
JClass Elements
Programmer’s Guide

Version 6.3
for Java 2 (JDK 1.3.1 and higher)

Essential Enhancements and Extensions
to the Basic Swing Components

TM

8001 Irvine Center Drive
Irvine, CA 92618
949-754-8000
www.quest.com

April 2004 RefNo: PRGDE-JCSWS/630-04/2004

© Copyright Quest Software, Inc. 2004. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used or copied
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording
for any purpose other than the purchaser's personal use without the written permission of Quest Software,
Inc.

Warranty

The information contained in this document is subject to change without notice. Quest Software makes no
warranty of any kind with respect to this information. QUEST SOFTWARE SPECIFICALLY
DISCLAIMS THE IMPLIED WARRANTY OF THE MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Quest Software shall not be liable for any direct, indirect, incidental,
consequential, or other damage alleged in connection with the furnishing or use of this information.

Trademarks

JClass, JClass Chart, JClass Chart 3D, JClass DataSource, JClass Elements, JClass Field, JClass HiGrid,
JClass JarMaster, JClass LiveTable, JClass PageLayout, JClass ServerChart, JClass ServerReport,
JClass DesktopViews, and JClass ServerViews are trademarks of Quest Software, Inc. Other trademarks and
registered trademarks used in this guide are property of their respective owners.

World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com
e-mail: info@quest.com
U.S. and Canada: 949.754.8000

Please refer to our Web site for regional and international office information.

This product includes software developed by the Apache Software Foundation http://www.apache.org/.

The JPEG Encoder and its associated classes are Copyright © 1998, James R. Weeks and BioElectroMech.
This product is based in part on the work of the Independent JPEG Group.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, all
files included with the source code, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

http://www.quest.com
http://www.apache.org/

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This product includes software developed by the JDOM Project (http://www.jdom.org/). Copyright © 2000-
2002 Brett McLaughlin & Jason Hunter, all rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions,
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions, and the disclaimer that follows these conditions in the documentation and/or other
materials provided with the distribution.

3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
license@jdom.org.

4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in
their name, without prior written permission from the JDOM Project Management
(pm@jdom.org).

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

http://www.jdom.org/
mailto:license@jdom.org
mailto:pm@jdom.org

Table of Contents

Preface . 1
Introducing JClass Elements 1
Assumptions . 2
Typographical Conventions in this Manual 2
Overview of the Manual . 2
API Reference . 4
Licensing . 5
Related Documents . 5
About Quest . 5
Contacting Quest Software 6
Customer Support . 6
Product Feedback and Announcements 7

Part I: Components and Layout Managers

1 Introducing JClass Elements .11
1.1 How the Manual is Organized 11
1.2 Components and Layout Managers 11
1.3 Internationalization 16

2 CheckBox-List Component .17
2.1 Features of JCCheckBoxList 17
2.2 Classes . 18
2.3 Properties . 18
2.4 Methods . 18
2.5 Examples . 18

3 Circular and Linear Gauges .21
3.1 Circular and Linear Gauges 21
3.2 Features of JCCircularGauge 27
3.3 Features of JCLinearGauge 28
3.4 JCGauge . 29
3.5 JCCircularGauge 32
3.6 JCLinearGauge . 35
i

3.7 Headers, Footers, and Legends 36
3.8 JCScale . 37
3.9 JCAbstractScale . 39
3.10 The Circular Scale Object 41
3.11 The Linear Scale Object 45
3.12 Tick Objects . 48
3.13 The Range Object 58
3.14 The Indicator and Needle Objects 62
3.15 The Center Object 70
3.16 The Constraint Mechanism in JCGauge 73
3.17 Labels . 74
3.18 Events and Listeners in JCGauge 76
3.19 Utility Functions for JCGauge 77
3.20 JCCircularGaugeBean and JCLinearGaugeBean 79
3.21 Adding Other Components to a Gauge 80
3.22 JClass 4 to JClass 5: A Mini-porting Guide 81

4 Date Chooser. 83
4.1 Features of JCDateChooser 83
4.2 Classes and Interfaces 86
4.3 Properties . 88
4.4 Methods . 88
4.5 Examples . 89

5 JCPopupCalendar Component . 91
5.1 Features of JCPopupCalendar 91
5.2 Classes . 92
5.3 Properties . 94
5.4 Constructors and Methods 95
5.5 Listeners and Events 96
5.6 Examples . 96

6 Exit Frame. 99
6.1 Features of JCExitFrame 99
6.2 Properties . 99
6.3 Methods and Constructors 100
6.4 Examples . 100
ii Contents

7 Font Choosers .103
7.1 Features of JCFontChooser and its Subclasses 103
7.2 Classes . 105
7.3 Properties . 105
7.4 Methods . 105
7.5 Examples . 106

8 HTML/Help Panes . 109
8.1 Features of JCHTMLPane 109
8.2 Features of JCHelpPane 109
8.3 Classes . 110
8.4 Properties . 110
8.5 Constructors and Methods 111
8.6 Examples . 112

9 Sortable Table .117
9.1 Features of JCMappingSort 117
9.2 Features of JCSortableTable 117
9.3 Classes and Interfaces 118
9.4 Constructors and Methods 120
9.5 Cell Renderers for JCSortableTable 122
9.6 Examples . 122

