to produce a grey scale
effect. See the Shaded demo, which comes with your JClass Chart 3D distribution, for
an example of how to use this method.

■ Use createSmoothedDataModel (double centerWeight) to create a “smoothed” data
model based on the source data model. The amount of smoothing may be controlled
by varying the centerWeight argument. When it is 0, the “smoothed” Z value of a
data point is based entirely on the weighted average of its neighbors. When it is 1, no
smoothing takes place. When it is between 0 and 1, the result is influenced by its
neighbors in proportion to the centerWeight.
Chapter 5 ■ Data Sources 81

■ Use createCubicSampledDataModel (double[] xSamples, double[] ySamples) to
create a data model which is a subset of source using cubic Interpolation with an
xGrid described by xSamples and a yGrid described by ySamples. An alternative to
this method is to use createLinearSampledDataModel (double[] xSamples,
double[] ySamples) method since the linear interpolation method used to calculate
the Z values is generally faster, though it usually produces a coarser approximation of
the source data. These last two methods are also available in several other flavours.
Please refer to the JClass Chart 3D API for more examples.

5.8 Making Your Own Chart Data Source

5.8.1 The Simplest Chart Data Source Possible

In order for a data source object to work with JClass Chart 3D, it must implement the
Chart3dDataModel interface. The EditableChart3dDataModel interface can be used in
conjunction with the Chart3dDataModel when you want to allow the data source to be
editable. The LabelledChart3dDataModel and the HoleValueChart3dDataModel
interfaces can also be used in conjunction with ChartData3dModel to extend its
functionality to allow for label values (via the LabelledChart3dDataModel interface) and
hole values (via the HoleValueChart3dDataModel interface). The
LabelledChart3dDataModel has an extension for grid data and for point data, which calls
methods specific to the type of data.

The Chart3dDataModel interface is intended for use with existing data objects. If a data
object implements its extensions, Chart3dGridDataModel and Chart3dPointDataModel, it
provides a way for the Chart to extract the data from the data source. For example, the
Chart3dGridDataModel allows JClass Chart 3D to ask the data source for the x-grid
values, y-grid values, and for z values. The interface looks like this:

public double[] getXGrid();
public double[] getYGrid();
public double[][] getZvalues();

The values returned by getXGrid() and getYGrid() do not have to be equally spaced,
but they must be in strictly increasing order. The length of the first dimension of the
doubly subscripted array returned by getZvalues() should be the same as the length of
the xGrid array. Also, the length of each array that makes up the second dimension of
zValues should be the same as the yGrid array. If this is not true, the shortest length will
be used for all related arrays.

As an example, consider the following code snippets, taken from JCChart3d.java. This is
the actual default data source for JClass Chart 3D.
82 Part I ■ Using JClass Chart 3D with the Java 2 API

The following three methods would allow an object to implement the
Chart3dGridDataModel.

/**
 * Method required to implement Chart3dGridDataModel interface.
 * Retrieves the <i>x</i> grid values
 *
 * @return array of double values representing <i>x</i> grid points
 */
public double[] getXGrid()
{

double xarray[] = new double[11];
for (int i = 0; i < xarray.length; i++) {

xarray[i] = (double)i;
}
return(xarray);

}

/**
 * Method required to implement Chart3dGridDataModel interface.
 * Retrieves the <i>y</i> grid values
 *
 * @return array of double values representing <i>y</i> grid points
 */
public double[] getYGrid()
{

double yarray[] = new double[11];
for (int i = 0; i < yarray.length; i++) {

yarray[i] = (double)i;
}
return(yarray);

}

/**
 * Method required to implement Chart3dGridDataModel interface.
 * Retrieves the <i>z</i> values -- one for each (<i>x</i>,<i>y</i>)
 * grid point
 *
 * @return doubly subscripted array of double values representing
 * <i>z</i> values
 */
public double[][] getZValues()
{

double zvals[][] = new double[11][11];
for (int i = 0; i < zvals.length; i++) {

for (int j = 0; j < zvals[i].length; j++) {
double xval = (double)(i-5);
double yval = (double)(j-5);
zvals[i][j] = xval*xval + yval*yval;

}
}
return(zvals);

}

Chapter 5 ■ Data Sources 83

The following method would allow an object to implement the Chart3dPointDataModel.

/**
 * Method required to implement Chart3dPointDataModel interface.
 * Retrieves a list of points for a scatter plot.
 */
public Point3d[][] getPoints()
{

Point3d[][] series = new Point3d[5][];
int sizes[] = {3, 5, 6, 4, 2};

for (int i = 0; i < series.length; i++) {
Point3d[] points = new Point3d[sizes[i]];
for (int j = 0; j < points.length; j++) {

points[j] = new Point3d((double)(20 + 2*i),
(double)(30 + j), (double)(10*i + j));

}
series[i] = points;

}
return(series);

}

5.8.2 LabelledChartDataModel – Labelling Your Chart

Sometimes it is important to label each data series and each point in a graph.
This information can be added to a data source using the LabelledChart3dDataModel
interface. For grid data, one should implement the LabelledChart3dGridDataModel, and
for point data, the LabelledChart3dPointDataModel. Both extend the
LabelledChart3dDataModel.

The LabelledChart3dDataModel interface contains one method:

public String getDataSourceName();

The getDataSourceName() returns the name of the data source. This appears in the chart
as the title of the legend.

LabelledChart3dGridDataModel and LabelledChart3dPointDataModel
The LabelledChart3dGridDataModel interface specifies X-labels and Y-labels for a
JClass Chart 3D data model. xlabels and ylabels are used for the X- and Y-axis
respectively if the annotation type of the axis is JCAxis.ANNOTATION_DATA_LABELS. This
interface also specifies the number of X-grid and Y-grid values.

The LabelledChart3dPointDataModel interface specifies the number of series and the
series labels for a JClass Chart 3D data model. Series labels are displayed in the legend.

Note that both interfaces are used only in conjunction with the Chart3dDataModel
interface, which means that, in order for an object to be recognized as a chart data source,
it needs to implement the Chart3dDataModel interface.

The Base3dGridDataSource class – the base for any data source that chooses to store data
internally using data arrayed in a grid – implements the LabelledChart3dGridDataModel
84 Part I ■ Using JClass Chart 3D with the Java 2 API

interface. The Base3dPointDataSource class – the base for any data source that chooses
to store data internally using a series of points – implements the
LabelledChart3dPointDataModel interface.

5.8.3 EditableChartDataModel – Modifying Your Data

If you want users to modify data using the edit action in JClass Chart 3D, your data
source must implement the EditableChart3dDataModel interface. This interface is used
in conjunction with a Chart3dGridDataModel or a Chart3dPointDataModel, and the data
object must also implement one of these interfaces to be recognized as a data source. The
EditableChart3dDataModel has a single method:

public boolean setZValue(JCData3dIndex index, double newValue);

For grid data, the index will be of type JCData3dGridIndex and the X- and Y-indices of
the newValue can be extracted from the index object. For point data, the index will be of
type JCData3dPointIndex and the series and point indices can again be extracted from
the index object. Note that the EditableChart3dDataModel only allows for Z values to be
changed. In other words, newValue is a z value.
Chapter 5 ■ Data Sources 85

Here is a code example showing how to set the zValue of a point for a given series and
point index for a point data array (stored in points):

/**
 * Sets the zValue of a point for a given series and point index. This
 * series and point index is retrieved from the passed in data index,
 * which must be of type JCData3dPointIndex.
 * @param index The data index from which the series and point indices
 * of the point to be edited is obtained.
 * @param newValue <code>Point3d</code> object for that position
 * @return Whether the edit succeeded
 */
public boolean setZValue(JCData3dIndex index, double newValue)
{
 if (index == null || !(index instanceof JCData3dPointIndex)) {
 return(false);
 }
 JCData3dPointIndex pointDataIndex = (JCData3dPointIndex)index;
 int seriesIndex = pointDataIndex.getSeries();
 int pointIndex = pointDataIndex.getPoint();

if (seriesIndex < 0 ||
seriesIndex >= points.length ||
pointIndex < 0 ||
pointIndex >= points[seriesIndex].length)

{
return(false);

}
Point3d point = points[seriesIndex][pointIndex];
point.z = newValue;
int type = Chart3dPointDataEvent.RELOAD_POINT;
fireChart3dDataEvent(new Chart3dPointDataEvent(this, type,

pointDataIndex));
return(true);

} //setZValue
86 Part I ■ Using JClass Chart 3D with the Java 2 API

Here is a code example showing how to set the zValue for a given data index for grid data
(stored in the zValues array):

/**
 * Sets the point for a given data index which must be of type
 * JCData3dGridIndex.
 *
 * @param index The data index from which the x and y indices of the
 * point to be edited is obtained.
 * @param newValue The new z value for the point
 * @return Whether edit succeeded
 */
public boolean setZValue(JCData3dIndex index, double newValue)
{
 if (index == null || !(index instanceof JCData3dGridIndex)) {
 return(false);
 }
 JCData3dGridIndex gridIndex = (JCData3dGridIndex)index;
 int xIndex = gridIndex.getX();
 int yIndex = gridIndex.getY();

if (xIndex < 0 ||
 xIndex >= zValues.length ||

yIndex < 0 ||
yIndex >= zValues[xIndex].length)

{
return(false);

}
zValues[xIndex][yIndex] = newValue;
int type = Chart3dGridDataEvent.RELOAD_ZVALUE;
fireChart3dDataEvent(new Chart3dGridDataEvent(this, type,

gridIndex));
return(true);

} //setDataValue

In this example, the value is saved back into the zValues array from
JCDefault3dGridDataSource, using the xIndex and yIndex values to index to the
appropriate array member.

The EditGrid and EditPoint examples (found in the
JCLASS_HOME/examples/chartd3d/j2d/data directory) demonstrate how to use the
EditableChartDataModel interface.

5.9 HoleValueChartDataModel – Specifying Hole Values

If you want to supply a specific hole value along with your data, your data source must
implement the HoleValueChart3dDataModel interface.

A hole value is a particular value for which the chart will not draw anything each time the
hole value is encountered in the data. For a surface chart, the facets surrounding the value
are not drawn. For a bar chart, that particular bar is not drawn. For a scatter plot, the
point is not drawn.
Chapter 5 ■ Data Sources 87

The HoleValueChart3dDataModel interface has one method, getHoleValue(). This
method retrieves the hole value for the data source.

5.10 Making an Updating Chart Data Source

Quite often, the data shown in JClass Chart 3D is dynamic. This kind of data requires
creation of an updating data source. An updating data source is capable of informing a
chart that a portion of the data has been changed. JClass Chart 3D can then act on the
change.

JClass Chart 3D uses the standard AWT/Swing event/listener mechanism for passing
changes between the chart data source and JClass Chart 3D. At a very high level,
JClass Chart 3D is a listener to data source events that are fired by the data source.

5.10.1 Chart Data Source Support Classes

There are a number of data source related support classes included with JClass Chart 3D.
These classes make it easier to build updating data sources.

Chart3dDataEvent and Chart3dDataListener
The Chart3dDataListener interface is implemented by objects interested in receiving
Chart3dDataEvents. Most often, the only Char3dDataListener is JClass Chart 3D itself.
Chart3dDataEvent and Chart3dDataListener give data sources a way to send update
messages to JClass Chart 3D.

The Chart3dDataListener interface has only one method:

public void chart3dDataChange(Chart3dDataEvent e);

Thus, this mechanism uses the Chart3dDataEvent class to inform the listener of a change.
In most systems, only JClass Chart 3D need implement this interface. The Chart3dDataView is
the class that implements the Chart3dDataListener interface within JClass Chart 3D.

The Chart3dGridDataEvent class, which extends Chart3dDataEvent, is used to
encapsulate a JClass Chart 3D grid data change event. This class has two methods: getX
and getY. getX returns the X-index of the affected data, returning JCData3dIndex.ALL if
all X-values are affected. getY returns the Y-index of the affected data, returning
JCData3dIndex.ALL if all Y-values are affected.

The Chart3dPointDataEvent class, which also extends Chart3dDataEvent, retrieves the
point index associated with the event. This class has two methods: getPoint and
getSeries. getPoint returns the index of the point affected, returning
JCData3dIndex.ALL if all points are affected. getSeries retrieves the series index
associated with the event, returning JCData3dIndex.ALL if all points are affected.

The Chart3dDataEvent has a type property that indicates the message type of the event.
The message type delineates what type of update the data source has made.
88 Part I ■ Using JClass Chart 3D with the Java 2 API

Properties of the Chart3dDataEvent class – note that these properties are relevant for
both grid and point data:

Properties in the Chart3dGridDataEvent class:

Properties in the Chart3dPointDataEvent class:

Message Type Meaning

RELOAD_DATA_SOURCE_NAME Enum value indicating the data source name is attached.

RESET Enum indicating that everything – data, labels, name, etc
– has changed.

RELOAD Enum indicating that the data needs to be reloaded.

RELOAD_HOLE_VALUE Enum value indicating the hole value is affected.

Message Type Meaning

RELOAD_ALL_XLABELS Enum value indicating all xLabels are affected.

RELOAD_ALL_YLABELS Enum value indicating all yLabels are affected.

RELOAD_XGRID Enum value indicating all X-values are affected.

RELOAD_XLABEL Enum value indicating a particular xLabel is affected.

RELOAD_XVALUE Enum value indicating a given X-value is affected.

RELOAD_YGRID Enum value indicating all Y-values are affected.

RELOAD_YLABEL Enum value indicating a particular yLabel is affected.

RELOAD_YVALUE Enum value indicating a given Y-value is affected.

RELOAD_ZALL Enum value indicating the entire doubly indexed array of
zValues is affected.

RELOAD_ZARRAY Enum value indicating one array of zValues is affected.

RELOAD_ZVALUE Enum value indicating one z Value is affected.

Message Type Meaning

ADD_SERIES Enum value indicating a data series has been added to
the end of the set of data series.

INSERT_SERIES Enum value indicating a data series has been inserted at
a particular index in the set of data series.
Chapter 5 ■ Data Sources 89

Chart3dDataManager
The Chart3dDataManager interface is used by a data source to tell JClass Chart 3D that it
will be sending a Chart3dDataEvent to JClass Chart 3D. Without this interface, there is
no way for JClass Chart 3D to know that it has to attach itself as a Chart3dDataListener
to the data source.

The two methods involved to add and remove a JClass Chart 3D data listener:

■ addChart3dDataListener(Chart3dDataListener n) – adds a chart 3D data listener.

■ removeChart3dDataListener(Chart3dDataListener n) – removes a chart 3D data
listener.

A Chart3dDataManager is an object that knows how to register and deregister
Chart3dDataListeners. Chart uses this object to register itself as a listener to events from
the data source.

The quickest way to get such a data source set up is to extend or use the
Chart3dDataSupport class.

Chart3dDataSupport
Chart3dDataSupport provides a default implementation of Chart3dDataManager. It will
manage a list of Chart3dDataListeners. It also provides two convenience methods for
firing events to the listeners.

The first fireChart3dDataEvent method fires a chart data event to any registered
listeners. This version of fireChart3dDataEvent will create a Chart3dDataEvent object
out of the message and a JCData3dIndex. For example:

public void fireChart3dDataEvent(int type, JCData3dIndex index)

where type is a valid message type from Chart3dDataEvent, Chart3dGridDataEvent, or
Chart3dPointDataEvent, and index is the data index which tells which (x, y) or (series,
point) to which this event refers.

RELOAD_ALL_SERIES_LABELS Enum value indicating all series labels need to be
reloaded.

RELOAD_POINT Enum value indicating a single data value has changed.

RELOAD_SERIES Enum value indicating a data series has changed.

RELOAD_SERIES_LABEL Enum value indicating a particular series label needs to
be reloaded.

REMOVE_SERIES Enum value indicating a data series has been removed.

Message Type Meaning
90 Part I ■ Using JClass Chart 3D with the Java 2 API

If you already have a Chart3dDataEvent, the second fireChart3dDataEvent method fires
this event to any registered listeners. For example:

public void fireChart3dDataEvent(Chart3dDataEvent evt)

where evt is the event to send to registered listeners.

Creating an Updating Data Source
If your datasource either extends or contains Chart3dDataSupport, sending updates from
the data source to the chart is easy. Simply call fireChart3dDataEvent() with the event
you wish to send.

fireChart3dDataEvent(Chart3dDataEvent.RESET,
new JCData3dGridIndex(x,y));

To have JClass Chart 3D automatically added as a listener, your data source needs to
implement the Chart3dDataManager interface.

