
JClass DataSource
Programmer’s Guide

Version 6.3
for Java 2 (JDK 1.3.1 and higher)

A Robust, Hierarchical, Multiple-platform Data Source

TM

8001 Irvine Center Drive
Irvine, CA 92618
949-754-8000
www.quest.com

April 2004 RefNo: PRGDE-JCDS/630-04/2004



© Copyright Quest Software, Inc. 2004. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The software described in this 
guide is furnished under a software license or nondisclosure agreement. This software may be used or copied 
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or 
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording 
for any purpose other than the purchaser's personal use without the written permission of Quest Software, 
Inc. 

Warranty

The information contained in this document is subject to change without notice. Quest Software makes no 
warranty of any kind with respect to this information. QUEST SOFTWARE SPECIFICALLY 
DISCLAIMS THE IMPLIED WARRANTY OF THE MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. Quest Software shall not be liable for any direct, indirect, incidental, 
consequential, or other damage alleged in connection with the furnishing or use of this information.

Trademarks

JClass, JClass Chart, JClass Chart 3D, JClass DataSource, JClass Elements, JClass Field, JClass HiGrid, 
JClass JarMaster, JClass LiveTable, JClass PageLayout, JClass ServerChart, JClass ServerReport, 
JClass DesktopViews, and JClass ServerViews are trademarks of Quest Software, Inc. Other trademarks and 
registered trademarks used in this guide are property of their respective owners. 

World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com
e-mail: info@quest.com
U.S. and Canada: 949.754.8000

Please refer to our Web site for regional and international office information.

This product includes software developed by the Apache Software Foundation http://www.apache.org/.

The JPEG Encoder and its associated classes are Copyright © 1998, James R. Weeks and BioElectroMech. 
This product is based in part on the work of the Independent JPEG Group. 

Redistribution and use in source and binary forms, with or without modification, are permitted 
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, all 
files included with the source code, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of 
conditions and the following disclaimer in the documentation and/or other materials provided 
with the distribution. 

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 

http://www.quest.com
http://www.apache.org/


EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, 
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGE.  

This product includes software developed by the JDOM Project (http://www.jdom.org/). Copyright © 2000-
2002 Brett McLaughlin & Jason Hunter, all rights reserved. Redistribution and use in source and binary 
forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, 
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of 
conditions, and the disclaimer that follows these conditions in the documentation and/or other 
materials provided with the distribution.

3. The name "JDOM" must not be used to endorse or promote products derived from this 
software without prior written permission.  For written permission, please contact 
license@jdom.org. 

4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in 
their name, without prior written permission from the JDOM Project Management 
(pm@jdom.org).

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED 
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, 
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGE.

http://www.jdom.org/
mailto:license@jdom.org
mailto:pm@jdom.org




Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Introducing JClass DataSource   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  1
Assumptions    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  2
Typographical Conventions in this Manual   .   .   .   .   .   .   .   .   .   .   .   .  2
Overview of the Manual .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  2
API Reference .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  3
Licensing .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  3
Related Documents .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  3
About Quest    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  4
Contacting Quest Software .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  4
Customer Support   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  5
Product Feedback and Announcements .   .   .   .   .   .   .   .   .   .   .   .   .   .  6

Part I: Using JClass DataSource

1 Using JClass DataSource . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 The Two Ways of Managing Data Binding in JClass DataSource   .  9
1.2 Using JClass DataSource with Visual Components .   .   .   .   .   .    10
1.3 JClass DataSource and the JClass Data Bound Components  .   .    10
1.4 Internationalization  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    11

2 JClass DataSource Overview. . . . . . . . . . . . . . . . . . . . . . . . .13
2.1 Introduction  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    13
2.2 The Data Model’s Highlights   .   .   .   .   .   .   .   .   .   .   .   .   .   .    16
2.3 The Meta Data Model  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    17
2.4 Setting the Data Model    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    24
2.5 JClass DataSource’s Main Classes and Interfaces    .   .   .   .   .   .    34
2.6 Examples  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    37
2.7 Binding the data to the source via JDBC .   .   .   .   .   .   .   .   .   .    39
2.8 The Data “Control” Components    .   .   .   .   .   .   .   .   .   .   .   .    40
2.9 Custom Implementations .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    41
2.10 Use of Customizers to Specify the Connection to the JDBC   .   .    43
2.11 Classes and Methods of JClass DataSource .   .   .   .   .   .   .   .   .    43
i



3 The Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1 Introduction    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  47
3.2 Accessing a Database  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  48
3.3 Specifying Tables and Fields at Each Level    .   .   .   .   .   .   .   .   .  51
3.4 Setting the Commit Policy  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  53
3.5 Methods for Traversing the Data    .   .   .   .   .   .   .   .   .   .   .   .   .  54
3.6 The Result Set .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  56
3.7 Virtual Columns  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  58
3.8 JClass DataSource Events and Listeners .   .   .   .   .   .   .   .   .   .   .  60
3.9 Handling Data Integrity Violations    .   .   .   .   .   .   .   .   .   .   .   .  67

4 The JClass DataSource Beans  . . . . . . . . . . . . . . . . . . . . . . . 69
4.1 Introduction    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  69
4.2 Installing JClass DataSource’s JAR files  .   .   .   .   .   .   .   .   .   .   .  70
4.3 The Data Bean    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  71
4.4 The Tree Data Bean    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  82
4.5 The Data Navigator and Data Bound Components   .   .   .   .   .   .  87
4.6 Custom Implementations    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  88

5 DataSource’s Data Bound Components  . . . . . . . . . . . . . . . . . 89
5.1 Introduction    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  89
5.2 The Types of Data Bound Components .   .   .   .   .   .   .   .   .   .   .  89
5.3 The Navigator and its Functions .   .   .   .   .   .   .   .   .   .   .   .   .   .  92
5.4 Data Binding the Other Components .   .   .   .   .   .   .   .   .   .   .   .  97

6 Sample Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1 The Sample Database .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  99
6.2 The DemoData Program .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   100
6.3 Custom Data Binding  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   105

Part II: Reference Appendices

 A Bean Properties Reference . . . . . . . . . . . . . . . . . . . . . . . . 109
A.1 DataBean .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   109
A.2 DataBeanComponent .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   110
A.3 DataBeanCustomizer  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   110
A.4 JCTreeData .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   111
A.5 TreeDataBeanComponent  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   112
ii Contents



A.6 TreeDataBeanCustomizer    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  112
A.7 DSdbJNavigator   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  113
A.8 DSdbJTextField    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  115
A.9 DSdbJImage .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  118
A.10 DSdbJCheckbox   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  120
A.11 DSdbJList .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  123
A.12 DSdbJTextArea    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  126
A.13 DSdbJLabel  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  129

 B Distributing Applets and Applications  . . . . . . . . . . . . . . . . . 133
B.1 Using JarMaster to Customize the Deployment Archive    .   .   .  133

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Contents iii



iv Contents



Preface
Introducing JClass DataSource ■ Assumptions ■ Typographical Conventions in this Manual

Overview of the Manual ■ API Reference ■ Licensing ■ Related Documents ■ About Quest

Contacting Quest Software ■ Customer Support ■ Product Feedback and Announcements

Introducing JClass DataSource

JClass DataSource includes a number of data-bound components of its own and is 
designed to be used with a wide class of GUI components to manage the display of 
master-detail relational data. JClass DataSource provides enhanced Java components that 
add data binding to their equivalent AWT and Swing components. JClass DataSource 
may be used in conjunction with any data-bound component, such as Quest’s 
JClass LiveTable and JClass Field, and it can be tied to a grid or multiple tables to display 
hierarchical data. 

All JClass DataSource components are written entirely in Java; so as long as the Java 
implementation for a particular platform works, JClass DataSource will work. You can 
freely distribute Java applets and applications containing JClass components according to 
the terms of the License Agreement that appears at install time. 

Feature Overview
JClass DataSource is composed of JavaBeans that facilitate the presentation of data 
extracted from a database or elsewhere in a hierarchical, or master-detail, form. Their 
full-featured customizers can be used in IDEs to quickly develop a data retrieval 
application. The default behavior exhibits a highly interactive interface that allows end-
users to perform all the common data operations without extensive coding. Moreover, for 
those whose application may demand more in-depth programming, the products’ APIs 
contain a number of helper methods designed to make common tasks easy to accomplish.

You can set the properties of JClass DataSource components to determine how your data 
entry elements will look and behave. You can:

■ Modify the number and arrangement of hierarchical levels. Customizers allow you to 
add or remove tables, fields, and joins as your project matures and your needs 
change.

■ Include columns whose contents are computed from existing fields and, if necessary, 
other generated fields.

■ Present fields that contain various database types, including pictures.

■ Include header and footer columns which can contain aggregate information. For 
instance, a footer column may display the total amount of a number of purchase 
orders where each row in a table has a field containing the individual amount for that 
order.
1



■ Use JClass Field components in cells to validate data entry operations.

JClass DataSource also provides several methods which:

■ Simplify connecting to a database, and allow you to build database applications more 
quickly using JDBC-ODBC bridge drivers or native-protocol all-Java drivers.

■ Support transaction management.

■ Permit you to control the appearance of the graphical user interface components as 
well as controlling the type of operation the end-user is permitted to perform on the 
records.

Assumptions

This manual assumes that you have some experience with the Java programming 
language. You should have a basic understanding of object-oriented programming and 
Java programming concepts such as classes, methods, and packages before proceeding 
with this manual. See Related Documents later in this section of the manual for additional 
sources of Java-related information. 

Typographical Conventions in this Manual

Overview of the Manual

Part I —Using JClass DataSource – describes how to use the JClass DataSource 
programming components.

Typewriter Font ■ Java language source code and examples of file contents.
■ JClass DataSource and Java classes, objects, methods, 

properties, constants, and events.
■ HTML documents, tags, and attributes.
■ Commands that you enter on the screen.

Italic Text ■ Pathnames, filenames, URLs, programs, and method 
parameters.

■ New terms as they are introduced, and to emphasize important 
words.

■ Figure and table titles.
■ The names of other documents referenced in this manual, such 

as Java in a Nutshell.

Bold ■ Keyboard key names and menu references.
2 Preface



Chapter 1, Using JClass DataSource, presents a general overview of 
JClass DataSource’s general structure and use.

Chapter 2, JClass DataSource Overview, provides additional information on using 
JClass DataSource.

Chapter 3, The Data Model, describes how a connection to a database is established.

Chapter 4, The JClass DataSource Beans, discusses JClass DataSource’s Bean 
properties and shows how to use the custom property editor.

Chapter 5, DataSource’s Data Bound Components, presents the suite of data bound 
components that accompany the product.

Chapter 6, Sample Programs, illustrates some selected techniques for accessing data 
sources and displaying them in hierarchical grids.

Part II — Reference Appendices – contains detailed technical reference information.

Appendix A, Bean Properties Reference, contains tables listing the property names, 
return types, and default values for JClass DataSource’s JavaBeans.

Appendix B, Distributing Applets and Applications, illustrates how to use 
JClass JarMaster to help you combine only those JClass JARs that are required for 
deploying your application.

API Reference
The API reference documentation ( Javadoc) is installed automatically when you install 
JClass DataSource and is found in the JCLASS_HOME/docs/api/ directory.

Licensing
In order to use JClass DataSource, you need a valid license. Complete details about 
licensing are outlined in the JClass DesktopViews Installation Guide, which is automatically 
installed when you install JClass DataSource.

Related Documents
The following is a sample of useful references to Java and JavaBeans programming:

■ “Java Platform Documentation” at http://java.sun.com/docs/index.html and the “Java 
Tutorial” at http://www.java.sun.com/docs/books/tutorial/index.html from Sun 
Microsystems

■ For an introduction to creating enhanced user interfaces, see “Creating a GUI with 
JFC/Swing” at http://java.sun.com/docs/books/tutorial/uiswing/index.html
Preface 3

../api/index.html
../getstarted/index.html
http://java.sun.com/docs/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/docs/books/tutorial/index.html


■ Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc. See the O’Reilly Java 
Resource Center at http://java.oreilly.com.

■ Resources for using Java Beans are at http://www.java.sun.com/beans/resources.html

These documents are not required to develop applications using JClass DataSource, but 
they can provide useful background information on various aspects of the Java 
programming language.

About Quest
Quest Software, Inc. (NASDAQ: QSFT) is a leading provider of application management 
solutions. Quest provides customers with Application Confidencesm by delivering 
reliable software products to develop, deploy, manage and maintain enterprise 
applications without expensive downtime or business interruption. Targeting high 
availability, monitoring, database management and Microsoft infrastructure 
management, Quest products increase the performance and uptime of business-critical 
applications and enable IT professionals to achieve more with fewer resources. 
Headquartered in Irvine, Calif., Quest Software has offices around the globe and more 
than 18,000 global customers, including 75% of the Fortune 500. For more information on 
Quest Software, visit www.quest.com.

Contacting Quest Software

Please refer to our Web site for regional and international office information.

E-mail sales@quest.com

Address

Quest Software, Inc.
World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
USA

Web site www.quest.com

Phone 949.754.8000 (United States and Canada)
4 Preface

http://www.quest.com
mailto:sales@quest.com
http://www.quest.com
http://java.oreilly.com
http://java.sun.com/beans/resources.html


Customer Support

Quest Software’s world-class support team is dedicated to ensuring successful product 
installation and use for all Quest Software solutions.

You can use SupportLink to do the following:

■ Create, update, or view support requests

■ Search the knowledge base, a searchable collection of information including program 
samples and problem/resolution documents

■ Access FAQs

■ Download patches

■ Access product documentation, API reference, and demos and examples

Please note that many of the initial questions you may have will concern basic installation 
or configuration issues. Consult this product’s readme file and the JClass DesktopViews 
Installation Guide (available in HTML and PDF formats) for help with these types of 
problems.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying the 
following information will help us serve you better:

■ Your name, email address, telephone number, company name, and country

■ The product name, version and serial number

■ The JDK (and IDE, if applicable) that you are using

■ The type and version of the operating system you are using

■ Your development environment and its version

■ A full description of the problem, including any error messages and the steps required 
to duplicate it

SupportLink www.quest.com/support

E-mail support@quest.com

JClass Direct Technical Support 

JClass Support Email support@quest.com

Telephone 949-754-8000

Fax 949-754-8999
Preface 5

http://www.quest.com/support
mailto:support@quest.com
../api/index.html
../../readme.html
../getstarted/index.html
../getstarted/index.html
mailto:support@quest.com


Product Feedback and Announcements
We are interested in hearing about how you use JClass DataSource, any problems you 
encounter, or any additional features you would find helpful. The majority of 
enhancements to JClass products are the result of customer requests.

Please send your comments to: 
Quest Software
8001 Irvine Center Drive
Irvine, CA 92618

Telephone: 949-754-8000
Fax: 949-752-8999

European Customers
Contact Information

Telephone: +31 (0)20 510-6700
Fax: +31 (0)20 470-0326
6 Preface



Part
I

Using JClass 
DataSource





1
Using JClass DataSource

The Two Ways of Managing Data Binding in JClass DataSource

Using JClass DataSource with Visual Components

JClass DataSource and the JClass Data Bound Components ■ Internationalization

1.1   The Two Ways of Managing Data Binding in JClass DataSource

The core of JClass DataSource is its ability to manage hierarchical data through its data 
model. The data binding mechanism is built on top of the data model. It contains 
convenience classes that can be used to do single-level binding of objects such as a text 
field to a particular column in a database table. This organization makes it easy for you to 
bind display components built with JClass Chart, JClass LiveTable, and JClass Field, and 
other similar components, to a particular database field without having to pay attention to 
JClass DataSource’s mechanism for handling hierarchical data structures. 

This simplified approach to data binding begins with the ReadOnlyBindingModel 
interface. It provides a single-level, two-dimensional view of a data set. It groups all non-
update methods and handles read-only events. This interface exists only to provide a 
logical separation between read-only and non-read-only methods and event handling. It 
is extended to an interface named BindingModel, which extends ReadOnlyBindingModel 
and provides update methods. Operations can be performed on the row currently in 
focus (for example, by using getCurrentRowStatus()), or by specifying a row index (for 
example, getRowStatus(rowIndex)). 

Abstract class ReadOnlyBinding extends BindingModel and provides a base for concrete 
subclasses. Public class Binding extends ReadOnlyBinding and provides update methods. 
Operations can be performed on the row currently in focus. Public class JDBCBinding is 
used to bind to JDBC databases.

Thus, programmers who need to bind a non-grid component to a database need to 
understand Binding and its related classes and interfaces. They need not delve into the 
intricacies of the DataModel and MetaDataModel interfaces.

For comparison, there are two ways of accomplishing data binding:
9



Using the Data Model:

DataModel dm = new TreeData();
MetaDataModel mdm = newMetaDataModel(dm, "select * from orders", c)
table.setDataBinding(dm, mdm, column);

Using Binding:

DataModel dm = new TreeData();
MetaDataModel mdm = newMetaDataModel(dm, "select * from orders", c)
table.setDataBinding(mdm.getBinding);

1.2   Using JClass DataSource with Visual Components

You can use JClass DataSource with other JClass products and with IDEs that supply data 
bound visual components. Naturally, the recommended GUI is JClass HiGrid, a versatile 
and customizable grid built specifically to work side by side with JClass DataSource. You 
can use JClass LiveTable to bind different tables to a hierarchically-structured data source 
that you have designed and then built using this product, or you can connect the data 
bound components of JClass Field and have a form that displays database records 
wherein the end-user may make edits. Because JClass Field validates its input based on 
your specifications, your application is even more functional without you doing all the 
programming that implementing validation makes necessary. You can use JClass Chart to 
present values extracted from a database in a visually appealing way, again with 
customizable features so your application has your own personal flavor.

If you want to use an IDE’s visual component, you can still simplify the job of connecting 
to the database and organizing its tables to meet your application’s individual needs.

1.3   JClass DataSource and the JClass Data Bound Components

JClass DataSource is designed to be used for general-purpose data binding needs. In an 
IDE, all that is required to supply your form with data bound components is to place a 
JClass JCData or JClass JCTreeData and use their customizers to configure their 
properties, which include connecting to a database and, in the case of JClass JCTreeData, 
defining the master-detail relationships between parent and dependent data tables. 

JClass components are data-aware. You use their customizers to register with the data 
source defined with the aid of JClass JCData or JClass JCTreeData. Custom property 
editors turn this operation into a sequence of choices — no writing of code is required.

The following chapters discuss the use of JClass DataSource and the data bound 
components in detail.
10 Part I ■ Using JClass DataSource



1.4   Internationalization 
Internationalization is the process of making software that is ready for adaptation to 
various languages and regions without engineering changes. JClass products have been 
internationalized. 

Localization is the process of making internationalized software run appropriately in a 
particular environment. All Strings used by JClass that need to be localized (that is, 
Strings that will be seen by a typical user) have been internationalized and are ready for 
localization. Thus, while localization stubs are in place for JClass, this step must be 
implemented by the developer of the localized software. These Strings are in resource 
bundles in every package that requires them. Therefore, the developer of the localized 
software who has purchased source code should augment all .java files within the 
/resources/ directory with the .java file specific for the relevant region; for example, for 
France, LocaleInfo.java becomes LocaleInfo_fr.java, and needs to contain the translated 
French versions of the Strings in the source LocaleInfo.java file. (Usually the file is called 
LocaleInfo.java, but can also have another name, such as LocaleBeanInfo.java or 
BeanLocaleInfo.java.) 

Essentially, developers of the localized software create their own resource bundles for 
their own locale. Developers should check every package for a /resources/ directory; if one 
is found, then the .java files in it will need to be localized. 

For more information on internationalization, go to: 
http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html. 
Chapter 1 ■ Using JClass DataSource 11

http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html


12 Part I ■ Using JClass DataSource



2
JClass DataSource Overview

Introduction ■ The Data Model’s Highlights ■ The Meta Data Model ■ Setting the Data Model

JClass DataSource’s Main Classes and Interfaces ■ Examples ■ Binding the data to the source via JDBC

The Data “Control” Components ■ Custom Implementations

Use of Customizers to Specify the Connection to the JDBC ■ Classes and Methods of JClass DataSource

2.1   Introduction

JClass DataSource has classes and methods that retrieve, organize, and store data items. 
You can use it with or without JClass HiGrid to interface both to databases and to 
unbound data sources. With it, you can connect to any type of data source that has a 
JDBC driver. Its functionality also includes the ability to connect to databases that have 
JDBC-ODBC driver support, and even to computed data produced by another 
application. This application may be retrieving information from any source, or 
producing the data itself. You can structure your design to provide top-level information 
and as many sub-levels as you deem necessary. You can provide your own visual 
component, or you can use JClass HiGrid as an easy and functional way of providing 
end-users with a tool that they can use to display, navigate through, and modify retrieved 
data. Because you have structured the data hierarchically, end-users are able to expand or 
collapse their view of the sub-levels.

A group of data bound components are included with JClass DataSource.You can use 
JClass DataSource to maintain multiple views of the data. For instance, you might 
provide your users with a HiGrid to make it easy for them to scroll through many records 
quickly and at the same time provide them with a form containing data-bound 
components that replicate the fields in the active row of the grid. The information on this 
form might correspond to one of the sub-levels in the grid — you do not have to bind the 
components to the root level.

You control whether edits can be made both in the form and in the grid.

JClass DataSource provides data binding capabilities for JClass Chart, JClass Field, 
JClass LiveTable, and JClass HiGrid, thereby multiplying your options for an elegantly 
designed form. 
13



2.1.1 Define the Structure for the Data 

For this introduction to JClass DataSource, we’ll start with the case where all the needed 
information is stored in a single database. After a connection to the database is 
established, the next thing to do is to specify the “root” table. We are assuming that a 
number of sub-tables are also going to be defined. These sub-tables may, in turn, have 
sub-tables. Thus, the data is being modeled as a tree structure, and the highest level table 
is the root of this tree.

This description of the data is called meta data. The MetaData class, based on a 
MetaDataModel, is used to capture this hierarchical design. This MetaData class connects 
to a data source through the JDBC or an IDE-specific data-binding mechanism. There is 
an instance of MetaData for each level in the tree, and each instance of MetaData has a 
particular query associated with it. MetaData will execute that query and cache the results. 
When used in the context of JClass HiGrid, multiple result sets will be cached. These 
result sets will be based on the same query but with different parameters. When used in 
JClass HiGrid, this object will be a node in the meta tree describing the relationships 
between SQL queries.

The root table is treated specially. It is distinguished from dependent tables by having its 
own constructor. The root table retrieves its data when it is instantiated. Dependent tables 
can wait until they are accessed before they make calls to the database.

2.1.2 JClass DataSource’s Organization

JClass DataSource is really the “Model” in the Model-View-Controller (MVC) 
architecture. In fact, it is comprised of two more basic models, a meta data model and a 
data table model. The classes that make up the meta data model cooperate to define 
methods for describing the way that you want your data structured. The meta data model 
describes the hierarchical structure of your design and provides a convenient place for 
storing all the static information about the actual data tables, such as column names and 
data types. Because the View is separate from the Model, multiple views, even different 
kinds of views, can all draw their data from the same model. This makes it possible to 
have a form containing JClass Field components, a JClass LiveTable, and a JClass Chart 
all presenting data from a connection managed by JClass DataSource. Selecting a 
different cell in any one of the views and modifying its contents there causes all the 
mirrored cells in the other views to update themselves, thereby maintaining a consistent 
view of the data everywhere. 

You define the abstract relationship between data tables as a tree. This is the meta data 
structure, and after it has been designed, you query the database to fill data tables with 
result sets. The abstract model defines the structure and the specific data items are 
retrieved using a dynamic bookmark mechanism that is imposed on the result set data 
tables. At the base level of the class hierarchy, class MetaData describes a node in the 
MetaTree structure and class DataTable holds the actual data for that node. There are 
different implementations of MetaData for differing data access technologies, therefore 
there will be a different MetaData defined for the JDBC API and for various IDE-specific 
14 Part I ■ Using JClass DataSource



data binding solutions. Similarly, there will be different DataTable classes depending on 
the basic data access methodology.

MetaData and DataTable are concrete subclasses of the abstract classes BaseMetaData and 
BaseDataTable. The latter is an abstract implementation of the methods and properties 
common to various implementations of the DataTable model. This class must be 
extended to concretely implement those methods that it does not, which are all of the 
methods in the data table abstraction layer. Both these classes are derived from TreeNode 
which contains a collection of methods for managing tree-structured objects.

Interface MetaDataModel defines the methods that BaseMetaData and its derived classes 
must implement. This is the interface for the objects that hold the meta data for 
DataTables. There is one MetaDataModel for the root data table, and there can be zero, 
one, or more DataTable objects associated with one meta data object for all subsequent 
nodes in the meta data model. Thus it is more efficient to store this meta data only once. 
In terms of JClass DataSource, meta data objects are the nodes of the meta tree. The meta 
tree, through instances of the MetaData classes, describes the hierarchical relations 
between the meta data nodes. DataTableModel is the interface for data storage for the 
JClass DataSource data model. It requests data from instances of this table and 
manipulates that data through this interface. That is, rows can be added, deleted or 
updated through this DataTable. To allow sorting of rows and columns, all operations 
access cell data using unique identifiers for rows and columns. 