10 Multiple Document Frame . 129
10.1 Features of JCMDIPane and JCMDIFrame 129
10.2 Properties . 133
10.3 Methods . 134
10.4 Examples . 137

11 Multi-Select List . 139
11.1 Features of JCMultiSelectList 139
11.2 Properties . 140
11.3 Constructors and Methods 141
11.4 Examples . 142

12 Spin Boxes . 143
12.1 Features of JCSpinBox and JCSpinNumberBox 143
12.2 Classes and Interfaces 144
Contents iii

12.3 Properties . 144
12.4 Constructors and Methods 146
12.5 Examples . 147

13 Splash Screen . 149
13.1 Features of JCSplashScreen 149
13.2 Classes and Interfaces 149
13.3 Methods and Constructors 150
13.4 Examples . 150

14 Tree/Table Components . 153
14.1 Features of JCTreeExplorer and JCTreeTable 153
14.2 Classes and Interfaces 156
14.3 Properties . 159
14.4 Methods . 160
14.5 Examples . 164

15 Wizard Creator. 167
15.1 Features of JCWizard and JCSplitWizard 167
15.2 Classes . 169
15.3 Constructors and Methods 169
15.4 Events . 171
15.5 Examples . 171

16 Layout Managers . 173
16.1 Features of the Layout Managers in JClass Elements 173
16.2 Interfaces . 175
16.3 Properties . 176
16.4 Constructors and Methods 176
16.5 Examples . 178

Part II: Utility Classes

17 Introduction to the Utility Classes 183
17.1 Utilities . 183

18 Debugging Tools . 187
18.1 Features of JCDebug 187
iv Contents

18.2 Classes and Scripts 188
18.3 Methods . 188
18.4 Removing JCDebug Statements from Your Code 190
18.5 Examples . 190

19 JCFileFilter . 193
19.1 Features of JCFileFilter 193
19.2 Constructors . 193
19.3 Methods . 194
19.4 Example . 195

20 Icon Creator . 197
20.1 Features of JCIconCreator 197
20.2 Classes . 197
20.3 Constructors and Methods 197
20.4 Examples . 198

21 Image Encoder .201
21.1 Features of JCEncodeComponent 201
21.2 Classes and Interfaces 201
21.3 Constructors and Methods 202
21.4 Examples . 203

22 Listener List . 205
22.1 Features of JCListenerList 205
22.2 Classes . 205
22.3 Methods . 205
22.4 Examples . 206

23 Progress Helper . 207
23.1 Features of JCProgressHelper 207
23.2 Constructors and Associated Classes 208
23.3 JCProgressHelper Methods 211
23.4 Examples . 211

24 String Tokenizer . 215
24.1 Features of JCStringTokenizer 215
24.2 Classes . 215
24.3 Methods . 216
Contents v

24.4 Examples . 216

25 Thread Safety Utilities . 219
25.1 Features of the Thread Safety Classes 219
25.2 Methods . 219

26 Tree Set . 221
26.1 Features of JCTreeSet 221
26.2 Constructors and Methods 221
26.3 Examples . 222

27 Type Converters. 223
27.1 Features of JCTypeConverter 223
27.2 Features of JCSwingTypeConverter 224
27.3 Classes . 224
27.4 Methods . 224
27.5 Examples . 226

28 Word Wrap . 231
28.1 Features of JCWordWrap 231
28.2 Methods . 231
28.3 Examples . 232

Part III: Reference Appendices

 A Bean Properties Reference . 235
A.1 Beans in the Swing Package 235
A.2 Beans in the com.klg.jclass.util.swing Package 244

 B Distributing Applets and Applications 257
B.1 Using JarMaster to Customize the Deployment Archive . . . 257

 C Colors and Fonts . 259
C.1 Colorname Values 259
C.2 RGB Color Values 259
C.3 Fonts . 264
vi Contents

Index . 267
Contents vii

viii Contents

Preface
Introducing JClass Elements ■ Assumptions ■ Typographical Conventions in this Manual

Overview of the Manual ■ API Reference ■ Licensing ■ Related Documents ■ About Quest

Contacting Quest Software ■ Customer Support ■ Product Feedback and Announcements

Introducing JClass Elements
The Swing components are the most significant part of the Java Foundation Classes
(JFC). Swing components cover basic needs, but some commonly useful items are
missing. For instance, a Color Chooser component is included, but a Font Chooser is not.

JClass Elements is a broad collection of GUI components and utility classes designed to
augment Swing’s basic offerings. With JClass Elements, you have an extended set of off-
the-shelf user interface components at your disposal. Moreover, because of their open
design, it’s easy to adapt them to your own custom needs.

Feature Overview
The classes of JClass Elements are distributed over three packages. com.klg.jclass.util
contains a collection of utilities and com.klg.jclass.swing contains the more elaborate
GUI components. There are additional classes in com.klg.jclass.util.swing. This
package contains both utilities and some basic GUI components that add functionality to
their Swing ancestors.

JClass Elements is a collection of utilities and GUI components which:

■ Extends basic Swing functionality by rounding out the list of much-needed
components.

■ Simplifies your work by providing built-in functionality.

■ Implements commonly-required utility functions.

JClass Elements may be used in conjunction with all of Quest Software’s other JClass
products, as well as with ordinary Swing components.