If you do implement this interface, then the Chart3dDataView object will automatically
register itself as a listener when you set the data source on either its elevationDataSource
or zoneDataSource. Note that the listener will remove itself when another data source
replaces your data source in the data view.

5.11 Summary of JClass Chart 3D Data Interfaces

Characteristic Base Grid Data Point Data

Data Chart3dDataModel Chart3dGridData
Model

Chart3dPointDataModel

Hole value HoleValueChart3dDat
aModel

none none

Labels – data
source name

LabelledChart3dData
Model

LabelledChart3d
GridDataModel

LabelledChart3dPoint
DataModel

Setting new Z
values

EditableChart3dData
Model

none none

Managing
listeners

Chart3dDataManager none none

Listening for
data events

Chart3dDataListener none none
Chapter 5 ■ Data Sources 91

92 Part I ■ Using JClass Chart 3D with the Java 2 API

6
Advanced JClass Chart 3D Programming

4D Surface Graphs ■ 4D Bar Charts ■ Customizing the Contour Levels

Customizing Contour Styles ■ Internationalization Support

This section covers topics that programmers of advanced JClass Chart 3D applications
will find useful. It assumes that you are already familiar with JClass Chart 3D.

6.1 4D Surface Graphs

For surface and bar charts, JClass Chart 3D can be used to display 4D charts using color
as a fourth dimension. The additional color information is provided to JClass Chart 3D as
a second data source using the Chart3dDataView class’ zoneDataSource property.

A full description of data sources, including grid data sources, is provided in Data
Sources, in Chapter 5.

For zone data, use the Chart3dGridDataModel interface. The Chart3dGridDataModel
interface, which extends Chart3dDataModel, is the core grid data model interface. In
JClass Chart 3D, grid data is specified in terms of an X-array of grid values, a Y-array of
grid values, and a doubly subscripted array of z data values.

To create a 4D chart:

■ Set the Zoned property of the JCContour class and the Shaded property of the
JCElevation class to true.

■ Set a grid data source in the Chart3dDataView’s elevationDataSource property.

■ Set a grid data source in the Chart3dDataView’s zoneDataSource property; this will be
used for deriving the zoning and contouring colors as zone data.

All elements mentioned in this chapter refer to both the Java 2 API and the
Java 3D API, unless specifically noted.
93

■ Ensure that the data array sizes of the two data sources match up. The xGrid and
yGrid arrays of the two data sources should be identical. The zValues array should
have exactly the same number of values in both the X- and Y-dimensions (that is, the
same number of rows and columns).

Note: If any of these conditions are not met, a 4D chart will not be displayed.

If the zone data has a hole that is not in the surface data, the surface in the region of the
hole will be displayed as if the zone data were not attached.

Figure 21 4D chart – zone/contour data is different from surface data.

6.2 4D Bar Charts

When a zone data source is supplied for a bar chart, the values in the zone data are used
in conjunction with the contour levels to apply zone colors to the bars in the grid.

When zone data is supplied and the Zoned property of the JCContour class is true, the bar
is not broken up into separate colored segments. Rather, each bar is individually colored
94 Part I ■ Using JClass Chart 3D with the Java 2 API

according to the zoned height of the bar. Contours are never drawn when zone data is
supplied. Figure 22 gives an example of a 4D bar chart.

Figure 22 A 4D Bar Chart.

In a bar chart, the zone data structure is only referenced when Zoned is true. A legend is
generated based on the contour levels. The legend labels can be replaced by supplying a
list of labels to the JCChart3dLegend class via its labels property.

Please see Legends, in Chapter 2 for full details on legend Strings.

6.3 Customizing the Contour Levels

To customize contour levels, manipulate the JCContourLevels class. This object deals
with contour levels; it calculates default levels (if isDefault is true) but also allows users
to set their own levels.

The JCContourLevels class has five properties:

■ isDefault – ascertains whether linear contour levels are generated automatically
(based on numLevels)

■ levels – a strictly increasing array of contour levels

■ max – the contour maximum, calculated from the data (read only)

■ min – the contour minimum, calculated from the data (read only)

■ numLevels – the number of contour levels

To specify your own contour levels, set the levels property to a new array of doubles. This
array must be in strictly increasing order. You can also manipulate the levels using the
addlevel() and removeLevel() methods. Changing the levels in any of the above ways
has the side effect of setting the isDefault property to false. When isDefault is false,
the numLevels property automatically takes on the value of the length of the levels array
Chapter 6 ■ Advanced JClass Chart 3D Programming 95

and hence becomes read only. If isDefault is set to true, the numLevels property can be
changed to specify the number of default levels to calculate.

In user-specified contour levels, the default is to display just the range of data that is
spanned by the data (JCChart3dLegend.RANGE_DATA). If the distributionRange property
of the JCChart3dLegend class is set to JCChart3dLegend.Range_ALL, the entire contour
level array is shown in the legend.

6.4 Customizing Contour Styles

To customize contour styles, manipulate the contourStyles property of the JCContour
class. The contourStyles property reference an ArrayList of JCContourStyle objects.
The JCContourStyle class defines the style used to draw contours and zones.

The JCContourStyle class has three properties:

■ fillStyle – the JCFillStyle object to be used for this contour style; used to draw
the contour zones

■ lineStyle – the JCLineStyle object to be used for this contour style; used to draw
the contour lines

■ symbolStyle – the JCSymbolStyle object to be used for this contour style; used to
draw symbols for contoured grid scatter plots

6.4.1 Default Contour Styles
By default, for surface and bar charts, JClass Chart 3D provides an array of 100 contour
styles. By default, the fill styles are solid, the contour lines are black lines of width 1, and
the symbols are of type JCSymbolStyle.DOT of size 6. The fill colors and symbol colors
are chosen from a predefined array of colors chosen to provide a pleasing color
distribution.

You will need to provide custom contour styles if:

■ it is important to your application to specify the precise contour style for any
particular level;

■ you want to display more than 100 levels; or

■ you want to uniquely identify contour lines. The JClass Chart 3D default contour
styles use only black solid lines of width 1.

It is usually easiest to specify more contour styles than will be needed for the number of
contour levels. If nstyles contour styles are provided, and the number of contour levels is
nlevels, JClass Chart 3D will calculate the index into the contour styles array for level i (0
≤ i ≤ nlevels) as follows:

(int)Math.round(i * (nstyles - 1)/nlevels)
96 Part I ■ Using JClass Chart 3D with the Java 2 API

If you wish to change this index calculation, implement the JCContourMapping interface
by creating the method:

public int contourIndex(int level);

Then set the object that implements the interface on the contourMapping property of the
JCContour class.

The JCContourStyle class contains information about how JClass Chart 3D should
display contour style objects. The fields are broken down as follows:

Figure 23 Different Line Patterns.

fillcolor The color used to demarcate the level when zoned is true.

fillpattern The pattern used to fill the zones. Valid values include
JCLineStyle.NONE, JCLineStyle.SOLID, JCLineStyle.LONG_DASH,
JCLineStyle.SHORT_DASH, JCLineStyle.LSL_DASH, and
JCLineStyle.DASH_DOT.

linecolor The color used to demarcate the level’s contour line when contoured
is true.

linewidth The line width used to demarcate the level’s contour line when
contoured is true. Must be greater than or equal to 0. When
linewidth is zero, no line is drawn.

linepattern The line pattern used to demarcate the level’s contour line when
contoured is true. Line patterns are only honored for surface plots
that are 2D projections (available in the Java 2 API version of
JClass Chart 3D by setting the meshed and shaded properties of the
JCElevation class to false). The line pattern must be one of the
patterns listed in Figure 23.
Chapter 6 ■ Advanced JClass Chart 3D Programming 97

Here is a code sample that doubles the line width of the 50th contour style.

JCContour contour=dataView.getContour();
ArrayList contourStyles=getContourStyles();
JContourStyle style=(JCContourStyle)contourStyles.get(49);
style.setLineWidth(2*style.getLineWidth());

6.5 Internationalization Support

6.5.1 Internationalization

Internationalization is the process of making software that is ready for adaptation to
various languages and regions without engineering changes. JClass products have been
internationalized.

Localization is the process of making internationalized software run appropriately in a
particular environment. All Strings used by JClass that need to be localized (that is,
Strings that will be seen by a typical user) have been internationalized and are ready for
localization. Thus, while localization stubs are in place for JClass, this step must be
implemented by the developer of the localized software. These Strings are in resource
bundles in every package that requires them. Therefore, the developer of the localized
software who has purchased source code should augment all .java files within the /resource/
directory with the .java file specific for the relevant region; for example, for France,
LocaleInfo.java becomes LocaleInfo_fr.java, and needs to contain the translated French
versions of the Strings in the source LocaleInfo.java file. (Usually the file is called
LocaleInfo.java, but can also have another name, such as LocaleBeanInfo.java or
BeanLocaleInfo.java.)

Essentially, developers of the localized software create their own resource bundles for
their own locale. Developers should check every package for a /resources/ directory; if one
is found, then the .java files in it will need to be localized.

For more information on internationalization, go to:
http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html.
98 Part I ■ Using JClass Chart 3D with the Java 2 API

http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html

7
Programming User Interaction

Default User Interaction ■ Listeners ■ Mapping and Picking ■ dragZValue Method

gridValue Method

This chapter describes the user-interaction features of JClass Chart 3D — how a user can
interact with the chart and how an application can control interaction.

7.1 Default User Interaction

By default, an end-user can rotate, translate, scale, and zoom into the plot cube. The
rotate action is implemented by manipulating the three rotation angles of the JCView3d
class. Scaling, translating, and zooming are achieved by appropriately setting the scale,
horizontal shift, and vertical shift properties of the JCViewport class.

Figure 24 shows the user interactions enabled by JClass Chart 3D’s default translations.

All elements mentioned in this chapter refer to both the Java 2 API and the
Java 3D API, unless specifically noted.
99

Figure 24 JClass Chart 3D’s default user interactions (MB1 Mouse Button 1).

Rotation
• Press x, y, z, e, or n to se-

lect an axis. Selected axis
defaults to none (or n).

• Press Ctrl and hold down
MB1.

• Move mouse counter-clock-
wise to rotate view clock-
wise if no X- or Y-axis is
selected. Otherwise move
mouse perpendicular to the
selected axis.

Translation
• Press Shift and

hold down MB1both mouse
buttons

• Move mouse to
shift the chart

Scaling
• Press Alt and

hold down MB1both mouse
buttons

• Move mouse down
to zoom in

• Move mouse up
to zoom out

Return to Default
• Press “r”
• All scaling, translation,

and zooming removed

Zooming
• Press Ctrl and Shift and

hold down MB1left mouse
button

• Move mouse to select
the area to zoom into
100 Part I ■ Using JClass Chart 3D with the Java 2 API

Note that the blank preview cube gets drawn only if the previewMethod property of the
JCViewport class is set to PREVIEW_CUBE and you are using the Java 2 version of
JClass Chart 3D.

7.1.1 JCViewport class

The JCViewport class stores information concerning the viewport through which the user
views the plot cube. The default viewport is determined by JClass Chart 3D. The user can
modify this default by scaling it and translating it within the JCChart3dArea. JCViewport
comprises these properties:

■ horizontalShift – indicates horizontal shift as a multiple of the original viewport size.

■ verticalShift – indicates vertical shift as a multiple of the original viewport size.

■ normalized – indicates whether the viewport is normalized (that is, is the scale equal
to 1 and the shift equal to 0).

■ previewMethod – controls what is drawn as the user rotates scales, or translates the
cube interactively; can either be PREVIEW_CUBE (displays a wireframe cube
[default]) or PREVIEW_FULL (displays the entire surface).

■ scale – zoom factor. A value less than 1 means a viewport smaller than the default. A
value greater than 1 means a viewport greater than the default. The scale value must
be between MIN_VIEW_SCALE and MAX_VIEW_SCALE.

Rotation
The rotate actions manipulate the xRotation, yRotation, and zRotation properties of the
JCView3d class in various ways. The standard rotation (no selected axis) implements a
track ball type rotation. This causes the chart to rotate in the direction of the mouse. You
can also rotate about one of the three standard axes (X, Y, or Z). There is also one more
type of rotation, called eye rotation, that allows you to rotate about a line from the center
of the cube to the user’s eye position.

7.1.2 JCActionTable Class

The JCActionTable class is responsible for keeping track of the mappings from a user
input event to a JClass Chart 3D action. For example, an association can be made to map
from the Shift+left mouse button set of events to the Translate action.

JClass Chart 3D has a rich set of predefined associations that handle scaling, translation,
rotation, and many other functions. To enable the standard set of actions, add the
following line of code to your program:

chart3d.getActionTable().addAllDefaultActions();

JCActionTable stores a set of mappings between an ActionInitiator and the name of a
class that implements the JCAction interface. An ActionInitiator captures the essence
of a user input event via its subclasses – KeyActionInitiator and
MouseActionInitiator. A MouseActionInitiator defines the mouse button and
Chapter 7 ■ Programming User Interaction 101

modifiers that the chart will recognize when the user presses a mouse button. For
example, JClass Chart 3D’s Rotate method is invoked when the user presses the left
mouse button, while holding down the Ctrl key.

You can define a MouseActionInitiator for this combination:

MouseActionInitiator mai = new MouseActionInitiator(MouseEvent.
BUTTON1_MASK, InputEvent.CTRL_MASK);

You can associate the Rotate method with the initiator by specifying its pathname as a
String. For users of the Java 2 version of JClass Chart 3D, the pathname is
com.klg.jclass.chart3d.j2d.actions.RotateAction. For users of the Java 3D version
of JClass Chart 3D, the pathname is com.klg.jclass.chart3d.
j3d.actions.RotateAction.

Both of the above RotateAction classes implement the JCAction interface, with the most
important methods being the start(), animate(), and end() methods. These correspond
to the user’s mouse button down, drag, and release events.

When JClass Chart 3D detects that the user has pressed the left mouse button, it will
dynamically instantiate the specified class, and use it to handle the user’s mouse events.
To minimize memory usage, this class will be created only once and then be reused for
subsequent interactions.

Adding and removing individual actions
JClass Chart 3D’s JCActionTable defines all of the commonly used interactions, so
individual actions can be added or removed, and custom actions can be added. For
example, to add the above Rotate method, simply use:

JCActionTable at = chart3d.getActionTable();
at.addAction(JCActionTable.DEFAULT_MOUSE_ROTATE_ANY_ACTION,

at.getDefaultRotateActionClass());

A KeyActionInitiator defines the keyCode and modifiers that JClass Chart 3D will
recognize when the user presses a key. For example, if you want to detect when the user
presses the Shift-r key combination, create a KeyActionInitiator with the following
code:

KeyActionInitiator key = new KeyActionInitiator(KeyEvent.VK_R,
InputEvent.SHIFT_MASK);

To make this key combination invoke the Reset action, use:

JCActionTable at = chart3d.getActionTable();
at.addAction(key, at.getDefaultResetActionClass());

Custom actions
Custom actions can be added by writing a class that implements the JCAction interface,
and associating it with an ActionInitiator by using the addAction() method and
specifying its name as a String. For example, if you wanted to associate the above key
102 Part I ■ Using JClass Chart 3D with the Java 2 API

with your own action handler that existed in
com.yourcompany.yourproduct.Reset.class, you would specify:

JCActionTable at = chart3d.getActionTable();
at.addAction(key, "com.yourcompany.yourproduct.Reset");

If you later wanted to remove this specific action, use:

chart3d.getActionTable().removeAction(key);

To remove all actions, including default and custom actions, use:

chart3d.getActionTable().removeAllActions();

The full set of default actions and mouse and key combinations are described in the
JCActionTable class description in the API Reference Javadocs, which are included when
you purchase JClass Chart 3D.

For an overview of JClass actions, please review the following table. Note that except for
the Edit action, these are the actions that get set on the chart when the
addAllDefaultActions method is called.

Action Name
Default Binding

DescriptionMouse
Button (MB) Key

Cancel – c Cancel the current action.

Customize MB3 Alt + Enter Show the Customizer.

Edit MB1 – Edit the chart. Must be
explicitly added. Overrides
Pick.

Pick MB1 – Call the chart’s Pick
method.

Reset* – r Read the viewport to
default.