Interface DataModel is the data interface for the JClass DataSource. An implementation of 
this interface will be passed to JClass HiGrid or its equivalent. All data for the data source 
is maintained and manipulated in this data model through its sub-interfaces. This data 
model requires the implementation of two tree models, one for describing the 
relationships of the hierarchical data (MetaDataModel) and one for the actual data 
(DataTable). TreeData is an implementation of DataModel for trees and listener functions. 
Important methods are requeryAll, updateAll, add/removeDataModelListener, and 
enableDataModelEvents. This last method is useful when you are making many changes 
to the data without having listeners repaint after each individual change. This is a 
different procedure than using DataModelEvent BEGIN_EVENTS and END_EVENTS, where 
events are still sent but the listener receiving BEGIN_EVENTS knows it may choose to 
disregard the events until it receives END_EVENTS.

The DataModel has one “global” cursor. Commit policies rely on the position of this 
cursor. This cursor, which is closely related to the bookmark structure, can point 
anywhere in the data that has been retrieved by JClass DataSource and placed in its data 
tables. It is found using getCurrentGlobalBookmark. Additionally, each DataTableModel 
has its own “current bookmark” or cursor. This cursor is retrieved using 
getCurrentBookmark. If another table is referenced, likely via the getTable method, 
another completely independent row cursor can be found, again using 
getCurrentBookmark, that can be used to pore over the table using methods such as 
first, last, next, previous, beforeFirst, and afterLast.
Chapter 2 ■ JClass DataSource Overview 15



2.2   The Data Model’s Highlights

The Data Model performs these major functions:

■ Connects to a database.

■ Defines the structure for the data that is to be retrieved and displayed.

■ Specifies the tables and fields to be accessed at each level.

■ Sets the commit policy to be used when updating the database.

■ Stores result sets from queries.

■ Informs the database about pending deletes, updates, and insertions.

■ Instructs the database to commit changes at the correct time.

2.2.1 Making a Database Connection with the Help of the JDBC-ODBC Bridge

The Data Bean and The Tree Data Bean components use a JDBC, Java’s specification for 
using data sources, although other data sources, such as ODBC, can be used with the help 
of a JDBC-ODBC bridge. Both Beans may have multiple connections, and these may be 
via different database drivers.

If your development system is running on a Windows platform, the needed database 
drivers must be installed. 

1. On Windows NT/95/98: choose Start > Settings > Control Panel > ODBC to 
launch the ODBC data source administrator. On Windows 2000 and XP: choose 
Start > Settings > Control Panel > Administrative Tools > Data Sources 
(ODBC) to launch the ODBC data source administrator.

2. Click on the User DSN tab and observe the User Data Sources list. 

3. If the data source you need is not already there, click on the Add button. 

4. Select the driver for your data source from the list in the Create New Data Source win-
dow. 

5. Use the Configure button to supply extra information specific to the database engine 
you will be using.

Other environments define different methods for making the low-level connection to a 
database. Consult the system documentation for your environment for its recommended 
connection method.
16 Part I ■ Using JClass DataSource



2.3   The Meta Data Model

Consider a master-detail design such as that shown in Figure 1. You can create a class that 
captures this model programmatically or you can describe it using the JCTreeData’s 
customizer in an IDE.
Chapter 2 ■ JClass DataSource Overview 17



Figure 1 A meta data tree containing meta data objects at its nodes.
18 Part I ■ Using JClass DataSource



Both the HTML and PDF on-line versions of this manual are color-coded to distinguish 
which objects implement the interfaces mentioned in the Legend. 

The structure of the meta data tree (green) can be defined after first creating the meta data 
objects:

//"this" is a class extended from TreeData
// Set up the root level: Orders

BaseMetaData orders         = new BaseMetaData(this);
    // The rest of the meta data is defined the same way
    
    BaseMetaData customers     = new BaseMetaData(this);
    BaseMetaData orderDetails = new BaseMetaData(this);
    BaseMetaData products      = new BaseMetaData(this);

The hierarchical relationships among these meta data objects are defined using the 
append method:

        // now add the meta data objects to the tree to
        // provide the hierarchy. Orders is the root. OrderDetails
        // and Customers are siblings at the next level
        // and Products is a child of OrderDetails.
        getMetaDataTree().setRoot((TreeNode) orders);
        orders.append(Customers);
        orders.append(OrderDetails);
        //Since Products depends on OrderDetails:
        orderDetails.append(products)

To sum up, the append method places the meta data objects in their proper positions in 
the meta data tree. The same thing can be accomplished without coding if you use the 
JCTreeData customizer in an IDE.

2.3.1 Keeping Track of Rows

Now that the meta data has been defined the model can be given over to a grid such as 
JClass HiGrid, which will manage the display. Behind the scenes, the JClass DataSource 
has retrieved and cached a number of rows of each table. This number may be zero for 
any sub-table that has not yet been opened, but all the rows of the root table that match 
the query are cached. JClass DataSource needs to keep track of these rows, and to 
accomplish this in an efficient manner more than one strategy is employed. 

The most important parameter that labels a row is called the bookmark. This long integer 
is guaranteed to uniquely label a row at any given time, but it is not guaranteed to be 
invariant. A row’s bookmark most probably will change over time as a result of insert and 
delete operations on other rows. Other operations may cause a reassignment of 
bookmarks to existing rows. Thus, if you store a row’s bookmark, you must ensure that 
you do not perform any of the operations that may change the bookmark in the interim 
before you use it again and expect that it refers to the same row. In fact, after bookmarks 
have been reassigned, an old bookmark may not refer to any row.

While bookmarks are sufficient to label a row, efficient operation requires other ways of 
labeling them. A quantity called the row index is used to label each row of a given table 
Chapter 2 ■ JClass DataSource Overview 19



sequentially, starting at zero. Obviously, these numbers are not unique as soon as there is 
more than one table in your application, but they do serve to help you to  easily loop 
through the rows of a given table.

A global cursor keeps track of the cell containing the editor. This cell is selected and has 
focus. There is at all times one and only one active editor. Because data-bound 
components can be attached to any meta data level, a mechanism is required to allow that 
component to decide what data it should display depending on where the global cursor is 
20 Part I ■ Using JClass DataSource



positioned. A construct called the current path assists in this regard. As you follow this 
discussion, please refer to Figure 2.
Chapter 2 ■ JClass DataSource Overview 21



Figure 2 How rows are indexed.

Our example has the global cursor positioned on the row whose bookmark is 15 in the 
table we have called Order Details 2. This name serves to identify a table in the diagram 
but it is not a name that would appear anywhere in the Java code. It indicates that it was 
the second Order Details table created, perhaps as a result of a user clicking on row 3 of 
the root table, Orders, in a grid. Assume further that you have bound a text field 
component to one of the columns in the Products meta data. What information, if any, 
should the field display? In this case the choice is rather obvious: the text field should 
display the information contained in the chosen column of Products 6 rather than leaving 
the field blank simply because the user has not yet opened this level using the grid. In a 
less obvious case, what should be done if the Products 6 table contains more than one 
row? In this case, the current path points to the first row of the table, and to the first row 
of all dependent tables if they exist. Because of the possibility of using data-bound 
components, a current path must include branches such as the connection to Customers 
2. Again, because an application could have added a data-bound component to the 
Customers level, JClass DataSource must be able to tell which particular piece of 
information to use when the field itself is not selected. Again in our example, there is only 
one customer per order so the choice of which row to use does not arise. In general, when 
there are a number of possibilities, the one with row index 0 is chosen.

What happens when an application containing a data-bound component at the Products 
level starts? From the point of view of the component, and taking a column in table 
Products as our example, the sequence is as follows. The component requests data. 
Products has no data in it as yet, so it asks Order Details to supply a reference. Since 
Order Details has no data, it asks Orders for a reference. Orders responds with its current 
row, which by default is the row whose index is 0. Order Details can now populate itself, 
and passes its default row index, again 0, for the table corresponding to row 0 of Orders, 
to Products. Products populates the referenced data table and the component receives its 
data. In this way a forward referencing policy is established and components always 
contain values, even at start up.

If the global cursor is somewhere down the hierarchy, back references are easy: just 
follow the tree back to its root. In the case where there are two tables at a level and the 
cursor is in one of them, the row whose index is 0 of the other table is deemed to be on 
the current path, so any component bound to that table would choose its value (or values) 
from the index 0 row.
22 Part I ■ Using JClass DataSource



Figure 3 shows some of the common ways of using bookmarks to navigate around the 
hierarchy. The color coding in this figure is the same as that in Figure 1. Some of the 
methods return references to tables, others return bookmarks and row indexes.

Figure 3 Using bookmarks and row indexes.

If you have noticed that there are some capitalized names in the above examples in 
places where lower case method names are expected, it is because these capitalized 
names are used to indicate the class of object that is being talked about, not instances of 
that class. You must have an instance of the class to produce legal Java code.
Chapter 2 ■ JClass DataSource Overview 23



Method createTable in class com.klg.jclass.datasource.BaseDataTable creates and 
returns the DataTable, which corresponds to the specified row in the parent for the 
indicated child MetaData object.

Methods getAncestors, getParentBookmark, getAncestorBookmark, getRowIdentifier, 
getRowIndex, getRows, and getMetaData all return numeric data, except for the last 
which returns a reference to its own table.

Method getMetaDataTree returns a reference to the root of the MetaData tree.

2.4   Setting the Data Model

The data model may be set programmatically or through a customizer. Both methods are 
described here.

Setting Up an Unbound Data Model Programmatically
The DataModel, MetaDataModel, and DataTableModel interfaces define the structure that 
needs to be established no matter what kind of data source will eventually be used. Base 
classes TreeData, BaseMetaData, and BaseDataTable are available for use as 
implementations of these interfaces. The process of creating data tables begins with a 
DataModel, possibly by instantiating or subclassing the TreeData class. Normally, the data 
tables in JClass DataSource are derived from corresponding tables in a database, but that 
need not be the sole source. They can be created dynamically, as exemplified by the 
example program called VectorData. This programmatic source data is used as an 
alternate in case there is a problem in connecting to the sample database. 

It serves to illustrate the origination of a data source. The class VectorData itself extends 
TreeData, so it functions as the data model:

public class VectorData extends TreeData

Array variables within this class are used to define the columns and their associated data 
types for the tables that are about to be created. After a data model is available, the next 
step is to create the meta data objects for the various levels that tables will occupy. The 
“bare” meta data objects are instantiated through a call to BaseMetaData’s constructor, 
giving the data model as a parameter. An example is the following line of code:

BaseMetaData Orders = new BaseMetaData(this);

The meta data objects must be structured by specifying their hierarchy. The example 
specifies a root table called Orders with two children called OrderDetails and Customer. 
Capturing this hierarchy reduces to adding the meta data objects to a tree. Since the 
getMetaDataTree method in TreeData is an implementation of the one named in 
DataModel, and returns a TreeModel, it can be used to set the Orders table as the root of 
the tree:

getMetaDataTree().setRoot((TreeNode) Orders);
24 Part I ■ Using JClass DataSource



The children are placed by appending them to the root:

Orders.append(OrderDetails);
Orders.append(Customers);

The tables’ relationships to one another have been set, but the tables themselves have no 
definition as of yet, let alone any content. Since column names and data types are 
available in arrays called orders_columns[][] and details_columns[][], they are used 
to set up the columnnar structure of the tables as follows:

// set up columns for the Orders table
for (int i = 0; i < orders_columns.length; i++) {
BaseColumn column = new BaseColumn();
column.setColumnName(orders_columns[i][0]);
column.setMetaColumnTypeFromSqlType(getType(orders_columns[i][1]));
column.setColumnType(getType(orders_columns[i][1]));
Orders.addColumn(column);

A similar block of code sets up the columnar structure of the OrderDetails table. Note that 
columns can be derived from BaseColumn, which is an implementation of the 
ColumnModel interface.

At this point the actual data table can be created using the constructor for a 
BaseDataTable and passing a MetaDataModel as a parameter. Since VectorDataTable is 
subclassed from BaseDataTable, and Orders is a BaseMetaData object and therefore 
implements the MetaDataModel interface, the following code creates the root level of the 
data tree:

VectorDataTable root = new VectorDataTable(Orders);
getDataTableTree().setRoot((TreeNodeModel) root);

The values in the cells of a row are computed. The example merely fills them with 
random data by declaring an array called row and generating data for each cell, that is, for 
each element of the array. BaseDataTable has a method called addInternalRow(Object 
row) that does the job:

root.addInternalRow(row);

The two sub-tables are instantiated by a call to the other form of BaseDataTable’s 
constructor. 

public VectorDataTable(MetaDataModel metaData, long parentRow) {
super(metaData, parentRow);

}

In the example program, the tables are instantiated within a custom version of 
createTable. This method is part of the DataTableModel interface and is defined in 
BaseDataTable. It is overridden in the example’s VectorDataTable class so that it can 
populate tables from array data generated within the program rather than by querying a 
database. To see how an unbound data table can be generated, check 
example.datasource.vector.VectorDataTable.java in the examples directory. 
Chapter 2 ■ JClass DataSource Overview 25



2.4.1 Query Basics

JClass DataSource has not been designed to create databases or their tables (for instance, 
by adding new columns to the database itself), although, technically, it is possible to do 
so. It is assumed that you have an existing database and you want to provide a 
hierarchical graphical interface for its tables and fields, perhaps adding summary columns 
of your own design. The contents of a database are examined and modified through the 
use of SQL’s Data Manipulation Language (DML), whose basic statements are SELECT, 
INSERT, UPDATE, and DELETE. JClass DataSource parses an SQL statement into its 
clauses but it does not attempt to validate the clause itself. Instead, it passes the clauses on 
to the underlying database which will determine whether it can process the statement or 
not. 

For instance, in the query:

String query = " select *";
query += " from sales_order a, fin_code b";
query += " where a.fin_code_id = b.code";
query += " order by a.id asc";

the where and order by clauses will be passed on to the database without any check on 
their contents.

You can use Prepared Statements. The interfaces java.sql.PreparedStatement and 
java.sql.Connection are used for this purpose. Consult the java.sql API for further 
information. You can use the question mark parameter (?) as a placeholder for joins. The 
question mark is a placeholder for the field that will be supplied when the statements are 
executed. An example of the use of the question mark placeholder is as follows:

order_detail.setStatement("select * from sales_order_items where id = ?");

Here, a matching id field in the parent table is used in the comparison.

2.4.2 Specify the Tables and Fields to be Accessed at Each Level
If you are using the JDBC but not using an IDE, you must create instances of the 
MetaData class for each level programmatically, specifying both the table and the SQL 
query to be used. One form of the constructor is required to instantiate the root table. The 
database query is passed as one of its arguments. All other levels are instantiated using a 
form that names the instance of the HiGrid (or other GUI) being used, the table name, 
and the database connection object. The query String is passed separately, using a 
method called setStatement.

Other parameters can be set, such as descriptive statements for the table captions, header 
and footers, columns containing aggregate data, and so on.

2.4.3 Set the Commit Policy to be Used when Updating the Database
You have control over when changes should be committed: you can choose a commit 
policy that ranges from allowing the end-user to decide when to commit the changes, 
26 Part I ■ Using JClass DataSource



waiting until the selected row changes (waiting until the selected group changes), or giving 
your application control over when to commit the changes.

2.4.4 Store Result Sets from Queries
Database queries may result in a varying amount of data, anything from the entire table 
on which the query was based to a null result in the case where the database returned 
nothing at all that matched the query. If these results are to be displayed in a grid, the 
result set must be stored. The result sets for each query that you define at each level are 
stored separately.

2.4.5 The Data Bean

Use JClass DataSource’s JCData when you want to present a single level of data to the 
end-user. In effect, this JavaBean functions as a table whose rows are retrieved from the 
chosen database and whose columns are the fields that you select from the table (or 
tables, if two or more are joined). 

What follows is an example of using the Data Bean in the BeanBox. We’ll show all the 
steps in setting up the database access, and all the way through to connecting to a 
JClass HiGrid to display the query’s result set.

1. Once you have installed your JAR file in its proper location, which in the case of the 
BeanBox is your bdk/jars directory, you should see the JavaBeans called JCData, JC-
TreeData, and the Swing-based data bound components DSdbJCompoBox, and so on, 
as well as DSdbJNavigator, JClass DataSource’s data navigator.

Figure 4 The Bean Development Kit’s ToolBox, containing HiGrid’s Beans.
Chapter 2 ■ JClass DataSource Overview 27



2. Click on JCData and move the mouse pointer to the BeanBox, where it turns into a 
crosshair. Click once more and the outline of the data JavaBean appears. The data 
Bean has a property sheet like the one shown next.

Figure 5 JCData’s property sheet.

3. Click on the area to the right of the label nodeProperties to access its main custom edi-
tor. A modal dialog appears, reminding you about ensuring that the serialization file 
which is about to be created is on your CLASSPATH.

Figure 6 A reminder about creating a serialization file.

4. On the Node Properties Editor, click Open if you have a previously-saved serialization 
file that you want to use, otherwise click Save As. Type a filename in the file dialog, 
or accept the default name, and click Save. 

5. Click the NodePropertiesEditor’s Data Model tab.

6. There are two nested tabbed dialog panels. The JDBC tab is selected, causing the 
Connection tab panel to be visible. The reason for this choice is that it is assumed 
that the first thing you want to do is to specify the database connection. The other tabs 
are Data Source Type, Data Access, Virtual Columns and IDE. They will be dis-
cussed shortly.

There are text fields for the server name, host or IP address, TCP/IP port, and 
Driver, along with a group of fields that may be required to log on to a database that 
28 Part I ■ Using JClass DataSource



requires a user name and a password. Fill in as many of these as are required for your 
particular situation.

Figure 7 Fill in these fields to connect to your chosen database.
Chapter 2 ■ JClass DataSource Overview 29



For reference, the other tabs permit you to specify the driver table and the type of 
data access that will be allowed. 

Figure 8 The Data Access tab.

7. The Data Access tab allows you to set a commit policy and an edit policy. Three 
checkboxes control editing permissions: Insert Allowed, Update Allowed, and De-
lete Allowed. You can also choose one of three commit policies from a drop-down 
menu: COMMIT_LEAVING_RECORD, COMMIT_LEAVING_ANCESTOR, or COMMIT_MANUALLY.

8. Return to the JDBC tab and click on the SQL Statement tab. This exposes the tab 
containing two scroll panes, as shown in Figure 9. The top scroll pane is for placing 
the smaller scroll panes that represent the tables from your database. The first step in 
30 Part I ■ Using JClass DataSource



choosing a table is to right-click on the top scroll pane, or click on the button labeled 
Add Table. Click Add in the popup menu that appears.

Figure 9 The SQL Statement tab.

The database is accessed and a list of its tables is retrieved.

Figure 10 The popup menu for adding tables.
Chapter 2 ■ JClass DataSource Overview 31



9. A new dialog will appear, allowing you to select a table from the list of retrieved data-
base tables. Choose a table and click Add.

Figure 11 The Table Chooser dialog.

You can choose more than one table if you wish. The result will be a grouping of the 
two tables, but as of yet no columns or joins have been specified. For this operation to 
be meaningful, it is likely that you will have to choose the tables whose data you will 
be accessing, then specify the names of the common fields in each table. 

Each data table scroll pane has a label that identifies it. The scroll area contains the 
list of fields for that table. You build the query by selecting a field in this list and 
choosing Add Selected Columns. This action causes the field name to be added to 
the select statement in the SQL Statement scroll pane.

The query in the SQL Statement pane contains an editable text frame. You can refine 
the query by adding any clause that the database language supports.

A sample, containing two tables, is shown in Figure 12.

Important: Click the Set button to store the query. If you omit this step and close 
the SQL Statement tab, all the settings you made will be cleared.

It’s also important to realize that the SQL Statement panel has helped you build a 
query simply by making the appropriate choices in the customizer, although you can 
32 Part I ■ Using JClass DataSource



type query statements into the text area of the SQL statement panel. Your IDE takes 
it from there and builds the necessary code.

Figure 12 The SQL Statement panel.

The setup of the JCData is complete. What remains is to connect this JavaBean to a 
visual component so that the result set can be displayed. We’ll carry on with this 
example by actually displaying the result of our query. 

10. Select JCHiGrid in the ToolBox and place an instance on the BeanBox. 

11. Resize it so that it is big enough to hold most of the cells in five or six rows. 

12. In the BeanBox, highlight the JCData and choose Edit > Events > dataModel > 
dataModelCreated. A line in the form of a rubber band extends from the JCData 
component to the tip of the mouse pointer. 
Chapter 2 ■ JClass DataSource Overview 33



13. Move the tip of the mouse pointer anywhere along the edge of the HiGridBean com-
ponent, click and again choose dataModelCreated from the popup menu that ap-
pears. 

14. Your grid fills with the retrieved data, as shown in Figure 13.

Figure 13 A database table as it appears in the BeanBox.

2.5   JClass DataSource’s Main Classes and Interfaces

A TreeModel interface defines the methods that implement a generic interface for a tree 
hierarchy. The tree interface is used for organizing the meta data and the actual data for 
the JClass DataSource.

The DataModel is the data interface for the JClass DataSource. An implementation of this 
interface will be passed to the data source. All data for the DataSource is maintained and 
manipulated in this data model through its sub-interfaces. This data model requires the 
implementation of two tree models, one for describing the relationships of the 
hierarchical data (MetaDataModel) and one for the actual data (DataTableModel). 

The TreeNodeModel is the interface for nodes of the TreeModel.

BaseDataTable provides a default implementation of DataTableModel and 
DataTableAbstractionLayer interfaces. Instances of this class provide basic storage, 
retrieval, and manipulation operations on data rows. This class can be used without 
extending it. In this case you must create and populate rows manually. For example, 

    BaseDataTable root = new BaseDataTable(rootMetaData);
    data_tree.setRoot((TreeNode) root);
    int row1 = root.addRow();
34 Part I ■ Using JClass DataSource



    root.updateCell(row1, column1, value1);
    root.updateCell(row1, column2, value2); // etc. ...

Extensions of this class, for example the JClass DataSource JDBC implementation, 
automatically create/populate data tables based on data returned from datasource 
queries. In the case of IDE-specific implementations, they extend this class and override 
the data storage and retrieval mechanisms. Users wishing to extend this class should look 
at overriding some or all of the methods defined in the DataTableAbstractionLayer 
interface. These are the methods most likely to need overriding. Each instance of this 
class has its own cursor which can be navigated independently of the DataModel's global 
cursor. Only the global cursor (controlled by DataModel.moveToRow) causes commits to 
Chapter 2 ■ JClass DataSource Overview 35



occur when the current row is changed. The navigation methods here do not cause the 
global cursor to change, only this table's private cursor. 
36 Part I ■ Using JClass DataSource



Figure 14 Major classes and interfaces for the Data Model.

Commit Policy
Updating a database is a two step process. First, a cell or group of cells is edited, then the 
edits are confirmed by committing them to the database.

COMMIT_MANUALLY — Requires a click on the pencil icon (or the X icon), or you 
can select any of Update All, Update Current, Update Selected from the pop-up menu.

COMMIT_LEAVING_RECORD — Commits changes to a row as soon as the cursor 
moves to a different bookmark.

COMMIT_LEAVING_ANCESTOR — Does not commit until a sub-tree is accessed 
which has a different parent-level bookmark than the previous one (see 
DataTableModel.getMasterRow()). By convention, setting the root-level MetaData object 
to COMMIT_LEAVING_ANCESTOR is equivalent to setting it to COMMIT_MANUALLY.

2.6   Examples

Row Nodes

It often helps in simplifying your code if you assign names to rows. Method 
setDescription assigns any name you choose to a row node. This name can then be 
retrieved with getDescription. Since getDescription requires an object of type 
MetaDataModel, a possible invocation would be:

String x = rowNode.getDataTableModel().getMetaData().getDescription();

You can find the row node associated with an event as follows:

ValidateEvent event = e.getValidateEvent();
RowNode rowNode = e.getRowNode();

getRowNode returns the row node of the row on which the event occurred.

2.6.1 Useful Classes and Methods as Demonstrated by Code Snippets

The following sections demonstrate some common tasks by using code snippets. 

For most applications, you will need to perform the following steps:

■ Connect to a database

■ Set commit policies

■ Specify joins on tables using single or multiple keys

■ Refresh data structures after the data has been modified (including the insertion of a 
new row or deletion of a row)

■ Inspect bookmarks and column identifiers
Chapter 2 ■ JClass DataSource Overview 37



■ Sort data

■ Programmatically move through the retrieved-record data structure and possibly 
calculate totals or other summary information 

■ Cancel some or all of a group of pending changes

■ Inspect column identifiers

■ Recover from operations that attempt to violate database integrity.

Connecting to a Database via a JDBC-ODBC Bridge and Setting the Top-level Query
Use the DataTableConnection constructor to instantiate a new connection, then use the 
root form of the MetaData constructor to set the top-level query.