JClass Elements is compatible with JDK 1.4. If you are using JDK 1.4 and experience
drawing problems, you may want to upgrade to the latest drivers for your video card
from your video card vendor.

You can freely distribute Java applets and applications containing JClass components
according to the terms of the License Agreement that appears at install time.
1

Assumptions

This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming and
Java programming concepts such as classes, methods, and packages before proceeding
with this manual. See Related Documents later in this section of the manual for additional
sources of Java-related information.

Typographical Conventions in this Manual

Overview of the Manual

Part I —Components and Layout Managers – contains information about JClass
Elements’s GUI components. Each chapter explains what the component is, and
describes how to use it in your development project. There is also a chapter describing
the behavior of the layout managers that JClass Elements provides. These functional yet
simple-to-use layout managers can ease your layout tasks.

Chapter 1, Introducing JClass Elements, provides an overview of the components in
JClass Elements.

Chapter 2, CheckBox-List Component, describes the use of a component that
associates check boxes with list items.

Chapter 3, Circular and Linear Gauges, describes the JCCircularGauge structure, a
component for displaying and setting values on a circular dial or gauge.

Chapter 4, Date Chooser, describes the use of a graphical date chooser component.

Typewriter Font ■ Java language source code and examples of file contents.
■ JClass Elements and Java classes, objects, methods, properties,

constants, and events.
■ HTML documents, tags, and attributes.
■ Commands that you enter on the screen.

Italic Text ■ Pathnames, filenames, URLs, programs, and method parameters.
■ New terms as they are introduced, and to emphasize important

words.
■ Figure and table titles.
■ The names of other documents referenced in this manual, such as

Java in a Nutshell.

Bold ■ Keyboard key names and menu references.
2 Preface

Chapter 5, JCPopupCalendar Component, introduces a component that allows you
to edit the date and time using a drop-down calendar.

Chapter 6, Exit Frame, outlines this subclass of Swing’s JFrame, which is used to
detect and react to window-closing events.

Chapter 7, Font Choosers, details the JCFontChooser class, which gives you an easy
way of letting your end users change fonts.

Chapter 8, HTML/Help Panes, covers the use of this subclass of Swing’s
JEditorPane, which provides added HTML, hyperlink, and cursor changing
functionality.

Chapter 9, Sortable Table, offers information about this index map sorting class.

Chapter 10, Multiple Document Frame, outlines this multiple document interface
component, which allows you to put multiple windows in the same pane.

Chapter 11, Multi-Select List, covers the use of this dual-list component, which
handles tasks like specifying file inclusion and exclusion by providing a GUI
containing two list areas. Items can be moved from one list area to the other. The
names in the selected list are marked for the action you designate, while those in the
deselected list are excluded.

Chapter 12, Spin Boxes, presents an overview of this incrementing and decrementing
component, which is used with java.lang.Number type objects.

Chapter 13, Splash Screen, shows you how to include a splash screen with your
application.

Chapter 14, Tree/Table Components, provides information about the table
component, which presents data as a hierarchical/tree listing or a non-hierarchical
grid listing.

Chapter 15, Wizard Creator, covers the use of a component that manages pages with
wizard-like behavior. Typically, these pages are dialogs that assist the end user in
setting up custom configurations by organizing the setup procedure.

Chapter 16, Layout Managers, covers the behavior and use of the JClass Elements
layout managers.

Part II— Utilities – describes how to use the utility classes in JClass Elements. Each
chapter explains what the class is and describes how to use it in your development
project.

Chapter 17, Introduction to the Utility Classes, describes JClass Elements’s utility
classes.

Chapter 18, Debugging Tools, covers this tool that provides three different types of
debug printout control.
Preface 3

Chapter 19, JCFileFilter, provides a convenient way of passing Windows-style
filename extensions to a Swing JFileChooser so that only files of the named types
appear in the file chooser dialog.

Chapter 20, Icon Creator, outlines how you can use String arrays to create icon
images. This eliminates the need to supply separate image files for the icons in your
class.

Chapter 21, Image Encoder, describes how to use this class to provide a picture of
your component.

Chapter 22, Listener List, describes how to use this class for keeping track of event
listeners.

Chapter 23, Progress Helper, offers information about this index map sorting class.

Chapter 24, String Tokenizer, outlines the capabilities of this class, which lets you
specify a delimiter and split a String into tokens.

Chapter 25, Thread Safety Utilities, describes the classes that help with thread safety.

Chapter 26, Tree Set, outlines the features of this class, which allows you to represent
a set’s elements as a sort tree.

Chapter 27, Type Converters, outlines how to use these classes to convert between
data types.

Chapter 28, Word Wrap, shows how to add word wrapping functionality to a String.

Part III — Reference Appendices – contains detailed technical reference information.

Appendix A, Bean Properties Reference, gives important property details of all JClass
Elements’s components.

Appendix B, Distributing Applets and Applications, describes how to package your
application for distribution using JClass JarMaster.

Appendix C, Colors and Fonts, provides you with a useful table of Color values.

API Reference

The API reference documentation (Javadoc) is installed automatically when you install
JClass Elements and is found in the JCLASS_HOME/docs/api/ directory.
4 Preface

../api/index.html

Licensing
In order to use JClass Elements, you need a valid license. Complete details about
licensing are outlined in the JClass DesktopViews Installation Guide, which is automatically
installed when you install JClass Elements.