Rotate Ctrl +
MB1

Left, Right, Up,
Down

Rotate using a trackball
mechanism.

RotateEye* Ctrl +
MB1

– Rotate about the eye.

RotateX* Ctrl +
MB1

– Rotate constrained to an
XAxis rotation.

RotateY* Ctrl +
MB1

– Rotate constrained to a
YAxis rotation.

RotateZ* Ctrl +
MB1

– Rotate constrained to a
ZAxis rotation.
Chapter 7 ■ Programming User Interaction 103

7.1.3 JCChart3dEvent class

The JCChart3dEvent class is used to encapsulate an action (for example, rotate, zoom, or
scale) on a JClass Chart 3D. It holds the chart that was acted upon. The JCChart3dEvent
class gets sent to all Chart3D listeners through the changeChart() method (see below).

7.2 Listeners

JClass Chart 3D uses the standard AWT/Swing event/listener mechanism to tell an
application that certain events have happened on the chart. A listener is called when
these events have completed.

There are three listeners in JClass Chart 3D, each of which is discussed below:

■ data

■ chart3d

■ pick

Data Listener
The Chart3dDataListener interface is a template for event listener interfaces for chart
data events. Its method, chart3dDataChange, is called whenever the JClass Chart 3D data

Scale Alt + MB1 Page Up, Page Down Scale the chart
interactively.

SwitchRotateAny* – n Switch Rotate type to
trackball rotation.

SwitchRotateEye* – e Switch Rotate type to eye
rotation.

SwitchRotateX* – x Switch Rotate type to X-
rotation.

SwitchRotateY* – y Switch Rotate type to Y-
rotation.

SwitchRotateZ* – z Switch Rotate type to Z
rotation.

Translate Shift +
MB1

Shift + Left, Shift +
Right, Shift + Up,
Shift + Down

Shift the plot cube left,
right, up, down.

Zoom* Ctrl + Shift
+ MB1

– Scale using a rubber
banded rectangle.

* Not available for the Java 3D API version of JClass Chart 3D
104 Part I ■ Using JClass Chart 3D with the Java 2 API

has changed; interested listeners should implement this method and register the object
with a data source that implements the Chart3dDataManager interface.

Chart3d Listener
The JCChart3dListener interface is the event listener interface for JClass Chart 3D
events. It has two methods. The changeChart method is called whenever the chart has
been changed through a user action. The sendEvent() method of the JCChart3d class
tells interested listeners that the chart has changed once the action is completed.
Interested listeners should implement this method and register the object with
JClass Chart 3D. The paintChart method is called whenever the paint method of the
JCChart3d object is called.

Pick Listener
The JCPick3dListener interface is the event listener interface for chart pick events. It has
a single method called pick, which is called whenever a JClass Chart 3D has been picked.
Interested listeners should implement this method and register the object with
JClass Chart 3D.

7.3 Mapping and Picking

Mapping
The map() method of the Chart3dDataView object takes (x, y) pixel coordinates and maps
them to a point in data space. For grid data, this is a point interpolated from the nearest
grid values. For point data, it is the nearest data point. If the pixel point is not within the
chart, a point with its x, y, and z values set to Double.MAX_VALUE is returned. The user can
also call the Chart3dDataView’s coordToDataCoord() method which is a wrapper around
the map() method.

Unmapping
Unmapping is the opposite of mapping. It maps from data space coordinates to pixel
coordinates. It basically applies the current data transformation that JClass Chart 3D uses
to transform the data point to pixels. Chart3dDataView’s dataCoordToCoord method is a
wrapper around its unmap() method.

JCData3dIndex class
The JCData3dIndex class contains a unique index to an object in JClass Chart 3D
consisting of either an (x,y) grid data value, a (series, point) point data value, a label, or a
contour range depending on whether the index is of type JCData3dGridIndex,
JCData3dPointIndex, JCData3dLabelIndex, or JCData3dContourIndex, respectively. This
class is used by the JClass Chart 3D’s pick() and unpick() methods and contains
information related to these operations.
Chapter 7 ■ Programming User Interaction 105

Picking

The pick() method of JClass Chart 3D takes an (x, y) pixel position and selects the
internal component in which it is contained. This could be the header, the footer, the
chart3dArea, or the legend. The object property of the returned JCData3dIndex indicates
which component has been selected. If the pixel position is not contained in any of these
components, null is returned. Note that the pixel position is assumed to be relative to the
JClass Chart 3D component, not the internal components.

If the chart3dArea is selected, pick returns the index of the point closest to the specified
pixel position via the returned JCData3dIndex object. This object also contains the
distance from the pixel position to the selected point. If the pixel position misses the
chart, the index returned will have each of its indices set to -1.

If a label is selected, pick returns a JCData3dLabelIndex which contains the internal
value label of the selected label, as well as the index of that label within the internal value
labels array. (See Label Selection and Clustering, in Chapter 2 for more information.)

Note: Label selection and coloring is currently not available in the Java 3D API version
of JClass Chart 3D.

If the legend is selected, pick returns a JCData3dContourIndex if contour level element
appears in the legend (grid data only). For point data, a JCData3dPointIndex object with
the selected series is returned.

Chart3dDataView’s coordToDataIndex method is a convenient wrapper for picking on the
chart3dArea.

Unpicking
The unpick method is the opposite of pick. It determines the pixel position for a given
JCData3dGridIndex or JCData3dPointIndex object (the type of the index needs to match
the type of the current elevationData). Chart3dDataView’s dataIndexToCoord method is
a convenient wrapper for the unpick method.

7.4 dragZValue Method

The dragZValue method in the Chart3dDataView class finds a new Z value for a given
point index based on a given pixel position. Given a start point A (for grid data, the index
refers to a point on the grid; for point data, it refers to one of the points in the list of series)
and a point P on the screen, project the line AP (in 3D-space) onto the line through A
parallel to the Z axis to find the Z value that corresponds to P on the projected line.

The dragZValue method returns the new computed z-value. This method takes several
parameters:

■ data – the data for which this operation is to take place (an instance of either
Chart3dGridData or Chart3dPointData).
106 Part I ■ Using JClass Chart 3D with the Java 2 API

■ index – the data index of the point; for grid data, this must be an instance of
JCData3dGridIndex, which corresponds to an X- and Y-grid position specification,
while for point data, this must be an instance of JCData3dPointIndex which
corresponds to the series and point number of the point.

■ both the X- and Y-value of the screen position (in relation to the chart component, not
the chart3dArea component).

This procedure can be used to support the interactive modification of a grid or point
value. For example, when the user clicks somewhere on the chart, it calls the pick()
method of the JCChart3d object to determine the index of the closest point. Then as the
mouse is dragged, new pixel values are passed along with the chosen index to
dragZValue(), which returns the new Z value for the index. The new Z value can be set
on the data source and the chart updated. The edit action contains a built-in
implementation of this mechanism.

7.5 gridValue Method

The gridValue method in the Chart3dDataView class returns an estimate of the surface
value at (x, y) calculated using bilinear interpolation. The method finds the four closest
grid points, interpolates, and returns the estimated Z value. The parameters are:

■ data – the internal data object for which this operation is to take place. The data must
be grid data (an instance of Chart3dGridData).

■ x – the data space X-value

■ y – the data space Y-value.
Chapter 7 ■ Programming User Interaction 107

108 Part I ■ Using JClass Chart 3D with the Java 2 API

8
Programming with the Java 3D API

Java 3D – Overview ■ System Set-up ■ Browsers and Java 3D ■ Java 3D API

SceneGraphObject class ■ Scene Graph Viewing Object Classes ■ BranchGroup and TransformGroup

Rendering ■ Behaviors ■ Java 3D-Enabled Charting Features

As noted in the Preface, JClass Chart 3D allows you to create stunning 3D graphics using
either the Java 2 API or the Java 3D API. In this section of the JClass Chart 3D manual,
we provide an overview of the Java 3D API, and then delve into leveraging the power of
the Java 3D API with JClass Chart 3D.

For your reference, here is the URL of the Java 3D API:
http://java.sun.com/products/java-media/3D/download.html

8.1 Java 3D – Overview

Java 3D is a standard suite of classes that extend Java 2’s core Java platform capabilities to
add 3D graphics and sound capabilities to applets and applications. Featuring interactive
3D graphics, behaviors, and spatialized sound capabilities, Java 3D can be integrated with
standard Java programs. As a layered API, the high-level Java 3D API sits atop low-level
3D graphics APIs such as OpenGL and Direct3D.

The Java 3D API provides high-level constructs for generating and manipulating 3D
geometry, and provides structures for rendering this geometry. Java 3D provides
functions for creating imagery, animations, and interactive 3D graphics application
programs.

Java 3D programs can be written to run as stand-alone applications, as applets, or both.
(For information on applets, please see Section 8.3, Browsers and Java 3D.)

Please note that using Java 3D requires a sound knowledge of Java programming. Please
see Related Documents in the Preface for helpful information.

8.1.1 Scene Graph Programming Model

Java 3D is based on a scene graph programming model. Here’s a high level look at this
model.
109

http://java.sun.com/products/java-media/3D/download.html

Java 3D developers use Java 3D classes to construct nodes. Nodes contain fields that a
developer can manipulate in order to alter node properties. A collection of nodes is a
scene graph. These nodes that make up a scene graph are rooted to a Locale object,
which in turn is rooted to a VirtualUniverse object. A virtual universe, then, describes a
3D space populated with 3D objects.

Each scene graph has just one VirtualUniverse. Having only one instance of a
VirtualUniverse in a Java 3D program is recommended. Also, while a VirtualUniverse
object may reference many Locale objects, most Java 3D programs have just one Locale
object.

Figure 25 Basic scene graph programming model. Java 3D scene graphs are linked to a Locale object,
which is attached to a VirtualUniverse object.

For each Java 3D scene object, transform, or behavior, a programmer needs to create a
new object instance (that is, a new node), set the fields of this instance, and add the
instance to the scene.

To summarize, the Java 3D program creates instances of Java 3D objects (called nodes)
and places them into a scene graph data structure (an arrangement of 3D objects in a tree
structure that completely specifies the content of a virtual universe, and how it is to be
rendered).

8.2 System Set-up

Here’s a checklist of what you need installed on your system in order to work with Java
3D.

■ Java 2 Java Runtime Environment (JRE)

The Java 2 JRE can be installed by itself (visit Sun’s site at
http://java.sun.com/j2se/1.3/jre/) or you can install the Java 2 SDK, which contains the
Java 2 JRE (visit Sun’s site at http://java.sun.com/j2se/)
110 Part I ■ Using JClass Chart 3D with the Java 2 API

http://java.sun.com/j2se/1.3/jre/
http://java.sun.com/j2se/

■ Java 3D class libraries

You can download the Java 3D class libraries from Sun’s site at
http://java.sun.com/products/java-media/3D/index.html

■ Java Development Kit (JDK)

Download JDK 1.3.1 and higher

■ JAR files

After you install Java 3D, verify that you have the vecmath.jar, j3dutils.jar and j3dcore.jar in
your /jre/lib/ext/ directory.

While not essential to running a Java 3D application, it is highly recommended that you
install the Javadoc for the Java 3D API.

The Javadocs for the entire Java 3D API can be downloaded from
http://java.sun.com/products/java-media/3D/download.html

Hardware acceleration
Java 3D supports performance-enhancing features (such as hardware acceleration) of the
underlying platform. Because Java 3D – which is layered atop of your graphics API – is a
high-level API, Java 3D shields developers from the platform-specific details. If hardware
acceleration is available, the Java runtime system will harness it without any effort from
the developer.

8.3 Browsers and Java 3D

As noted above, Java 3D requires a Java 2 JRE. Two popular browsers – Internet
Explorer and Netscape Navigator – ship with versions of Java that are older than Java 2.
This means that end-users using these standard browsers will not be able to view Java 3D
applets (an applet is a Java program to be included in an HTML page).

Thus, in order to experience Java 3D applets through a Web browser, end-users must
install a Java 2 JRE, followed by the Java 3D libraries. This means that Java 3D applets
require that Sun’s Java Plug-in be installed and activated. This plug-in, which redirects
Java 3D applets from the browser’s internal JRE to the Java 2 JRE, is automatically
installed when the Java 2 JRE is installed.

8.4 Java 3D API

There are about 150 classes in the Java 3D API. These classes are organized into three
key packages. Java 3D applets and applications are constructed using classes found in the
Chapter 8 ■ Programming with the Java 3D API 111

http://java.sun.com/products/java-media/3D/index.html
http://java.sun.com/products/java-media/3D/download.html

javax.media.j3d.javax.vecmath, and com.sun.j3d packages. The last package
(com.sun.j3d) contains convenience classes.

.

Figure 26 The Java 3D API package hierarchy.

As an aside, Java package names with a “javax” preface typically indicate an extension to
the core Java 2 platform. For instance, the main Java 3D package is javax.media.j3d.

javax.media.j3d
This package is required in the Java 3D API. This package, with over 100 classes,
provides the core functionality of Java 3D. Every Java 3D program is created using at
least one class from this package.

Figure 27 The javax.media.j3d hierarchy.

javax.vecmath
This package is required in the Java 3D API. This package defines vector mathematics
classes for points, vectors, matrices, and other mathematical objects that are used in 3D
object representation and manipulation. Many core Java 3D classes rely on classes in
javax.vecmath.
112 Part I ■ Using JClass Chart 3D with the Java 2 API

Because the javax.vecmath package contains classes that are useful outside of Java 3D,
they are packaged outside of the main javax.media.j3d package.

com.sun.j3d
This package is optional in the Java 3D API. This package contains convenience classes
for Java 3D. The utility classes are placed into com.sun.j3d.util and are grouped into
four categories: content loaders, scenegraph assembly aids, geometry classes, and
convenience classes.
Chapter 8 ■ Programming with the Java 3D API 113

8.5 SceneGraphObject class

The SceneGraphObject class, the base class for nearly every object in a Java 3D scene
graph, is an abstract class that defines a number of properties common to its two
subclasses: Node and NodeComponent.

Figure 28 The javax.media.j3d.SceneGraphObject hierarchy.
114 Part I ■ Using JClass Chart 3D with the Java 2 API

8.5.1 Node class

The Node class is the abstract superclass of Group and Leaf classes. This Node class
provides a template for scene graph objects, defining important common methods for its
subclasses. The subclasses of Node provide most objects in the scene graph. A Node object
is either a Group node or a Leaf node object. Group nodes can contain children, while
Leaf nodes cannot. Group and Leaf are superclasses to several subclasses.

Group class
The Group class is the superclass to a family of classes that are used to specify the
orientation and location of scene graph objects (visual objects in the virtual universe). As
mentioned above, Group nodes can contain children. The role of a Group object is
mainly to act as the parent of other Group nodes and Leaf nodes.

All subclasses of Group are considered to be grouping nodes.

Here are the subclasses of Group:

■ BranchGroup – used to create BranchGroup objects, which serve as the root for
individual scene graph branches (please see BranchGroup and TransformGroup, in
Chapter 8 for more information).

■ OrderedGroup – used to ensure a specific rendering order.

■ SharedGroup – allows sharing of a subgraph among different portions of a scene
graph tree.

■ Switch – allows the Java 3D program to choose which children will be rendered.

■ TransformGroup – creates a TransformGroup object that generally is used to orient
and position all children contained within it.

Two of these subclasses, BranchGroup and TransformGroup, are key to using
JClass Chart 3D, so these will be expanded later on.

Leaf Class
The appearance, sound, and behavior of visual objects in the virtual universe are
specified using subclasses of the Leaf class. Some of the subclasses of Leaf are
Background, Behavior, Fog, Light, Shape3D, and Sound. Leaf nodes cannot contain
children, but may reference NodeComponents.

Thus, Leaf nodes specify the shape, sound, and behavior of scene graph objects. As well,
Leaf nodes provide a view platform that is used by the virtual universe to position and
orient a view of the scene.

Here’s a list of the top-level Leaf subclasses:

■ Background – defines the background (for example, solid color or an image) that fills
the window when a new frame is rendered.

■ Behavior – abstract class that defines properties common to all Java 3D components
that can modify a scene graph at runtime.
Chapter 8 ■ Programming with the Java 3D API 115

■ BoundingLeaf – defines a bounding region object that can be referenced by other
Leaf nodes to define a region of influence (for Fog and Light nodes), an activation
region (Background, Clip, and Soundscape nodes), or a scheduling region (Sound and
Behavior nodes).