DataTableConnection c = new DataTableConnection(
"sun.jdbc.odbc.JdbcOdbcDriver",     // driver
"jdbc:odbc:GridDemo",               // url
"Admin",                            // user
"",                                 // password
null);                              // database

String query_string = "SELECT * FROM myTable";
MetaData root_meta_data = MetaData(data_model,c, query_string);

Joining Tables
Joining tables involves creating a new node that names its parent using the second form of 
the MetaData constructor, building a query statement, and setting it on the node, then 
issuing the join command or commands. Here, two joins are indicated.

private MetaData createDetailChild(InsertData link, MetaData par, 
DataTableConnection c)

{
try
{

// Link the customer table to the SalesOrder table
MetaData node = new MetaData(link, par,c);
node.setStatement("SELECT * FROM OrderDetail WHERE 

order_id = ? AND store_id = ?");
node.joinOnParentColumn("id","order_id");
node.joinOnParentColumn("store_id","store_id");
node.open();
node.setColumnTableRelations("OrderDetail", new 

String[] {"*"});

return node;
}
catch (DataModelException e)
{

ExceptionDump.dump("Creating OrderDetail Child Table", e);
System.exit(0);

}
return null;

}

38 Part I ■ Using JClass DataSource



Refreshing Tables
This example shows how you might construct a method that refreshes a table. The data 
types of the variables can be inferred from the casts.

public void refreshStructure()
{
this.meta_tree = (TreeModel) this.data_model.getMetaDataTree();
this.meta_data_model = (MetaDataModel) this.meta_tree.getRoot();
this.data_tree = (TreeModel) this.data_model.getDataTableTree();
this.data_table_model = (DataTableModel) this.data_tree.getRoot();

}

Setting Permissions

This example shows how to set modification permissions programmatically.

public void setPermissions(String table,boolean ia,boolean da,boolean ua)
{

this.meta_data_model.setInsertAllowed(table,ia);
this.meta_data_model.setDeleteAllowed(table,da);
this.meta_data_model.setUpdateAllowed(table,ua);

}

2.7   Binding the data to the source via JDBC

In order to bind the data, you must first connect to a database using the DataSource 
customizer. This is described in Making a Connection to a Database, in Chapter 4.

 Accomplishing the same thing programmatically involves these steps: 

1. Create an instance of a DataModel which will be passed to the connection method, so 
the class in which the connection parameters and the query are formed becomes the 
first parameter in the call to MetaData.

2. Next, form a DataTableConnection object, and a query String. 

3. Once the connection is made, and the query is passed to the database, use the root 
constructor MetaData(DataModel, DataTableConnection, String). 

4. If sub-tables are required, they are constructed using MetaData(DataModel, MetaDa-
ta, DataTableConnection). In this form of the constructor, the MetaData object re-
fers to the parent table.

Note: The query String must satisfy the database language requirements. Generally 
speaking, SQL-92 should be used.

2.7.1 Getting Table Names

Some databases have trouble sorting out the proper association when two or more tables 
are used at the same grid level. In these cases, ColumnModel method getTableName fails to 
return the necessary information about column names. In this case, you must supply the 
Chapter 2 ■ JClass DataSource Overview 39



proper join or update statement yourself. A helper method named 
setColumnTableRelations is available.

Method setColumnTableRelations explicitly sets the relationships between tables and 
columns. If introspection fails to determine the association between tables and their 
columns (when there is more than one table to a level), or you wish to override the 
associations, say to exclude a column in the update statement, use this method. This 
method must be called for each table. For example, if SalesOrder and Store are joined in 
a one-to-one relationship for a level, these would be the necessary calls. In this example 
the MetaData object is called Orders.

Orders.setColumnTableRelations("SalesOrder", new String[] 
{"id","store_id","cust_id","ship_via","purchase_order_number", 

"order_date","order_total"});
Orders.setColumnTableRelations("Store", new String[] 

{"store_store_id","address","phone_number","name"});

For a single table on a level the call would be,

Customer.setColumnTableRelations("Customer", new String[] {"*"}); 

Note: The “*” means all columns are from the Customer table.

2.7.2 Ambiguous Column Names

The JClass data model requires that if a column or field in one table has the same name as 
that in another table, the two must be capable of being meaningfully joined. That is, the 
two names must refer to the same logical property of some entity. Since you cannot 
always control the various field names in database tables, there is an alias mechanism that 
allows you to rename dissimilar fields that happen to have the same name. Assume that a 
SalesOrder table has an id field, and a table named Store also has a field called id. These 
keys respectively refer to a sales order reference number and the identification number 
for a store. If you wish to form a query in which both tables are mentioned, and the id 
field of both is to be selected, you provide an alias for one of the fields in the query 
statement. Its syntax goes like this:

SELECT SalesOrder.id, ... other SalesOrder field names ... , Store.id AS 
store_alias_id, ... other Store fields

Now that Store.id has an alias, it is used in place of the actual table name and causes no 
problem. Just remember the rule: you can’t have identical column names if they mean 
different things.

2.8   The Data “Control” Components

The Data Navigator Bean. This GUI component comes in two flavors, DSdbNavigator 
for AWT and DSdbJNavigator for Swing. They allow you to navigate through the 
40 Part I ■ Using JClass DataSource



database records. Both have the same behavior, which is described in The Navigator and 
its Functions, in Chapter 5. 

Figure 15 The Data Navigator.

2.9   Custom Implementations

2.9.1 Unbound Data

There may be times when you need to compute results that cannot be obtained through 
SQL queries. Typically these situations arise when the results depend on a computation 
that involves more than one column, or if it requires a function that is not supported by 
one of the Aggregate classes. It has become customary to refer to this type of generated 
data as “unbound data,” and we will use the term this way. You can provide added 
functionality to your application with this flexible technique by adding a separate class 
that manages the required callbacks. An example follows.

Imagine that the requirement is for a column containing a calculation that requires extra 
verification logic, or some other calculation not covered by the existing aggregate types. 
You can extend AggregateAll and override its calculate method to provide the custom 
calculation.

See SummaryUnboundDataExample for the complete listing. It shows how to locate the node 
containing the fields you want to work with and add a new summary column containing 
the derived quantity. An outline of the procedure is given next.

In your main class, append a new summary column to the node’s footer:

SummaryColumn column = new SummaryColumn("Order Total Less Tax: ");
orderDetailFooterMetaData.appendColumn(column);

Provide parameters in the summary column’s constructor like these when you want 
unbound data: 

column = new SummaryColumn(orderDetailMetaData,
"jclass.higrid.examples.OrderDetailTotalAmount",
SummaryColumn.COLUMN_TYPE_UNBOUND,
SummaryColumn.AGGREGATE_TYPE_NONE,
MetaDataModel.TYPE_DOUBLE);

orderDetailFooterMetaData.appendColumn(column);
orderDetailFooterFormat.setShowing(true);

The second parameter names the class that defines the new calculation, which is 
presented next. Note that its constructor calls the base class to provide the required 
Chapter 2 ■ JClass DataSource Overview 41



initialization. OrderDetailTotalAmount provides the logic for calculations on each row 
and AggregateAll sums them to a group total.

package jclass.higrid.examples;

import jclass.higrid.AggregateAll;
import jclass.higrid.RowNode;

/**
* Calculates the order detail total amount.
*/
public class OrderDetailTotalAmount extends AggregateAll {

public OrderDetailTotalAmount() {
super();

}

/**
* Perform the aggregation.
*
* @param rowNode The row node.
*/
public void calculate(RowNode rowNode) {

if (isSameMetaID(rowNode)) {
Object quantity = getRowNodeResultData(rowNode, "Quantity");
Object unitPrice = getRowNodeResultData(rowNode, "UnitPrice");
if (quantity != null && unitPrice != null) {

double amount = getDoubleValue(quantity) *
getDoubleValue(unitPrice);

addValue((Object) new Double(amount));
}

}
}

}

2.9.2 Batching HiGrid Updates

You can control the frequency at which updates occur. Normally, you want the grid to be 
repainted immediately after a change is made or a property is set. To make several 
changes to a grid before causing a repaint, set the setBatched property of HiGrid object 
to true. Property changes do not cause a repaint until a setBatched(false) command is 
issued.

Thus, when initializing an object, or performing a number of property changes at one 
time, you can begin and end the section as follows.

    grid = new HiGrid();
    grid.setBatched(true);
    grid.setDataModel(new MyDataSource());
    grid.setBatched(false);

Setting a new data model may cause the grid to request numerous repaints, but these are 
prevented by sandwiching the command between the two setBatched commands.
42 Part I ■ Using JClass DataSource



2.10   Use of Customizers to Specify the Connection to the JDBC

If you have previously made a connection to your chosen database and have saved the 
information in a serialization file, then all you have to do is launch the customizer and 
specify the serialization file to reload. The following two figures show the dialogs for the 
single data level (in JCData) and for the hierarchical JCTreeData. In either case, you type 
in the filename or use the Load... button to choose it in a file dialog.

2.11   Classes and Methods of JClass DataSource

The following sections describe many of the classes and methods that application 
programmers find useful.

2.11.1 MetaDataModel

Use the constants in the following table when you want to map a JDBC data type to a 
Java type. These are the types that are returned. These constants are defined in 
jclass.datasource.MetaDataModel. 

Java data types used to map JDBC data types

TYPE_BOOLEAN

TYPE_SQL_DATE

TYPE_DOUBLE

TYPE_FLOAT

TYPE_INTEGER 

TYPE_STRING

TYPE_BIG_DECIMAL

TYPE_LONG

TYPE_SQL_TIME

TYPE_SQL_TIMESTAMP

TYPE_OBJECT

TYPE_BYTE

TYPE_SHORT 

TYPE_BYTE_ARRAY

TYPE_UTIL_DATE
Chapter 2 ■ JClass DataSource Overview 43



2.11.2 Data Model

This is the data interface for the JClass DataSource. An implementation of this interface 
will be passed to the class using the data source. All data for the data source is maintained 
and manipulated in this data model through its sub-interfaces. This data model requires 
the implementation of two tree models, one for describing the relationships of the 
hierarchical data (MetaDataModel) and one for the actual data (DataTableModel). 

BaseDataTable is an abstract implementation of the methods and properties common to 
various implementations of the DataTableModel. This class must be extended to 
concretely implement those methods not implemented here, which are all of the methods 
in the DataTableAbstractionLayer. 

The object that actually holds the data retrieved from the database is DataTable. Its 
implementation is specific to the type of data binding that different sources provide, so its 
implementation is different in each of the supported IDEs. The following discussion 
assumes a direct connection to JDBC rather than via an IDE.

DataTable contains a copy of the data returned in a JDBC result table, which will be 
copied into one of these result tables so the data can be cached. Rows can then be added, 
deleted or updated through this DataTable. All operations can access data through 
row/column idxToBookmarkMap rather than indexes. This facilitates sorting of rows 
and/or columns. 

public class DataTable extends BaseDataTable 

Methods:

Method Description

buildDeleteStatement(String, 
Vector, DataTableRow)

Builds the delete statement for a table. 

buildInsertStatement(String, 
Vector, Vector)

Default method for building insert statement. 

buildUpdateStatement(String, 
Vector, int)

Default method for building update statement. 

buildWhereClause(Vector, 
Vector)

Builds a WHERE clause for update/delete 
statements. 

cloneRow(int) Returns a copy of this row. 

columnModified(int, String) Returns true if a column value has been modified. 

commit() Actually commits this row to the server. 

createNewRow() Creates a new row, called by addRow(). 
44 Part I ■ Using JClass DataSource



createTable(int, TreeNode) Creates and returns the DataTable which 
corresponds to the specifed row of this parent for 
the indicated child meta data object. 

getCell(int, String) Returns a value for a given row/column 
idxToBookmarkMap. 

getCombinedKeys(String) Returns a Vector of column names which are the 
join columns and the primary keys for the driver 
table. 

getOriginalRow(int) Given a bookmark, returns the original row as it 
was before any changes where made. 

getRowFromServer(String, 
String, int)

Sends the query to the server, fetches and returns 
the row. 

originalCellWasNull(int, 
Vector, Vector)

Returns true if the original cell value is null. 

refreshRow(int) Re-reads a row from the originating data source. 

requeryLevel() Repopulates this DataTable by re-reading rows 
from the originating data source. 

restoreRow(int) Restores a row's original values. 

saveRow(int) Saves row changes to originating data source. 

setParameter(int, Object) Sets parameters in the requery. 

setValueAt(int, String, 
Object)

Changes the value of an existing cell. 

tablesColumnsModified(int, 
Vector)

Returns true if at least one of this table's columns 
has been modified. 

Method Description
Chapter 2 ■ JClass DataSource Overview 45



46 Part I ■ Using JClass DataSource



3
The Data Model

Introduction ■ Accessing a Database ■ Specifying Tables and Fields at Each Level

Setting the Commit Policy ■ Methods for Traversing the Data ■ The Result Set

Virtual Columns ■ JClass DataSource Events and Listeners ■ Handling Data Integrity Violations

3.1   Introduction

Creating an application with JClass DataSource normally involves these steps:

1. Establishing a database connection.

2. Creating the root meta data table.

3. Defining the meta data for sub-tables.

4. Setting properties, such as the commit policy.

5. Optionally adding generated fields in what are called “virtual columns”.

6. Connecting display objects, like JClass HiGrid or data bound components.

This chapter illustrates some of the methods that accomplish the above mentioned steps 
programmatically.

JClass DataSource is structured around two TreeModels, a meta data tree and a data table 
tree. The classes that make up the meta data model cooperate to define methods for 
describing the way that you want your data structured. You define the abstract 
relationship between data tables as a tree. This is the meta data structure, and after it has 
been designed, you query the database to fill data tables with result sets. The abstract 
model defines the structure for the specific data items that are to be retrieved and indexed 
using a dynamic bookmark mechanism. At the base level of the class hierarchy, class 
MetaData describes a node in the MetaTree structure and class DataTable holds the actual 
data for that node. There are different implementations of MetaData for differing data 
access technologies, therefore there will be a different MetaData defined for the JDBC and 
for various IDEs. Similarly, there will be different DataTable classes depending on the 
basic data access methodology.

MetaData and DataTable are concrete subclasses of the classes BaseMetaData and 
BaseDataTable. The latter is an implementation of the methods and properties common 
to various implementations of the DataTable model. This class must be extended to 
concretely implement those methods that it does not, which are all of the methods in the 
47



data table abstraction layer. Both of these classes are derived from TreeNode, which 
contains a collection of methods for managing tree-structured objects.

Interface MetaDataModel defines the methods that BaseMetaData and its derived classes 
must implement. This is the interface for the objects that hold the meta data for 
DataTables. There is one MetaDataModel for the root data table, and there can be zero, 
one, or more DataTable objects associated with one meta data object for all subsequent 
nodes in the meta data model. Thus it is more efficient to store this meta data only once, 
rather than repeating it as a part of every data table. In JClass DataSource, meta data 
objects are the nodes of the meta tree. The meta tree, through instances of the MetaData 
classes, describes the hierarchical relations between the meta data nodes. DataTableModel 
is the interface for data storage for JClass DataSource’s data model. It requests data from 
instances of this table and manipulates that data through this interface. That is, rows can 
be added, deleted or updated through this DataTable. To allow sorting of rows and 
columns, all operations access cell data using unique identifiers for rows and columns, 
rather than their indexes. 

The DataModel has one “global” cursor. Commit policies rely on the position of this 
cursor. This cursor, which is closely related to the bookmark structure, can point 
anywhere in the “opened” data. 

Additionally, each DataTableModel has its own “current bookmark.” This cursor is used 
by the getTable method to point to a definite row in the named table. If another table is 
referenced, a new, likely different, bookmark is used as the current row cursor.

3.2   Accessing a Database

Because this product is designed primarily to populate its data tables from SQL queries, it 
provides various ways to make the necessary connection to the database or databases that 
source the data. 

3.2.1 Specifying the Database Connection

If you are working on a Windows platform, and wish to test your application using 
ODBC, register your database as shown in the JClass DesktopViews Installation Guide. 
Other platforms have similar mechanisms for registering the database with an 
appropriate driver — consult their documentation for details.

JClass DataSource provides a programmatic mechanism for making a database 
connection and one based on customizers for those using IDEs. As long as you are using 
the JDBC API, you may use the JARs that accompany this product in your development 
environment. If you are using a supported IDE, you may optionally use the IDE-specific 
data binding solution in the customizer.
48 Part I ■ Using JClass DataSource

../getstarted/index.html


3.2.2 Accessing a Database Via JDBC Type 1 Driver

The JDBC-ODBC bridge is part of the JDK. ODBC drivers are commonly available for 
many databases. Some ODBC binary code is required on each client machine, which 
means that the bridge and the driver are written in native code. For security reasons, Web 
browsers may not use the ODBC driver, and therefore Applets must use another 
approach.

The JDBC-ODBC bridge lets you use the wide range of existing ODBC drivers. 
Unfortunately, this is not a pure Java solution, and as such may impose an unacceptable 
limitation. Use of a Type 4 driver, described next, is highly recommended.

3.2.3 Accessing a Database Via JDBC Type 4 Driver

The JavaSoft Web page http://java.sun.com/products/jdbc/driverdesc.html has this to say about 
Type 4 drivers: “A native-protocol fully Java technology-enabled driver converts JDBC 
calls into the network protocol used by DBMSs directly. This allows a direct call from the 
client machine to the DBMS server and is a practical solution for Intranet access. Since 
many of these protocols are proprietary the database vendors themselves will be the 
primary source for this style of driver. Several database vendors have these in progress.” 
As these become available, Web browsers can use this approach to allow applets access to 
databases.

// A sybase jConnect connection
try {

DataTableConnection connection=
new DataTableConnection(

"com.sybase.jdbc.SybDriver",            // driver
"jdbc:sybase:Tds:localhost:1498",       // url
"dba",                                  // user
"sql",                                  // password
"HiGridDemoSQLAnywhere");               // database

} catch (Exception e) {
System.out.println(
"Data connection attempt failed to initialize " + e.toString());
}

Note: The connection object handles all four types of JDBC drivers, only the parameters 
names are different as one changes from one driver to another.
Chapter 3 ■ The Data Model 49

http://java.sun.com/products/jdbc/driverdesc.html


3.2.4 The JDBC-ODBC Bridge and Middleware products
You have seen that you can establish a database connection through code similar to this 
snippet.

try {
// create the connection object which will be shared
DataTableConnection connection= new DataTableConnection(

"sun.jdbc.odbc.JdbcOdbcDriver", // driver
"jdbc:odbc:HiGridDemo",         // url
"Admin",                        // user
"",                             // password
null);                          // database

} catch (Exception e) {
System.out.println(
"Data connection attempt failed to initialize " + e.toString());
}

There are many JDBC-ODBC bridge products, including one from JavaSoft. The JDBC-
ODBC Bridge driver (package sun.jdbc.odbc) is included in JDK 1.2 and above.

3.2.5 Instantiating the Data Model

The root level of the model is created by code similar to the following. Here, all the fields 
from a table named “Orders” have been chosen.

// Create the Orders MetaData for the root table
MetaData Orders = new MetaData(this, connection, 

" select * from Orders order by OrderID asc");
Orders.setDescription("Orders");

The root-level MetaData constructor is passed parameters naming the TreeData object, 
the JDBC connection, and the SQL query. The meta data for sub-level tables is 
instantiated through a command similar to the one shown directly below.

// Create the Customer MetaData
MetaData Customers = new MetaData(this, Orders, connection);

This constructor takes as parameters a TreeData object, the name of the parent meta data 
object, and the connection object.

If you wish to present fields from more than one table at the same level in the hierarchy, 
you use the same constructor and the same syntax. The difference only appears when you 
build the query statement. The next section creates an OrderDetails level that is joined to 
50 Part I ■ Using JClass DataSource



the Orders table but obtains data from two database tables, here having the anonymous 
names a and b.

// Create the Products MetaData
MetaData Products = new MetaData(this, OrderDetails, connection);
String query = "select a.ProductID, a.ProductDescription,

a.ProductName,";
query += " a.CategoryID, a.UnitPrice, a.Picture, ";
query += " b.CategoryName";
query += " from Products a, Categories b";
query += " where a.ProductID = ?";
query += " and a.CategoryID = b.CategoryID";

In the previous code snippet, the two tables are joined to the parent table using the 
ProductID key. That a join with the parent is taking place is recognizable by the use of the 
? parameter that substitutes a particular single ProductID value in the parent table to 
match against ProductID values in table a. The two sub-tables themselves are joined on 
the CategoryID key. The next section discusses SQL queries in more detail.

3.2.6 Specifying the SQL Query

JClass DataSource’s customizer permits the point-and-click construction of SELECT 
statements as one of the essential operations along with naming a database and its tables, 
and constructing the grid’s meta data. Similarly, JClass DataSource’s Beans have custom 
editors that facilitate building a query. These customizers and custom editors have text 
panels that permit you to edit the query.

If you do edit the SQL query statement, your more elaborate statement is passed on to 
the database with only the most rudimentary validation having been done. Therefore, 
please realize that you must take extra care when testing your code, especially with 
commands that potentially modify the host database.

3.3   Specifying Tables and Fields at Each Level

Specifying the tables and fields that comprise each level of the hierarchical structure of 
the grid is really more of a design issue that depends on your particular application rather 
Chapter 3 ■ The Data Model 51



than any requirement imposed by the data model. Once you have created your design, 
specify the top level’s tables and fields with the command:

MetaData Orders = new MetaData(this, connection, 
" select * from Orders order by OrderID asc");

This is the constructor for the root level, and is distinguished by the fact that the 
constructor actually passes a query to the database. For dependent tables, use this form of 
the constructor:

MetaData Territory = new MetaData(this, Customers, connection);

As before this is a DataModel (or TreeData) object and connection is a Connection 
object, while Customers is the name of the parent level. The query is set up using the 
method setStatement:

String select = "SELECT TerritoryID, TerritoryName from Territories 
WHERE TerritoryID = ?";

Territory.setStatement(t);

Further setup is done with the commands:

Territory.joinOnParentColumn("TerritoryID","TerritoryID");
Territory.open();

Methods joinOnParentColumn and open cooperate to return the meta data for the query. 
The data itself is retrieved when some operation that opens sub-levels is performed.

There is a recurring pattern used to describe and construct the data binding at each level. 
The commands are:

■ Create the level. A root level requires one form of the MetaData constructor; all others 
make use of a second form.

■ Define the SQL query for the level as a Java String.

■ Provide a descriptive word for the level and pass it to the MetaData object via 
setDescription. It’s a good idea to ensure that you don’t duplicate any of these 
descriptive words. If you do, you can’t be sure which instance the getDescription 
method will return.

■ Use joinOnParentColumn to name the join fields. This will be checked at run time (or 
in a custom editor if you are using an IDE or a customizer) against the WHERE 
clause of the query to confirm that they match. 

■ Use MetaData’s open method to load the ResultSetMetaData for the level. The 
retrieval of actual data is deferred until there is a need to display it.
52 Part I ■ Using JClass DataSource



3.4   Setting the Commit Policy

There are three commit policies defined in MetaDataModel: 

By default, edits to a row are committed upon leaving it (the record). 

Note that you can find the commit policy currently in effect by calling getCommitPolicy, 
and you can cause all pending updates to be written to the database using updateAll. 
These methods are in classes MetaDataModel and DataModel respectively.

Also note that commitAll should not be used to update the database even though it is 
declared public. Use updateAll instead.

// override the default commit policy COMMIT_LEAVING_ANCESTOR
Orders.setCommitPolicy(MetaDataModel.COMMIT_LEAVING_RECORD);
OrderDetails.setCommitPolicy(

MetaDataModel.COMMIT_LEAVING_ANCESTOR);
Customers.setCommitPolicy(

MetaDataModel.COMMIT_LEAVING_ANCESTOR);
Products.setCommitPolicy(MetaDataModel.COMMIT_MANUALLY);

Commit Policy Description

COMMIT_LEAVING_RECORD Modifications to a row will be written to the 
originating data source when the cursor moves to 
any other row.

COMMIT_LEAVING_ANCESTOR Changes will be written to the originating data 
source when the cursor moves to a row which 
does not have the same parent as the current row. 

COMMIT_MANUALLY Any row changes will simply change the status of 
those rows (see DataTableModel.getRowStatus()). 
You must then call 
DataTableModel.commitRow(bookmark) or 
DataModel.updateAll() to make the changes 
permanent, or call DataTableModel.cancelRow 
Changes(bookmark) or DataModel.cancellAll() 
to undo the changes. 

If you are using JClass HiGrid, the end-user can 
click on the Edit Status column icon to commit 
edits, or use the popup menu to commit or cancel 
edits.
Chapter 3 ■ The Data Model 53



Territory.setCommitPolicy(
MetaDataModel.COMMIT_LEAVING_ANCESTOR);

3.5   Methods for Traversing the Data

Interface TreeNodeModel specifies the methods that the nodes of a TreeModel must 
implement. TreeModel itself is an interface for the whole tree, including the root, while 
TreeNodeModel refers only to the nodes of a generic tree structure. Both these interfaces 
are used for meta data objects and for actual data tables. TreeModel includes many of the 
methods of TreeNodeModel merely as a convenience.