Related Documents
The following is a sample of useful references to Java and JavaBeans programming:

■ “Java Platform Documentation” at http://java.sun.com/docs/index.html and the “Java
Tutorial” at http://www.java.sun.com/docs/books/tutorial/index.html from Sun
Microsystems

■ For an introduction to creating enhanced user interfaces, see “Creating a GUI with
JFC/Swing” at http://java.sun.com/docs/books/tutorial/uiswing/index.html

■ Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc. See the O’Reilly Java
Resource Center at http://java.oreilly.com.

■ Resources for using JavaBeans are at http://java.sun.com/beans/resources.html

These documents are not required to develop applications using JClass Elements, but
they can provide useful background information on various aspects of the Java
programming language.

About Quest

Quest Software, Inc. (NASDAQ: QSFT) is a leading provider of application management
solutions. Quest provides customers with Application Confidencesm by delivering
reliable software products to develop, deploy, manage and maintain enterprise
applications without expensive downtime or business interruption. Targeting high
availability, monitoring, database management and Microsoft infrastructure
management, Quest products increase the performance and uptime of business-critical
applications and enable IT professionals to achieve more with fewer resources.
Headquartered in Irvine, Calif., Quest Software has offices around the globe and more
than 18,000 global customers, including 75% of the Fortune 500. For more information on
Quest Software, visit www.quest.com.
Preface 5

http://www.quest.com
../getstarted/index.html
http://java.sun.com/docs/index.html
http://java.sun.com/docs/programmer.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.oreilly.com
http://java.sun.com/beans/resources.html

Contacting Quest Software

Please refer to our Web site for regional and international office information.

Customer Support

Quest Software’s world-class support team is dedicated to ensuring successful product
installation and use for all Quest Software solutions.

You can use SupportLink to do the following:

■ Create, update, or view support requests

■ Search the knowledge base, a searchable collection of information including program
samples and problem/resolution documents

■ Access FAQs

■ Download patches

■ Access product documentation, API reference, and demos and examples

Please note that many of the initial questions you may have will concern basic installation
or configuration issues. Consult this product’s readme file and the JClass DesktopViews
Installation Guide (available in HTML and PDF formats) for help with these types of
problems.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying the
following information will help us serve you better:

■ Your name, email address, telephone number, company name, and country

E-mail sales@quest.com

Address

Quest Software, Inc.
World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
USA

Web site www.quest.com

Phone 949.754.8000 (United States and Canada)

SupportLink www.quest.com/support

E-mail support@quest.com
6 Preface

mailto:sales@quest.com
http://www.quest.com
http://www.quest.com/support
mailto:support@quest.com
../api/index.html
../../readme.html
../getstarted/index.html
../getstarted/index.html

■ The product name, version and serial number

■ The JDK (and IDE, if applicable) that you are using

■ The type and version of the operating system you are using

■ Your development environment and its version

■ A full description of the problem, including any error messages and the steps required
to duplicate it

Product Feedback and Announcements
We are interested in hearing about how you use JClass Elements, any problems you
encounter, or any additional features you would find helpful. The majority of
enhancements to JClass products are the result of customer requests.

Please send your comments to:
Quest Software
8001 Irvine Center Drive
Irvine, CA 92618

Telephone: 949-754-8000
Fax: 949-754-8999

JClass Direct Technical Support

JClass Support Email support@quest.com

Telephone 949-754-8000

Fax 949-754-8999

European Customers
Contact Information

Telephone: +31 (0)20 510-6700
Fax: +31 (0)20 470-0326
Preface 7

mailto:support@quest.com

8 Preface

Part
I

Components
and Layout
Managers

1
Introducing JClass Elements

How the Manual is Organized ■ Components and Layout Managers ■ Internationalization

1.1 How the Manual is Organized

For the most part, each chapter is devoted to a single component. This makes it easy to
find a component or utility, and makes it easy to review its structure and usage. In very
few cases, utilities that are very closely related are covered in the same chapter.

You’re reading Part I right now. You’ll find JClass Elements’s Graphical User Interface
(GUI) components and layout managers in Part I and JClass Elements’s utility classes in
Part II.

This chapter contains a general description of each GUI component and layout manager
in the product.

1.2 Components and Layout Managers

It’s as easy to use a JClass Elements component in your program as it is to use a Swing
component. Where you would reference a JComponent if it were part of Swing, you
instead reference a JCComponent, after making sure that the JClass Elements packages are
on your CLASSPATH.

Some of JClass Elements’s components, like JCMDIFrame, augment the standard Swing
components. Others, like JCFontChooser, provide a new component, one that is not part
of the standard Swing package. Either way, they add functionality.
11

Here’s a brief note on each component or layout manager:

Component Name Description

JCCheckBoxList This component lets you show a columnar list of items. A
check box appears at the left of each item. A mode switch lets
you set the selection policy between (a) only one box at a
time, (b) a contiguous range, or (c) any group whatsoever.
You can implement the
javax.swing.event.ListSelectionListener interface to
respond immediately when a user checks a box.