■ Clip – specifies the back, or far, clip distance used to clip objects in the virtual
universe.

■ Fog – abstract class that outlines a set of attributes common to fog environmental
effects, as well as the region of influence for the Fog node.

■ Light – abstract class that defines properties common to all lights.

■ Link – allows an application to reference a shared graph, rooted by a SharedGroup
node, from within a branch graph or another shared graph.

■ Morph – allows a Java 3D program to morph between multiple GeometryArray
objects.

■ Shape3D – specifies all geometric objects; contains a list of one or more Geometry
component objects (these define the shape node's geometric data) and a single
Appearance component object (specifies that object's appearance attributes, including
color, material, and transparency).

■ Sound – abstract class that defines properties common to all sound sources.

■ Soundscape – defines characteristics of the listener's environment as it pertains to
sound.
116 Part I ■ Using JClass Chart 3D with the Java 2 API

■ ViewPlatform – controls the position, orientation, and scale of the viewer; a viewer
navigates through the virtual universe by changing the transform in the scene graph
hierarchy above the ViewPlatform.

Figure 29 SceneObjectGraph hierarchy showing subclasses of Leaf and Group.

8.5.2 NodeComponent Class

The NodeComponent class is the superclass used to specify the geometry, appearance,
texture, and material properties of a Shape3D (Leaf) node. NodeComponents are not part
of the scene graph, but are referenced by it. A NodeComponent may be referenced by
more than one Shape3D object.
Chapter 8 ■ Programming with the Java 3D API 117

Following is a list of the classes that are direct children of the NodeComponent abstract
parent class:

■ Alpha – provides common methods for converting a time value into an alpha value.

■ Appearance – creates objects that are a component of a Shape3D node; appearance
nodes define all rendering states of a Shape3D node (coloring attributes, line
attributes, point attributes, polygon attributes, rendering attributes, transparency
attributes, material, texture, texture attributes, texture coordinate generation, and
texture unit state).

■ AuralAttributes – defines environmental audio parameters that affect sound
rendering, such as atmospheric rolloff; this class creates objects that are a component
object of a Soundscape node.

■ ColoringAttributes – defines attributes used in color selection and shading model.

■ DepthComponent – abstract base class that defines a 2D array of depth (Z) values.

■ Geometry – abstract class that specifies the geometry component information required
by a Shape3D node.

■ ImageComponent – abstract class that defines 2D or 3D ImageComponent classes used
in a Java 3D scene graph; used for texture images, background images, and raster
components of Shape3D nodes.

■ LineAttributes – defines all rendering states that can be set as a component object of
a Shape3D node, such as line pattern.

■ Material – creates objects that are a component of an Appearance object; Material
objects define the appearance of an object under illumination.

■ MediaContainer – creates objects that are components of a Sound node (these objects
define audio properties associated with a Sound node).

■ PointAttributes – creates objects that define all attributes that apply to point
primitives, such as point size and antialiasing.

■ PolygonAttributes – generates objects that define the rendering properties of
polygon primitives, such as rasterization mode.

■ RenderingAttributes – defines common rendering attributes for all primitive types.

■ TexCoordGeneration – contains all parameters needed for automatic texture
coordinate generation; is included as part of an Appearance component object.

■ Texture – an abstract class that defines the texture properties used when texture
mapping; as an abstract class, all texture objects must be created as either a
Texture2D object or a Texture3D object (both are subclasses of Texture).

■ TextureAttributes – used to define texture-mapping attributes, such as texture
mode, blend color, and perspective correction.

■ TextureUnitState – defines all texture mapping state for a single texture unit; is an
appearance object that contains an array of texture unit state objects to define the
state for multiple texture mapping units.
118 Part I ■ Using JClass Chart 3D with the Java 2 API

■ TransparencyAttributes – describes all attributes affecting object transparency.

8.6 Scene Graph Viewing Object Classes

The Java 3D API includes five classes that are used to view scene graphs:

■ View – contains all parameters needed in rendering a 3D scene from one viewpoint
(note that all Java 3D viewing parameters are contained directly within the View
object or from within objects referenced by it); a View object contains a list of
Canvas3D objects that the view is rendered into, as well as contains a reference to a
PhysicalBody and a PhysicalEnvironment object.

■ PhysicalBody – contains a specification of the user's head; attributes of this object are
defined in the head coordinate system.

■ PhysicalUniverse – contains specification of the physical environment in which the
view will be generated; is used to set up input devices (sensors) for head-tracking and
other uses, and the audio output device.

■ Canvas3D – provides a drawing canvas for 3D rendering (either on-screen or off-
screen rendering); is an extension of Java’s AWT Canvas class that can be subclassed
to implement additional functionality.

■ Screen3D – encompasses all information about a particular screen or display device,
such as the height and width of a screen.

These classes, while not strictly part of the Java 3D scene graph, define important viewing
parameters for Java 3D programs, plus they provide a way for users to interact with the
program.

8.7 BranchGroup and TransformGroup

Recall that the Group class is the superclass that is used to specify the orientation and
location of scene graph objects. Two of its subclasses, BranchGroup and TransformGroup,
are key to using JClass Chart 3D.

BranchGroup
The BranchGroup node is used to construct branches of a Java 3D scene graph by acting
as the root for the subgraph (called branch graph). A branch graph contains the various
nodes that make up a scene graph. To create a branch graph, a developer constructs a
BranchGroup object, then constructs the nodes that it will contain. The nodes
subsequently are added to the BranchGroup. BranchGroups are generally attached to a
Locale, which acts as an anchor for objects in a scene branch graph (only BranchGroup
objects can be attached to a Locale). A Locale, in turn, is attached to a VirtualUniverse
object, which is the top-level object in every Java 3D scene graph.
Chapter 8 ■ Programming with the Java 3D API 119

BranchGroups can be selectively attached and detached from the scene graph. Once a
branch graph is inserted into a Locale, each object in that branch graph becomes live.
Once objects are live, they are subject to being rendered. Also, the parameters of live
objects cannot be modified unless the corresponding capability has been specifically set
before the object became live. By attaching and detaching branch graphs, a Java 3D
developer can control when specific portions of a graph scene are rendered.

Capability bits (or “capabilities of the object”) are a list of parameters that determine
which properties of an object are changeable after that object is made live. Capability bits
must be set before the object is compiled or made live.

Each SceneGraphObject has a suite of capability bits, which varies by class.

A RestrictedAccessException is thrown when an attempt is made to set the capability
bits of an object that is part of a live or a compiled scene graph.

Java 3D programs usually comprise two BranchGroup objects: the view branch graph and
the content branch graph. The view branch graph outlines the viewing parameters, such
as the viewing location and direction. The content branch graph specifies the contents of
the virtual universe: appearance, behavior, geometry, lights, location, and sound.
Together, the two branches stipulate much of the work the renderer has to do.

BranchGroup objects can be compiled. Compiling a BranchGroup converts the internal
representation of the BranchGroup object and all of its ancestors to a more efficient form
for the rendering engine. Compiling BranchGroup objects is recommended as the last step
before making it live.

TransformGroup Class
The TransformGroup class is a subclass of the Group class. TransformGroup objects hold
geometric transformations such as translation and rotation. A TransformGroup node
120 Part I ■ Using JClass Chart 3D with the Java 2 API

specifies the position (relative to the Locale), orientation, and scale of the geometric
objects in the virtual universe.

Figure 30 Basic Virtual Universe hierarchy diagram.

In the figure above, the Shape3D node references, for example, Appearance and
Geometry node components. The Geometry object describes the geometric shape of a
3D object, while the Appearance object describes the appearance of the geometry, such
as color, transparency, and other rendering attributes.
Chapter 8 ■ Programming with the Java 3D API 121

Again, in the figure above, TransformGroup specifies the position (relative to the Locale),
orientation, and scale of ViewPlatform. ViewPlatform defines the end-user’s view within
the virtual universe.

8.8 Rendering

The Java 3D renderer traverses a Java 3D scene graph and displays its visible geometry in
an on-screen window. In addition to drawing visible geometry, the Java 3D renderer also
processes user input and performs behaviors.

The Java 3D API supports three rendering modes. The modes differ in the amount of
control that the developer has over the rendering process, and that Java 3D has over
optimizing rendering:

■ immediate mode

■ retained mode

■ compiled-retained mode

Figure 31 Rendering modes.

Immediate mode
The immediate mode offers the developer complete rendering control, which means that
Java 3D has little opportunity to optimize rendering.

An application must provide a Java 3D draw() method with a complete set of points,
lines, or triangles.

Retained mode
This mode balances the amount of rendering control between the developer and Java 3D.
Retained mode requires that the developer construct a scene graph and specify the parts
of the scene graph that may change during rendering. Scene graphs rendered in this
mode allow the developer to add, delete, or modify nodes. The scene information is
stored in a scene graph structure, so Java 3D is able to perform rendering optimizations in
an effort to increase performance.
122 Part I ■ Using JClass Chart 3D with the Java 2 API

Compiled-retained mode
Similar to retained mode, compiled-retained mode requires that the developer construct a
scene graph and specify the parts of the scene graph that may change in the rendering
process.

A developer can compile individual Java 3D objects, and can specify portions of the
scene graph for Java 3D to compile. While compiled entities are similar to noncompiled
counterparts, compiled scene graphs and objects are stored in an internal format that is
optimized for rendering.

Please note that once scene graphs and objects have been compiled, however, developers
will have limited access to the internal structure.

8.9 Behaviors

To support interactivity, Java 3D allows developers the opportunity to create customized
behaviors for objects in a virtual universe, embedding the logic into the scene graph so
that an object can change in response to specific input or a stimulus.

Behavior node
A Behavior node can be added or removed from a scene graph. Every Behavior node
contains a scheduling region that defines a spatial volume for enabling node scheduling.

A Behavior node contains an initialization() method that initializes the internal state
of the behavior and specifies one or more wakeup conditions. The initialization()
method is called when the BranchGroup object containing the behavior is added to the
virtual universe.

As well, all Behavior nodes contain a processStimulation() method, which is used to
receive and process stimulation. A behavior’s processStimulation() method is invoked:

■ when the node is active; and

■ when one of its wakeup criteria is honored

8.10 Java 3D-Enabled Charting Features

8.10.1 Texture Mapping

For more control over the output, the Java 3D implementation of JClass Chart 3D
provides you with methods which allow you to apply an image to the walls of the chart
plot cube. These easy methods enable you to add texture and graphics to objects,
allowing an enhanced artistic representation.
Chapter 8 ■ Programming with the Java 3D API 123

The first step in applying a Texture Map is to ensure that the image you would like to use
is a Java 3D Texture object. The JCTexture2D class will provide you with many static
factory methods to convert your image into a valid Texture2D object. Please note that
because OpenGL imposes limits on the size of a Texture2D object, the factory methods in
JCTexture2D will help you create a valid Texture2D object using an arbitrarily sized
image.

Note: If the dimension of your source image is not a power of 2 (for instance, 512 or
1024), JCTexture2D.createTexture(String filename, Color fill) will center the
image specified by filename in a larger image that is dimensionally correct. Any empty
space around the original image will be filled with the color specified by the specified
Color argument fill.

For more control over the alignment of the image within the Texture object use the
following factory method:

JCTexture.createTexture(String filename, boolean square,
int hAlignment, int vAlignment, Color fill)

where hAlignment is one of SwingConstants.LEFT, SwingConstants.CENTER, or
SwingConstants.RIGHT, vAlignment is one of SwingConstants.TOP,
SwingConstants.CENTER, or SwingConstants.BOTTOM, and the Boolean square argument
is used to force the final Texture object to be square if set to true. Please note that the
filename argument must point to a valid image file which can be loaded by the Java
AWT Toolkit, or by Java Advanced Imaging (JAI) if it is installed. Please refer to the
respective APIs to find out which formats are valid.

For even more control over the construction of a Texture2D object, you can use any of
the factory methods found in the TextureLoader class, or manipulate them yourself.
Please refer to the Java 3D API for the Texture2D class for further details on constructing
a Texture2D object, and for further details on the Texture2D object itself.

To apply your Texture2D object to the cube walls, use one of the JCPlotCube methods,
such as setWallTexture(int face, Texture2D texture, double angle) or
setTexture(Texture2D texture).

8.10.2 Lighting
In order to create a virtual universe that has a realistic appearance, one must consider the
lighting in the environment. The way that the light influences the appearance of objects is
essential to creating the view you want to achieve. Java 3D gives JClass Chart 3D the
power of selecting among four types of lighting to use in your output:

■ ambient light

■ directional light

■ point light

■ spot light
124 Part I ■ Using JClass Chart 3D with the Java 2 API

Note: Lighting can become a resource-intensive feature for browsers. It is recommended
that you do not overuse the amount of light sources you have in your 3D virtual universe.

Ambient Light
Ambient light is uniform light, and thus produces uniform shade. Ambient light is
intended as fill light in the scene where other sources do not light.

// AmbientLight Code Example
chart3d = new JCChart3dJava3d();

.

.

.
JCChart3dAreaX area = (JCChart3dAreaX)(chart3d.getChart3dArea());
AmbientLight light = new AmbientLight();
light.setColor(new Color3f(java.awt.Color.yellow));
light.setEnable(true);
area.addLighting(light);

Directional Light
Directional light is representational of the sun in our universe. In the virtual universe,
however, the light has no source, only parallel rays that all approach from the same
direction. A directional light source is very useful when creating an environment that
requires proper lighting, without much consideration to the actual source. Directional
light can either be on or off. Because directional light is not ambient light, thus it does not
degrade in any way, that is, it will produce a uniform shade.

Figure 32 The effect of directional light on a cube.
Chapter 8 ■ Programming with the Java 3D API 125

Although you can manipulate the color and intensity of directional light, this type of
lighting does not allow much other control. By setting the On field to true, the directional
light will have been turned on.

// DirectionalLight Code Example
chart3d = new JCChart3dJava3d();

.

.

.
JCChart3dAreaX area = (JCChart3dAreaX)(chart3d.getChart3dArea());
DirectionalLight light = new DirectionalLight();
light.setColor(new Color3f(java.awt.Color.yellow));
light.setDirection(new Vector3f(0.0f, -1.0f, 0.0f));
light.setEnable(true);
area.addLighting(light);

Point Light
A point light is a light source representative of a light bulb, where the light is emitted from
one location in a radial pattern. One can select the source location of this type of light, as
well as customizing the color and intensity.

Figure 33 The effect of point light on a cube.
126 Part I ■ Using JClass Chart 3D with the Java 2 API

Point light also has the added capacities of attenuation and ambient intensity. Attenuation
is the reproduction of “light attenuation”, the process by which light tapers off as it
progresses in the distance. By using this feature, the scene will appear more realistic.

// PointLight Code Example

chart3d = new JCChart3dJava3d();
.
.
.

JCChart3dAreaX area = (JCChart3dAreaX)(chart3d.getChart3dArea());
PointLight light = new PointLight();
light.setColor(new Color3f(java.awt.Color.yellow));
light.setPosition(new Point3f(0.0f, 2.0f, 0.0f));
light.setAttenuation(new Point3f(1.0f, 0.0f, 0.0f));
light.setEnable(true);
area.addLighting(light);

Spot Light
Similar to a spot light in the real world, the spot light node is used to create light that
travels in one specified direction in what appears to be a cone. This “light cone” forces
the light to concentrate upon specific locations, leaving the rest of the environment in the
darkness.

Figure 34 The effect of spot light on a cube.
Chapter 8 ■ Programming with the Java 3D API 127

Spot light is the most complex light source, in that there are several fields that must be
specified in order to create ideal lighting. These include location, concentration, and
attenuation, along with direction, beamWidth and spreadAngle.

// SpotLight Code Example

chart3d = new JCChart3dJava3d();
.
.
.

JCChart3dAreaX area = (JCChart3dAreaX)(chart3d.getChart3dArea());
SpotLight light = new SpotLight();
light.setColor(new Color3f(java.awt.Color.yellow));
light.setPosition(new Point3f(0.0f, 2.0f, 0.0f));
light.setAttenuation(new Point3f(1.0f, 0.0f, 0.0f));
light.setDirection(new Vector3f(0.0f, -1.0f, 0.0f));
light.setSpreadAngle((float)(Math.PI/2.0));
light.setConcentration(1.0f);
light.setEnable(true);
area.addLighting(light);

Since the spot light does not emit light in a radial range, it is necessary to direct the light
to the appropriate location. Do this by customizing the direction field, knowing that the
location field specifies the tip of the light, and the direction specifies its final destination.