Method Description

append Adds a TreeNodeModel to the node upon which the method 
is invoked. The argument node is added as a child of this 
node.

getChildren Returns the Vector that contains the child nodes of the node 
upon which the method is invoked. 

getData Returns the Object associated with a TreeNodeModel. 

getFirstChild The TreeNode of the first child node for the current data 
model.

getIterator Given a starting node, a tree iterator is used to follow the 
links to the node’s descendents.

getLastChild Follows the link to the last child table for the current 
TreeNodeModel; that is, the last table of the group of tables 
at the meta data level directly beneath the object upon 
which the method is invoked.

getNextChild Follows the link to the next child table for the current 
TreeNodeModel.

getNextSibling Follows the link to the next sibling table for the current 
TreeNodeModel, that is, the next table of the group of tables 
at the same meta data level as the object upon which the 
method is invoked.

getParent Returns the parent, as a TreeNodeModel; of the object upon 
which the method is invoked.

getPreviousChild Follows the link to the last child table for the current 
TreeNodeModel, that is, the last table of the group of tables 
at the meta data level directly beneath the object upon 
which the method is invoked.
54 Part I ■ Using JClass DataSource



TreeNodeModel defines:

getPreviousSibling Follows the link to the last child table for the current 
TreeNodeModel, that is, the last table of the group of tables 
at the meta data level directly beneath the object upon 
which the method is invoked.

hasChildren Use this boolean method to find out if the object upon 
which the method is invoked has children. 

insert Inserts a TreeNodeModel as a child of the object upon which 
this method is invoked.

isChildOf(TreeNode) Use this boolean method to determine if the object upon 
which the method is invoked is a child of the 
TreeNodeModel parameter.

remove Removes the specified TreeNodeModel from this node's 
array of children.

removeChildren Removes the children of the object upon which the method 
is invoked.

Method Description

append Adds a TreeNode to this node.

getChildren Returns the Vector that contains the child nodes of this node.

getFirstChild Returns the first child of this node.

getIterator Returns an iterator to traverse this node's children.

getLastChild Returns the last child of this node.

getNextChild Returns the child of this node which follows the node 
parameter.

getParent Returns the parent node of this node.

getPreviousChild Returns the child of this node which precedes the node 
parameter.

hasChildren Returns a boolean: true if this node has children.

insert Inserts a TreeNode as a child node of this node.

remove Removes a child node from the Tree.

removeChildren Removes all children of this node.

Method Description
Chapter 3 ■ The Data Model 55



TreeIteratorModel defines:

3.6   The Result Set

3.6.1 Performing Updates and Adding Rows Programmatically

Performing Updates
JClass DataSource implements all the standard Requery, Insert, Update, and Delete 
operations. The requery methods are DataModel requeryAll, DataTableModel 
requeryRow, and DataTableModel (and SummaryMetaData) requeryRowAndDetails.

After a user has modified a cell, call updateCell(rowNumber, columnName, value) to 
inform the data source of the change. This method will then fire a DataTableEvent to 
inform listeners about this change. getRowStatus will report this row as UPDATED. 

Cancelling pending updates to the database is accomplished via the cancel methods 
called cancelAll (DataModel) and cancelAllRowChanges (BaseDataTable). See the API 
for cancelCellEditing in jclass.cell.CellEditor and its overridden methods in 
jclass.cell.editors for methods which cancel edits to cells. 

Requerying the Database
requeryAll requeries the root-level of the database — all rows. Not only do the 
bookmarks get reset, the sub-tables need to be set up from scratch after a requeryAll. 

Method Description

advance Moves to the next element in this iterator's list. 

advance Moves ahead a specified number of elements in this iterator's 
list. 

atBegin Returns boolean: true if iterator is positioned at the beginning 
of list, false otherwise. 

atEnd Returns boolean: true if iterator is positioned at the end of list, 
false otherwise. 

clone Returns a copy of the current node.

get Returns the current node. 

hasMoreElements Returns boolean: true if this node has more children, false 
otherwise. 

nextElement Returns the next child of this node. 
56 Part I ■ Using JClass DataSource



Adding a Row
The addRow method adds a row and returns a bookmark to the row.

3.6.2 Accessing Rows and Columns

Rows and columns may be accessed in various ways, depending on what information is 
currently available. 

3.6.3 Column Properties

Most of these properties are derived from the JDBC class ResultSetMetaData in 
java.sql. They are declared in the ColumnModel interface. 

Method Description

BaseMetaData.getColumnCount The number of columns in the result set.

MetaDataModel.getColumnIdentifier Returns a String that uniquely identifies the 
column. Used to access data rather than a 
column index which can change when the 
columns are sorted. 

DataModelEvent.getColumn Returns a String indicating which column 
changed, or “ ” in the case where the 
column is not applicable. 

MetaDataModel.getCurrentBookmark
DataTableModel.getCurrentBookmark

Moves global cursor to a row, say by first, 
and return the bookmark.

DataTableModel.getRowIdentifier(i) The index i is the row order within the 
result set. The method returns the 
bookmark for that row.

Property Description

getCatalogName Returns the catalog name for the table containing this 
field.

getDisplayWidth Returns the width in pixels of the column 

getColumnName The column’s name.

getPrecision The number of decimal digits.

getSchemaName The name of the schema for the table containing this 
column.

getTableName The name of the table containing this column.

getColumnType The Java type of the column.
Chapter 3 ■ The Data Model 57



3.7   Virtual Columns

You can add columns whose contents are not retrieved from the data source. The class 
BaseVirtualColumn allows you to add columns which are derived from other columns on 
the row, including other virtual columns, by performing defined operations on one or 
more other columns in the row to arrive at a computed value.

Virtual columns are based on VirtualColumnModel, an interface with one method: 
Object getResultData(DataTableModel, bookmark). This allows access to all the other 
cells in the row.

A base implementation of VirtualColumnModel called BaseVirtualColumn is provided. It 
handles the obvious operations you might want to perform on one or more cells in a row: 
SUM, AVERAGE, MIN, MAX, PRODUCT, QUOTIENT. (You can define your own operation by 
defining a new constant and subclassing BaseVirtualColumn’s getResultData() method.) 
Whether a column is real or virtual, it is transparent to listeners (like HiGrid). They 
simply call getResultData(bookmark) as before. The DataTable will check the column 
type. If it is real the normal method is used. If virtual, the 
VirtualColumnModel.getResultData(DataTableModel, bookmark) method will be 

isAutoIncrement When a new row containing this column is created, its 
contents are assigned a sequence number. Some 
databases permit it to be overridden.

isCaseSensitive Is upper case to be distinguished from lowercase?

isCurrency Is the data a currency value?

isDefinitelyWritable Is the field writable?

isNullable Is null an allowable value?

isReadOnly Is the column write protected?

isSearchable Can this column’s contents be used in a WHERE 
clause?

isSigned  Is the object signed?

isWritable  Is the field writable?

Property Description
58 Part I ■ Using JClass DataSource



called. There can be zero, one, or more virtual columns for a row. Virtual columns will be 
added by calling a method on the MetaDataModel. For example,

String name = "LineTotal";
int type = MetaDataModel.TYPE_BIG_DECIMAL;
int operation = VirtualColumnModel.PRODUCT;
Orders.addVirtualColumn(new BaseVirtualColumn(name, type, 

operation, new String[] = {"col1","col2"});

UserDefinedVirtualColumn v = new UserDefinedVirtualColumn(....);
v.setSomeProperty( .. );
Orders.addVirtualColumn(v);

Columns are added to the end of the list of existing columns. VirtualColumns cannot be 
removed.

Computation Order when using Virtual Columns
The implementation of virtual columns requires that the columns referenced by the 
virtual column must lie to the left of the summary column containing the result. This is 
usually not a problem because totals and other such summary data are normally placed to 
the right of the source columns. However, the rule admits of some flexibility because it is 
the order in which items are added to the meta data structure that determines the left-
right relationship referred to above, but the visual layout may be different.

The following code snippet demonstrates the procedure.

// Create the OrderDetails MetaData
// Three virtual columns are used:
//
// TotalLessTax (Quantity * UnitPrice),
// SalesTax (TotalLessTax * TaxRate) and
// LineTotal (TotalLessTax + SalesTax).
//
// Thus, when Quantity and/or UnitPrice is changed, these derived
// values reflect the changes immediately.
// Note 1: TaxRate is not a real column either, 
// it is a constant returned by the sql statement.
// Note 2: Virtual columns can themselves be used to derive other
// virtual columns. They are evaluated from left to right.
MetaData OrderDetails = new MetaData(this, Orders, c);
OrderDetails.setDescription("OrderDetails");
String detail_query = "select OrderDetailID, OrderID, ProductID, ";
detail_query += " DateSold, Quantity, UnitPrice, ";
detail_query += " '0.15' AS TaxRate ";
detail_query += " from OrderDetails where OrderID = ?";
OrderDetails.setStatement(detail_query);
OrderDetails.joinOnParentColumn("OrderID","OrderID");
OrderDetails.open();
BaseVirtualColumn TotalLessTax = new BaseVirtualColumn(

"TotalLessTax", java.sql.Types.FLOAT, BaseVirtualColumn.PRODUCT, 
new String[] {"Quantity", "UnitPrice"});

BaseVirtualColumn SalesTax = new BaseVirtualColumn(
"SalesTax", java.sql.Types.FLOAT, BaseVirtualColumn.PRODUCT, 

new String[] {"TotalLessTax", "TaxRate"});
Chapter 3 ■ The Data Model 59



BaseVirtualColumn LineTotal = new BaseVirtualColumn(
"LineTotal", java.sql.Types.FLOAT, BaseVirtualColumn.SUM, 

new String[] {"TotalLessTax", "SalesTax"});
OrderDetails.addColumn(TotalLessTax);
OrderDetails.addColumn(SalesTax);
OrderDetails.addColumn(LineTotal);

The BaseVirtualColumn constructor is given a column label, the column’s data type, the 
arithmetic operation (one of the supported types), and an array of column names on 
which the operation is to be applied. 

3.7.1 Excluding Columns from Update Operations

Because the setColumnTableRelations method explicitly sets the relationships between 
tables and columns, it can be used to exclude a column from update operations. This is 
useful in the case of a column containing bitmapped graphics. The database may think 
that some pixels have changed in the displayed data and the cell should be updated even 
though the picture has not been edited at all. In cases like this, you can list only those 
columns that really should be updated, and save the cost of updating a read-only column.

// override the table-column associations for the Products table
// to exclude the Picture column so it is not included as part of
// the update. Precision problems cause the server to think it's
// changed.
Products.setColumnTableRelations("Products", 

new String[] {"ProductID","ProductDescription",
"ProductName","CategoryID","UnitPrice"});

Now the column containing the pictures will not be updated.

3.8   JClass DataSource Events and Listeners
The data model fires events that cause a grid, normally JClass HiGrid, to redisplay its 
data based on the changing state of the database. This section describes the methods and 
constants associated with JClass DataSource’s DataModelEvent class.

The display grid relies on the event handling mechanism of JClass DataSource for 
everything related to data model events. These occur when the data being displayed by 
the grid is edited and committed by user action, or because one or more of the database 
fields currently being displayed was changed by another agent. In either case, the grid 
must be synchronized with the database, and data model changes must be propagated to 
the grid.

The following diagram depicts the classes and interfaces that JClass DataSource uses to 
manage changes to its data model. There are two listener interfaces, 
ReadOnlyBindingListener and its extension, DataModelListner, but only one event 
class, DataModelEvent. ReadOnlyBindingListener is for the read-only events in 
DataModelEvent, and DataModelListner extends it, adding methods for listeners that will 
make changes to the data model.
60 Part I ■ Using JClass DataSource



The ReadOnlyBindingModel interface provides a single-level, two-dimensional view of a 
set of data. It groups all non-update methods and handles read-only events. This interface 
exists only to provide a logical separation between read-only and non-read-only methods 
and event handling. Update methods are declared by BindingModel.

Figure 16 Classes and interfaces related to event handling in JClass DataSource.

3.8.1 The Methods in DataModelEvent
The DataModelEvent describes changes to the data source. An interested listener can 
query this data source to reflect the changes in its display. DataModelEvent defines these 
methods

Event Method Description 

cancelProposedAction Cancels the proposed action. This method can be used 
if the action is cancelable. You may want to test that 
isCancelable is true before calling 
cancelProposedAction.

 getAncestorBookmarks Returns a list of the bookmarks which comprise the 
path from the root to the event node. 
Chapter 3 ■ The Data Model 61



Events are characterized by the class constants given in the following table. Listeners can 
distinguish various cases within the event structure by examining these constants and 
taking the appropriate action. Since some of these constants are for rare situations, or for 
internal use, these are the minimum to which a listener should respond:

    AFTER_CHANGE_OF_ROW_DATA
    AFTER_INSERT_ROW
    AFTER_DELETE_ROW
    AFTER_RESET
    AFTER_REQUERY_ROW_AND_DETAILS
    AFTER_MOVE_TO_CURRENT_ROW

See the DataModelEvent API and the following table for the full list of event constants.

3.8.2 The Class Constants Defined in DataModelEvent
Applications that simply need to display a grid find that all event handling is done 
transparently. Events do need to be caught and handled by applications that need to 
inspect and possibly deny some of the actions that end-users may take. The “BEFORE” 
events shown in the table below can be used to let your application inspect changes made 
by the end-user and perform its own validation before passing them back to the data 
source.

 getBookmark Returns the bookmark of the changed row.

 getCancelled Sees if proposed action was cancelled by listener. 

 getColumn Returns a String indicating which column changed. 

 getCommand Gets the command which indicates what action should 
be taken. 

getRowIndex Returns the row index of the changed row.

getOriginator Returns the DataModelListener which initiated this 
event. Allows a listener to determine if it was also the 
originator of the event.

getTable Returns the DataTableModel related to this event. 

isCancelable Returns true if this event can be cancelled.

Event Method Description 
62 Part I ■ Using JClass DataSource



The data model’s events are distinguished by the group of class constants listed here:

DataModel Event Class Constants and 
Corresponding Listener Method Description

AFTER_CHANGE_OF_ROW_DATA

ReadOnlyBindingListener method:
afterChangeOfRowData().

A row has changed, re-read all its cells and its 
status to reflect the new values. If this event is 
the result of a cell edit call 
DataModelEvent.getColumn() to get the name 
of the column which changed. If getColumn() 
returns “ ”, re-read the entire row. 
Called when one of the following is true:
a row is deleted and getShowDeletedRows() == 
true,
a cell was edited,
row edits are cancelled and getRowStatus == 
UPDATED,
row edits are cancelled and getRowStatus == 
DELETED and getShowDeletedRows == true,
row is committed and getRowStatus == 
UPDATED or INSERTED,
row is requeried and getRowStatus != 
INSERTED.

AFTER_DELETE_ROW

ReadOnlyBindingListener method:
afterDeleteRow().

Removes the row from the display. A row has 
been physically deleted and needs to be 
removed from the display or has been logically 
deleted but the showDeletedRows property has 
been set to false. Called when
a row has been logically deleted and 
getShowDeletedRows == false,
row changes have been cancelled and 
getRowStatus == INSERTED,
a row is committed and getRowStatus == 
DELETED and getShowDeletedRows == true,
a row has been requeried and getRowStatus == 
INSERTED.

AFTER_INSERT_ROW

ReadOnlyBindingListener method:
afterInsertRow().

A new row has been added to the datasource. 
Listeners need to display the row. Rows are 
always added to the end of DataTableModels.
Chapter 3 ■ The Data Model 63

../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterChangeOfRowData(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterDeleteRow(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterInsertRow(com.klg.jclass.datasource.DataModelEvent)


AFTER_MOVE_TO_CURRENT_ROW

ReadOnlyBindingListener method:
afterMoveToCurrentRow().

The global cursor has moved to a new row. 
Listeners should position their cursor on the 
indicated row. In a master-detail relationship, 
child levels should refresh themselves to reflect 
data sets which correspond to the new parent 
row by calling 
DataModel.getCurrentDataTable(), or for field 
controls, DataModel.getCurrentDataItem().

AFTER_REQUERY_ROW_AND_DETAILS

ReadOnlyBindingListener method:
afterRequeryRowAndDetails().

Re-reads the indicated row and refreshes all 
open children under this row.

AFTER_REQUERY_TABLE

ReadOnlyBindingListener method:
afterRequeryTable().

Re-reads this table and refreshes all open 
children in the table.

AFTER_RESET

ReadOnlyBindingListener method:
afterReset()

Listeners must close all expanded views and 
reset/re-read the root node. The previous 
pointer to the root node is no longer valid. Call 
DataModel.getDataTableTree().getRoot() 
for the new root table. Called when the 
datasource has been reset.
See DataModel.requeryAll().

BEFORE_CANCEL_ALL
BEFORE_CANCEL_ROW_CHANGES
BEFORE_EDIT_CELL
BEFORE_COMMIT_ALL
BEFORE_COMMIT_ROW
BEFORE_COMMIT_CONDITIONAL
BEFORE_MOVE_TO_CURRENT_ROW
BEFORE_REQUERY
BEFORE_RESET
BEFORE_DELETE_ROW
BEFORE_INSERT_ROW

These “BEFORE_” events can be ignored.  
They are simply to allow applications to cancel 
the event.

BEFORE_CANCEL_ALL

DataModelListener method:
beforeCancelAll().

Event fired before all changes are cancelled. 
Can be cancelled. AFTER_INSERT_ROW and 
AFTER_CHANGE_OF_ROW_DATA events can follow 
this event.
See DataModel.cancelAll().

DataModel Event Class Constants and 
Corresponding Listener Method Description
64 Part I ■ Using JClass DataSource

../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterMoveToCurrentRow(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModel.html#getCurrentDataTable(com.klg.jclass.datasource.DataModelListener, com.klg.jclass.datasource.MetaDataModel)
../api/com/klg/jclass/datasource/DataModel.html#getCurrentDataItem(com.klg.jclass.datasource.DataModelListener, com.klg.jclass.datasource.MetaDataModel, java.lang.String)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterRequeryRowAndDetails(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterRequeryTable(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterReset(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModel.html#requeryAll(com.klg.jclass.datasource.DataModelListener)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeCancelAll(com.klg.jclass.datasource.DataModelEvent)


BEFORE_CANCEL_ROW_CHANGES

DataModelListener method:
beforeCancelRowChanges()

Event fired before all edits to a row are undone. 
Can be cancelled. An AFTER_DELETE_ROW or 
AFTER_CHANGE_OR_ROW_DATA event will follow.
See DataTableModel.cancelRowChanges().

BEFORE_COMMIT_ALL

DataModelListener method:
beforeCommitAll().

Event fired before all changes are committed. 
Can be cancelled. All modified, deleted, and 
inserted rows at all levels are about to be 
committed. BEFORE_DELETE_ROW and 
AFTER_CHANGE_OF_ROW_DATA events 
will follow depending on the operations 
performed on the modified rows being saved. 
Results from a call to DataModel.updateAll().
See DataModel.updateAll().

BEFORE_COMMIT_CONDITIONAL

DataModelListener method:
beforeCommitConditional().

Called when the root-level bookmark for a 
subtree changes. When this happens those 
nodes in the previous subtree which are not 
COMMIT_MANUALLY are committed. Can be 
cancelled. If cancelled, the cursor moves but 
the changes are automatically committed.

BEFORE_COMMIT_ROW

beforeCommitRow().

Called before single row is committed to data 
source. Can be cancelled, in which case the row 
edits are not written to the datasource and the 
row status remains modified. 
AFTER_DELETE_ROW or 
AFTER_CHANGE_OF_ROW_DATA events will follow 
depending on the status of the row to be 
committed.
See DataTableModel.commitRow().

BEFORE_DELETE_ROW

DataModelListener method:
beforeDeleteRow().

Event fired before a row is [logically] deleted. 
Can be cancelled. If not cancelled, this event 
will be followed by an AFTER_ROW_DELETE or a 
ROW_STATUS_CHANGED message if the commit 
policy is COMMIT_MANUALLY or 
COMMIT_LEAVING_ANCESTOR.
See DataTableModel.deleteRow(), 
MetaDataModel.getCommitPolicy().

BEFORE_DELETE_TABLE

DataModelListener method:
beforeDeleteTable().

The indicated Data Table will be deleted and 
flushed from the cache.
Can be cancelled.

DataModel Event Class Constants and 
Corresponding Listener Method Description
Chapter 3 ■ The Data Model 65

../api/com/klg/jclass/datasource/DataModelListener.html#beforeCancelRowChanges(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataTableModel.html#cancelRowChanges(com.klg.jclass.datasource.DataModelListener, long)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeCommitAll(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModel.html#updateAll(com.klg.jclass.datasource.DataModelListener)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeCommitConditional(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeCommitRow(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataTableModel.html#commitRow(com.klg.jclass.datasource.DataModelListener, long)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeDeleteRow(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataTableModel.html#deleteRow(com.klg.jclass.datasource.DataModelListener, long)
../api/com/klg/jclass/datasource/MetaDataModel.html#getCommitPolicy()
../api/com/klg/jclass/datasource/DataModelListener.html#beforeDeleteTable(com.klg.jclass.datasource.DataModelEvent)


BEFORE_EDIT_CELL

DataModelListener method:
beforeEditCell().

Event fired before a cell is edited. Can be 
cancelled.
See DataTableModel.updateCell().

BEFORE_INSERT_ROW

DataModelListener method:
beforeInsertRow().

Event fired before a row is inserted. Can be 
cancelled. If not cancelled, this event will be 
followed by an AFTER_INSERT_ROW event.
See DataTableModel.addRow().

BEFORE_MOVE_TO_CURRENT_ROW

DataModelListener method:
beforeMoveToCurrentRow().

The global cursor will move to a new row. Can 
be cancelled.

BEFORE_REQUERY

DataModelListener method:
beforeRequery().

Event fired when either 
DataTableModel.requeryRowAnd
Details() or DataTableModel.requeryRow() 
is called. If not cancelled this event will be 
followed by an 
AFTER_REQUERY_ROW_AND_DETAILS event, or an 
AFTER_ROW_DELETE event in the case 
getRowStatus() == INSERTED, or a 
ROW_STATUS_CHANGED event in the case 
getRowStatus() == UPDATED or COMMITTED.
See DataTableModel.requeryRow(), 
DataTableModel.requeryRowAndDetails().

BEFORE_RESET

DataModelListener method:
beforeReset().

Event fired before entire grid is reset. Can be 
cancelled. If not cancelled, this event will be 
followed by an AFTER_RESET event. This event 
will result from a call to 
DataModel.requeryAll().

BEGIN_EVENTS

ReadOnlyBindingListener method:
beginEvents().

Notification that multiple events are coming. 
Multiple events will be nested between 
BEGIN_EVENTS and END_EVENTS events. Allows 
listeners to treat the events as a batch to, for 
example, reduce repaints.

DataModel Event Class Constants and 
Corresponding Listener Method Description
66 Part I ■ Using JClass DataSource

../api/com/klg/jclass/datasource/DataModelListener.html#beforeEditCell(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataTableModel.html#updateCell(com.klg.jclass.datasource.DataModelListener, long, java.lang.String, java.lang.Object)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeInsertRow(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataTableModel.html#addRow(com.klg.jclass.datasource.DataModelListener)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeMoveToCurrentRow(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeRequery(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataTableModel.html#requeryRow(com.klg.jclass.datasource.DataModelListener, long)
../api/com/klg/jclass/datasource/DataTableModel.html#requeryRowAndDetails(com.klg.jclass.datasource.DataModelListener, long)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeReset(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModel.html#requeryAll(com.klg.jclass.datasource.DataModelListener)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#beginEvents(com.klg.jclass.datasource.DataModelEvent)


3.9   Handling Data Integrity Violations

3.9.1 Exceptions

Many files, including the JCData, JCTreeData, DataTableModel, TreeData, and 
VirtualColumnModel, throw exceptions to alert the environment that actions need to be 
taken as a result of changes, both planned and unplanned, that have happened as data is 
retrieved, manipulated, and stored to the underlying database.

Since many of these exceptions are specific to the way that data is handled internally, and 
because extra information is often needed about the details of the exception, a special 
class extending, java.lang.Exception called DataModelException, is available to supply 
the extra necessary information.

DataModelException adds information about the context of the exception. From it you 
can determine the bookmark, the column identifier (columnID), the action that caused the 
exception, the DataTableModel related to the exception, and the exception itself. There 
are overridden toString and getMessage methods that allow you access to the 
exceptions in readable form.

The following code snippet is just one example of the numerous situations where you 
might wish to catch a DataModelException object. Here, a new MetaData object is being 

END_EVENTS

ReadOnlyBindingListener method:
endEvents().

Notification that multiple events are complete. 
Multiple events will be nested between 
BEGIN_EVENTS and END_EVENTS events. Allows 
listeners to treat the events as a batch, to, for 
example, reduce repaints. Called when 
DataModel.updateAll() is called.

ORIGINATOR_NAVIGATE_ROW The current row has been deleted and the 
originator of the deletion should now reposition 
the global cursor to a new, valid row.

DataModel Event Class Constants and 
Corresponding Listener Method Description
Chapter 3 ■ The Data Model 67

../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#endEvents(com.klg.jclass.datasource.DataModelEvent)


created. If the table names are incorrect, or there is a problem accessing the database, the 
catch block will inform you of the problem.

try
{

String query = new String("");
query = query + "SELECT * FROM OrderDetail ";
query = query + 

"ORDER BY order_id,store_id,prod_id,qty_ordered ASC";
MetaData node = new MetaData(link, connection, query);

node.setColumnTableRelations("OrderDetail", new String[] {"*"});
return node;

}
catch (DataModelException e)
{

ExceptionProcess(); //Print diagnostic and exit
System.exit(0);

}

68 Part I ■ Using JClass DataSource



4
The JClass DataSource Beans

Introduction ■ Installing JClass DataSource’s JAR files

The Data Bean ■ The Tree Data Bean

The Data Navigator and Data Bound Components ■ Custom Implementations

4.1   Introduction

JClass DataSource includes nine JavaBeans. Their custom editors simplify the task of 
making a connection to a database, specifying the master-detail relationships, and binding 
data-aware components to any level. For designs of the hierarchical or master-detail type, 
JCTreeData is the one to use. Please see Appendix A for a list of properties for the 
JClass DataSource JavaBeans.