JCCircularGauge
JCLinearGauge

A graphical component for setting and displaying one or
more quantifiable values. GUI designers may create
innovative linear sliders and progress meters having a
distinctive and unique flavor. JCCircularGauge makes it easy
to create switches and dials for setting discrete values, as well
as circular gauges for monitoring and setting a continuous
range of values. JCLinearGauge vastly expands your design
choices for linear interactive displays that have the same
flexible functionality as the circular gauge.

JCDateChooser This component provides a convenient way of viewing and
setting calendar information. The days of the month appear
as a standard monthly calendar, the year is in a spin box, and
you have a choice of a spin box or a pop-down list for the
month.

JCExitFrame A frame that responds to window-closing events either by
exiting or by becoming invisible.

JCFontChooserPane JCFontChooser is the abstract base class for
JCFontChooserBar and JCFontChooserPane. It provides
common data and methods for both components. Place one
of these in any application where you want to let the end user
choose fonts.

JCHTMLPane and
JCHelpPane

Ease of use is the key feature for these two components.
Simply pass an HTML-encoded file to the pane and you have
a mini browser. JCHelpPane supports up to three JCHTMLPanes
and provides basic navigation buttons, allowing you to
implement a simple HTML-based help system. The left pane
functions as a table of contents, and the right pane shows the
help pages.
12 Part I ■ Components and Layout Managers

JCMDIFrame and
JCMDIPane

Multiple document windows are great where multiple views
of some multi-faceted object may be required, or multiple
forms need to be simultaneously present in a window. The
JClass versions optimize space by managing the active
window’s main menu bar, while providing the standard
window-management options.

JCMultiSelectList JCMultiSelectList matches the API for JList except that
two lists instead of one appear in the component’s GUI.
There are four buttons in between the list areas that move
items between the lists. The left-hand list contains non-
selected items and the right-hand list contains the selected
items.

JCSpinBox Swing provides checkboxes and radio buttons, but no spin
boxes. The JClass spin boxes fill the need for components
that let the user select a number or a String by clicking on
up- or down-arrows.

JCSpinNumberBox Use JCSpinNumberBox for incrementing and decrementing
objects of type java.lang.Number. You can select numbers of
type Byte, Short, Integer, Long, or Float, and you can set
maximum and minimum values for the spin operation.

JCSortableTable A subclass of JTable that internally wraps any TableModel it
is given with a JCRowSortTableModel and provides a
Comparator that has a adjustable list of the column indexes
that it uses for sorting. Clicking on a column header invokes
the sorting behavior tied to that column, clicking again
reverses the sort. It can be used to sort Dates, Objects that
implement Comparable, and wrapped primitive types. For
more information, see Features of JCSortableTable, in
Chapter 9, for a description and examples.

JCSplashScreen A splash screen is an image that appears while an application
is loading. It serves both as an indication that the program is
being loaded from disk and as a place to put notices, such as
copyrights, version or release numbers, and the like.

JCTreeExplorer A subclass of JTable that handles listeners, rendering,
editing, and painting of a component that combines tree-like
and table-like properties.

Component Name Description
Chapter 1 ■ Introducing JClass Elements 13

JCPopupCalendar JCPopupCalendar is a component that allows you to edit the
date and time using a dropdown calendar.

JCTreeTable Swing’s JTree and JTable are the two components that do
more than merely display data; they attempt to manage the
data as well. This becomes important when you need to
organize large amounts of data and provide a view that
displays a portion of it along with an indication of its
relationship to the rest. Information that has a hierarchical
structure, like a file system, can be displayed as tree data,
while other types of data nicely fit a tabular format. There are
a large number of data structures that combine tree-like and a
table-like properties. A file system has a hierarchical
organization that begs to be represented as a tree, yet the
individual directories and files have properties, such as name,
size, type, and date modified, that fit nicely in a row-column
organization. Obviously there is a need for a component that
lets you combine the look and functionality of both a tree and
a table.

JCWizard and
JCSplitWizard

JCWizard and JCSplitWizard let you create and manage a
Wizard-style group of dialogs by supplying informative
events and special page components with standard buttons.
You add a JCWizardListener to your JCWizardPages to
invoke the actions that each page needs to perform.

Layout Managers The layout managers are JCAlignLayout, JCColumnLayout,
JCElasticLayout, JCGridLayout, and JCRowLayout.
JCBorder, JCBox, JCBrace, and JCSpring are the associated
components. Use them as enhancements to the AWT layout
managers.
Use JCAlignLayout to vertically arrange components with
their associated labels, and JCRowLayout to arrange
components in a single row.
JCGridLayout improves AWT’s GridLayout by sizing cells
more intelligently.
JCBorder lets you place your borders anywhere, not just
around components.

Component Name Description
14 Part I ■ Components and Layout Managers

The following table lists some JClass Elements objects, with their nearest Swing relatives.
The accompanying description informs you about the advantages you gain by using the
JClass Elements component.

Swing JClass Elements Description

No Swing
equivalent

JCCircularGauge
JCLinearGauge

Highly configurable circular and linear
dials and gauges.

JEditorPane JCHTMLPane Its constructor takes either an HTML
String or a URL, making it easy to add
HTML pages to a pane. Follows
hyperlinks without having to add
listeners explicitly.

JPane JCMDIPane A pane that can hold multiple
document interface (MDI) frames.

JInternalFrame JCMDIFrame Supports the multiple document
interface paradigm with the automatic
addition of a “Windows” menu to the
parent menubar.