The next two fields, concentration and spreadAngle, deal with the “light cone” that is
emitted. In other words, it will indicate how large the light source will be when it hits its
final destination, at full intensity.

8.10.3 Depth Cue

JClass Chart 3D has the capability, when using the Java 3D implementation, to add a fog-
like appearance to the charts you produce. Hence, you can create visual effects to
simulate haze, mist, smoke, or pollution, blurring the appearance of all objects to which
the effect is applied.

The Fog node can be used to enhance the appearance of a JClass Chart 3D object,
making it appear more realistic. Based on distance from the viewer, Java 3D will blend
the fog color with objects in the scene – objects that are the furthest from the viewpoint
will be the most blended. Typically the Fog node is used to make objects in the distance
blur, although the opposite effect is possible.

It is suggested that one uses the same color for both the fog color and JCChart3dArea
background color, forcing objects that are completely obscured by the fog to blend into
the background.

To calculate the color of the fog applied to an object, the following equation is used:

foggedColor = fogFactor * originalColor + (1-fogFactor) * fogColor
128 Part I ■ Using JClass Chart 3D with the Java 2 API

where the fogFactor is some function of the distance the viewer is from the object (Z-
depth). The exact relationship depends upon the type of fog used in the virtual universe –
either LinearFog or ExponentialFog.

Fog
The Fog leaf node defines a set of fog parameters common to all types of fog. These
parameters include the fog color and a region of influence in which this Fog node is
active. A Fog node also contains a list of Group nodes that specifies the hierarchical scope
of this Fog. If the scope list is empty, then the Fog node has universe scope: all nodes
within the region of influence are affected by this Fog node. If the scope list is not empty,
then only those Leaf nodes under the Group nodes in the scope list are affected by this
Fog node (subject to the influencing bounds).

If the regions of influence of multiple Fog nodes overlap, Java 3D will choose a single set
of fog parameters for those objects that lie in the intersection. This is done in an
implementation-dependent manner, but in general, the Fog node that is closest to the
object is chosen.

Fog is an abstract class with two subclasses: LinearFog and ExponentialFog.

LinearFog
LinearFog is a Leaf node that defines the parameters of fog distance for a linear fog.
LinearFog extends the Fog node by adding a pair of distance values, in Z, at which the fog
should start obscuring the scene and should maximally obscure the scene. The front and
Chapter 8 ■ Programming with the Java 3D API 129

back fog distances are defined in the local coordinate system of the node, but the actual
fog equation will ideally take place in eye coordinates.

// LinearFog Code Example

chart3d = new JCChart3dJava3d();
.
.
.

JCChart3dAreaX area = (JCChart3dAreaX)(chart3d.getChart3dArea());
LinearFog fog = new LinearFog();
fog.setColor(new Color3f(java.awt.Color.black));
fog.setFrontDistance(4.5f);
fog.setBackDistance(7.0f);
area.addFog(fog);

Figure 35 The effect of LinearFog on a cube.

Figure 36 The effect of the Fog turned off.
130 Part I ■ Using JClass Chart 3D with the Java 2 API

When using LinearFog, the fogFactor is directly proportional to the Z-depth (distance of
the viewer to the object). The fogFactor can be calculated using the following
expression:

fogFactor = (backDistance - z) / (backDistance - frontDistance)

where z is the distance from the viewpoint, backDistance is the Z-depth at which all
objects will be completely obscured by the fog, and frontDistance is the Z-depth at
which fog begins to take effect.

ExponentialFog

The ExponentialFog leaf node extends the Fog node by adding fog density. This density
is a value created through an exponent, based on distance, of the fogging. This creates the
effect of a nearby object having no fog, and the more distant objects having an
exponential amount of fog.

In addition to specifying the fog density, ExponentialFog lets you specify the fog color,
which is represented by R, G, and B color values, where a color of (0,0,0) represents black
and (1,1,1) represents white.

ExponentialFog increases the fogFactor exponentially as the Z-depth of the object
increases, following the proceeding expression:

fogFactor = e-(density * z)

where z is the distance from the viewpoint and density is the density of the fog.

// ExponentialFog Code Example

chart3d = new JCChart3dJava3d();
.
.
.

JCChart3dAreaX area = (JCChart3dAreaX)(chart3d.getChart3dArea());
ExponentialFog fog = new ExponentialFog();
fog.setColor(new Color3f(java.awt.Color.black));
fog.setDensity(1.0f);
area.addFog(fog);
Chapter 8 ■ Programming with the Java 3D API 131

132 Part I ■ Using JClass Chart 3D with the Java 2 API

Part
II

Reference
Appendices

Appendix A
Interface Listing

Interface Summary

This appendix summarizes the commonly used JClass Chart 3D 3D interfaces, in
alphabetical order.

A.1 Interface Summary

Name Description

Chart3dDataListener A template for event listener interfaces for chart
data events.

Chart3dDataModel The core data model interface for JClass Chart
3D.

Chart3dGridDataModel The core grid data model interface for
JClass Chart 3D.

Chart3dPointDataModel The core point data model interface for
JClass Chart 3D.

Editable3dDataModel Indicates to interested classes that this datamodel
is editable.

HoleValueChart3dDataModel An interface used to specify hole values for a
JClass Chart 3D data model.

JCChart3dListener Event listener interface for chart events.

JCContourMapping Allows the user to change the default contour
level to contour style mapping.

LabelledChart3dGridDataModel An interface used to specify X- labels and Y-
labels for a JClass Chart3dGrid data model.

LabelledChart3dPointDataModel An interface used to specify series labels for a
JClass Chart3dPoint data model.
135

136 Part II ■ Reference Appendices

Appendix B
Object Property Listing

Chart3D ■ Chart3d.Event ■ Chart3d.j2d ■ Chart3d.j2d

This appendix summarizes the JClass Chart 3D 3D properties for all commonly used
classes, in alphabetical order.

B.1 Chart3D

B.1.1 Chart3dData

B.1.2 Chart3dDataView

Name Description

DataOK The DataOK property asks: Is the data passed in through the
data source in a state in which it can be drawn?

DataSource The DataSource property represents the data source for the
internal data object.

HoleValue The HoleValue property holds a special data value which
determines where holes are drawn.

Name The Name property, which is optional, holds the name of this
data source.

Name Description

ChartType The ChartType property holds the chart type of this dataView.

Contour The Contour property references the JCContour object, which
handles contouring and zoning.

Elevation The Elevation property controls the JCElevation object,
which determines meshing, shading, and transparency.
137

B.1.3 Chart3dGridData

B.1.4 Chart3dPointData

GridColors The GridColors property allows certain facets or bars to have
different colors.

Name The Name property represents the name of this dataView.

ZoneData The ZoneData property represents the internal zone data
object.

ZoneDataSource The ZoneDataSource property represents the zone data source
for this dataView.

Name Description

ChartStyle The ChartStyle property contains the chart style used if the
chart type is a scatter plot; contoured and zoned are false.

NumX The NumX property represents the number of X- grid values
used. This is a read-only property.

NumY The NumY property represents the number of Y-grid values
used. This is a read-only property.

xGrid The xGrid property represents the array of X- grid values. This
is a read-only property.

xLabels The xLabels property represents the X- data labels for this
gridData object.

yGrid The yGrid property represents the array of Y-grid values. This
is a read-only property.

yLabels The yLabels property represents the Y-data labels for this
gridData object.

ZValues The ZValues property represents the grid of Z values. This is a
read-only property.

Name Description

NumSeries The NumSeries property determines the number of series. This
is a read-only property.

Name Description
138 Part II ■ Reference Appendices

B.1.5 Chart3dPointSeries

B.1.6 JCAxis

Series The Series property contains the list of series for this point
data object. This is a read-only property.

Name Description

ChartStyle The ChartStyle property contains the chart style for this
series.

Label The Label property controls the data label for this series and is
used in the legend.

NumPoints The NumPoints property represents the number of points for
this series. This is a read-only property.

Points The Points property represents the array of points for this
series. This is a read-only property.

Name Description

AnnoFont The AnnoFont property represents the annotation font and size
for this axis.

AnnoFontCubeSize The AnnoFontCubeSize property represents the annotation font
cube size for this axis (this size is measured in thousandths of
the unit cube size and must be between 0 and 1000).

AnnotationMethod The AnnotationMethod property determines the annotation
method.

AxisId The AxisId property determines the axis id number. Usually
one of AXIS_X, AXIS_Y, or AXIS_Z. You can only set this
property on creation.

GridLines The GridLines property determines the gridlines on a per
plane basis for this axis.

LabelGenerator The LabelGenerator property holds a reference to an object
that implements the JCLabelGenerator interface. This interface
is used to externally generate labels if the AnnotationMethod
property is set to JCAxis.VALUE. Default value is null.

Name Description
Appendix B ■ Object Property Listing 139

B.1.7 JCBar

Max The Max property controls the axis maximum value.

MaxIsDefault The MaxIsDefault property determines whether Chart3d is
responsible for calculating the maximum axis values. If true,
Chart3d calculates the axis max. If false, Chart3d uses the
provided axis max.

Min The Min property controls the axis minimum value.

MinIsDefault The MinIsDefault property determines whether Chart3d is
responsible for calculating the minimum axis value. If true,
Chart3d will calculate the axis min. If false, Chart3d will use
the provided axis min.

Origin The Origin property is used for Z axis only (for bars and scatter
plot drop lines).

Showing The Showing property asks: Is the axis showing?

Title The Title property controls the axis title.

TitleFont The TitleFont property controls the title font and size for this
axis.

TitleFontCubeSize The TitleFontCubeSize property controls the title font cube
size for this axis (this size is measured in thousandths of the unit
cube size and must be between 0 and 1000).

ValueLabels The ValueLabels property is an indexed property containing a
list of all annotation specified by the user for an axis.

Name Description

xFormat The xFormat property represents the X- bar format.

xSpacing The xSpacing property represents the X- bar spacing.

yFormat The yFormat property represents the Y-bar format.

ySpacing The ySpacing property represents the Y-bar spacing.

Name Description
140 Part II ■ Reference Appendices

B.1.8 JCChart3d

Name Description

About The About property displays contact information for Quest
Software in the bean box.

AllowUserChanges The AllowUserChanges property determines whether the user
viewing the chart can modify chart values. Used to allow edits
to values and changes to parameters via the Customizer.

Batched The Batched property controls whether chart updates are
accumulated.

CancelKey The CancelKey property specifies the key used to cancel the
current action.

Chart3dArea The Chart3dArea property controls the component that
manages the area where the chart is drawn.

CustomizerName The CustomizerName property specifies the name of the
Customizer (used for instantiation).

DataView The DataView property contains a list of dataViews for this
chart.

Footer The Footer property controls the footer for this chart.

FooterLayoutHints The FooterLayoutHints property is used to give the layout
manager information about the position and size of the footer.

Header The Header property controls the header for this chart.

HeaderLayoutHints The HeaderLayoutHints property is used to give the layout
manager information about the position and size of the header.

Legend The Legend property controls the legend for this chart.

LegendLayoutHints The LegendLayoutHints property is used to give the layout
manager information about the position and size of the legend.

LegendManager The LegendManager property controls the default
implementation of the legend populator and renderer.

Pick3dListener The Pick3dListener property represents the current list of
JCPick3dListener's for this chart.

ResetKey The ResetKey property specifies the key used to reset the
drawing viewport to its default value.

WarningDialog The WarningDialog property controls whether a dialog will
appear when the chart has warning messages.
Appendix B ■ Object Property Listing 141

B.1.9 JCChart3dArea

B.1.10 JCChart3dLegend

Name Description

ActionHandler The ActionHandler property is the handler that's handling any
action in progress.

Axes The Axes property contains a list of the X, Y, and Z axis
objects.

Bar The Bar property represents the object that controls bar chart
only properties.

InAction The InAction property asks: Are we currently in an action?

PlotCube The PlotCube property controls the object that controls
properties of the plot cube.

PreferredSize The PreferredSize property asks: What is our preferred size?
If null, a default size is used.

Scatter The Scatter property controls the object that controls scatter
plot-only properties.

Surface The Surface property controls the object that controls surface-
only properties.

View3d The View3d property represents an object that controls the X,
Y, Z rotation.

Viewport The Viewport property represents an object that allows the
user to control the drawing viewport.

xAxis The xAxis represents the axis in the X- direction.

yAxis The yAxis represents the axis in the Y-direction.

zAxis The zAxis represents the axis in the Z direction.

Name Description

ContinuousLayout The ContinuousLayout property asks: Is layout really
continuous?

DistRange The DistRange property controls the constraints to place upon
the data ranges that appear in the legend.
142 Part II ■ Reference Appendices

B.1.11 JCChart3dLegendManager

B.1.12 JCChart3dStyle

GroupGap The GroupGap property represents the space between groups in
a legend. (Columns when the legend is vertical; rows when the
legend is horizontal.)

HorizItemGap The HorizItemGap property represents the space between
items.

InsideItemGap The InsideItemGap property represents the space between
symbol and String inside item.

LabelGenerator The LabelGenerator property holds a reference to the label
generator class.

LayoutStyle The LayoutStyle property represents the style to use when
laying out ranges.

MarginGap The MarginGap property represents the space between outside
and inside of legend.

UserLabels The UserLabels property represents the list of user-specified
legend labels.

Name Description

FieldGap The FieldGap property defines the gap between fields in
JCMultiColumnStrings.

OutlineColor The OutlineColor property determines the user-specified
outline color for legend items.

Name Description

LineStyle The LineStyle property controls the line style to be used for
this chart style.

SymbolStyle The SymbolStyle property controls the symbol style to be used
for this chart style.

Name Description
Appendix B ■ Object Property Listing 143

B.1.13 JCContour

B.1.14 JCContourLevels

B.1.15 JCContourStyle

Name Description

Contoured The Contoured property asks: Draw the contour lines?

ContourLevels The ContourLevels property represents a list of contour levels.

ContourMapping The ContourMapping property represents a mapping of contour
levels to contour styles.

ContourStyles The CoutourStyles property represents a list of contour styles
which determine how zones and contour lines are drawn.

Zoned The Zoned property asks: Draw contour zones?

ZoneMethod The ZoneMethod property represents a zoning filling method.

Name Description

IsDefault The Default property asks: Are linear contour levels generated
automatically (based on numLevels)?

Levels The Levels property represents a strictly increasing array of
contour levels.

NumLevels The NumLevels property represents the number of contour
levels.

Name Description

FillStyle The FillStyle property controls the fill style to be used for
this contour style.

LineStyle The LineStyle property controls the line style to be used for
this contour style.

SymbolStyle The SymbolStyle property controls the symbol style to be used
for this contour style.
144 Part II ■ Reference Appendices

B.1.16 JCData3dContourIndex

B.1.17 JCData3dGridIndex

B.1.18 JCData3dIndex

B.1.19 JCData3dPointIndex

Name Description

ContourStyleIndex The ContourStyleIndex property controls the index of the
contour style selected.

LowerContour
RangeValue

The LowerContourRangeValue property represents the lower
value of the range for the selected contour.

UpperContour
RangeValue

The UpperContourRangeValue property represents the upper
value of the range for the selected contour.

Name Description

x The X- property controls the X-index of selected data point.

y The Y-property controls the Y-index of the selected data point.

Name Description

DataView The DataView property represents the data view object for the
data point that this index references.

Distance The Distance property controls the distance of a selected point
from a pixel position.

Obj The Obj property represents the component picked. It could be
one of the Chart3dArea, Legend, Header or Footer
components.

Name Description

Point The Point property controls the point index of the selected
point.

Series The Series property controls the series index of the selected
point.
Appendix B ■ Object Property Listing 145

B.1.20 JCElevation

B.1.21 JCGridColor

B.1.22 JCGridLines

Name Description

MeshBottomColor The MeshBottomColor property controls the mesh bottom
color, in certain cases.

Meshed The Meshed property asks: Are mesh lines drawn?

MeshTopColor The MeshTopColor property controls the mesh top color, which
is only drawn in certain cases.

Shaded The Shaded property asks: Are facets shaded?

ShadedBottomColor The ShadedBottomColor property controls the shaded bottom
color, which is only drawn in certain cases. Currently not
available for surfaces in the Java 3D API version of
JClass Chart 3D.