Use JCData to bind to one or more database tables at a single level.

Use DSdbNavigator (or DSdbJNavigator for Swing) as a way of signalling a change to a 
data pointer. A DSdbNavigator can be associated with any level in the hierarchical design 
that you have defined using a JCTreeData. Its buttons are used primarily to request 
movement to another row in the level to which it is bound, but it has many more 
capabilities. These are discussed in the following chapter.

The six data bound components DSdbCheckbox1, DSdbImage, DSdbLabel, DSdbList, 
DSdbTextArea, and DSdbTextField are used to display information in a column or a field 
at the level to which they are bound. Other components which are also bound to the 
same source of data, such as DSdbNavigator or JClass HiGrid, are used to move from one 
row to another, causing the data bound components to update their displays with the new 
information. DSdbCheckbox, DSdbTextArea, and DSdbTextField are editable components. 
Changes in their contents are propagated back to the database under the commit policy 
currently in effect.

DSdbList displays a column in the table defined by the current row pointer. It also 
functions as a navigator. Clicking on one of the items in the list sends a request that the 
current row pointer be updated. The items in DSdbList are not editable. 

1. Swing components are designated DSdbJCheckbox, and so on.
69



This chapter describes JCData and JCTreeData. The navigator and data bound 
components are described in the following chapter.

The JClass DataSource Beans connect to database drivers. If you are using Windows and 
you have ODBC drivers installed (perhaps as a result of installing your database software), 
you can set up an ODBC data source and use the JDBC-ODBC bridge. If you haven’t done 
it before, here are the details on setting up a user data source. 

1. Double-click on ODBC in the Control Panel. If it isn’t already on top, click on the User 
DSN tab. A list (possibly empty) of User Data Sources is visible. 

2. Click Add... and a setup dialog window appears. 

3. Type in a Data Source Name and a Description. These names may be anything you 
choose. The Data Source Name field is what will be displayed in the Name field of the 
ODBC window when the setup is complete. 

4. In the Database button group, click on Select.... A file dialog appears, allowing you 
to type in the full pathname of your chosen database, or navigate to it. 

5. If you need to set a Login Name and Password for your database, click the Advanced... 
button. 

6. Click OK on the ODBC Data Source Administrator window to complete the setup. 

If the name you chose was HiGridDB, the URL for your data source is: 

jdbc:odbc:HiGridDB

To load the JDBC-ODBC bridge, you use a driver whose name is:

sun.jdbc.odbc.JdbcOdbcDriver

4.2   Installing JClass DataSource’s JAR files
Before getting into the details of the DataSource’s JavaBeans, it is important to be able to 
add these objects to a builder tool. The example chosen is SunSoft’s BeanBox. Begin by 
ensuring that you have installed your JAR files in the proper directory for your 
development environment. In the case of the BeanBox, this would normally be /bdk/jars. 
If you prefer to keep your JAR files in another directory, you will have to load them by 
choosing File > LoadJar... A file dialog appears, permitting you to specify your JAR’s 
directory.

Figure 17 Choosing LoadJar... from the BeanBox’s File menu.
70 Part I ■ Using JClass DataSource



The ToolBox displays the Beans contained in the JAR file once they are loaded. Note that 
these same files are contained in JClass HiGrid, so if you place a HiGrid Bean in the same 
environment, you may see a duplicate list of DataSource Beans. It’s a good idea to use 
only one of the DataSource or HiGrid JARs at a time because of their tendency to 
interact.

Figure 18 JClass DataSource’s Beans, displayed in the ToolBox.

At this point you are ready to add these components to the BeanBox and begin setting 
them up. 

4.3   The Data Bean

Use JCData to bind one or more tables at a single level. This Bean is non-hierarchical and 
is suitable for any application where the data is to be presented all within one non-
expandable grid. The fields in the grid may be chosen from more than one database 
table. 

4.3.1 Setting a Data Bean’s Properties and Saving Them to a Serialization File

The first step in using this Bean is to add it to your IDE. It is important that you use the 
JAR corresponding to the data source connection mechanism you intend to use. Use 
jcdatasource.jar if you are going to use a connection based on JDBC. If you intend to 
use an IDE-specific connection, install the JAR whose name includes the initials matching 
the IDE. 
Chapter 4 ■ The JClass DataSource Beans 71



We’ll use the ToolBox to illustrate the general method. After placing JCData in the 
BeanBox, a window opens reminding you to name and save the serialization file. 

Figure 19 The Data Bean tip window: a reminder to save the serialization file.

For more information on saving the serialization file, see Section 4.3.3, Saving a 
Serialization File.

4.3.2 The Data Bean Editor

Observe the Property Sheet which opens when JCData is placed on the BeanBox. The data 
Bean’s Properties sheet is shown in Figure 20.

Figure 20 The BeanBox’s Properties sheet, showing the properties of the Data Bean.

The middle line has a property called nodeProperties, whose pseudo-value is Click to 
edit.... Clicking on this item brings up a custom editor, the JCData Bean Component 
Editor.

The JCData Bean Component Editor contains an array of tabbed dialogs that permit you 
to set a large number of properties. These are discussed in the following sections.
72 Part I ■ Using JClass DataSource



4.3.3 Saving a Serialization File

The JCData NodePropertiesEditor initially shows its Serialization tab. Choose a name 
for the serialization file or use the Save As... button to create the file. 

Figure 21 The Serialization tab of the NodePropertiesEditor.

Once a serialization file has been saved, the property editor updates it as you make 
changes to any of the properties in the data Bean. When subsequent design changes are 
made, begin by loading the serialization file. This can save time because it stores all the 
settings that have already been made.

4.3.4 Making a Connection to a Database

Follow these steps to directly connect to a JDBC driver supported database, or to use an 
IDE-specific data binding mechanism.

1. Click the Data Model tab, exposing another level of tabbed choices.

2. Fill in the fields in the Connection pane.

3. Type the URL and the driver name in the property editor. Leave the other fields 
blank unless you are connecting to a database or middleware server over a network. 
Chapter 4 ■ The JClass DataSource Beans 73



4. Click on Connect. There is a message area just below the Connect button that in-
forms you whether the connection attempt was successful or whether it failed and you 
are in for a troubleshooting exercise. 

Figure 22 The Connection page of the data Bean’s custom property editor.

Note that you can set the Design-time Maximum Number of Rows to limit the amount of data 
that the database must furnish at design-time. This saves time and memory if the query 
normally returns a large amount of data that is quite unnecessary at design-time.

Using a non-JDBC-ODBC driver

In the case of drivers that require a host address and a TCP/IP port specification, the 
database name must be given separately, rather than associating it with an alias as is the 
case with an ODBC setup. Use the following example as a guide when configuring this 
74 Part I ■ Using JClass DataSource



type of database connection. In the example, the name of the host is gonzo. (The driver is 
a FastForward type 4 driver for Sybase Sql Server.)

Figure 23 A database connection that requires every field to be filled in.

4.3.5 Choosing Tables

This section applies if you are using the JDBC connection. After a connection is 
established, the SQL Statement tab is accessible, as shown in Figure 25.

1. Click on the SQL Statement tab. There are two scrollable panes. The table selector 
area is the space reserved for the table or tables that you are going to refer to in the 
chosen database. After being chosen, the table appears as a scrollable pane containing 
a list of all its fields. The SQL Statement area is directly below the table selector area. 

2. Click on Add Table... or right-click in the table selector area and a Table Chooser pop-
up menu appears. Select the database table you want and click the Add button in the 
Table Chooser window. Notice that a FROM clause naming the table appears in the 
SQL Statement area. 

3. Use the customizer to generate SQL statements from mouse actions. See the next sec-
tion for details.

4. To choose more than one table, repeat the process for selecting tables. Click Add for 
each. 
Chapter 4 ■ The JClass DataSource Beans 75



4.3.6 Choosing a Query

The customizer gives you two ways to form a query. You can type the query directly in 
the SQL Statement area, or you can use the mouse. See Figure 25 to see how a table and 
its associated query appear in the customizer.

Simple queries for selecting which fields of the table to display are usually accomplished 
automatically using mouse actions on the SQL Statement tab. Choose the fields by 
double-clicking on them, or by clicking on the Add Selected Column(s) button. You’ll 
notice that the text for the query appears in the SQL Statement text area as you use the 
mouse to choose fields. For more elaborate queries, directly type it in the SQL Statement 
text area. Whatever text appears in this area is used as the SQL statement for retrieving 
the data from its source.

4.3.7 Joining Two Tables: Driver Table

If your application needs to present information that is stored in more than one table, you 
can perform a database join on the tables. One simple way is to use the Auto Join feature. 

1. Click on Add Join in the SQL Statement group of panels. A Join window appears.

Figure 24 The Join window.

2. Select the “Primary” table and the “Foreign” table from drop-down lists. 

3. Click Auto Join. The customizer looks for a foreign key in the “Foreign” table that 
matches the primary key in the “Primary” table. If it finds a match it places a 
WHERE clause fragment in the text area of the Join window.

4. Click OK and observe that the complete SQL statement, including the WHERE 
clause, appears in the SQL Statement panel. 
76 Part I ■ Using JClass DataSource



5. Save your SQL statement by clicking on the Set/Modify button. Your window will 
look something like that in the next figure.

Figure 25 The SQL Statement page, showing a completed query.

Click Done to close the window. The serialization file has captured all the changes so 
long as the Set button was clicked to save any changes made to the tables, such as which 
fields are selected and how tables are joined.

4.3.8 The Driver Table Tab

One of the possible operations on data tables, once they have been retrieved from the 
database, is the requery of a single row. If a row is formed from the fields of more than 
one table, the Driver Table is the one whose primary key can be used to drive this type of 
requery. This is best illustrated with an example.

For the requery to succeed, there needs to be some way of uniquely specifying the row 
when it contains data from two tables. A specific case, drawn from a sample database, is a 
Chapter 4 ■ The JClass DataSource Beans 77



join of the Customers table with the Salespeople table. The query that returns the desired 
result set is:

SELECTCustomers.CustomerID AS "CustomerID",
Customers.CompanyName AS "CompanyName",
Salespeople.SalepersonID AS "SalepersonID",
Salespeople.Name AS "Name"
FROMDBA.Salespeople AS Salespeople,
DBA.Customers AS Customers
WHERECustomers.SalespersonID = Salespeople.SalepersonID

For the requery of a single row to work correctly, we must know that the most restrictive 
of the two tables is Customers, in the sense that the result set contains rows that have 
unique CustomerID values. On the other hand, there may be duplicate or repeated values 
for SalespersonID, so the way to uniquely specify a row is to refine the original query by 
adding to the WHERE clause the value for the row’s CustomerID field.

The Driver Table panel lets you specify which table, and which key, to use when 
JClass DataSource needs to requery a single row. 

1. Click on the Driver Table tab.

2. Choose a table from the Table drop-down list.

3. Choose the key from the Column Name drop-down list.
78 Part I ■ Using JClass DataSource



If no driver table is chosen, JClass DataSource uses the first table named in the FROM 
clause whenever it needs to requery a single row.

Figure 26 The Driver Table tab.

4.3.9 The Data Access Tab

Use this panel to set the overall commit policy and the access rights. 

The Commit Policy group has these options:

■ The Commit Policy itself has these choices: COMMIT_LEAVING_RECORD, and 
COMMIT_MANUALLY. See the discussion on commit polices in Commit Policy, in Chapter 
2, and MetaDataModel.setCommitPolicy in the API.

■ The Show Deleted Rows checkbox is unused.

The Table Access group simplifies the task of setting access permissions for all three types of 
SQL update operations. The permissions are set on a per-table basis. 
Chapter 4 ■ The JClass DataSource Beans 79

../api/com/klg/jclass/datasource/MetaDataModel.html#setCommitPolicy(int)


1. Choose a table from the Table drop-down list.

2. Use the Insert Allowed, Update Allowed, and Delete Allowed checkboxes to set access per-
missions for the table.

3. Click Add to record the settings in the Table Access text area and apply the permissions 
you have set.

4. Choose another table, set permissions using the checkboxes, and click Add. 

5. To edit any of the settings you have made, select a table, adjust the access permissions 
and click Modify.

Figure 27 The Data Access tab.

4.3.10 The Virtual Columns Tab
JClass DataSource supports the use of computed fields as well as fields retrieved from a 
database. Use the Virtual Columns panel to define a computed field that occupies the same 
position in every row of the chosen table. Use this tab to define additional columns that 
80 Part I ■ Using JClass DataSource



perform one of the supported types of aggregation: Average, Count, First, Last, Max, Min, 
and Sum.

Figure 28 The Virtual Columns tab.

To define a virtual column:

1. Decide on a name for your virtual column and type it in the Column Name text area.

2. Select the data type from the Column Type drop-down list.

3. Select the type of aggregation from the Operation drop-down list.

4. Use the drop-down list in the Related Columns area to choose the fields upon which the 
aggregation will be based. Click Add to place the column in the text area.

5. Click Set/Modify to complete the operation.
Chapter 4 ■ The JClass DataSource Beans 81



The example shown in Figure 28 adds a virtual column called TotalCost which is the sum 
of database fields SalesTax and UnitPrice. The result is shown in the next figure.

Figure 29 An example of a virtual column whose aggregate type is SUM.

Note that all the fields used by a Virtual Column to generate a value must lie to its left.

4.3.11 Displaying the Result Set

JCData is ready to execute your query. The result can be displayed using a HiGridBean or 
a LiveTable Bean. The following steps show how to connect a HiGridBean to a JCData in 
the BeanBox.

1. Place a HiGrid JavaBean on the BeanBox. Select the JCData and choose Edit > 
Events > dataModel > dataModelCreated. 

2. Join the BeanBox’s rubber band to the HiGrid Bean. Select dataModelChanged from 
the popup menu. If you don’t see this choice it probably means you have selected 
some other object besides the HiGrid - you have to select its outline, and since the 
outline isn’t visible while you are trying to find it, the operation reduces to a challenge 
in precise pointing. An event is fired, and the grid is updated. After resizing, you 
should see the result set from your query displayed in the HiGrid. 

4.4   The Tree Data Bean

A JCTreeData Bean is capable of displaying master-detail relationships in indented 
tabular form. Its customizer uses the full power of JClass DataSource while making it easy 
to transfer your hierarchical design to Java code.

Placing a JCTree data JavaBean on a form is the same as using a JCData Bean. As in the 
discussion for the JCData Bean, you begin by clicking on the filename at the right of the 
TreePropertiesEditor label on the JCTreeData Bean’s property sheet.

This invokes the Tree Properties Editor, the custom editor for this component. The 
Serialization tab is the same as in the case of the JCData Bean Properties Editor, but the left 
82 Part I ■ Using JClass DataSource



hand panel has a different appearance. The outliner for the hierarchical design occupies 
this area. See Figure 30.

Figure 30 Before a table is added, you are asked to supply a descriptive name.

The database connection is accomplished just as it is in the case of the JCData Bean 
component. The way that tables are installed is different because you are able to use this 
Bean to design a hierarchical data model. 

Important: To add the parent table to the form, click the Add button at the lower left of 
the outliner panel. A warning dialog like that shown in Figure 31 appears reminding you 
Chapter 4 ■ The JClass DataSource Beans 83



to save a serialization file. Type in the name of your root data table (in place of the name 
Node0) in the upper left-hand portion of the text pane.

Figure 31 Name the root data table after clicking the Add button in Figure 30.

You have the beginnings of your data design, as shown in Figure 32.

Figure 32 The Connection tab for the Tree Data Bean component.

At this point the SQL Statement tab becomes active. Click on it and add the OrderDetails 
table to your form with the aid of the Table Chooser menu. Tables may be chosen by 
double-clicking on an item, or by highlighting the item and clicking the Add button.
84 Part I ■ Using JClass DataSource



Use the Table Chooser dialog to review a list of all available tables. You can choose 
more than one table at the parent level, but one of these should be selected as the Driver 
Table. See Section 4.3.8, The Driver Table Tab, for the step-by-step process.

Figure 33 The Table Chooser window.

The completed form is shown in Figure 35. A hierarchical data design has been defined 
and is now ready for connection to an object that can display the results. As in the case 
with JCData, a JCHiGrid Bean is used to display the data.

4.4.1 The Driver Table Tab

If there is more than one table at a given level, a DriverTable should be declared. This is 
accomplished with the Driver Table tab as shown in the next figure. 
Chapter 4 ■ The JClass DataSource Beans 85



The driver table is the one that the database uses to drive the query. If a driver table is not 
specified in this dialog the database will choose one, but it is not easy to tell which of the 
candidate tables it will be.

Figure 34 The Driver Table tab.
86 Part I ■ Using JClass DataSource



The next diagram shows a completed SQL Statement panel for a sub-table called 
OrderDetails.

Figure 35 Adding a detail-level table and selecting a query statement.

The Tree Data Bean may be attached to any component capable of displaying a 
hierarchical grid, such as JClass HiGrid. It is possible to attach data bound components to 
any level in the hierarchy. 

4.5   The Data Navigator and Data Bound Components

There are several JClass DataSource Beans, including a data navigator and a group of 
data bound components. The data navigator can be bound to any level in a master-detail 
hierarchy. Through its row-positioning mechanism, it fires events that notify the other 
data bound controls that they need to update themselves with the data from the new row.
Chapter 4 ■ The JClass DataSource Beans 87



DataSource’s Data Bound Components, in Chapter 5 discusses in detail the navigator and 
the data bound controls.

4.6   Custom Implementations

4.6.1 Using the DataSource Bean in an IDE

JClass DataSource is designed to be used in an IDE. Use the DataSource Beans’ powerful 
customizers to set up the database connection, build a query in a point-and-click fashion, 
and bind the retrieved data to a grid, or other data bound component for display. The 
upcoming section demonstrates the use of such a customizer. It will demonstrate how to 
add the JAR file to a specific IDE so that you can begin using the JClass DataSource’s 
JavaBeans.

4.6.2 Data Binding in Borland JBuilder

If you intend to use Borland JBuilder’s own method of forming a database connection, 
follow these steps before adding JClass DataSource components to your form:

1. After beginning your applet or application, click on the Data Express tab in the Com-
ponent Palette, select the component labeled borland.sql.dataset.Database and add it to 
your form.

2. A connection window appears. Choose the URL for your database connection or type 
it in the Connection URL text field. Also supply information for the Username, Password, 
and Driver class text fields.

3. Place a borland.sql.dataset.QueryDataSet on the form. A query window appears. Choose 
the database connection object from the Database drop-down list and type the query 
in the SQL Statement text area.

4. Now add a JClass data Bean to the form. On the IDE tab, choose Borland JBuilder 
and type the name of the queryDataSet object in the Data Source Name text field.

The JClass data Bean is now ready for use within the Borland JBuilder data binding 
scheme.
88 Part I ■ Using JClass DataSource



5
DataSource’s Data Bound Components

Introduction ■ The Types of Data Bound Components

The Navigator and its Functions ■ Data Binding the Other Components

5.1   Introduction

JClass DataSource and JClass HiGrid work as a team to provide a flexible data binding 
solution for those applications that need to present hierarchically organized data in an 
integrated package. JClass DataSource by itself is able provide your application with a 
number of Swing-like components grouped on a form and bound to a hierarchical source 
of data. It contains a versatile set of components that can be bound to any source of data 
that JClass DataSource can access and it provides the navigation tool for choosing any of 
the records in the data set to which it is bound. The same data binding mechanism is 
available for use in JClass Chart, JClass Field, and JClass LiveTable as long as all products 
have matching version numbers.

5.2   The Types of Data Bound Components

JClass DataSource contains Swing-type components. If you are using other 
JClass DesktopViews products, you are able to bind JClass Chart, JClass Field, and 
JClass LiveTable objects in addition to the set of components included in 
JClass DataSource.

The “standard” components and their associated data bound component names are given 
in the table.

Swing Types

JCheckBox DSdbJCheckBox String, Numeric

DSdbJImage java.awt.Image

JLabel DSdbJLabel String, Numeric

JList DSdbJList String, Numeric

DSdbJNavigator void
89



Editable components are: DSdbJTextField, DSdbJTextArea, DSdbJCheckBox. The non-
editable components are DSdbJLabel, DSdbJList, DSdbJImage, and DSdbNavigator. 

The Navigator is derived from either Swing Panel class, and it is included in the table 
because it functions much the same way as the other components. 

JClass DataSource’s API makes it possible for you to bind Swing, or even components of 
your own making, to a data source. The next section illustrates how this is done.

JClass DataSource has two capabilities: a data model and data binding. The data model is 
an API for the management of hierarchical data. Data binding is built on top of the data 
model and presents convenience classes used to bind JClass Chart, JClass LiveTable, and 
JClass Field to the data model. JClass HiGrid connects directly to the data model, so it 
has no need to concern itself with the additional data binding mechanism. 

Single-level data binding is possible in JClass DataSource with the help of Binding 
classes. You can create a data source, connect a field or table to it and add listeners to a 
single level. The components themselves do not need to know about any level other than 
the one they are interested in. This means they only receive events which directly affect 
the data in their level, or cascading events which affect their level. This simplifies the way 
that data-display components are programmed.

To hide the hierarchical underpinnings of the DataSource, there is now a class called 
com/klg/jclass/datasource/Binding. This class, along with those derived from it like 
com/klg/jclass/datasource/jdbc/JDBCBinding, creates the DataModel and 
MetaDataModel objects for the user. Here is an example that creates two levels in JDBC:

JDBCBinding orders = new JDBCBinding(c, "select * from Orders");
// pass parent, orders, to new child to establish the hierarchy
JDBCBinding details = new JDBCBinding(c, "select * from OrderDetails", 

orders);

You would then create the component by either passing in the instance of Binding, or 
explicitly setting it as in these examples which bind a TextField component:

    DSdbJTextField orderId = new DSdbJTextField(orders, "OrderID");

or

    DSdbJTextField orderId = new DSdbJTextField();
    orderId.setDataBinding(orders, "OrderID");

Binding a Component to a Meta Data-Level
Each component Bean has a setDataBinding property to simplify the task of specifying 
the data connection. This method is called automatically by the component’s property 
editor in an IDE environment. The next section discusses the programmatic method.

JTextArea DSdbJTextArea String, Numeric

JTextField DSdbJTextField String, Numeric

Swing Types
90 Part I ■ Using JClass DataSource



Binding the Component Programmatically
Programmatically, data binding is accomplished by calling the setDataBinding 
constructor in one of two ways. The “standard” method is to provide handles to the 
DataModel and the MetaDataModel themselves. A second way of representing the 
MetaDataModel is by a “path” of MetaDataModel descriptions separated by “|” (for 
example, Orders|Customers). 

Binding the navigator component to a data source requires only references to a 
DataModel and a MetaDataModel. For example:

DSdbNavigator nav = new DSdbNavigator();
nav.setDataBinding(dataModel, metaDataModel);

To bind a component that displays a single database field, such as a text field, requires a 
column name as a third parameter in the call to the setDataBinding method:

DSdbTextField dbCustomerID = new DSdbTextField();
dbCustomerID.setDataBinding( dataModel, metaDataModel, "CustomerID");

Binding the Component through an IDE
There are more choices when you effect data binding using an IDE. The recommended 
way is to use JClass DataSource’s JCData or JCTreeData and JDBC to specify the 
connection to the data source. Alternatively, you provide the instance of the DataModel 
and path, just as in the case of programmatic data binding. Finally, you can provide a 
single String containing the name of the DataModel, separated by a colon, from the path 
to the chosen MetaDataModel. For example:

setDataBinding("DataModel0:Orders|OrderDetails").

Using the JClass DataSource Data Bound Components
The data bound components have been made especially easy to use in an IDE by 
providing a customizer that communicates with any JCData or JCTreeData that has 
already been created and connected to a source of data. Use this customizer to select the 
DataModel and MetaDataLevel. Once these have been selected, a list of column names is 
presented. Once a name has been selected, the data bound component is ready for use.

If you decide to use the programmatic API, the data bound component’s constructor 
takes three parameters whether it binds to the entire column, in the case of DSdbList, or 
to a single cell for all the rest. Taking DSdbTextField as an example, its constructor is:

public DSdbTextField(DataModel dataModel, 
MetaDataModel metaDataModel, String column_name)

There is also a parameterless constructor that requires data binding to be set using 
setDataBinding, which takes the same three parameters. Use this form of the constructor 
when you need to instantiate the component first and set the data binding later.
Chapter 5 ■ DataSource’s Data Bound Components 91



5.3   The Navigator and its Functions

5.3.1 Introduction

DSdbNavigator is a visual component that fires events to JClass DataSource, requesting a 
move to another row in the table to which it is bound. In addition to buttons for 
movement to the first, last, next, and previous rows, it is able to request the insertion of a 
new row or the deletion of the row to which it is currently pointing.

It is bound to a data source by giving its constructor references to the DataModel and a 
particular MetaDataModel in the hierarchy. Thus, it can be bound to any level in the 
master-detail structure. 

Swing Support
Since data bound components have been defined in JClass DataSource for Swing, a 
navigator exists for this environment. The Swing navigator is based on JComponent and is 
called DSdbJNavigator. 