JFrame JCExitFrame Automatically responds to window
closing events.

JTree
JTable

JCTreeTable
JCTreeExplorer

Components that combine tree and
table views of hierarchically ordered
data.

No Swing
equivalent.

JCFontChooser
JCFontChooserBar
JCFontChooserPane

Choose fonts from a menu or a dialog.

(AWT) GridLayout JCAlignLayout An easy way to lay out a two-column
grid.

No Swing
equivalent.

JCElasticLayout For laying out components in a single
row or a single column. Any leftover
space in the component is divided
among the components in the way you
specify.

JSpinner JCSpinBox
JCSpinNumberBox

These spin boxes are the top half of a
combo box. They are useful when you
don’t need a drop-down list, and they
don’t subclass from JComboBox.
Instead, they inherit from Swing’s
AbstractSpinBox.
Chapter 1 ■ Introducing JClass Elements 15

1.3 Internationalization
Internationalization is the process of making software that is ready for adaptation to
various languages and regions without engineering changes. JClass products have been
internationalized.

Localization is the process of making internationalized software run appropriately in a
particular environment. All Strings used by JClass that need to be localized (that is,
Strings that will be seen by a typical user) have been internationalized and are ready for
localization. Thus, while localization stubs are in place for JClass, this step must be
implemented by the developer of the localized software. These Strings are in resource
bundles in every package that requires them. Therefore, the developer of the localized
software who has purchased source code should augment all .java files within the
/resources/ directory with the .java file specific for the relevant region; for example, for
France, LocaleInfo.java becomes LocaleInfo_fr.java, and needs to contain the translated
French versions of the Strings in the source LocaleInfo.java file. (Usually the file is called
LocaleInfo.java, but can also have another name, such as LocaleBeanInfo.java or
BeanLocaleInfo.java.)

Essentially, developers of the localized software create their own resource bundles for
their own locale. Developers should check every package for a /resources/ directory; if one
is found, then the .java files in it will need to be localized.

For more information on internationalization, go to:
http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html.

No Swing
equivalent.

JCDateChooser JCDateChooser is a component that
displays a calendar in one of four
variant forms. Each one displays the
days of the month in the familiar form
of a calendar, but varies the ways that
the month and year are displayed.

No Swing
equivalent.

JCWordWrap Wraps lines, given a length and a
newline delimiter.

JProgressBar JCProgressHelper A thread-safe class that reports via a
dialog just how far along some time-
consuming operation is.

Swing JClass Elements Description
16 Part I ■ Components and Layout Managers

http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html

2
CheckBox-List Component

Features of JCCheckBoxList ■ Classes ■ Properties ■ Methods ■ Examples

2.1 Features of JCCheckBoxList

A JCCheckBoxList functions just like a JList, except that a check box appears to the left
of the list items. (See Figure 2.)

■ It is a subclass of the JList component that implements a JCheckBox as the cell
renderer.

■ To use a com.klg.jclass.util.swing.JCCheckBoxList in your application, simply
ensure that the JClass Elements JAR is part of your CLASSPATH.

■ Constructors are of the no argument type, or a single argument consisting of an
instance of a ListModel, an array of Objects (usually Strings), or a Vector of list
items.
17

■ For comparison purposes, a JCCheckBoxList is shown beside a JList in the following
figure.

Figure 1 Comparison of a JCCheckBoxList with Swing’s default JList.

2.2 Classes

com.klg.jclass.util.swing.JCCheckBoxList — The component itself.

javax.swing.event.ListSelectionListener — for listening to changes in the list.

2.3 Properties

JCCheckBoxList does not need any extra properties. You are free to use all the properties
it inherits from JList.

For a full listing of the properties, see Appendix A, Bean Properties Reference.

2.4 Methods

JCCheckBoxList does not need any extra methods. You are free to use all the methods it
inherits from JList. Selection is handled just like a JList; you can choose one of three
selection modes: single, block, or multiple block.

2.5 Examples

This example shows the use of a JCCheckBoxList, including the action taken when an
item is checked. If you look at the full listing in examples.elements.CheckBoxList, you’ll
18 Part I ■ Components and Layout Managers

http://www.javasoft.com/products/jdk/1.2/docs/api/javax/swing/JList.html
http://www.javasoft.com/products/jdk/1.2/docs/api/javax/swing/JList.html
http://www.javasoft.com/products/jdk/1.2/docs/api/javax/swing/event/ListSelectionListener.html
../api/com/klg/jclass/util/swing/JCCheckBoxList.html

observe that the only modification needed to replace a JList with a JCCheckBoxList is
the change of the component’s name and this import line:

import com.klg.jclass.util.swing.JCCheckBoxList;

Figure 2 A JCCheckBoxList.

The code that instantiates a JCCheckBoxList is:

public JCCheckBoxList list;

 list = new JCCheckBoxList(data);
 list.setBorder(new EtchedBorder(Color.black, Color.yellow));
 list.setForeground(Color.white);
 list.setSelectionMode(0);
 list.addListSelectionListener(this);
 add(list);

Since JCCheckBoxList inherits all the properties of JList, it also uses
ListSelectionEvent and ListSelectionListener to let you track the list items that have
been selected. The code fragment shown below, also taken from
examples.elements.CheckBoxList, shows how to use the ListSelectionEvent to react
when items in a JCCheckBoxList are selected. In this example, a horoscope based on the
selected item is placed in a text area.