ShadedTopColor The ShadedTopColor property controls the shaded top color,
which is only drawn in certain cases. Currently not available
for surfaces in the Java 3D API version of JClass Chart 3D.

Transparent The Transparent property asks: Are surfaces/bars transparent?
or equivalently: Are hidden lines drawn?

Name Description

Color The Color property determines the color to give selected bars.

DataIndex The DataIndex property represents the grid index of the
selected bar (or row/column or bars).

Name Description

LineStyle The LineStyle property controls the gridline color, width, and
pattern.

PlaneMask The PlaneMask property controls the plane mask.
146 Part II ■ Reference Appendices

B.1.23 JCLineStyle

B.1.24 JCPlotCube

B.1.25 JCProjection

Name Description

Cap The Cap property dictates the cap style to use at the ends of a
line.

Color The Color property determines the color used to draw the line.

Join The Join property dictates the join style to use when joining
two lines.

Pattern The Pattern property dictates the pattern used to draw a line.

Width The Width property controls line width.

Name Description

Background The Background property determines the plotCube’s
background color. If null, the chart3dArea’s background color
is used.

Ceiling The Ceiling property determines the plotCube’s ceiling
projection.

Floor The Floor property determines the plotCube’s floor
projection.

Foreground The Foreground property determines the plotCube’s
foreground color. If null, the chart3dArea’s foreground color is
used.

xScale The xScale property determines the scale in the X direction.

yScale The yScale property determines the scale in the Y direction.

zScale The zScale property determines the scale in the z direction.

Name Description

Contoured The Contoured property asks: Are contour lines drawn for this
projection?
Appendix B ■ Object Property Listing 147

B.1.26 JCScatter

B.1.27 JCSurface

B.1.28 JCSymbolStyle

Zoned The Zoned property asks: Are contour zones drawn for this
projection?

Name Description

DropLines The DropLines property asks: Are drop lines drawn? (Not
currently available in the Java 3D API version of JClass Chart
3D.)

Name Description

Solid The Solid property asks: Should solid “skirts” under the
surface be drawn?

xMeshFilter The xMeshFilter property represents the filter value for X
mesh lines. In the Java 3D API version of JClass Chart 3D, you
can show either none or all of the meshed lines.

xMeshShowing The xMeshShowing property asks: Are X mesh lines showing?
In the Java 3D API version of JClass Chart 3D, you can show
either none or all of the meshed lines.

yMeshFilter The yMeshFilter represents the filter value for Y mesh lines.
In the Java 3D API version of JClass Chart 3D, you can show
either none or all of the meshed lines.

yMeshShowing The yMeshShowing property asks: Are Y mesh lines showing?
In the Java 3D API version of JClass Chart 3D, you can show
either none or all of the meshed lines.

Name Description

Color The Color property determines the color used to paint the
symbols.

Shape The Shape property determines the shape of symbol that will
be drawn.

Name Description
148 Part II ■ Reference Appendices

B.1.29 JCValueLabel

B.1.30 JCView3d

B.1.31 JCViewport

Size The Size property determines the size of the symbols. Note
that a value of zero size means the symbol will not be drawn.

Name Description

Label The Label property specifies the text displayed inside the value
label.

TickOnly The TickOnly property specifies that only a minor tick is drawn
for this label if true.

Value The Value property controls the position of a label in data
space along a particular axis.

Name Description

Perspective The Perspective property determines the plot cube
perspective value.

xRotation The xRotation property represents the X-rotation angle.

yRotation The yRotation property represents the Y-rotation angle.

zRotation The zRotation property represents the Z rotation angle.

Name Description

HorizontalShift The HorizontalShift property controls the horizontal shift as
a multiple of the original viewport size.

Normalized The Normalized property asks: Is the viewport normalized?

PreviewMethod The PreviewMethod property controls the preview method.

Scale The Scale property represents the zoom factor.

VerticalShift The VerticalShift property controls the vertical shift as a
multiple of the original viewport size.

Name Description
Appendix B ■ Object Property Listing 149

B.2 Chart3d.Event

B.2.1 Chart3dDataEvent

B.3 Chart3d.j2d

B.3.1 JCChart3dJava2d

B.4 Chart3d.j3d

B.4.1 JCChart3dJava3d

Name Description

Index The Index property controls the index object which gives
information about which grid or point index affected.

Type The Type property contains the type of change that has
happened to the chart data.

Name Description

JCChart3dJava2d Default constructor, required by Java Beans.

Name Description

JCChart3dJava3d Default constructor, required by Java Beans.
150 Part II ■ Reference Appendices

Appendix C
Additional Common JClass Chart 3D 3D

Methods
Chart3D ■ Chart3d.Event

This appendix summarizes the JClass Chart 3D 3D extra methods for all commonly used
classes, in alphabetical order.

C.1 Chart3D

C.1.1 Chart3dDataView

Name Description

coordToDataCoord Same as map(). Converts pixel coordinates to data space
coordinates.
Parameters:
x – x value in screen pixels.
y – y value in screen pixels.
Returns:
Point3d instance.

dataCoordToCoord Same as unmap(). Converts data coordinates to pixel
coordinates.
Parameter:
point – The point in 3d data space to be transformed.
Returns:
AWT Point object representing the location in screen pixels
(relative to the Chart 3D component).
151

dataIndexToCoord Similar to unpick() for a specific this specific data view.
Converts a JCData3dIndex instance (containing a data view
and a point index for either grid data or point data) to pixel
values relative to the Chart 3D component.
Parameter:
index – Object representing the index of the point to unpick.
This is either a JCData3dGridIndex representing the (x, y)
index of grid data point or a JCData3dPointIndex representing
the (series, point) index of a point in a point data set.
Returns:
AWT Point object representing the location is screen pixels
relative to the Chart 3D component.

coordToDataIndex Similar to pick() for a specific data view. Converts pixel values
relative to the Chart 3D component to a JCData3dIndex
instance representing the index of the picked point. This is
either a JCData3dGridIndex representing the (x, y) index of
grid data point or a JCData3dPointIndex representing the
(series, point) index of a point in a point data set.
Parameters:
x –The X value of screen position.
y – The Y value of screen position.
Returns:
The JCData3dIndex object representing the index of the picked
point.

dragZValue Finds a new z value for a given point based on a given pixel
position. Given a start point A (for grid data a point on the grid;
for point data one of the points in the list of series) and a point
P on the screen, project the line AP (in 3D-space) onto the line
through A parallel to the z axis and find the z value that
corresponds to P on the projected line.
Parameters:
data – The data for which this operation is to take place. It is
either an instance of Chart3dGridData or Chart3dPointData.
index – The data index of the point. For grid data, this must be
an instance of JCData3dGridIndex, which corresponds to an X-
and Y-grid position specification. For point data, this must be
an instance of JCData3dPoint index which corresponds to the
series and point number of the point.
x – The X- value of screen position.
y – The Y-value of screen position.
Returns:
The new computed z value.

Name Description
152 Part II ■ Reference Appendices

C.1.2 Chart3dGridData

C.1.3 Chart3dPointData

gridValue Given grid data and an (x,y) point on the visible xy plane
within the grid, do bilinear interpolation using the four closest
grid points and return the corresponding z value.
Parameters:
data – The internal grid data object. This can be retrieved from
a Chart3dDataView object via getElevationData() or
getZoneData().
x – The X- data-space value
y – The Y-data-space value
Returns:
The interpolated z value. Returns the data's hole value if an
error occurs.

Name Description

getX Returns the X- value at the specified index.

getXClosest Returns the index that contains the X- value closest to the
specified value.
Parameter:
x – The value for which the closest index should be found.

getY Returns the Y-value at the specified index.

getYClosest Returns the index that contains the Y-value closest to the
specified value.
Parameter:
y – The value for which the closest index should be found.

Name Description

getPoint Returns the point indexed by pointNum in the series indexed
by seriesNum.
Parameters:
seriesNum – The series index of the point wanted.
pointNum – The point index of the point wanted.
Returns:
The point indexed by series and point.

Name Description
Appendix C ■ Additional Common JClass Chart 3D 3D Methods 153

C.1.4 Chart3dPointSeries

C.1.5 JCAxis

C.1.6 JCChart3d

Name Description

getPoint Returns the point in the points array indexed by point.
Parameter:
point – The index of the point to be returned.
Returns:
The point indexed by point.

Name Description

getValueLabel Retrieves the value label for the specified value from the list of
user-specified value labels.
Parameter:
value – Data value corresponding to the value label.
Returns:
JCValueLabel instance.

Name Description

addChart3dListener Adds listener to changes in JClass Chart 3D. Called after zoom,
translate, scale, rotate, or edit (interactive only).
Parameter:
l – The listener to be added.

getDrawingArea Gets the drawing area represented by this chart.
Returns:
Rectangle object containing drawing area.

getDrawingArea
Height

Gets the height of the drawing area represented by this chart.
Specified by:
getDrawingAreaHeight in interface
com.klg.jclass.util.legend.LegendComponentLayoutUser.
Returns:
The height of the drawing area.
154 Part II ■ Reference Appendices

getDrawingArea
Width

Gets the width of the drawing area represented by this chart.
Specified by:
getDrawingAreaWidth in interface
com.klg.jclass.util.legend.LegendComponentLayoutUser.
Returns:
The width of the drawing area.

getLayoutHints Sets and gets layout hints for chart children. Hints are rectangle
objects.
A value of Integer.MAX_VALUE in the rectangle's members
indicates to calculate default values during layout. Other values
indicate to the layout to use that value. For example, a
rectangle with members x=5, y=10, width=MAX_VALUE, and
height=200, would indicate to the layout mechanism that the
chart child should be placed at (5,10), have a height of 200, and
use the default width. Layout hints are only used by the
DefaultChartLayout layout manager.
Parameter:
child – Chart child – either the chart3dArea, legend, header, or
footer.
layoutHints – Rectangle object containing the desired layout
hints.

getUI Returns and sets the UI for JCChart3d.
Overrides:
setUI in class javax.swing.JComponent.
Parameter:
newUI – The new user interface object.

getUIClassId Returns the UIClass ID for JCChart3d.
Overrides:
getUIClassID in class javax.swing.JComponent.

isProjection Is the surface represented by the first dataView a 3d view or a
2d projection?
Returns:
A Boolean indicating whether the first dataView is a 2D
projection or not.

Name Description
Appendix C ■ Additional Common JClass Chart 3D 3D Methods 155

pick Given a screen position in pixels, returns a JCData3dIndex
object that represents the index of the closest point in the
elevation data set of the specified ChartData3dView instance. If
no data view is supplied, all data views are considered when
finding the closest point (only one dataView is currently
supported). If the data in a data view is being updated when
pick() is called, the result may be incorrect.
Parameters:
p – Pick point in pixels relative to the JCChart3d object
dataView – Data view on which to perform pick; if null, all data
views are used (only one dataView is currently supported).
Returns:
The JCData3dIndex object representing the index of the picked
point. This is either a JCData3dGridIndex representing the (x,
y) index of grid data point, a JCData3dPointIndex representing
the (series, point) index of a point in a point data set, or a
JCData3dContourIndex representing a contour range.

printAll Prints this component and all of its subcomponents.
Overridden from java.awt.Component, but should be used in
the same way.
Overrides:
printAll in class javax.swing.JComponent.
Parameter:
g – The graphics object used to paint.

recalc Recalculates the entire chart if it has been marked for
recalculation.

removeChart3d
Listener

Removes listener to changes in JClass Chart 3D from list of
listeners.
Parameter:
l – The listener to be removed.

reset Performs a reset on the chart. Returns to the chart3d its default
dataport.

Name Description
156 Part II ■ Reference Appendices

C.1.7 JCChart3dArea

snapshot Takes a snapshot of the current chart and places it in an image
of the specified type. The image types are as specified in the
BufferedImage class. BufferedImage.TYPE_INT_ARGB is a good
default for representing many possible colors. If using fewer
than 256 colors, BufferedImage.TYPE_BYTE_INDEXED may
prove to generate faster and smaller images.
Parameter:
imagetype – The type of image to write to, as defined in the
java.awt.image.BufferedImage class.
Returns:
Image object containing snapshot of chart.

unpick Returns the position in screen pixels of a particular point in a
particular data set (grid data or point data).
Parameters:
dataView – The data view containing the specified series.
index – The data index of the point. This is either a
JCData3dGridIndex representing the (x, y) index of grid data
point or a JCData3dPointIndex representing the (series, point)
index of a point in a point data set.
Returns:
AWT Point object representing position in screen pixels relative
to the JCChart3d object or null if the point does not exist.

update Forces the chart to re-layout and recalculate.

updateUI Updates the UI for JCChart3d.
Overrides:
updateUI in class javax.swing.JComponent.

Name Description

getAxis Sets and returns the axis based on the given axisId.
Parameter:
axisId – The axis ID (either AXIS_X, AXIS_Y, or AXIS_Z).

getDrawingArea Gets the bounding rectangle of the component's drawing area
(its area minus the shadows and insets).
See Also:
JComponent.setBorder(javax.swing.border.Border).

Name Description
Appendix C ■ Additional Common JClass Chart 3D 3D Methods 157

C.1.8 JCContour

C.1.9 JCContourLevels

C.1.10 JCPlotCube

getMinimumSize Returns the minimum size for the chart area.
Overrides:
getMinimumSize in class javax.swing.JComponent.
Returns:
A Dimension object containing the minimum size.

recalc If necessary, forces recalculation of the chart area.

reset Returns the chart back to the default viewport settings.

Name Description

contourIndex Returns the contour style index that corresponds to this level. This
mapping is based on an even distribution of contour styles through the
number of levels.
Specified by:
contourIndex in interface JCContourMapping.

Name Description

getLevelFromValue Calculates the contour level for this value.
Note that we return a value between 0 and numLevels (inclusive
- there should be one more contourStyle than contour level).
Parameter:
value – The data value from which a contour level is calculated.

Name Description

hasCeilingProjection Does this PlotCube have a ceiling projection?

hasFloorProjection Does this PlotCube have a floor projection?

hasProjections Does this PlotCube have any projections?

Name Description
158 Part II ■ Reference Appendices

C.2 Chart3d.Event

C.2.1 Chart3dGridDataEvent

C.2.2 Chart3dPointDataEvent

Name Description

getX Method which returns the X-index of the affected data.
Returns -100, if all X- values are affected.
Returns:
index the X-index affected.

getY Method which returns the Y-index of the affected data. Returns
-100, if all Y-values are affected.
Returns:
index the Y-index affected.