The navigators are in the same packages as the other JClass DataSource data bound 
components. The Swing navigator is called jclass.datasource.swing.DSdbJNavigator. 

5.3.2 The Navigator Binds to any MetaData Level

The navigator binds to any MetaData level, just like the other DataSource data bound 
components. It uses the jclass.datasource.bean.DataBindingEditor property editor. 
The property is called DataBinding, just like all the other data bound components in 
JClass LiveTable, JClass Field, JClass Chart, and JClass DataSource. 

A DSdbNavigator constructor is parameterless, therefore the newly instantiated 
component is not initially bound to a data source. Binding occurs in various ways, 
depending on whether the IDE or programmatic approach is taken. 

Binding the Navigator Programmatically
Programmatically, data binding is accomplished by calling the setDataBinding 
constructor in one of two ways. The “standard” method is to provide handles to the 
DataModel and the MetaDataModel themselves. A second way of representing the 
MetaDataModel is by a “path” of MetaDataModel descriptions separated by '|' (for example, 
Orders|Customers). 

Binding the Navigator through an IDE
There are more choices when you effect data binding using an IDE. The recommended 
way is to use JClass DataSource’s JCData or JCTreeData and JDBC to specify the 
connection to the data source. Alternatively, you provide the instance of the DataModel 
and path, just as in the case of programmatic data binding. Finally, you can provide a 
single String containing the name of the DataModel, separated by a colon (:), from the 
92 Part I ■ Using JClass DataSource



path to the chosen MetaDataModel. An example is 
setDataBinding("DataModel0:Orders|OrderDetails").

5.3.3 DSdbNavigator’s Functions

The JClass DSdbNavigator component displays the current row of the data table to which 
it is bound. Four of its buttons, First, Previous, Next, and Last, signal the data source to 
adjust its current row pointer. The Insert button requests the insertion of a new row and 
the Delete button requests the deletion of the current row from the data source. The 
Command button pops up a sub-menu of additional choices. The layout of the navigator’s 
buttons is shown below: 

Figure 36 The DSdbNavigator component.

The central Status field displays the description for the meta data level, the current 
record number, and the total number of records in the data table to which it is bound. 
The navigator's buttons are described below, beginning at the right and preceding in 
order to the left: 

The Swing version of the navigator uses tooltips to show what each of the buttons does. 
The tooltip’s text is derived from the text in the table above. 

Command Description

First Moves to the first row in the current DataTable.

Previous Moves to the previous row in the current DataTable. If 
already at the start, no move occurs.

Delete Deletes the current record.

Command Pops up a menu of commands that can be executed. The 
menu is similar to the one in JClass HiGrid that pops up by 
right-clicking on one of the grid’s rows.

Status Displays the name given to the meta data level to which it is 
bound, the Data Table record number, and total number of 
records in that Data Table.

Next Moves to the next row in the current DataTable.  If already at 
the end, no move occurs

Last Moves to the last row in the current DataTable

Insert Adds a new record in the current table at the end of the table.
Chapter 5 ■ DataSource’s Data Bound Components 93



The Command menu pops up a sub-menu that allows operations on a table similar to 
those allowed by HiGrid.  A list of Command menu commands is shown after the figure 
that illustrates it:

Figure 37 DSdbNavigator, showing the Command menu.

5.3.4 Exploring DSdbNavigator’s Bean Properties

Binding a navigator to a data source in an IDE is accomplished through the use of its data 
binding editor. The editor is aware of the data sources that you have pre-configured, so 
it’s important to add a JCData or a JCTreeData to your form before you use the 
navigator’s data binding editor. 

Here are the steps to bind a navigator to a data source:

1. Place a JCData or a JCTreeData on your form. 

 Command Description

Insert Record Adds a new record in the current table. Same as the 
add button in the navigator.

Delete Record Removes the current record in the current table.

Cancel Record Cancels the current edit.

Cancel All Cancels all edits made.

Requery Record and 
Details

Requeries the table from the database.

Requery All Updates the current row in the database.

Save Record Saves changes made to the current record.

Save All Updates all changes made.

Go To Pops up a dialog that allows specification of a new row 
number. 
94 Part I ■ Using JClass DataSource



2. Use the Data Bean’s customizer to specify the connection to the database.

3. Place a DSdbNavigator (or a DSdbJNavigator) on your form. Its display area (called 
the status area) indicates that it is not bound to a data source.

4. Click Select a Data Source to launch its data binding editor.

5. A diagram of the meta data structure appears. If necessary, expand the diagram to 
show all the nodes. Click on a node to select it. Press Done to bind the navigator to 
the chosen level.

6. Check that the navigator confirms that it is bound to a data source by reporting the 
meta data level to which it is bound in its display area.

When a DSdbNavigator is placed in the BeanBox or an IDE, you’ll see the properties 
listed in Figure 38.

Figure 38 The properties of DSdbNavigator.

Each region has the following properties: 

Note that all of the buttons must have the same color, but the color of the status area can 
be set independently of the button color. Set the background and foreground colors for 

Property Description

 Visible Determines whether the region is shown.

 Foreground Foreground color.

 Background Background color.
Chapter 5 ■ DataSource’s Data Bound Components 95



the buttons using setButtonBackground and setButtonForeground. The color is applied 
to all the buttons as a group. Set the colors for the status area using setStatusBackground 
and setStatusForeground. 

Each button has its own get and set methods for reading and controlling its visibility. For 
example, use setCommandVisible(false) to hide the Command button.

The property names for controlling visibility are based on the region names as shown 
below: 

The following figure shows the data binding editor window which appears as a result of 
clicking on Select a Data Source... in the properties list.

 Button or Status Area Visible Get/Set Method

First FirstVisible

Previous PreviousVisible

Delete DeleteVisible

Status StatusVisible

Command CommandVisible

Next NextVisible

Last LastVisible

Insert InsertVisible
96 Part I ■ Using JClass DataSource



It shows an example of an expanded view of the data model that was created to 
accompany the steps in the data binding procedure given above. The navigator was 
bound to the Order Details level by clicking on its name, then clicking Done. 

Figure 39 DSdbNavigator’s data binding editor.

5.4   Data Binding the Other Components

A component that binds to a single database field requires a column name in addition to 
the data model and meta data level. In an IDE, the binding is done following the same 
steps as is the case for DSdbNavigator. The next figure shows a cutout of a DSdbTextField, 
its exposed properties, and its ColumnDataBindingEditor.
Chapter 5 ■ DataSource’s Data Bound Components 97



The text field is bound to a column called Territory Name, which is part of the meta data 
level called Territories. All the database field names (that is, the column names) appear in 
the editor. The name appears highlighted after it has been chosen with a mouse click.

Figure 40 A DSdbTextField, its Properties, and its ColumnDataBindingEditor.
98 Part I ■ Using JClass DataSource



6
Sample Programs

The Sample Database ■ The DemoData Program ■ Custom Data Binding

6.1   The Sample Database
The database included with JClass DataSource has the following structure:

Figure 41 Entity-Relationship diagram for the sample database.
99



The entity-relationship diagram shows the table names, column (field) names, and data 
types. Many-one relationships are shown by terminating the dotted lines connecting two 
tables with a black circle at the “many” end of the relationship. The key fields are shown 
at the top of each table and the foreign keys are designated by placing the tag “(FK)” after 
the data type.

6.2   The DemoData Program

We’ll begin with an example of using a class called DemoData, used to retrieve data from a 
database, and then show how a HiGrid is used to display selected columns from the 
database. What follows is a line-by-line breakdown of the code. Lines 1—20 are the 
standard copyright notice that accompanies all JClass examples. They should be assumed 
as the beginning lines of every other example given in this chapter. Lines 22—29 list the 
package name and the libraries that DemoData imports. This package identifies itself as 
part of the examples that accompany the product. The datasource package forms the 
data source part of JClass HiGrid’s code. As this example shows, it is responsible for 
setting up the connection to the chosen database and then passing the appropriate SQL 
query to the database. Actually, the jclass.datasource.jdbc package is where the code 
to connect via JDBC resides (or to an ODBC, through a JDBC-ODBC bridge).

Lines 54—57 define the constants that are used to specify which is the desired database 
connection. Line 59 states that the Microsoft Access database is currently selected.

Line 62 is the beginning of the code for the constructor. It sets up a String for the 
JDBC—ODBC driver, then embeds the database connection attempt in a try block.

Line 74 sets up a new DataTableConnection. The JDBC URL structure is defined 
generally as follows:

jdbc:<subprotocol>:<subname>

In this line, jdbc is the standard base, subprotocol is the particular data source type, and 
subname is an additional specification that the subprotocol uses. In our example, the 
subprotocol is odbc. The Driver Manager uses the subprotocol to match the proper 
driver to a specific subprotocol. The subname identifies the name of the data source.

Line 74 begins the process of instantiating a new connection. Line 75 declares the driver. 
In fact, lines 74—79 are a concrete instance of a constructor call whose general form is 
datasource.jdbc.DataTableConnection(String driver, String url, String user, 
String password, String database). Parameter driver is a String indicating which 
driver to load, url is the URL String described above, user is the String for the user’s 
name, password is a String for the user’s password, if required, and database is the String 
for the database name, which may be null. This class defines various ways of connecting 
to databases, such as using a host name and port, or an odbc style connection, in addition 
to the one used in our example. Once the connection is established, a query sets up the 
structure for the data that will be retrieved. 
100 Part I ■ Using JClass DataSource



In line 108 of our example, the top-level table of our grid is declared in a query specifying 
that the database table, Orders, is to be used. We wish to include, as sub-tables, 
information contained in tables Customers, Territories, OrderDetails and Products—Categories. 
The last-mentioned is a detail level consisting of a join of two tables.

Line 108 shows that the MetaData class holds the structure of the query. Two constructors 
are used. First, the “root” constructor is called to set up and execute the query to 
bootstrap root levels of the DataModel and the MetaDataModel. This constructor executes 
the query and sets the resulting DataTable as the root of the DataTableTree. Call this 
constructor first, then call the MetaData(DataModel dataModel, DataTableConnection 
ds_connection, MetaData parent) constructor to build the meta data tree hierarchy. 
Next, the second form of the constructor is called to add master-detail relationships. All of 
this is accomplished in lines 113—125.

Note that the class’ constructor does all the work, and a try block encloses all of the code. 
If the class can’t be instantiated, the exception will print an error message on the monitor.

Once an instance of this class is successfully created, we have established a connection to 
the named database and the query will return a result set.

Joins are accomplished programmatically by code such as is seen in lines 116 and 124. 
They may be specified by using Bean customizers if you are using an IDE.

Lines 127 and following show how to attach virtual columns to a grid. These use the 
BaseVirtualColumn class as illustrated in line 151, 156, and 160. The type of aggregation 
to be done is specified using BaseVirtualColumn constants, as shown in lines 154, 158, 
and 162.

Finally, commit policies for each level are set, beginning at line 188. All three commit 
policies are illustrated.

1 /*
2 * Copyright (c) 2002, QUEST SOFTWARE. All Rights Reserved.
3 * http://www.quest.com
4 *
5 * This file is provided for demonstration and educational uses only.
6 * Permission to use, copy, modify and distribute this file for
7 * any purpose and without fee is hereby granted, provided that the
8 * above copyright notice and this permission notice appear in all
9 * copies, and that the name of Quest Software not be used in 
10 * advertising or publicity pertaining to this material without,
11 * the specific prior written permission of an authorized 
12 * representative of Quest Software.
13 *
14 * QUEST SOFTWARE MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE 
15 * SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING
16 * BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
17 * FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. QUEST SOFTWARE SHALL
18 * NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY USERS AS A RESULT OF USING,
19 * MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
20 */
21    
Chapter 6 ■ Sample Programs 101



22 package jclass.datasource.examples.jdbc;
23 
24 import java.util.*;
25 import java.sql.*;
26 
27 import jclass.datasource.treemodel.*;
28 import jclass.datasource.jdbc.*;
29 import jclass.datasource.*;
30 
31 /**
32 * This is an implementation of the JClass DataSource DataModel which
33 * relies on the our own JDBC wrappers (rather than IDE-specific data
34 * binding).
35 *
36 * It models a database for a fictitious bicycle company. The same
37 * schema has been implemented using an MS Access database
38 * and a SQLAnywhere database (demo.mdb and demo.db respectively).
39 * They contain the same table structures and data.
40 *
41 * The default is to use the jdbc-odbc bridge to connect to the Access
42 * implementation of the data base. You can change which data base is
43 * accessed by changing the dataBase variable to either SA or SYB below.
44 *
45 * This is the tree hierarchy for the data:
46 * Orders
47 * Customers
48 * Territory
49 * OrderDetails
50 * Products-Categories
51 *
52 */
53 public class DemoData extends TreeData {
54 
55 public static final int MS = 1;
56 public static final int SA = 2;
57 public static final int SYB = 3;
58 //Change the definition of database to any of the above constants.
59 int dataBase = MS;
60 DataTableConnection c;
61 
62 public DemoData() {
63 String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
64 if (System.getProperty("java.vendor").indexOf("Microsoft") != -1) {
65 // use the driver that Microsoft Internet Explorer wants
66 driver = "com.ms.jdbc.odbc.JdbcOdbcDriver";
67 }
68 try {
69 switch (dataBase) {
70 case MS:
71 // This connection uses the jdbc-odbc bridge to
72 // connect to the Access implementation of the
73 // data base.
74 c = new DataTableConnection(
75 driver, // driver
76 "jdbc:odbc:JClassDemo", // url
77 "Admin", // user
102 Part I ■ Using JClass DataSource



78 "", // password
79 null); // database
80 break;
81    
82 // This connection uses the jdbc-odbc bridge to connect
83 // to the SQLAnywhere implementation of the data base.
84 case SA:
85 c = new DataTableConnection(
86 "sun.jdbc.odbc.JdbcOdbcDriver", // driver
87 "jdbc:odbc:JClassDemoSQLAnywhere",// url
88 "dba",                          // user
89 "sql",                          // password
90 null);                          // database
91 break;
92    
93 // This connection uses Sybase's jConnect type 4
94 // driver to connect to the SQLAnywhere implementation
95 // of the data base.
96 case SYB:
97 c = new DataTableConnection(
98 "com.sybase.jdbc.SybDriver",            // driver
99 "jdbc:sybase:Tds:localhost:1498",       // url
100 "dba",                                  // user
101 "sql",                                  // password
102 "HiGridDemoSQLAnywhere");               // database
103 break;
104 default:
105 System.out.println("No database chosen");
106 }
107    
108 // Create the Orders MetaData
109 MetaData Orders = new MetaData(this, c, 

" select * from Orders order by OrderID asc");
110 Orders.setDescription("Orders");
111    
112 // Create the Customer MetaData
113 MetaData Customers = new MetaData(this, Orders, c);
114 Customers.setDescription("Customers");
115 Customers.setStatement(

"select * from Customers where CustomerID = ?");
116 Customers.joinOnParentColumn(

"CustomerID","CustomerID");
117 Customers.open();
118    
119 // Create the Territory MetaData
120 MetaData Territory = new MetaData(this, Customers, c);
121 Territory.setDescription("Territory");
122 String t = "select TerritoryID, 

TerritoryName from Territories 
where TerritoryID = ?";

123 Territory.setStatement(t);
124 Territory.joinOnParentColumn("TerritoryID","TerritoryID");
125 Territory.open();
126    
127 // Create the OrderDetails MetaData
128 // Three virtual columns are used:
Chapter 6 ■ Sample Programs 103



129 //
130 // TotalLessTax (Quantity * UnitPrice),
131 // SalesTax (TotalLessTax * TaxRate) and
132 // LineTotal (TotalLessTax + SalesTax).
133 //
134 // Thus, when Quantity and/or UnitPrice is changed, these derived
135 // values reflect the changes immediately.
136 // Note 1: TaxRate is not a real column either, it is a 
137 // constant returned by the sql statement.
138 // Note 2: Virtual columns can themselves be used to derive other
139 // virtual columns. They are evaluated from left to right.
140 MetaData OrderDetails = new MetaData(this, Orders, c);
141 OrderDetails.setDescription("OrderDetails");
142 String detail_query = 

"select OrderDetailID, OrderID, ProductID, ";
143 detail_query += " DateSold, Quantity, UnitPrice, ";
144 detail_query += " '0.15' AS TaxRate ";
145 detail_query += " from OrderDetails where OrderID = ?";
146 OrderDetails.setStatement(detail_query);
147 OrderDetails.joinOnParentColumn("OrderID","OrderID");
148 OrderDetails.open();
149    
150 //Extend the row with some calculated values.
151 BaseVirtualColumn TotalLessTax = new BaseVirtualColumn(
152 "TotalLessTax",
153 java.sql.Types.FLOAT,
154 BaseVirtualColumn.PRODUCT,
155 new String[] {"Quantity", "UnitPrice"});
156 BaseVirtualColumn SalesTax      = new BaseVirtualColumn(
157 "SalesTax",java.sql.Types.FLOAT,
158 BaseVirtualColumn.PRODUCT,
159 new String[] {"TotalLessTax", "TaxRate"});
160 BaseVirtualColumn LineTotal     = new BaseVirtualColumn(
161 "LineTotal",java.sql.Types.FLOAT,
162 BaseVirtualColumn.SUM,
163 new String[] {"TotalLessTax", "SalesTax"});
164    
165 OrderDetails.addColumn(TotalLessTax);
166 OrderDetails.addColumn(SalesTax);
167 OrderDetails.addColumn(LineTotal);
168    
169 // Create the Products MetaData
170 MetaData Products = new MetaData(this, OrderDetails, c);
171 Products.setDescription("Products");
172 String query = "select a.ProductID, 

a.ProductDescription,a.ProductName,";
173 query += " a.CategoryID, a.UnitPrice, a.Picture, ";
174 query += " b.CategoryName";
175 query += " from Products a, Categories b";
176 query += " where a.ProductID = ?";
177 query += " and a.CategoryID = b.CategoryID";
178 Products.setStatement(query);
179 Products.joinOnParentColumn("ProductID","ProductID");
180 Products.open();
181    
182 // Override the table-column associations for the Products table
104 Part I ■ Using JClass DataSource



183 // to exclude the Picture column so it is not included as part of
184 // the update. Precision problems cause the server to think it's
185 // changed.
186 Products.setColumnTableRelations("Products", 

new String[] {"ProductID", 
"ProductDescription", 
"ProductName", 
"CategoryID", 
"UnitPrice"});

187    
188 // Override the default commit policy COMMIT_LEAVING_ANCESTOR
189 Orders.setCommitPolicy(MetaDataModel.COMMIT_LEAVING_RECORD);
190 OrderDetails.setCommitPolicy(

MetaDataModel.COMMIT_LEAVING_ANCESTOR);
191 Customers.setCommitPolicy(MetaDataModel.COMMIT_LEAVING_ANCESTOR);
192 Products.setCommitPolicy(MetaDataModel.COMMIT_MANUALLY);
193 Territory.setCommitPolicy(MetaDataModel.COMMIT_LEAVING_ANCESTOR);
194    
195 } catch (Exception e) {
196 System.out.println(

"DemoData failed to initialize " + e.toString());
197 }
198}
199    
200}

6.3   Custom Data Binding

Binding Stock AWT and Swing Components to a Data Source
Binding ordinary AWT or Swing components to a data source involves subclassing the 
component and having it implement the DataModelListener interface. An example is 
given in jclass.datasource.examples.components.textfield. The signature for a 
data-aware TextField is:

public class DBTextField extends TextField
    implements DataModelListener, FocusListener, KeyListener 

Call its constructor to create a new DBTextField component and bind it to a particular 
column in a MetaDataModel:

public DBTextField(DataModel data_model, 
MetaDataModel meta_data_model, 
String column_name) {

this();
setDataBinding(data_model, meta_data_model, column_name);

}

Note that the three parameters are the DataModel, the MetaDataModel for the 
master-detail level, and the name of the database field. This information is passed to the 
setDataBinding method, which completes the name association and registers the 
component as a listener for DataModelEvents.
Chapter 6 ■ Sample Programs 105



See jclass.datasource.examples.components.textfield.DBTextField for a full code 
example.

Binding Your Own Components to a Data Source
A simpler data binding solution exists. This involves extending an AWT or Swing 
component, then subclassing FieldDataBinding from 
jclass.datasource.components.FieldDataBinding in an inner class, and implementing 
refreshCell in that inner class. 

class FieldDataBinding extends 
jclass.datasource.components.FieldDataBinding

The constructor for this class passes the instance of the component defined in the 
containing class so that if an error is generated an error popup can be presented. After 
changes have been made to the component, save them by calling either 
convertAndSaveItem or saveItem. Use convertAndSaveItem to ensure that the data type 
has been converted to a database type acceptable to JClass DataSource and use saveItem 
for a component that returns a Boolean and therefore does not need extra conversion into 
a database-acceptable type. These methods should be called from within the 
implementation of a listener method. For instance, call convertAndSaveItem on a 
text-type data bound component from the focusLost method as part of your 
FocusListener implementation.
106 Part I ■ Using JClass DataSource



Part
II

Reference 
Appendices





Appendix A
Bean Properties Reference

DataBean ■ DataBeanComponent ■ DataBeanCustomizer ■ JCTreeData ■ TreeDataBeanComponent

TreeDataBeanCustomizer ■ DSdbJNavigator ■ DSdbJTextField ■ DSdbJImage ■ DSdbJCheckbox

DSdbJList ■ DSdbJTextArea ■ DSdbJLabel

This section contains a listing of the JClass DataSource Bean properties and their default 
values for the DataBean, JCTreeData, DSdbNavigator, and the data bound components. 
The properties are arranged alphabetically by property name. The second entry on a row 
names the data type returned by the method. Note that a small number of properties are 
really read-only variables, and therefore only have a get method. These properties are 
marked with a “(G)” following the property name.