//================== ListSelectionListener interface methods ========

public void valueChanged(ListSelectionEvent e) {
Chapter 2 ■ CheckBox-List Component 19

 int index = list.getSelectedIndex();

 switch(index) {
 case 0:
 horoscope.setText(
 "A homeless puppy will follow you home. Be good to it.");
 break;
 ...
 More messages for the JTextArea
 ...
 case 19:
 horoscope.setText("You're running low on supplies. Run out &

stock up.");
 break;

 }

 }

}

20 Part I ■ Components and Layout Managers

3
Circular and Linear Gauges

Circular and Linear Gauges ■ Features of JCCircularGauge ■ Features of JCLinearGauge ■ JCGauge

JCCircularGauge ■ JCLinearGauge ■ Headers, Footers, and Legends ■ JCScale

JCAbstractScale ■ The Circular Scale Object ■ The Linear Scale Object ■ Tick Objects

The Range Object ■ The Indicator and Needle Objects ■ The Center Object

The Constraint Mechanism in JCGauge ■ Labels ■ Events and Listeners in JCGauge

Utility Functions for JCGauge ■ JCCircularGaugeBean and JCLinearGaugeBean

Adding Other Components to a Gauge ■ JClass 4 to JClass 5: A Mini-porting Guide

3.1 Circular and Linear Gauges
The JCGauge components in JClass Elements provide you with realistic-looking
instruments for your application’s GUI design. End users can interact with colorful,
easy-to-read meters on which they may view or set values. There are two basic types:
circular and linear. Circular gauges may be used to give your application the flavor of an
automobile instrument cluster, or alternatively an airline cockpit, control room, old time
radio, or numerous other designs. Similarly, linear gauges may be made to look like
thermometers (for hot and not-so-hot stock opportunities as well as temperature
measurement), jazzed-up progress meters, and a variety of level and volume indicators.
Your GUI design possibilities have been expanded, and you have the potential to make
your GUIs even more visually appealing and user friendly.

Figure 3 Sample circular (left) and linear (right) gauges.

3.1.1 Parts of a Gauge
Gauges, whether circular or linear, consist of visible objects and objects whose purpose is
functional. The visible objects are:

■ Header. A header provides a title for the gauge. Headers are JComponents, and by
default they are JLabels.
21

■ Footer. A footer provides another option for titling a gauge. It too is a JComponent,
and by default a JLabel.

■ Placeable Labels. Any component may be placed on a gauge at a specified position
by employing an add() method that takes a LinearConstraint or RadialConstraint
as its second parameter.

■ Scale. A scale on which values may be defined. The scale can have associated
JCTick, JCNeedle, JCIndicator, and JCRange objects.

■ Tick and Tick Label. A tick object is used to show the scale values. It is a collection
of uniformly spaced marks and labels.

■ Indicators and Needles. Whereas a tick object is actually a collection of tick marks,
an indicator is a single marker placed at a particular scale value. A needle is a subclass
of an indicator that may be made interactive, allowing end users to set a new value for
a parameter by clicking and dragging the needle to a new position. Like indicators,
needles may be non interactive, but made to point to values under program control.

The diagram shows the various visible components of a gauge. Note that the gauge area
(JCGaugeArea) contains the scale and its objects, but not the header, footer, or legend.

Figure 4 Objects within a gauge.

The non visible parts of a gauge are:

■ Its Pick Mechanism and its Mouse Interaction Mechanism. These are described in
Events and Listeners in JCGauge, in Chapter 3.

■ Gauge Constraint and Gauge Layout. The gauge’s layout and constraint classes
assist in placing the gauge’s various subcomponents.

Gauge appearance and interactivity
Because the gauge and many of its constituents are subclassed from JComponent, you have
considerable flexibility in designing its appearance. Interfaces for indicators, needles,
ranges, scales, and ticks let you replace the built-in objects with those you design yourself.
22 Part I ■ Components and Layout Managers

As well, it is easy to add additional items like numerical counters, images, and such to the
gauge.

Gauges behave like analog devices whose readings are only approximate. If a more
precise digital readout is desired, the needle’s getValue() method, or the component’s
pick listener is employed to extract numeric values from the gauge. Figure 5 shows a
circular gauge functioning as a speedometer. The needle points to the car’s current speed.
A numeric counter has been added to function as an odometer, and another counter
displays a digital readout of the speed. This reading is more precise than the indication of
the speed given by the needle.

Interactions between mouse and needle may be turned on or off. When an interaction is
enabled, an end user can control the placement of the needle. If you wish, interactions
can be turned off and the component can be used simply as a display device.

Figure 5 The odometer is a label positioned at the bottom of the speedometer.

You control the order in which objects are rendered to achieve your desired layering
effect. See Rendering order for an explanation.

Caution: When setting a scale on a gauge, a center on a circular gauge, or adding
indicators, needles, ranges, and ticks to a gauge, use the special set() and add()
methods provided in JCGauge. Using standard java.awt.Container’s add() methods
does not take into account the gauge’s special requirements. When using the gauge’s
special add() methods you are still able to include an optional index that specifies the
rendering order.