Name Description

getPoint Retrieves the point index associated with the event.
Returns:
int the index of the point affected. Returns -100 if all points are
affected.

getSeries Retrieves the series index associated with the event.
Returns:
int the index of the series affected. Returns -100 if all series are
affected.
Appendix C ■ Additional Common JClass Chart 3D 3D Methods 159

160 Part II ■ Reference Appendices

2D scatter plot 66
3D scatter plot

with drop lines 66
Index
3D scatter plots 66
4D charts 93

creating 93
4D graphs 93, 94

creating 93
legend 95

A
access an element of a collection 18
action

adding 102
cancel 103
custom 102
customize 103
edit 103
pick 103
removing 102
reset 103
rotate 103
rotateEye 103
rotateX 103
rotateY 103
rotateZ 103
scale 104
switchRotateAny 104
switchRotateEye 104
switchRotateX 104
switchRotateY 104
switchRotateZ 104
translate 104
zoom 104

addGridColor() 57
AllowUserChanges property 25
Alpha 118
ambient

intensity 127
light 125

annoFont property 28
annoFontCubeSize property 28
annotationMethod property 27, 40, 41
API 4
Appearance 118
assumptions 2
attenuation 127
AuralAttributes 118
AWT 104

axis
annotation 39

overview 39
ValueLabels 41

bounds 29
controls 28
custom label 42
font 28
labelling 39
labels

data
label, method 40

values method 40
min and max 29
scaling 38
show 28
size 28

B
Background subclass 115
bar chart 15, 31, 55

4D 94
color 32
coloring 57
fifteen basic types of surfaces and bars 49
shading 32

bar spacing 56
bar Z origin 55
Base3dDataSource 73
Base3dGridDataSource 73
Base3dPointDataSource 73
basic graph types 52
batching

property updates 23
resource updates 23

Bean properties
run-time 28
setting 28
setting interactively 28
setting interactively at run-time 28

Behavior
node 123
subclass 115

BoundingLeaf subclass 116
BranchGroup
161

compiling 120
subclass 115

browsers and Java 3D 111

C
calling methods 18
cancel action 103
Canvas3D 119
cell zoning 61
changeChart 105
changing data 71
chart

bar 31, 55
bar chart 32
bar, axis scaling 38
color 23
color defaults 24
colors 23
components 11
histograms 55
labelling 84
scatter 30
scatter plot 31
scatter plot of point data 31
scatter plot, axis scaling 38
scatter plots of grid data 31
specify background color 24
specify foreground color 24
surface 31
surface, axis scaling 38
updating chart 88

chart 3D
basics 11
outputting 19

chart 3D customizer 25
chart customizer

enabling 25
chart data model hierarchy 70
chart data source

definition 16
chart mesh

colors 61
filtering 61
hidden lines 62

chart styles 67
default 67

chart surface
colors 62
solid 63

chart types 14, 49
4D 93
BAR 49
bar 15
contoured and zoned 54

contours 52
meshed 52
meshed and contoured 53
meshed and shaded 53
meshed and zoned 53
meshed, contoured, zoned 55
meshed, shaded, contoured 54
meshed, shaded, contoured, zoned 55
meshed, shaded, zoned 54
SCATTER 49
scatter plot 15
shaded 52
shaded and contoured 53
shaded and zoned 54
shaded, contoured, zoned 55
SURFACE 49
surface 15
zoned 52, 54

Chart3d listener 105
Chart3dArea 22
chart3dDataChange 104
Chart3dDataEvent 88
Chart3dDataListener 88, 135
Chart3dDataManager 65, 90
Chart3dDataManager interface 49
Chart3dDataModel 135
Chart3DDataModel interface 71
Chart3dDataSupport 90
Chart3DDataView

containment hierarchy 22
Chart3dDataView 65
Chart3dGridData 49, 67
Chart3DGridDataModel 70
Chart3dGridDataModel 22, 93, 135
Chart3dGridDataModel interface 72
Chart3dGridDataModel method

getXGrid() 72
getYGrid() 72
getZValues() 72

chart3dJava2d JavaBean 17, 28
chart3dJava3d JavaBean 28
Chart3DPointData 65
Chart3dPointData 66
Chart3DPointDataModel 70
Chart3dPointDataModel 22, 65, 135
Chart3dPointDataModel interface 71
Chart3dPointSeries 66, 67
Chart3dPointSeries label property 31
Chart3dStyles

default 24
chartable data source 69
ChartDataViewSeries

property summary 150
chartStyle 67, 70
ChartStyle property 31
chartType 49
162 Index

checklist
startup 12

class hierarchy 20
Clip subclass 116
ColoringAttributes 118
colors

bar charts 57
chart mesh 61
chart surface 62
graph mesh 61
graph surface 62
property 57
surface chart 32

com.sun.j3d 112, 113
comments on product 7
common methods

Chart3D 151
Chart3d.Event 159
Chart3dDataView 151
Chart3dDataView, coordToDataCoord 151
Chart3dDataView, coordToDataIndex 152
Chart3dDataView, dataCoordToCoord 151
Chart3dDataView, dataIndexToCoord 152
Chart3dDataView, dragZValue 152
Chart3dDataView, gridValue 153
Chart3dGridData 153
Chart3dGridData, getX 153
Chart3dGridData, getXClosest 153
Chart3dGridData, getY 153
Chart3dGridData, getYClosest 153
Chart3dGridDataEvent 159
Chart3dGridDataEvent, getX 159
Chart3dGridDataEvent, getY 159
Chart3dPointData 153
Chart3dPointData, getPoint 153
Chart3dPointDataEvent 159
Chart3dPointDataEvent, getPoint 159
Chart3dPointDataEvent, getSeries 159
Chart3dPointSeries 154
Chart3dPointSeries, getPoint 154
JCAxis 154
JCAxis, getValueLabel 154
JCChart3d 154
JCChart3d, addChart3dListener 154
JCChart3d, getDrawingArea 154
JCChart3d, getDrawingAreaHeight 154
JCChart3d, getDrawingAreaWidth 155
JCChart3d, getLayoutHints 155
JCChart3d, getUI 155
JCChart3d, getUIClassId 155
JCChart3d, isProjection 155
JCChart3d, pick 156
JCChart3d, printAll 156
JCChart3d, recalc 156
JCChart3d, removeChart3dListener 156
JCChart3d, reset 156

JCChart3d, snapshot 157
JCChart3d, unpick 157
JCChart3d, update 157
JCChart3d, updateUI 157
JCChart3dArea 157
JCChart3dArea, getAxis 157
JCChart3dArea, getDrawingArea 157
JCChart3dArea, getMinimumSize 158
JCChart3dArea, recalc 158
JCChart3dArea, reset 158
JCContour 158
JCContour, contourIndex 158
JCContourLevels 158
JCContourLevels, getLevelFromValue 158
JCPlotCube 158
JCPlotCube, hasCeilingProjection 158
JCPlotCube, hasFloorProjection 158
JCPlotCube, hasProjections 158

compiled-retained mode 123
compiling a BranchGroup 120
component parameter 19
content branch graph 120
contents 35
contour 30, 67

and meshed charts 53
and meshed graphs 53
and shaded charts 53
and shaded graphs 53
and zoned charts 54
and zoned graphs 54
bars 51
charts 52
contoured 50, 51, 58, 59
display 58
graphs 52
levels, customizing 95
lines 51

legend 30
meshed, shaded charts 54
meshed, shaded, zoned charts 55
meshed, shaded, zoned graphs 55
meshed, zoned charts 55
meshed, zoned graphs 55
projection 59
shaded, zoned charts 55
shaded, zoned graphs 55
style

fill, color 97
fill, pattern 97
line, color 97
line, pattern 97
line, width 97

styles
customizing 96
default 96
Index 163

ContourStyles
default 24
property 51

createCubicSampledDataModel 82
createDataCopy() 81
createJava2dChart() 13
createJava3dChart() 13
createLinearSampledDataModel 82
createShadedDataModel 81
createSmoothedDataModel 81
custom

actions 102
axes labels 42
legends 34

customize action 103
customizer 25

chart 3D 25

D
data

binding 16
SQL 81
using JDBCDataSource 81

bounds 29
dragZValue parameter 106
formatting 75
interfaces, summary 91
label, clustering 40
listener 104
loading, from XML source 78
loading, Swing TableModel 77
min and max 29
model 70
types 13

data source 22, 69, 70
changing data 71
creating 82
grid data 70
internal data 71
loading data from a file 74

formatted file 75
irregular grid 76
irregular grid data 74
point data 77
regular grid data 74
standard file format 75

making an updating chart 88
point data 70
pre-built 73
responsibility 70
simplest chart data source possible 82
support classes 88

Chart3dDataEvent 88

Chart3dDataListener 88
Chart3dDataManager 90
Chart3dDataSupport 90

updating data source 91
data,gridValue method 107
databases 69
dataCopy() 81
dataIndex property 57
debugging

using customizer 25
default user interactions 99
depth cue 128
DepthComponent 118
Dimension object 35
Direct3D 109
directional light 125
DistributionRange property 32
dragZValue parameter 106

data 106
index 107
x 107
y 107

drawLegendItem() 37
drawLegendItemSymbol() 37
drawType 35
DrawZones with DrawShaded 55
drop line 66

grid data 67
style, controlling 66

dropLines property 66

E
Edit action 103
Editable3dDataModel 135
EditableChart3dDataModel 49, 65
EditableChartDataModel 85
Editing

property 26
elevation data source 22
elevationData 65

property 49, 66, 70
elevationDataSource 65

property 49, 65, 70
encode method 19
encoding parameter 19
ExponentialFog 131

F
FAQs 7
feature overview 1
fill

color 97
164 Index

pattern 97
findGridColor() 57
fireChart3dDataEvent 90
fog 129

ExponentialFog 131
fogFactor 131
LinearFog 129
node 128
subclass 115, 116

fogFactor 129, 131
footer

adding 47
title 47

formatted file 75

G
Geometry 118
get method 27
getLegendItems() 36
getOutlineColor() 37
getting object properties 16
GIF 19, 25
graph mesh

colors 61
filtering 61
hidden lines 62

graph surface
colors 62
solid 63

graph types
4D 93, 94
contoured 52
contoured and zones 54
meshed 52
meshed and contoured 53
meshed and shaded 53
meshed and zoned 53
meshed, contoured, zoned 55
meshed, shaded, contoured 54
meshed, shaded, contoured, zoned 55
meshed, shaded, zoned 54
shaded 52
shaded and contoured 53
shaded and zoned 54
shaded, contoured, zoned 55
zoned 52, 54

GRID 76
grid data 13, 49, 67, 68, 70

data source 70
differences with point data 72

gridline 45
color 46
pattern 46
styles 45

width 47
gridValue method 107

data 107
x 107
y 107

Group class 115
Group subclass

BranchGroup 115
OrderedGroup 115
SharedGroup 115
Switch 115
TransformGroup 115

GroupGap property 33

H
hardware acceleration 111
header

adding 47
title 47

histograms 55, 56
hole values 87
HoleValueChart3dDataModel 49, 65, 135
HoleValueChartDataModel 87
HorizontalItemGap property 33
horizontalShift JCViewport property 101
HTML 78

I
IGRID 76
ImageComponent 118
immediate mode 122
index, dragZValue parameter 107
indexed properties 18
inheritance hierarchy 20
initialization() 123
InsideItemGap property 33
instantiating a chart 12
interactivity

setting object properties at run-time 17
interface summary 135

Chart3dDataListener 135
Chart3dDataModel 135
Chart3dGridDataModel 135
Chart3dPointDataModel 135
Editable3dDataModel 135
HoleValueChart3dDataModel 135
JCChart3dListener 135
JCContourMaping 135
LabelledChart3dGridDataModel 135
LabelledChart3dPointDataModel 135

internal data 71
internationalization support 98
Index 165

Internet Explorer 111
introducing JClass Chart 3D 1
irregular grid 76

data 74
isTitleItem() 36
itemInfo 35

J
Java 3D 109

behavior 123
browsers 111
charting features 123
lighting 124
texture mapping 123

Java 3D API 111
mode, compiled-retained 122
mode, immediate 122
mode, retained 122

Java IDE
setting object properties at design-time 17

JavaBean 28
chart3dJava2d 17, 28
chart3dJava3d 28

javax preface 112
javax.media.j3d 112
javax.media.j3d.javax.vecmath 112
JCActionTable class 101

adding individual action 102
custom actions 102
removing individual actions 102

JCAxis 22, 27
Min and Max properties 29

JCAxis.ANNOTATION_VALUE 39
JCAxis.ANNOTATION_VALUE_LABELS 40
JCAxisANNOTATION_DATA_LABELS 39
JCChart3D object hierarchy 22
JCChart3d STEPPED legend 34
JCChart3DArea 22
JCChart3dEvent 104
JCChart3dJava3d

eliminating references 18
JCChart3dLegend 30, 33
JCChart3dLegendLabelGenerator 34
JCChart3dLegendLabelGenerator interface 33
JCChart3dListener 135
JCChartStyle 67
JCContour 51

contoured 51
zoned 51

JCContour class 59
JCContourLevels 22, 51
JCContourLevels property

isDefault 95
levels 95

max 95
min 95
numLevels 95

JCContourMapping 59, 135
JCContourStyle 32
JCData3dGridIndex 57
JCData3dIndex class 105
JCData3dUtil 81
JCDefault3dGridDataSource 73
JCDefault3dPointDataSource 73
JCEditable3dGridDataSource 73
JCEditable3dPointDataSource 74
JCElevation 50

meshed 50
shaded 50

JCFile3dDataSource 74, 75
JCGridLines 45
JCLabelGenerator interface 42
JClass Chart 3D

Java 2 JavaBean 28
Java 3D JavaBean 28

JClass Chart 3D customizer 25
JClass technical support 6

contacting 6
JCLegend 22
JCLegend Toolkit 34
JCLegendItem 34, 35
JCLegendItem property listing 35
JCLegendPopulator 34, 36
JCLegendRenderer 34, 36
JCMultiFieldString 33
JComponent 22
JCPick3dListener interface 105
JCPlotCube 38, 59
JCProjection 59
JCSurface 61
JCSwing3dDataSource 74, 77
JCTexture2D 124
JCViewport 101
JCViewport class

rotation 101
JCXML3dDataSource 74
JDBC3dDataSource 74
JLabel 47
JPEG 19, 25

L
label

adding 47
clustering 44
customize 29
legend 29
overriding 33
selection 44
166 Index

LabelGenerator property 33
LabelledChart3dGridDataModel 49, 84, 135
LabelledChart3dPointDataModel 65, 84, 135
LabelledChartDataModel 84
labelling your chart 84
Labels property 33
layoutLegend() method 35
LayoutStyle property 32
Leaf class 115
Leaf subclass

Background 115
Behavior 115
BoundingLeaf 116
Clip 116
Fog 115, 116
Light 115, 116
Link 116
Morph 116
Shape3D 115, 116
Sound 115, 116
Soundscape 116
ViewPlatform 117

legend 29, 30
4D graphs 95
contour lines 30
custom 34
custom, population 36
custom, rendering 36
display 30
layout 34
orientation 30
positioning 30
text 30
using 29

levels 22
license 4
licensing 4
light 124

ambient 125
depth cue 128
directional 125
ExponentialFog 131
fog 129
fogFactor 131
LinearFog 129
point 126
spot 127
subclass 115, 116

line
color 68, 97
pattern 68, 97
width 68, 97

LinearFog 129
LineAttributes 118
LineStyle 31
Link subclass 116

list 33
listener 104

Chart3d 105
data listener 104
mechanism 104
pick 105

loading data 16
from a file 74

formatted file 75
irregular grid 76
irregular grid data 74
point data 77
regular grid data 74
standard file format 75

from a Swing TableModel 77
XML 78

Locale 119
Locale object

scene graph programming model 110

M
makeLabel() 42
mapping 105

user input 101
MarginGap property 33
Material 118
Max 22, 29
MediaContainer 118
mesh 50

and contoured charts 53
and contoured graphs 53
and shaded charts 53
and shaded graphs 53
and zoned charts 53
and zoned graphs 53
bars 50
charts 52
colors 61
contoured, zoned charts 55
contoured, zoned graphs 55
controls 61
filtering 61
graphs 52
hidden lines 62
shaded, contoured graphs 54
shaded, contoured, zoned charts 55
shaded, contoured, zoned graphs 55
shaded, contours charts 54
shaded, zoned charts 54
shaded, zoned graphs 54

meshBottomColor property 50
meshTopColor property 50
method
Index 167

calling 18
encode 19
get 27
set 27

methods
common 3D methods, Chart3D 151
common 3D methods, Chart3d.Event 159

Min 22, 29
minorTick property 41
modifying data 85
Morph subclass 116

N
Name property 31
Netscape Navigator 111
node

Behavior 123
class 115
scene graph programming model 110

NodeComponent Class 117
nomenclature 70
normalized JCViewport property 101

O
object collection

accessing an element 18
working with 18

object containment 21
hierarchy 21
listing 21

object property listing 137
opacity 25
OpenGL 109, 124
OrderedGroup subclass 115
Orientation property 30
output parameter 19
outputting JClass Chart 3D 19
overriding

labels 33
public methods 36

P
paintChart 105
parameter

component 19
encoding 19
output 19

performance-enhancing features 111
perspective 37
PhysicalBody 119

PhysicalUniverse 119
pick 105, 106

action 103
listener 105

pickRectangle 35
plot cube 12
PNG 19, 25
POINT 76
point data 13, 66, 70

difference with grid data 72
file 77
source 70

point light 126
PointAttributes 118
PolygonAttributes 118
pre-built DataSources 73
previewMethod JCViewport property 101
processStimulation() 123
product feedback 7
programming

advanced 93
bars 49
basics 18
Java 3D API 109
Java 3D API, system set-up 110
scatter plots 65
scene graph model 109
surfaces 49
user interaction 99

programming scatter plots 65
properties 27

batching updates 23
listing 137
setting Bean properties at run-time 28
setting Bean properties interactively 28

property
Anchor 31
annoFont 28
annoFontCubeSize 28
AnnotationMethod 41
annotationMethod 27, 39, 40
Background 24
Chart3D 137
Chart3d.Event 150
Chart3d.j2d 150
Chart3d.j3d 150
Chart3dData 137
Chart3dData, DataOK 137
Chart3dData, DataSource 137
Chart3dData, HoleValue 137
Chart3dData, Name 137
Chart3dDataEvent 150
Chart3dDataView 137
Chart3dDataView, ChartType 137
Chart3dDataView, Contour 137
Chart3dDataView, Elevation 137
168 Index