A.1   DataBean

Property Type Default Value

about (G) java.lang.String About JClass DataSource

class java.lang.Class class jclass.datasource.DataBean

commitPolicy int COMMIT_LEAVING_RECORD

currentGlobal
Bookmark

long -1

currentGlobal
Table

jclass.datasource.
DataTableModel

(null)

dataBeanComponent jclass.datasource.
DataBeanComponent

Click to edit.

dataTableTree jclass.datasource.
treemodel.TreeModel

dynamic

description java.lang.String Node1

eventsEnabled boolean True

listeners java.lang.Object (null)
109



A.2   DataBeanComponent

A.3   DataBeanCustomizer

metaDataTree jclass.datasource.
treemodel.TreeModel

dynamic

modelName java.lang.String DataBean1

modified boolean False

version (G) java.lang.String JClass DataSource version number for 
<platform>

Property Type Default Value

class java.lang.Class class 
jclass.higrid.HiGridBeanCompon
ent

dataSourceNames java.lang.String[] (null)

dataSources java.lang.Object[] (null)

resourceName java.lang.String (null)

root jclass.datasource.
treemodel.TreeNode

(null)

serializationFile java.lang.String jchigrid0.ser

serializationRequired boolean False

structureOnly boolean False

Property Type Default Value

alignmentX float 0.5

alignmentY float 0.5

background java.awt.Color (null)

component (null) null

componentCount int 1

Property Type Default Value
110 Part II ■ Reference Appendices



A.4   JCTreeData

components java.awt.Component[] dynamic

enabled boolean True

font java.awt.Font (null)

foreground java.awt.Color (null)

insets java.awt.Insets top=0,left=0,bottom=0,right=0

layout java.awt.LayoutManager java.awt.FlowLayout[hgap=5,
vgap=5, align=center]

maximumSize java.awt.Dimension width=32767, height=32767

minimumSize java.awt.Dimension width=90, height=140

name java.lang.String panel0

object java.lang.Object (null)

preferredSize java.awt.Dimension (null)

visible boolean True

Property Type Default Value

about (G) java.lang.String About JClass DataSource

class java.lang.Class class 
jclass.datasource.JCTreeData

currentGlobalBookmark long -1

currentGlobalTable jclass.datasource.
DataTableModel

(null)

dataTableTree jclass.datasource.
treemodel.TreeModel

dynamic

eventsEnabled boolean True

listeners java.lang.Object (null)

metaDataTree jclass.datasource.
treemodel.TreeModel

jclass.datasource.treemodel.
Tree@1f0bc2

modelName java.lang.String TreeData0

Property Type Default Value
Appendix A ■ Bean Properties Reference 111



A.5   TreeDataBeanComponent

A.6   TreeDataBeanCustomizer

modified boolean (null)

JCTreeDataComponent jclass.datasource.
JCTreeDataComponent

Click to edit.

version (G) (G) java.lang.String JClass DataSource version 
number for <platform>

Property Type Default Value

class java.lang.Class class jclass.datasource.
JCTreeDataComponent

dataSourceNames java.lang.String[] (null)

dataSources java.lang.Object[] (null)

resourceName java.lang.String (null)

root jclass.datasource.
treemodel.TreeNode

(null)

serializationFile java.lang.String jcdbtree0.ser

serializationRequired boolean False

structureOnly boolean False

Property Type Default Value

alignmentX float 0.5

alignmentY float 0.5

background java.awt.Color (null)

component (null) null

componentCount int 1

components java.awt.Component[] dynamic

Property Type Default Value
112 Part II ■ Reference Appendices



A.7   DSdbJNavigator

enabled boolean True

font java.awt.Font (null)

foreground java.awt.Color (null)

insets java.awt.Insets top=0,left=0,bottom=0,right=0

layout java.awt.LayoutManager java.awt.FlowLayout[hgap=5,
vgap=5, align=center]

maximumSize java.awt.Dimension width=32767,height=32767

minimumSize java.awt.Dimension width=105,height=140

name java.lang.String panel0

object java.lang.Object null

preferredSize java.awt.Dimension (null)

visible boolean True

Property Type Default Value

UIClassID java.lang.String not a pluggable look and feel 
class

accessibleContext com.sun.java.
accessibility.
AccessibleContext

dynamic

alignmentX float 0.5

alignmentY float 0.5

autoscrolls boolean False

background java.awt.Color 204,204,204

border com.sun.java.swing.
border.Border

null

bounds java.awt.Rectangle null

buttonBackground java.awt.Color 192,192,192

buttonForeground java.awt.Color 0,0,0

Property Type Default Value
Appendix A ■ Bean Properties Reference 113



commandVisible boolean True

component (null) null

componentCount int 7

components java.awt.Component[] dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

deleteVisible boolean True

doubleBuffered boolean True

enabled boolean False

firstVisible boolean True

focusCycleRoot boolean False

focusTraversable boolean False

font java.awt.Font null

foreground java.awt.Color 0,0,0

graphics java.awt.Graphics null

height int 0

insertVisible boolean True

insets java.awt.Insets 0, 0, 0, 0

lastVisible boolean True

layout java.awt.
LayoutManager

null

managingFocus boolean False

maximumSize java.awt.Dimension 32767, 32767

minimumSize java.awt.Dimension width=108,height=17

name java.lang.String datanavigator0

nextFocusableComponent java.awt.Component null

nextVisible boolean True

opaque boolean True

Property Type Default Value
114 Part II ■ Reference Appendices



A.8   DSdbJTextField

optimizedDrawingEnabled boolean True

paintingTile boolean False

preferredSize java.awt.Dimension width=239,height=17

previousVisible boolean True

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled boolean True

rootPane com.sun.java.swing.
JRootPane

null

statusBackground java.awt.Color 255,255,255

statusForeground java.awt.Color 0,0,0

statusVisible boolean True

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

validateRoot boolean False

visible boolean True

visibleRect java.awt.Rectangle 0, 0, 0, 0

width int 0

x int 0

y int 0

Property Type Default Value

UI com.sun.java.swing.
plaf.TextUI

dynamic

UIClassID java.lang.String TextFieldUI

accessibleContext com.sun.java.
accessibility.
AccessibleContext

dynamic

Property Type Default Value
Appendix A ■ Bean Properties Reference 115



actionCommand java.lang.String null

actions com.sun.java.
swing.Action[]

dynamic

alignmentX float 0.5

alignmentY float 0.5

autoscrolls boolean True

background java.awt.Color dynamic

border com.sun.java.swing.
border.Border

dynamic

bounds java.awt.Rectangle null

caret com.sun.java.swing.
text.Caret

dynamic

caretColor java.awt.Color 0,0,0

caretPosition int 0

columns int 0

component (null) null

componentCount int 0

components java.awt.Component[] dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

disabledTextColor java.awt.Color 153,153,153

document com.sun.java.swing.
text.Document

dynamic

doubleBuffered boolean False

editable boolean True

enabled boolean True

focusAccelerator char

focusCycleRoot boolean False

focusTraversable boolean True

font java.awt.Font null

Property Type Default Value
116 Part II ■ Reference Appendices



foreground java.awt.Color 0,0,0

graphics java.awt.Graphics null

height int 0

highlighter com.sun.java.swing.
text.Highlighter

dynamic

horizontalAlignment int 2

horizontalVisibility com.sun.java.swing.
BoundedRangeModel

[value=0, extent=0, min=0, 
max=100, adj=false]

insets java.awt.Insets 2, 2, 2, 2

keymap com.sun.java.swing.
text.Keymap

dynamic

layout java.awt.
LayoutManager

null

managingFocus boolean False

margin java.awt.Insets 0, 0, 0, 0

maximumSize java.awt.Dimension width=2147483647,height=19

minimumSize java.awt.Dimension width=4,height=19

name java.lang.String null

nextFocusableComponent java.awt.Component null

opaque boolean True

optimizedDrawingEnabled boolean True

paintingTile boolean False

preferredScrollable
ViewportSize

java.awt.Dimension width=4,height=19

preferredSize java.awt.Dimension width=4,height=19

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled boolean True

rootPane com.sun.java.swing.
JRootPane

null

scrollOffset int 0

Property Type Default Value
Appendix A ■ Bean Properties Reference 117



A.9   DSdbJImage

scrollableTracks
ViewportHeight

boolean False

scrollableTracks
ViewportWidth

boolean False

selectedText java.lang.String null

selectedTextColor java.awt.Color 0,0,0

selectionColor java.awt.Color 204,204,255

selectionEnd int 0

selectionStart int 0

text java.lang.String

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

validateRoot boolean True

visible boolean True

visibleRect java.awt.Rectangle java.awt.Rectangle[x=0,y=0
,width=0,height=0]

width int 0

x int 0

y int 0

Property Type Default Value

UIClassID java.lang.String not a pluggable look and feel 
class

accessibleContext com.sun.java.
accessibility.
AccessibleContext

null

alignmentX float 0.5

alignmentY float 0.5

Property Type Default Value
118 Part II ■ Reference Appendices



autoscrolls boolean False

background java.awt.Color null

border com.sun.java.swing.
border.Border

null

bounds java.awt.Rectangle null

component (null) null

componentCount int 0

components java.awt.Component[] dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

doubleBuffered boolean False

enabled boolean True

focusCycleRoot boolean False

focusTraversable boolean False

font java.awt.Font null

foreground java.awt.Color null

graphics java.awt.Graphics null

height int 0

insets java.awt.Insets 0, 0, 0, 0

layout java.awt.
LayoutManager

null

managingFocus boolean False

maximumSize java.awt.Dimension [width=32767,height=32767

minimumSize java.awt.Dimension 0, 0

name java.lang.String null

nextFocusableComponent java.awt.Component null

opaque boolean False

optimizedDrawingEnabled boolean True

paintingTile boolean False

Property Type Default Value
Appendix A ■ Bean Properties Reference 119



A.10   DSdbJCheckbox

preferredSize java.awt.Dimension 0, 0

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled boolean True

rootPane com.sun.java.swing.
JRootPane

null

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

validateRoot boolean False

visible boolean True

visibleRect java.awt.Rectangle 0, 0, 0, 0

width int 0

x int 0

y int 0

Property Type Default Value

UI com.sun.java.swing.
plaf.ButtonUI

dynamic

UIClassID java.lang.String CheckBoxUI

accessibleContext com.sun.java.
accessibility.
AccessibleContext

dynamic

actionCommand java.lang.String

alignmentX float 0.0

alignmentY float 0.0

autoscrolls boolean False

background java.awt.Color 204,204,204

Property Type Default Value
120 Part II ■ Reference Appendices



border com.sun.java.swing.
border.Border

dynamic

borderPainted boolean False

bounds java.awt.Rectangle null

component (null) null

componentCount int 0

components java.awt.Component[] dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

disabledIcon com.sun.java.swing.
Icon

null

disabledSelectedIcon com.sun.java.swing.
Icon

null

doubleBuffered boolean False

enabled boolean True

focusCycleRoot boolean False

focusPainted boolean True

focusTraversable boolean True

font java.awt.Font null

foreground java.awt.Color 0,0,0

graphics java.awt.Graphics null

height int 0

horizontalAlignment int 2

horizontalTextPosition int 4

icon com.sun.java.swing.
Icon

null

insets java.awt.Insets 5, 5, 5, 5

label java.lang.String

layout java.awt.LayoutManager dynamic

managingFocus boolean False

Property Type Default Value
Appendix A ■ Bean Properties Reference 121



margin java.awt.Insets 2, 2, 2, 2

maximumSize java.awt.Dimension width=23,height=23

minimumSize java.awt.Dimension width=23,height=23

mnemonic char null

model com.sun.java.swing.
ButtonModel

dynamic

name java.lang.String null

nextFocusableComponent java.awt.Component null

opaque boolean False

optimizedDrawingEnabled boolean True

paintingTile boolean False

preferredSize java.awt.Dimension width=23,height=23

pressedIcon com.sun.java.swing.
Icon

null

registeredKeyStrokes com.sun.java.swing.Key
Stroke[]

dynamic

requestFocusEnabled boolean True

rolloverEnabled boolean False

rolloverIcon com.sun.java.swing.
Icon

null

rolloverSelectedIcon com.sun.java.swing.
Icon

null

rootPane com.sun.java.swing.
JRootPane

null

selected boolean False

selectedIcon com.sun.java.swing.
Icon

null

selectedObjects java.lang.Object[] null

text java.lang.String

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

Property Type Default Value
122 Part II ■ Reference Appendices



A.11   DSdbJList

validateRoot boolean False

verticalAlignment int 0

verticalTextPosition int 0

visible boolean True

visibleRect java.awt.Rectangle x=0,y=0,width=0,
height=0

width int 0

x int 0

y int 0

Property Type Default Value

UI com.sun.java.swing.
plaf.ListUI

dynamic

UIClassID java.lang.String ListUI

accessibleContext com.sun.java.
accessibility.
AccessibleContext

dynamic

alignmentX float 0.5

alignmentY float 0.5

anchorSelectionIndex int -1

autoscrolls boolean True

background java.awt.Color dynamic

border com.sun.java.swing.
border.Border

null

bounds java.awt.Rectangle null

cellRenderer com.sun.java.swing.
ListCellRenderer

dynamic

component (null) null

Property Type Default Value
Appendix A ■ Bean Properties Reference 123



componentCount int 1

components java.awt.Component[] dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

doubleBuffered boolean False

enabled boolean True

firstVisibleIndex int -1

fixedCellHeight int -1

fixedCellWidth int -1

focusCycleRoot boolean False

focusTraversable boolean True

font java.awt.Font null

foreground java.awt.Color 0,0,0

graphics java.awt.Graphics null

height int 0

insets java.awt.Insets 0, 0, 0, 0

lastVisibleIndex int -1

layout java.awt.
LayoutManager

null

leadSelectionIndex int -1

listData java.util.Vector null

managingFocus boolean False

maxSelectionIndex int -1

maximumSize java.awt.Dimension 0, 0

minSelectionIndex int -1

minimumSize java.awt.Dimension 0, 0

model com.sun.java.swing.
ListModel

dynamic

name java.lang.String null

Property Type Default Value
124 Part II ■ Reference Appendices



nextFocusableComponent java.awt.Component null

opaque boolean True

optimizedDrawingEnabled boolean True

paintingTile boolean False

preferredScrollable
ViewportSize

java.awt.Dimension width=256, height=128

preferredSize java.awt.Dimension 0, 0

prototypeCellValue java.lang.Object null

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled boolean True

rootPane com.sun.java.swing.
JRootPane

null

scrollableTracks
ViewportHeight

boolean False

scrollableTracks
ViewportWidth

boolean False

selectedIndex int -1

selectedIndices int[] [I@1f3bf5

selectedValue java.lang.Object null

selectedValues java.lang.Object[] dynamic

selectionBackground java.awt.Color 204,204,255

selectionEmpty boolean True

selectionForeground java.awt.Color 0,0,0

selectionInterval (null) null

selectionMode int 2

selectionModel com.sun.java.swing.
ListSelectionModel

dynamic

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

Property Type Default Value
Appendix A ■ Bean Properties Reference 125



A.12   DSdbJTextArea

validateRoot boolean False

valueIsAdjusting boolean False

visible boolean True

visibleRect java.awt.Rectangle 0, 0, 0, 0

visibleRowCount int 8

width int 0

x int 0

y int 0

Property Type Default Value

UI com.sun.java.swing.
plaf.TextUI

dynamic

UIClassID java.lang.String TextAreaUI

accessibleContext com.sun.java.
accessibility.
AccessibleContext

dynamic

actions com.sun.java.swing.
Action[]

dynamic

alignmentX float 0.5

alignmentY float 0.5

autoscrolls boolean True

background java.awt.Color 255,255,255

border com.sun.java.swing.
border.Border

dynamic

bounds java.awt.Rectangle null

caret com.sun.java.swing.
text.Caret

dynamic

caretColor java.awt.Color 0,0,0

Property Type Default Value
126 Part II ■ Reference Appendices



caretPosition int 0

columns int 0

component (null) null

componentCount int 0

components java.awt.Component[] dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

disabledTextColor java.awt.Color 153,153,153

document com.sun.java.swing.
text.Document

dynamic

doubleBuffered boolean False

editable boolean True

enabled boolean True

focusAccelerator char

focusCycleRoot boolean False

focusTraversable boolean True

font java.awt.Font null

foreground java.awt.Color 0,0,0

graphics java.awt.Graphics null

height int 0

highlighter com.sun.java.swing.
text.Highlighter

dynamic

insets java.awt.Insets 2, 2, 2, 2

keymap com.sun.java.swing.
text.Keymap

dynamic

layout java.awt.
LayoutManager

null

lineCount int 1

lineEndOffset (null) null

lineOfOffset (null) null

Property Type Default Value
Appendix A ■ Bean Properties Reference 127



lineStartOffset (null) null

lineWrap boolean False

managingFocus boolean True

margin java.awt.Insets 0, 0, 0, 0

maximumSize java.awt.Dimension width=15,height=19

minimumSize java.awt.Dimension width=15,height=19

name java.lang.String null

nextFocusableComponent java.awt.Component null

opaque boolean True

optimizedDrawingEnabled boolean True

paintingTile boolean False

preferredScrollable
ViewportSize

java.awt.Dimension width=15,height=19

preferredSize java.awt.Dimension width=15,height=19

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled boolean True

rootPane com.sun.java.swing.
JRootPane

null

rows int 0

scrollableTracks
ViewportHeight

boolean False

scrollableTracks
ViewportWidth

boolean False

selectedText java.lang.String null

selectedTextColor java.awt.Color 0,0,0

selectionColor java.awt.Color 204,204,255

selectionEnd int 0

selectionStart int 0

tabSize int 8

Property Type Default Value
128 Part II ■ Reference Appendices



A.13   DSdbJLabel

text java.lang.String

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

validateRoot boolean False

visible boolean True

visibleRect java.awt.Rectangle 0, 0, 0, 0

width int 0

wrapStyleWord boolean False

x int 0

y int 0

Property Type Default Value

UI com.sun.java.swing.
plaf.LabelUI

dynamic

UIClassID java.lang.String LabelUI

accessibleContext com.sun.java.
accessibility.
AccessibleContext

dynamic

alignmentX float 0.0

alignmentY float 0.5

autoscrolls boolean False

background java.awt.Color 204,204,204

border com.sun.java.swing.
border.Border

null

bounds java.awt.Rectangle null

component (null) null

componentCount int 0

components java.awt.Component[] dynamic

Property Type Default Value
Appendix A ■ Bean Properties Reference 129



dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

disabledIcon com.sun.java.swing.
Icon

null

displayedMnemonic int 0

doubleBuffered boolean False

enabled boolean True

focusCycleRoot boolean False

focusTraversable boolean False

font java.awt.Font null

foreground java.awt.Color 102,102,153

graphics java.awt.Graphics null

height int 0

horizontalAlignment int 2

horizontalTextPosition int 4

icon com.sun.java.swing.
Icon

null

iconTextGap int 4

insets java.awt.Insets 0, 0, 0, 0

labelFor java.awt.Component null

layout java.awt.Layout
Manager

null

managingFocus boolean False

maximumSize java.awt.Dimension 0, 0

minimumSize java.awt.Dimension 0, 0

name java.lang.String null

nextFocusableComponent java.awt.Component null

opaque boolean False

optimizedDrawingEnabled boolean True

Property Type Default Value
130 Part II ■ Reference Appendices



paintingTile boolean False

preferredSize java.awt.Dimension 0, 0

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled boolean True

rootPane com.sun.java.swing.
JRootPane

null

text java.lang.String

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

validateRoot boolean False

verticalAlignment int 0

verticalTextPosition int 0

visible boolean True

visibleRect java.awt.Rectangle 0, 0, 0, 0

width int 0

x int 0

y int 0

Property Type Default Value
Appendix A ■ Bean Properties Reference 131



132 Part II ■ Reference Appendices



Appendix B
Distributing Applets and Applications

Using JarMaster to Customize the Deployment Archive

B.1   Using JarMaster to Customize the Deployment Archive

The size of the archive and its related download time are important factors to consider 
when deploying your applet or application.

When you create an applet or an application using third-party classes such as JClass 
components, your deployment archive will contain many unused class files unless you 
customize your JAR. Optimally, the deployment JAR should contain only your classes 
and the third-party classes you actually use. For example, the jcdatasource.jar, which you 
used to develop your applet or application, contains classes and packages that are only 
useful during the development process and that are not referenced by your application. 
These classes include the Property Editors and BeanInfo classes. JClass JarMaster helps 
you create a deployment JAR that contains only the class files required to run your 
application.

JClass JarMaster is a robust utility that allows you to customize and reduce the size of the 
deployment archive quickly and easily. Using JClass JarMaster you can select the classes 
you know must belong in your JAR, and JarMaster will automatically search for all of the 
direct and indirect dependencies (supporting classes).

When you optimize the size of the deployment JAR with JClass JarMaster, you save 
yourself the time and trouble of building a JAR manually and determining the necessity 
of each class or package. Your deployment JAR will take less time to load and will use less 
space on your server as a direct result of excluding all of the classes that are never used by 
your applet or application.

For more information about using JarMaster to create and edit JARs, please consult its 
online documentation.

JClass JarMaster is included as part of the JClass DesktopViews suite of products. For 
more details please refer to Quest Software’s Web site.
133

http://www.quest.com


134 Part II ■ Reference Appendices



Index

A
abstract relationship 14
access

specify tables and fields 26
access rights

Data Access Tab 79
accessing a database 48

middleware products 50
the JDBC-ODBC bridge 50
Type 1 driver 49
Type driver 49

advance 56
ambiguous column names 40
API 3
append 54, 55
applets

distributing 133
applications

distributing 133
assumptions 2
atBegin 56
atEnd 56

B
BaseDataTable 15, 25, 34
BaseMetaData 15
batching HiGrid updates 42
Bean 69

Data Bean 71
Data Bean editor 72
Data Navigator 40
DataSource

custom implementation 88
DSdbNavigator, properties 94
JARs, installing 70
properties reference 109
serialization file 71

saving 73
Tree Data 82

BeanBox 27
binding

a component to a single level 90
AWT and SWING components to a data source 105
data binding, managing 9

interface for single-level data binding 9
specifying path names 91, 92
your own components to a data source 106

BindingModel 9
bookmark 19

current 15
navigating 23

Borland JBuilder
data binding 88

C
choosing tables in the Data Bean

tables
choosing 75

class 13, 43
BaseDataTable 34
DataModel 34
DataModelEvent, constants 62
diagram, data model 61
TreeModel 34
useful, code snippets 37

clone 56
code snippet

connecting to a database via a JDBC-ODBC bridge 38
joining tables 38
refreshing tables 39
setting permissions 39
setting the top-level query 38
useful classes 37

column
accessing from a database 57
ambiguous names 40
excluding from update operations 60
property 57
virtual 58

computation order 59
computed columns 80
set via a customizer 80

virtual, define 81
comments on product 6
commit policy 15, 37, 101

COMMIT_LEAVING_ANCESTOR 37, 53
COMMIT_LEAVING_RECORD 37, 53
COMMIT_MANUALLY 37, 53
Data Access Tab 79
135



global cursor 48
set 26
setting 53

COMMIT_LEAVING_ANCESTOR 53
COMMIT_LEAVING_RECORD 53
COMMIT_MANUALLY 53
component

binding
IDE 91
path 91
standard method 91

binding programmatically 91
binding to a data source 106
binding to a meta data level 90
data binding, other 97
data bound 13, 91
data control 40
DSdbNavigator 93
types of data bound 89

connection
JDBC-ODBC 16

constructor 14
root 101

createTable 24
current bookmark 15

DataTableModel 48
current path 21, 22
cursor

global 15
custom implementations 41
customizer 51

choosing tables 75
JDBC connection 43
setting a query 76

D
data

binding, managing 9
control components 40
multiple data views 13
structure 14
traversing 54
unbound 41

Data Access tab 30
Data Bean 71

editor 72
data binding 90

a component to a single level 90
Borland JBuilder 88
component programmatically 91
component through an IDE 91
component to meta data-level 90
constructing 52
custom 105

JClass components in an IDE 91
navigator programmatically 92
navigator through an IDE 92
other components 97
single-level 90
via JDBC 39

data bound components 10, 13, 87, 89
data integrity

handling exceptions 67
data manipulation language 26

DELETE 26
INSERT 26
SELECT 26
UPDATE 26

data model 44, 47, 90
classes and interfaces diagram 61
event, methods 61
highlights 16
instantiating 50
methods 44
setting 24
setting programmatically 24
unbound 24

Data Model tab 28
data navigator 87
Data Navigator Bean 40
data source

binding components 106
connection 13
events 60
listeners 60

data table tree 47
data tree

creating root level 25
database

accessing rows and columns 57
accessing with a JDBC-ODBC bridge 50
accessing with a Type 1 driver 49
accessing with a Type 4 driver 49
accessing with Middleware products 50
column properties 57
connection 73
connection, specifying 48
JDBC-ODBC connection 16
requerying 56
set commit policy to be used when updating 26

DataBean 27, 109
about 109
class 109
commitPolicy 109
currentGlobalBookmark 109
currentGlobalTable 109
custom editor 28
Data Access Tab 79
dataBeanComponent 109
dataTableTree 109
136 Index



description 109
Driver Table Tab 77
eventsEnabled 109
listeners 109
metaDataTree 110
modelName 110
modified 110
Set button 32
version 110
Virtual Columns Tab 80

DataBeanComponent 110
class 110
dataSourceNames 110
dataSources 110
resourceName 110
root 110
serializationFile 110
serializationRequired 110
structureOnly 110

DataBeanComponentEditor 72
DataBeanCustomizer 110

alignmentX 110
alignmentY 110
background 110
component 110
componentCount 110
components 111
enabled 111
font 111
foreground 111
insets 111
layout 111
maximumSize 111
minimumSize 111
name 111
object 111
preferredSize 111
visible 111

DataModel 15, 24, 34
global cursor 48

DataModelEvent
class constants 62

DataModelListener
methods 64

DataSource Bean
custom implementation 88

DataTable
subclass 15

DataTableAbstractionLayer 34, 35
DataTableModel 15, 24

current bookmark 48
DataTables 15
DemoData program 100
design-time maximum number of rows 74
DML

data manipulation language 26

DELETE 26
INSERT 26
SELECT 26
UPDATE 26

driver
manager 100
table 76
Type 1 49
Type 4 49
Type 4, definition 49

Driver Table Tab 85
DSdbJCheckbox 120

accessibleContext 120
actionCommand 120
alignmentX 120
alignmentY 120
autoscrolls 120
background 120
border 121
borderPainted 121
bounds 121
component 121
componentCount 121
components 121
dataBinding 121
debugGraphicsOptions 121
disabledIcon 121
disabledSelectedIcon 121
doubleBuffered 121
enabled 121
focusCycleRoot 121
focusPainted 121
focusTraversable 121
font 121
foreground 121
graphics 121
height 121
horizontalAlignment 121
horizontalTextPosition 121
icon 121
insets 121
label 121
layout 121
managingFocus 121
margin 122
maximumSize 122
minimumSize 122
mnemonic 122
model 122
name 122
nextFocusableComponent 122
opaque 122
optimizedDrawingEnabled 122
paintingTile 122
preferredSize 122
pressedIcon 122
Index 137



registeredKeyStrokes 122
requestFocusEnabled 122
rolloverEnabled 122
rolloverIcon 122
rolloverSelectedIcon 122
rootPane 122
selected 122
selectedIcon 122
selectedObjects 122
text 122
toolTipText 122
topLevelAncestor 122
UI 120
UIClassID 120
validateRoot 123
verticalAlignment 123
verticalTextPosition 123
visible 123
visibleRect 123
width 123
x 123
y 123

DSdbJImage 118
accessibleContext 118
alignmentX 118
alignmentY 118
autoscrolls 119
background 119
border 119
bounds 119
component 119
componentCount 119
components 119
dataBinding 119
debugGraphicsOptions 119
doubleBuffered 119
enabled 119
focusCycleRoot 119
focusTraversable 119
font 119
foreground 119
graphics 119
height 119
insets 119
layout 119
managingFocus 119
maximumSize 119
minimumSize 119
name 119
nextFocusableComponent 119
opaque 119
optimizedDrawingEnabled 119
paintingTile 119
preferredSize 120
registeredKeyStrokes 120
requestFocusEnabled 120

rootPane 120
toolTipText 120
topLevelAncestor 120
UIClassID 118
validateRoot 120
visible 120
visibleRect 120
width 120
x 120
y 120