Chart3dDataView, GridColors 138
Chart3dDataView, Name 138
Chart3dDataView, ZoneData 138
Chart3dDataView, ZoneDataSource 138
Chart3dGridData 138
Chart3dGridData, ChartStyle 138
Chart3dGridData, NumSeries 138
Chart3dGridData, NumX 138
Chart3dGridData, NumY 138
Chart3dGridData, Series 139
Chart3dGridData, xGrid 138
Chart3dGridData, xLabels 138
Chart3dGridData, yGrid 138
Chart3dGridData, yLabels 138
Chart3dGridData, ZValues 138
Chart3dPointData 138
Chart3dPointData, ChartStyle 139
Chart3dPointData, Label 139
Chart3dPointData, NumPoints 139
Chart3dPointData, Points 139
Chart3dPointSeries 139
Chart3dPointSeries label 31
ChartDataViewSeries 150
ChartDataViewSeries, Index 150
ChartDataViewSeries, Type 150
ChartStyle 31
color 24, 57
contourStyles 51
dataIndex 57
DistributionRange 32
dropLines 66
editing 26
elevationData 49, 66, 70
elevationDataSource 49, 65, 70
Foreground 24
GroupGap 33
HorizontalItemGap 33
horizontalShift 101
InsideItemGap 33
IsShowing 48
JCAxis 139
JCAxis, AnnoFont 139
JCAxis, AnnoFontCubeSize 139
JCAxis, AnnotationMethod 139
JCAxis, AxisId 139
JCAxis, GridLines 139
JCAxis, LabelGenerator 139
JCAxis, Max 140
JCAxis, MaxIsDefault 140
JCAxis, Min 140
JCAxis, MinIsDefault 140
JCAxis, Origin 140
JCAxis, Showing 140
JCAxis, Title 140
JCAxis, TitleFont 140
JCAxis, TitleFontCubeSize 140

JCAxis, ValueLabels 140
JCBar 140
JCBar, xFormat 140
JCBar, xSpacing 140
JCBar, yFormat 140
JCBar, ySpacing 140
JCChart3d 141
JCChart3d, About 141
JCChart3d, AllowUserChanges 141
JCChart3d, Batched 141
JCChart3d, CancelKey 141
JCChart3d, Chart3dArea 141
JCChart3d, CustomizerName 141
JCChart3d, DataView 141
JCChart3d, Footer 141
JCChart3d, FooterLayoutHints 141
JCChart3d, Header 141
JCChart3d, HeaderLayoutHints 141
JCChart3d, Legend 141
JCChart3d, LegendLayoutHints 141
JCChart3d, LegendManager 141
JCChart3d, Pick3dListener 141
JCChart3d, ResetKey 141
JCChart3d, WarningDialog 141
JCChart3dArea 142
JCChart3dArea, ActionHandler 142
JCChart3dArea, Axes 142
JCChart3dArea, Bar 142
JCChart3dArea, InAction 142
JCChart3dArea, PlotCube 142
JCChart3dArea, PreferredSize 142
JCChart3dArea, Scatter 142
JCChart3dArea, Surface 142
JCChart3dArea, View3d 142
JCChart3dArea, Viewport 142
JCChart3dArea, xAxis 142
JCChart3dArea, yAxis 142
JCChart3dArea, zAxis 142
JCChart3dJava2d 150
JCChart3dJava2dJCChart3dJava3d 150
JCChart3dJava3d 150
JCChart3dJava3d, JCChart3dJava2d 150
JCChart3dLegend 142
JCChart3dLegend, ContinuousLayout 142
JCChart3dLegend, DistRange 142
JCChart3dLegend, GroupGap 143
JCChart3dLegend, HorizItemGap 143
JCChart3dLegend, InsideItemGap 143
JCChart3dLegend, LabelGenerator 143
JCChart3dLegend, LayoutStyle 143
JCChart3dLegend, MarginGap 143
JCChart3dLegend, UserLabels 143
JCChart3dLegendManager 143
JCChart3dLegendManager, FieldGap 143
JCChart3dLegendManager, OutlineColor 143
JCChart3dStyle 143
Index 169

JCChart3dStyle, LineStyle 143
JCChart3dStyle, SymbolStyle 143
JCContour 144
JCContour, Contoured 144
JCContour, ContourLevels 144
JCContour, ContourMapping 144
JCContour, ContourStyles 144
JCContour, Zoned 144
JCContour, ZoneMethod 144
JCContourLevels 144
JCContourLevels, IsDefault 144
JCContourLevels, Levels 144
JCContourLevels, NumLevels 144
JCContourStyle 144
JCContourStyle, FillStyle 144
JCContourStyle, LineStyle 144
JCContourStyle, SymbolStyle 144
JCData3dContourIndex 145
JCData3dContourIndex, ContourStyleIndex 145
JCData3dContourIndex, LowerContourRangeValue

145
JCData3dContourIndex, UpperContourRangeValue

145
JCData3dGridIndex 145
JCData3dGridIndex, x 145
JCData3dGridIndex, y 145
JCData3dIndex 145
JCData3dIndex, DataView 145
JCData3dIndex, Distance 145
JCData3dIndex, Obj 145
JCData3dPointIndex 145
JCData3dPointIndex, Point 145
JCData3dPointIndex, Series 145
JCElevation 146
JCElevation, MeshBottomColor 146
JCElevation, Meshed 146
JCElevation, MeshTopColor 146
JCElevation, Shaded 146
JCElevation, ShadedBottomColor 146
JCElevation, ShadedTopColor 146
JCElevation, Transparent 146
JCGridColor 146
JCGridColor, Color 146
JCGridColor, DataIndex 146
JCGridLines 146
JCGridLines, LineStyle 146
JCGridLines, PlaneMask 146
JCLineStyle 147
JCLineStyle, Cap 147
JCLineStyle, Color 147
JCLineStyle, Join 147
JCLineStyle, Pattern 147
JCLineStyle, Width 147
JCPlotCube 147
JCPlotCube, Background 147
JCPlotCube, Ceiling 147

JCPlotCube, Floor 147
JCPlotCube, Foreground 147
JCPlotCube, xScale 147
JCPlotCube, yScale 147
JCPlotCube, zScale 147
JCProjection 147
JCProjection, Contoured 147
JCProjection, Zoned 148
JCScatter 148
JCScatter, DropLines 148
JCSurface 148
JCSurface, Solid 148
JCSurface, xMeshFilter 148
JCSurface, xMeshShowing 148
JCSurface, yMeshFilter 148
JCSurface, yMeshShowing 148
JCSymbolStyle 148
JCSymbolStyle, Color 148
JCSymbolStyle, Shape 148
JCSymbolStyle, Size 149
JCValueLabel 149
JCValueLabel, Label 149
JCValueLabel, TickOnly 149
JCValueLabel, Value 149
JCView3d 149
JCView3d, Perspective 149
JCView3d, xRotation 149
JCView3d, yRotation 149
JCView3d, zRotation 149
JCViewport 149
JCViewport, HorizontalShift 149
JCViewport, Normalized 149
JCViewport, PreviewMethod 149
JCViewport, Scale 149
JCViewport, VerticalShift 149
LabelGenerator 33
Labels 33
LayoutStyle 32
levels 22
MarginGap 33
Max 22, 29
meshBottomColor 50
meshTopColor 50
Min 22, 29
minorTick 41
Name 31
normalized 101
Orientation 30
previewMethod 101
scale 101
shadedBottomColor 50
shadedTopColor 50
show 28
Solid 63
surfaceTopColor 50
Text 48
170 Index

Title 29
UseDefault 22, 29
Value 41
VerticalItemGap 33
verticalShift 101
viewing 26
Visible 30
zoneData 70

Q
Quest Software technical support

contacting 6

R
regular grid data 74
related documents 4
removeGridColor() 57
rendering 122
RenderingAttributes 118
reset action 103
responsibility for data 70
RestrictedAccessException 120
retained mode 122
return to default 100
RGB color

specifications 24
rotate action 103
rotateEye action 103
RotateX action 103
RotateY action 103
RotateZ action 103
rotation 100

interactive 99
JCViewport 101

S
scale

action 104
interactive 99
JCViewport property 101
of axis 38
scaling 100

SCATTER 65
scatter plot 66

2D 66
3D 66
3D with drop lines 66
basic types 66
chart 15, 30, 31
drop lines 66

flat charts 66
of grid data 31
of point data 31
programming 65

scene graph 110
programming model 109

Locale 110
nodes 110

view 119
SceneGraphObject 120
SceneGraphObject class 114
Screen3D 119
set method 27
setContoured 59
setElevationDataSource 71
setFillGraphics() 37
setLabelGenerator() 42
setMeshBottomColor 61
setMeshTopColor 61
setting Bean properties 28
setting object properties 16

interactively at run-time 17
with a Java IDE at design-time 17
with Java code 17

setZoned 59
setZoneDataSource 71
shade 50, 57

and contoured charts 53
and contoured graphs 53
and meshed chart 53
and meshed graphs 53
and zoned charts 54
and zoned graphs 54
bar chart 32
bars 50
charts 52
contours, zones charts 55
contours, zones graphs 55
graphs 52
meshed, contoured charts 54
meshed, contoured graphs 54
meshed, contoured, zoned charts 55
meshed, contoured, zoned graphs 55
meshed, zoned charts 54
meshed, zoned graphs 54
shaded 93
surface chart 32

shadedBottomColor 58
shadedBottomColor property 50
shadedTopColor 58
shadedTopColor property 50
Shape3D

node 117
subclass 115, 116

SharedGroup subclass 115
Index 171

show property 28
Solid property 63
Sound subclass 115, 116
Soundscape subclass 116
spot light 127
SQL result set 81
standard file format 75
startup checklist 12
Sun’s XML site 78
support 6, 7

contacting 6
FAQs 7
internationalization 98

surface 49
and bar charts 31
chart 15

color 32
shading 32

charts
4D 93
creating 4D 93

colors 62
graphs

4D 93
creating 4D 93

solid 63
surfaceTopColor property 50
Swing event 104
Swing TableModel

loading data 77
Switch subclass 115
SwitchRotateAny action 104
SwitchRotateEye action 104
SwitchRotateX action 104
SwitchRotateY action 104
SwitchRotateZ action 104
symbol 35

color 68
shape 68
size 68
style, controlling 66

symbolDim 35
SymbolStyle 31
system set-up

hardware acceleration 111
programming with Java 3D API 110

T
TableModel 77
technical support 6, 7

contacting 6
FAQs 7

terminology 11

TexCoordGeneration 118
textDim 35
Texture 118
texture mapping 123
Texture2D 124
TextureAttributes 118
TextureLoader 124
TextureUnitState 118
Title property 29
TransformGroup 120

subclass 115
translate action 104
translation 100

interactive 99
rotating 99
scale 99
translation 99
zoom 99

transparency 25
TransparencyAttributes 119
Trigger property 25
types of charts 49
typographical conventions 3

U
unit cube 12
unmapping 105
unpicking 106
UseDefault 22, 29
user input mapping 101
user interaction

default 99
features 99
programming 99
rotating 99
scaling 99
translation 99
zooming 99

V
Value property 41
ValueLabels 41
ValueLabels axis annotation 41
values method 40
Vector object 36
VerticalItemGap property 33
verticalShift JCViewport property 101
view 119

branch graph 120
property 26
scene graphs 119

ViewPlatform 122
172 Index

subclass 117
virtual universe 110
VirtualUniverse object 110
Visible property 30

X
x, dragZValue parameter 107
x, gridValue method 107
xLabels 70
xMeshFilter 61
XML 78

constructor 79
example data file 80
HTML 78
primer 78
using in JClass 78
XSLT 78

XML sources 69
XSLT 78

Y
y, dragZValue parameter 107
y, gridValue method 107
yLabels 70
yMeshFilter 61

Z
Z-axis restrictions 29
zone

and contoured charts 54
and meshed charts 53
and meshed graphs 53
and shaded charts 54
and shaded graphs 54
bars 51
cell 61
charts 52, 54
contoured, shaded graphs 54
contours, shaded graphs 55
data source 22
display 58
graph 52
graphs 54
legend display 30
meshed, contoured charts 55
meshed, contoured graphs 55
meshed, shaded charts 54
meshed, shaded, contoured charts 55
meshed, shaded, contoured graphs 55
method 60

projection 59
shaded, contoured charts 55
shaded, meshed graphs 54
zoned 50, 51, 57, 58, 59, 67, 93, 94, 95

zoneData property 70
zoom 100

action 104
interactive 99
Index 173

174 Index

	JClass Chart 3D
	Preface
	Introducing JClass Chart 3D
	Assumptions
	Typographical Conventions Used in this Manual
	Overview of Manual
	API Reference
	Licensing
	Related Documents
	About Quest
	Contacting Quest Software
	Customer Support
	Product Feedback and Announcements

	Using JClass Chart 3D with the Java 2 and Java 3D API
	JClass Chart 3D Basics
	1.1 Terminology
	1.2 Startup Checklist
	1.3 Instantiating a Chart in JClass Chart 3D
	1.4 Data Types
	1.5 Chart Types
	1.6 Loading Data
	1.7 Setting and Getting Object Properties
	1.8 Other Programming Basics
	1.9 Outputting JClass Chart 3D
	1.10 JClass Chart 3D Inheritance Hierarchy
	1.11 JClass Chart 3D Object Containment
	1.12 UseDefault Properties
	1.13 Batching Property Updates
	1.14 Chart Colors
	1.15 The JClass Chart 3D Customizer

	Programming JClass Chart 3D: Common Functions
	2.1 Properties
	2.2 Axis Controls
	2.3 Setting Axis Bounds
	2.4 Legends
	2.5 Perspective
	2.6 Axis Scaling
	2.7 Axis Labelling and Annotation Methods
	2.8 Gridlines
	2.9 Header and Footer Titles
	2.10 Adding Header, Footer, and Labels

	Programming JClass Chart 3D: Surfaces and Bars
	3.1 Fifteen Basic Types of Surfaces and Bars
	3.2 Chart Types
	3.3 Bar Charts and Histograms
	3.4 Contours and Zone Display
	3.5 Mesh Controls
	3.6 Surface Colors
	3.7 Solid Surface

	Programming JClass Chart 3D: Scatter Plots
	4.1 Overview
	4.2 Three Basic Types of Scatter Plots
	4.3 Controlling Symbol and Drop Line Style
	4.4 Chart Styles

	Data Sources
	5.1 Overview
	5.2 Pre-Built Chart DataSources
	5.3 Loading Data from a File
	5.4 Loading Data from a Swing TableModel
	5.5 Loading Data from an XML Source
	5.6 Data Binding using JDBCDataSource
	5.7 JCData3dUtil class
	5.8 Making Your Own Chart Data Source
	5.9 HoleValueChartDataModel - Specifying Hole Values
	5.10 Making an Updating Chart Data Source
	5.11 Summary of JClass Chart 3D Data Interfaces

	Advanced JClass Chart 3D Programming
	6.1 4D Surface Graphs
	6.2 4D Bar Charts
	6.3 Customizing the Contour Levels
	6.4 Customizing Contour Styles
	6.5 Internationalization Support

	Programming User Interaction
	7.1 Default User Interaction
	7.2 Listeners
	7.3 Mapping and Picking
	7.4 dragZValue Method
	7.5 gridValue Method

	Programming with the Java 3D API
	8.1 Java 3D - Overview
	8.2 System Set-up
	8.3 Browsers and Java 3D
	8.4 Java 3D API
	8.5 SceneGraphObject class
	8.6 Scene Graph Viewing Object Classes
	8.7 BranchGroup and TransformGroup
	8.8 Rendering
	8.9 Behaviors
	8.10 Java 3D-Enabled Charting Features

	Reference Appendices
	Interface Listing
	A.1 Interface Summary

	Object Property Listing
	B.1 Chart3D
	B.2 Chart3d.Event
	B.3 Chart3d.j2d
	B.4 Chart3d.j3d

	Additional Common JClass Chart 3D 3D Methods
	C.1 Chart3D
	C.2 Chart3d.Event

	Index