DSdbJLabel 129
accessibleContext 129
alignmentX 129
alignmentY 129
autoscrolls 129
background 129
border 129
bounds 129
component 129
componentCount 129
components 129
dataBinding 130
debugGraphicsOptions 130
disabledIcon 130
displayedMnemonic 130
doubleBuffered 130
enabled 130
focusCycleRoot 130
focusTraversable 130
font 130
foreground 130
graphics 130
height 130
horizontalAlignment 130
horizontalTextPosition 130
icon 130
iconTextGap 130
insets 130
lableFor 130
layout 130
managingFocus 130
maximumSize 130
minimumSize 130
name 130
nextFocusableComponent 130
opaque 130
optimizedDrawingEnabled 130
paintingTile 131
preferredSize 131
registeredKeyStrokes 131
requestFocusEnabled 131
rootPane 131
text 131
toolTipText 131
topLevelAncestor 131
UI 129
138 Index



UIClassID 129
validateRoot 131
verticalAlignment 131
verticalTextPosition 131
visible 131
visibleRect 131
width 131
x 131
y 131

DSdbJList 123
accessibleContext 123
alignmentX 123
alignmentY 123
anchorSelectionIndex 123
autoscrolls 123
background 123
border 123
bounds 123
cellRenderer 123
component 123
componentCount 124
components 124
dataBinding 124
debugGraphicsOptions 124
doubleBuffered 124
enabled 124
firstVisibleIndex 124
fixedCellHeight 124
fixedCellWidth 124
focusCycleRoot 124
focusTraversable 124
font 124
foreground 124
graphics 124
height 124
insets 124
lastVisibleIndex 124
layout 124
leadSelectionIndex 124
listData 124
managingFocus 124
maximumSize 124
maxSelectionIndex 124
minimumSize 124
minSelectionIndex 124
model 124
name 124
nextFocusableComponent 125
opaque 125
optimizedDrawingEnabled 125
paintingTile 125
preferredScrollableViewportSize 125
preferredSize 125
prototypeCellValue 125
registeredKeyStrokes 125
requestFocusEnabled 125

rootPane 125
scrollableTracksViewportHeight 125
scrollableTracksViewportWidth 125
selectedIndex 125
selectedIndices 125
selectedValue 125
selectedValues 125
selectionBackground 125
selectionEmpty 125
selectionForeground 125
selectionInterval 125
selectionMode 125
selectionModel 125
toolTipText 125
topLevelAncestor 125
UI 123
UIClassIDt 123
validateRoot 126
valueIsAdjusting 126
visible 126
visibleRect 126
visibleRowCount 126
width 126
x 126
y 126

DSdbJTextArea 126
accessibleContext 126
actions 126
alignmentX 126
alignmentY 126
autoscrolls 126
background 126
border 126
bounds 126
caret 126
caretColor 126
caretPosition 127
columns 127
component 127
componentCount 127
components 127
dataBinding 127
debugGraphicsOptions 127
disabledTextColor 127
document 127
doubleBuffered 127
editable 127
enabled 127
focusAccelerator 127
focusCycleRoot 127
focusTraversable 127
font 127
foreground 127
graphics 127
height 127
highlighter 127
Index 139



insets 127
keymap 127
layout 127
lineCount 127
lineEndOffset 127
lineOfOffset 127
lineStartOffset 128
lineWrap 128
managingFocus 128
margin 128
maximumSize 128
minimumSize 128
name 128
nextFocusableComponent 128
opaque 128
optimizedDrawingEnabled 128
paintingTile 128
preferredScrollableViewportSize 128
preferredSize 128
registeredKeyStrokes 128
requestFocusEnabled 128
rootPane 128
rows 128
scrollableTracksViewportHeight 128
scrollableTracksViewportWidth 128
selectedText 128
selectedTextColor 128
selectionColor 128
selectionEnd 128
selectionStart 128
tabSize 128
text 129
toolTipText 129
topLevelAncestor 129
UI 126
UIClassID 126
validateRoot 129
visible 129
visibleRect 129
width 129
wrapStyleWord 129
x 129
y 129

DSdbJTextField 115
accessibleContext 115
actionCommand 116
actions 116
alignmentX 116
alignmentY 116
autoscrolls 116
background 116
border 116
bounds 116
caret 116
caretColor 116
caretPosition 116

columns 116
component 116
componentCount 116
components 116
dataBinding 116
debugGraphicsOptions 116
disabledTextColor 116
document 116
doubleBuffered 116
editable 116
enabled 116
focusAccelerator 116
focusCycleRoot 116
focusTraversable 116
font 116
foreground 117
graphics 117
height 117
highlighter 117
horizontalAlignment 117
horizontalVisibility 117
insets 117
keymap 117
layout 117
managingFocus 117
margin 117
maximumSize 117
minimumSize 117
name 117
nextFocusableComponent 117
opaque 117
optimizedDrawingEnabled 117
paintingTile 117
preferredScrollableViewportSize 117
preferredSize 117
registeredKeyStrokes 117
requestFocusEnabled 117
rootPane 117
scrollableTracksViewportHeight 118
scrollableTracksViewportWidth 118
scrollOffset 117
selectedText 118
selectedTextColor 118
selectionColor 118
selectionEnd 118
selectionStart 118
text 118
toolTipText 118
topLevelAncestor 118
UI 115
UIClassID 115
validateRoot 118
visible 118
visibleRect 118
width 118
x 118
140 Index



y 118
DSdbNavigator 69, 113

accessibleContext 113
alignmentX 113
alignmentY 113
autoscrolls 113
background 113
Bean properties 94
border 113
bounds 113
buttonBackground 113
buttonForeground 113
commandVisible 114
component 114
componentCount 114
components 114
dataBinding 114
debugGraphicsOptions 114
deleteVisible 114
doubleBuffered 114
enabled 114
firstVisible 114
focusCycleRoot 114
focusTraversable 114
font 114
foreground 114
functions 93
graphics 114
height 114
insertVisible 114
insets 114
lastVisible 114
layout 114
managingFocus 114
maximumSize 114
minimumSize 114
name 114
nextFocusableComponent 114
nextVisible 114
opaque 114
optimizedDrawingEnabled 115
paintingTile 115
preferredSize 115
previousVisible 115
registeredKeyStrokes 115
requestFocusEnabled 115
rootPane 115
statusBackground 115
statusForeground 115
statusVisible 115
ToolTipText 115
topLevelAncestor 115
UIClassID 113
validateRoot 115
visible 115
visibleRect 115

width 115
x 115
y 115

dynamic bookmark 14

E
entity-relationship diagram

for sample database 99
events

data source 60
DataModelEvent 61

exceptions 67
handling 67

F
FAQs 5
feature overview 1
fields

specify for access 26
specifying 51

G
get 56
getAncestorBookmark 24
getAncestors 24
getChildren 54, 55
getCurrentBookmark 15
getCurrentGlobalBookmark 15
getData 54
getFirstChild 54, 55
getIterator 54, 55
getLastChild 54, 55
getMetaData 24
getMetaDataTree 24
getNextChild 54, 55
getNextSibling 54
getParent 54, 55
getParentBookmark 24
getPreviousChild 54, 55
getPreviousSibling 55
getRowIdentifier 24
getRowIndex 24
getRows 24
getTableName 39
global cursor 15, 20, 22

commit 48
commits 35
DataModel 48

GUI
JClass HiGrid 10
Index 141



H
hasChildren 55
hasMoreElements 56
hierarchical relationships

meta data objects 19

I
IDE

binding a component 91
binding a navigator 92

insert 55
interfaces

DataTableAbstractionLayer 34
diagram, data model 61
MetaDataModel 43
VirtualColumnModel 58

internationalization 11
introducing JClass DataSource 1
isChildOf(TreeNode) 55

J
JAR

installing 70
optimizing 133

JarMaster 133
JBuilder

data binding 88
JCData 10, 28
JClass Chart 10
JClass Field 10
JClass HiGrid 10, 13
JClass JarMaster 133
JClass LiveTable 10
JClass technical support 5

contacting 5
JCTreeData 10, 111

about 111
class 111
currentGlobalBookmark 111
currentGlobalTable 111
dataTableTree 111
eventsEnabled 111
JCTreeData 112
listeners 111
metaDataTree 111
modelName 111
modified 112
version 112

JDBC 13
binding data to the source 39
using customizers to specify the connection 43

JDBC-ODBC 13
bridge

making a database connection 16
bridge for a database connection 16
bridge, database access 50
bridge, Type 1 driver 49

join 101
code example 38
joining tables 38
setting a join in a Data Bean 76

L
license 3
licensing 3
listeners

data source 60

M
managing data binding 9
manual overview 2
meta data

abstract model 47
binding a component 90
defining its structure 14
model 13, 14, 17
object

bare 24
hierarchical relationships 19
hierarchy 24

specifying 51
storing 48
structure 47
tree 47
tree structure 19

MetaData 14, 26
subclass 15

MetaDataModel 15, 24, 25, 43
interface 48

methods 13, 43
data model 44
data model event 61
for traversing data 54

advance, TreeIteratorModel 56
append, TreeModel 54
append, TreeNodeModel 55
atBegin, TreeIteratorModel 56
atEnd, TreeIteratorModel 56
clone, TreeIteratorModel 56
get, TreeIteratorModel 56
getChildren, TreeModel 54
getChildren, TreeNodeModel 55
getData, TreeModel 54
142 Index



getFirstChild, Tree Model 54
getFirstChild, TreeNodeModel 55
getIterator, TreeModel 54
getIterator, TreeNodeModel 55
getLastChild, TreeModel 54
getLastChild, TreeNodeModel 55
getNextChild, TreeModel 54
getNextChild, TreeNodeModel 55
getNextSibling, TreeModel 54
getParent, TreeModel 54
getParent, TreeNodeModel 55
getPreviousChild, TreeModel 54
getPreviousChild, TreeNodeModel 55
getPreviousSibling, TreeModel 55
hasChildren, TreeModel 55
hasChildren, TreeNodeModel 55
hasMoreElements, TreeIteratorModel 56
insert, TreeModel 55
insert, TreeNodeModel 55
isChildOf(TreeNode), TreeModel 55
nextElement, TreeIteratorModel 56
remove, TreeModel 55
remove, TreeNodeModel 55
removeChildren, TreeModel 55
removeChildren, TreeNodeModel 55
TreeIteratorModel 56
TreeModel 54
TreeNodeModel 55

getTableName 39
moveToRow 35
setColumnTableRelations 40
setDataBinding 91, 92

middleware
accessing a database 50

model-view-controller 14
moveToRow 35
multiple data views 13

N
names

table 39
navigator 92

binding
IDE 92
path 92
standard method 92

binding programmatically 92
binding to MetaData level 92
functions 92
Swing support 92

Navigator Bean 40
nextElement 56
Node Properties Editor 28

O
organization

of JClass DataSource 14
overview

JClass DataSource 13
of the manual 2

P
permissions

setting 39
placeholder

question mark 26
policy 48
prepared statements 26
product feedback 6
property

Bean, reference 109
column 57
DataBean 109

about 109
class 109
commitPolicy 109
currentGlobalBookmark 109
currentGlobalTable 109
dataBeanComponent 109
dataTableTree 109
description 109
eventsEnabled 109
listeners 109
metaDataTree 110
modelName 110
modified 110
version 110

DataBeanComponent 110
class 110
dataSourceNames 110
dataSources 110
resourceName 110
root 110
serializationFile 110
serializationRequired 110
structureOnly 110

DataBeanCustomizer 110
alignmentX 110
alignmentY 110
background 110
component 110
componentCount 110
components 111
enabled 111
font 111
foreground 111
insets 111
Index 143



layout 111
maximumSize 111
minimumSize 111
name 111
object 111
preferredSize 111
visible 111

DSdbJCheckbox 120
accessibleContext 120
actionCommand 120
alignmentX 120
alignmentY 120
autoscrolls 120
background 120
border 121
borderPainted 121
bounds 121
component 121
componentCount 121
components 121
dataBinding 121
debugGraphicsOptions 121
disabledIcon 121
disabledSelectedIcon 121
doubleBuffered 121
enabled 121
focusCycleRoot 121
focusPainted 121
focusTraversable 121
font 121
foreground 121
graphics 121
height 121
horizontalAlignment 121
horizontalTextPosition 121
icon 121
insets 121
label 121
layout 121
managingFocus 121
margin 122
maximumSize 122
minimumSize 122
mnemonic 122
model 122
name 122
nextFocusableComponent 122
opaque 122
optimizedDrawingEnabled 122
paintingTile 122
preferredSize 122
pressedIcon 122
registeredKeyStrokes 122
requestFocusEnabled 122
rolloverEnabled 122
rolloverIcon 122

rolloverSelectedIcon 122
rootPane 122
selected 122
selectedIcon 122
selectedObjects 122
text 122
toolTipText 122
topLevelAncestor 122
UI 120
UIClassID 120
validateRoot 123
verticalAlignment 123
verticalTextPosition 123
visible 123
visibleRect 123
width 123
x 123
y 123

DSdbJImage 118
accessibleContext 118
alignmentX 118
alignmentY 118
autoscrolls 119
background 119
border 119
bounds 119
component 119
componentCount 119
components 119
dataBinding 119
debugGraphicsOptions 119
doubleBuffered 119
enabled 119
focusCycleRoot 119
focusTraversable 119
font 119
foreground 119
graphics 119
height 119
insets 119
layout 119
managingFocus 119
maximumSize 119
minimumSize 119
name 119
nextFocusableComponent 119
opaque 119
optimizedDrawingEnabled 119
paintingTile 119
preferredSize 120
registeredKeyStrokes 120
requestFocusEnabled 120
rootPane 120
toolTipText 120
topLevelAncestor 120
UIClassID 118
144 Index



validateRoot 120
visible 120
visibleRect 120
width 120
x 120
y 120

DSdbJLabel 129
accessibleContext 129
alignmentX 129
alignmentY 129
autoscrolls 129
background 129
border 129
bounds 129
component 129
componentCount 129
components 129
dataBinding 130
debugGraphicsOptions 130
disabledIcon 130
displayedMnemonic 130
doubleBuffered 130
enabled 130
focusCycleRoot 130
focusTraversable 130
font 130
foreground 130
graphics 130
height 130
horizontalAlignment 130
horizontalTextPosition 130
icon 130
iconTextGap 130
insets 130
labelFor 130
layout 130
managingFocus 130
maximumSize 130
minimumSize 130
name 130
nextFocusableComponent 130
opaque 130
optimizedDrawingEnabled 130
paintingTile 131
preferredSize 131
registeredKeyStrokes 131
requestFocusEnabled 131
rootPane 131
text 131
toolTipText 131
topLevelAncestor 131
UI 129
UIClassID 129
validateRoot 131
verticalAlignment 131
verticalTextPosition 131

visible 131
visibleRect 131
width 131
x 131
y 131

DSdbJList 123
accessibleContext 123
alignmentX 123
alignmentY 123
anchorSelectionIndex 123
autoscrolls 123
background 123
border 123
bounds 123
cellRenderer 123
component 123
componentCount 124
components 124
dataBinding 124
debugGraphicsOptions 124
doubleBuffered 124
enabled 124
firstVisibleIndex 124
fixedCellHeight 124
fixedCellWidth 124
focusCycleRoot 124
focusTraversable 124
font 124
foreground 124
graphics 124
height 124
insets 124
lastVisibleIndex 124
layout 124
leadSelectionIndex 124
listData 124
managingFocus 124
maximumSize 124
maxSelectionIndex 124
minimumSize 124
minSelectionIndex 124
model 124
name 124
nextFocusableComponent 125
opaque 125
optimizedDrawingEnabled 125
paintingTile 125
preferredScrollableViewportSize 125
preferredSize 125
prototypeCellValue 125
registeredKeyStrokes 125
requestFocusEnabled 125
rootPane 125
scrollableTracksViewportHeight 125
scrollableTracksViewportWidth 125
selectedIndex 125
Index 145



selectedIndices 125
selectedValue 125
selectedValues 125
selectionBackground 125
selectionEmpty 125
selectionForeground 125
selectionInterval 125
selectionMode 125
selectionModel 125
toolTipText 125
topLevelAncestor 125
UI 123
UIClassID 123
validateRoot 126
valueIsAdjusting 126
visible 126
visibleRect 126
visibleRowCount 126
width 126
x 126
y 126

DSdbJTextArea 126
accessibleContext 126
actions 126
alignmentX 126
alignmentY 126
autoscrolls 126
background 126
border 126
bounds 126
caret 126
caretColor 126
caretPosition 127
columns 127
component 127
componentCount 127
components 127
dataBinding 127
debugGraphicsOptions 127
disabledTextColor 127
document 127
doubleBuffered 127
editable 127
enabled 127
focusAccelerator 127
focusCycleRoot 127
focusTraversable 127
font 127
foreground 127
graphics 127
height 127
highlighter 127
insets 127
keymap 127
layout 127
lineCount 127

lineEndOffset 127
lineOfOffset 127
lineStartOffset 128
lineWrap 128
managingFocus 128
margin 128
maximumSize 128
minimumSize 128
name 128
nextFocusableComponent 128
opaque 128
optimizedDrawingEnabled 128
paintingTile 128
preferredScrollableViewportSize 128
preferredSize 128
registeredKeyStrokes 128
requestFocusEnabled 128
rootPane 128
rows 128
scrollableTracksViewportHeight 128
scrollableTracksViewportWidth 128
selectedText 128
selectedTextColor 128
selectionColor 128
selectionEnd 128
selectionStart 128
tabSize 128
text 129
toolTipText 129
topLevelAncestor 129
UI 126
UIClassID 126
validateRoot 129
visible 129
visibleRect 129
width 129
wrapStyleWord 129
x 129
y 129

DSdbJTextField 115
accessibleContext 115
actionCommand 116
actions 116
alignmentX 116
alignmentY 116
autoscrolls 116
background 116
border 116
bounds 116
caret 116
caretColor 116
caretPosition 116
columns 116
component 116
componentCount 116
components 116
146 Index



dataBinding 116
debugGraphicsOptions 116
disabledTextColor 116
document 116
doubleBuffered 116
editable 116
enabled 116
focusAccelerator 116
focusCycleRoot 116
focusTraversable 116
font 116
foreground 117
graphics 117
height 117
highlighter 117
horizontalAlignment 117
horizontalVisibility 117
insets 117
keymap 117
layout 117
managingFocus 117
margin 117
maximumSize 117
minimumSize 117
name 117
nextFocusableComponent 117
opaque 117
optimizedDrawingEnabled 117
paintingTile 117
preferredScrollableViewportSize 117
preferredSize 117
registeredKeyStrokes 117
requestFocusEnabled 117
rootPane 117
scrollableTracksViewportHeight 118
scrollableTracksViewportWidth 118
scrollOffset 117
selectedText 118
selectedTextColor 118
selectionColor 118
selectionEnd 118
selectionStart 118
text 118
toolTipText 118
topLevelAncestor 118
UI 115
UIClassID 115
validateRoot 118
visible 118
visibleRect 118
width 118
x 118
y 118

DSdbNavigator 113
accessibleContext 113
alignmentX 113

alignmentY 113
autoscrolls 113
background 113
border 113
bounds 113
buttonBackground 113
buttonForeground 113
commandVisible 114
component 114
componentCount 114
components 114
dataBinding 114
debugGraphicsOptions 114
deleteVisible 114
doubleBuffered 114
enabled 114
firstVisible 114
focusCycleRoot 114
focusTraversable 114
font 114
foreground 114
graphics 114
height 114
insertVisible 114
insets 114
lastVisible 114
layout 114
managingFocus 114
maximumSize 114
minimumSize 114
name 114
nextFocusableComponent 114
nextVisible 114
opaque 114
optimizedDrawingEnabled 115
paintingTile 115
preferredSize 115
previousVisible 115
registeredKeyStrokes 115
requestFocusEnabled 115
rootPane 115
statusBackground 115
statusForeground 115
statusVisible 115
toolTipText 115
topLevelAncestor 115
UIClassID 113
validateRoot 115
visible 115
visibleRect 115
width 115
x 115
y 115

JCTreeData 111
about 111
class 111
Index 147



currentGlobalBookmark 111
currentGlobalTable 111
dataTableTree 111
eventsEnabled 111
JCTreeDataComponent 112
listeners 111
metaDataTree 111
modelName 111
modified 112
version 112

TreeDataBeanComponent 112
class 112
dataSourceNames 112
dataSources 112
resourceName 112
root 112
serializationFile 112
serializationRequired 112
structureOnly 112

TreeDataBeanCustomizer 112
alignmentX 112
alignmentY 112
background 112
component 112
componentCount 112
components 112
enabled 113
font 113
foreground 113
insets 113
layout 113
maximumSize 113
minimumSize 113
name 113
object 113
preferredSize 113
visible 113

Q
query

basics 26
requering a database 56
setting a query in the Data Bean customizer 76
SQL, specifying 51
store results 27

Quest Software technical support
contacting 5

question mark parameter 26

R
ReadOnlyBindingListener

methods 63

ReadOnlyBindingModel
in data binding 9

refreshing tables 39
related documents 3
relationship

abstract 14
remove 55
removeChildren 55
result set 56

adding rows programatically 57
displaying 82
performing updates 56

results
store query results 27

root constructor 101
root level

creating 25
root table 14, 19
row index 19
Row Nodes

naming 37
rows

accessing from a database 57
adding to a result set 57
keeping track of 19
set maximum number at design-time 74

S
sample database

E-R diagram 99
sample programs 99
serialization file 43, 71

saving 73
Set

DataBean 32
setColumnTableRelations 40
setting permissions 39
single level data binding 9
SQL

data manipulation language 26
query 14, 100

prepared statement 26
specifying 51

Statement tab 30, 84
structure of the sample database 99
subprotocol 100
sub-tables 14
support 5

contacting 5
FAQs 5
148 Index



T
table

access
Data Access Tab 79

driver tables 76
getting names 39
joining 76

code snippet 38
refreshing 39
specifying 51

Table chooser dialog 32
tables

specify for access 26
technical support 5

contacting 5
FAQs 5

text field
display 22

traversing data
methods for 54

TreeData Bean 82
TreeDataBeanComponent 112

class 112
dataSourceNames 112
dataSources 112
resourceName 112
root 112
serializationFile 112
serializationRequired 112
structureOnly 112

TreeDataBeanCustomizer 112
alignmentX 112
alignmentY 112
background 112
component 112
componentCount 112
components 112
enabled 113
font 113
foreground 113
insets 113
layout 113
maximumSize 113
minimumSize 113
name 113
object 113
preferredSize 113
visible 113

TreeModel 34, 47
Type 1 driver 49
Type 4 driver 49

definition 49
types

of data bound components 89
typographical conventions 2

U
unbound data 41

definition 41
generating a table’s data programmatically 24

updates
batching 42
database, set commit policy 26
performing 56

useful classes
code snippets 37

using JarMaster to customize the deployment archive 133

V
VectorData 24
view 14

multiple data views 13
virtual column 58

computation order 59
computed columns 80
define 81
set via a customizer 80

visual components
using 10

W
Windows

database driver installation 16
Index 149



150 Index


	JClass DataSource
	Preface
	Introducing JClass DataSource
	Assumptions
	Typographical Conventions in this Manual
	Overview of the Manual
	API Reference
	Licensing
	Related Documents
	About Quest
	Contacting Quest Software
	Customer Support
	Product Feedback and Announcements

	Using JClass DataSource
	Using JClass DataSource
	1.1 The Two Ways of Managing Data Binding in JClass DataSource
	1.2 Using JClass DataSource with Visual Components
	1.3 JClass DataSource and the JClass Data Bound Components
	1.4 Internationalization

	JClass DataSource Overview
	2.1 Introduction
	2.2 The Data Model’s Highlights
	2.3 The Meta Data Model
	2.4 Setting the Data Model
	2.5 JClass DataSource’s Main Classes and Interfaces
	2.6 Examples
	2.7 Binding the data to the source via JDBC
	2.8 The Data “Control” Components
	2.9 Custom Implementations
	2.10 Use of Customizers to Specify the Connection to the JDBC
	2.11 Classes and Methods of JClass DataSource

	The Data Model
	3.1 Introduction
	3.2 Accessing a Database
	3.3 Specifying Tables and Fields at Each Level
	3.4 Setting the Commit Policy
	3.5 Methods for Traversing the Data
	3.6 The Result Set
	3.7 Virtual Columns
	3.8 JClass DataSource Events and Listeners
	3.9 Handling Data Integrity Violations

	The JClass DataSource Beans
	4.1 Introduction
	4.2 Installing JClass DataSource’s JAR files
	4.3 The Data Bean
	4.4 The Tree Data Bean
	4.5 The Data Navigator and Data Bound Components
	4.6 Custom Implementations

	DataSource’s Data Bound Components
	5.1 Introduction
	5.2 The Types of Data Bound Components
	5.3 The Navigator and its Functions
	5.4 Data Binding the Other Components

	Sample Programs
	6.1 The Sample Database
	6.2 The DemoData Program
	6.3 Custom Data Binding


	Reference Appendices
	Bean Properties Reference
	A.1 DataBean
	A.2 DataBeanComponent
	A.3 DataBeanCustomizer
	A.4 JCTreeData
	A.5 TreeDataBeanComponent
	A.6 TreeDataBeanCustomizer
	A.7 DSdbJNavigator
	A.8 DSdbJTextField
	A.9 DSdbJImage
	A.10 DSdbJCheckbox
	A.11 DSdbJList
	A.12 DSdbJTextArea
	A.13 DSdbJLabel

	Distributing Applets and Applications
	B.1 Using JarMaster to Customize the Deployment Archive


	Index