A gauge may have multiple instances of indicators, needles, ranges, and tick marks. In
this case, the gauge maintains a collection for each of the object groups. The gauge has
indicator and needle lists for keeping track of scale pointers, a range list for keeping track
of the bands, called ranges, that can be used to mark various regions around the scale, and
a tick list to keep track of the different tick objects.

Labels, which may be any JComponent, not just a JLabel, are created and manipulated
individually rather than being stored in a list. There are special-purpose methods called
addLabel(label, radialConstraint) and addLabel(label, linearConstraint) for
placing labels at a specified location on the gauge.
Chapter 3 ■ Circular and Linear Gauges 23

Gauges may be added to other gauges. They may or may not share the same origin. See
Section 3.21, Adding Other Components to a Gauge for a discussion on how to place
components on a gauge and for an example of placing a smaller circular gauge on top of
a larger one.

A gauge’s size is determined by the size of its container. The container’s layout manager,
along with its preferred size setting, determine the gauge’s initial size. Gauges may be
resized as long as the layout manager permits it.

Rendering order
A render list, which in Java is often called the z-order of the components, is effectively
created by the order in which components are added at execution time. This list
determines in what order child objects are to be drawn. Components added last are
drawn first. In a circular scale for example, by adding a needle and then a center, the
center object is drawn first, then a needle, so that the needle is fully visible from center to
tip instead of being partially covered by the center object. There are ways of
manipulating the list so that a different drawing order can be specified. By drawing a
needle first, it can appear to be attached to the edge of the center object rather than
beginning at the center of the circle.

Inner and outer extents
The size of indicators, needles, ticks, and ranges is specified in part by two parameters
called their inner and outer extents. These extents are defined as ratios based on the
underlying scale. In the circular case, inner and outer extents refer to locations in a radial
direction, with the center defined as 0.0. Thus, an object with an inner extent of 0.0
means that it is drawn from the center outwards to the position defined by the outer
extent. If this outer extent is 0.8, the object extends out from the center a distance equal to
80% of the radius of the circular scale. Inner and outer extents on a circular scale are
diagrammed in Figure 18.

In the linear case, how extents are measured depends on whether the orientation of the
scale is horizontal or vertical. Since extents are measured in the direction transverse to the
direction in which scale values increase, they are measured from the top edge of a
horizontal scale, and from the left edge of a vertical scale. For example, an indicator on a
vertical linear scale whose inner extent is 0.15 and whose outer extent is 0.75 is drawn
beginning at 15% of the gauge’s width from the left edge to 75% of the gauge’s width.

3.1.2 Switches

A switch is the software equivalent to its electrical counterpart, a device that has a set of
discrete, selectable positions. A simple switch may have only two states, on and off, or it
may possess a number of selectable states. Figure 6 shows a switch shaped like a pointer
that has six discrete states.

Switches may be implemented by having your code control the way that the gauge reacts
to user input, but the easiest way to implement a switch is to choose a scale with integer
24 Part I ■ Components and Layout Managers

values that correspond to switch positions, then set the gauge’s snapToValue() property
to true:

 // make it discrete
 gauge.setSnapToValue(true);

By default, snapToValue is false.

See GaugeSwitchExample.java in the examples/elements/switchdemo directory for an example
of a switch with six positions.

Figure 6 A switch with six discrete states.

If you require a switch with irregularly spaced stops you will need to add a pick listener
and place the needle yourself in response to an end user’s actions.

3.1.3 Organization of the Gauge Classes

In keeping with the goal of making the gauges as configurable as possible, all gauge
classes inherit from an abstract class JCGauge, which is itself a JComponent. JCGauge
implements MouseListener and MouseMotionListener so that it may respond to mouse
clicks and drags. This allows an end user to set a value by dragging a needle to a desired
location on a scale, or by clicking on the scale and having the needle jump to the value
determined by the position of the mouse pointer.
Chapter 3 ■ Circular and Linear Gauges 25

../../demos/elements/switchdemo/index.html

The diagram shows where you’ll find the components and sub-objects that make up the
gauge. Objects are designated by their class names.
26 Part I ■ Components and Layout Managers

3.2 Features of JCCircularGauge

JCCircularGauge is a subclass of JComponent whose on-screen representation looks like
an analog circular measuring instrument. JCCircularGaugeBean in the
com/klg/jclass/swing/gaugebeans directory is a JavaBean. It wraps properties found in
JCLinearGauge’s contained objects so that they are easily accessible in an IDE.

JCCircularGauges are containers for interactive circular meters that use a needle to point
to a value and allow it to be measured on a scale. Circular gauges are constructed using
an assortment of objects that provide structured functionality to the component as a
whole.

Figure 7 shows the components that may be used in a gauge. The central element is a
circular scale, which resides in a JCGaugeArea. The only way that a scale indicates its
presence is if its foreground color is different from that of the gauge. The visible objects
are a center, and collections of indicators, needles, ticks, and ranges. A center object, as its
name implies, marks the center of a circular gauge. It may be a disk or an image. Needles
perform measurement functions by pointing at scale values. Ticks provide visible scale
markings with optional value labels so that scale values may be read. Ranges are bands
that mark part or all of the scale to distinguish one part from another, like the red-line
area of a tachometer. The range shown in Figure 7 runs along the circumference of the
circular scale, thus marking its location. Outside the gauge area there is room for a header,
footer, and legend. Header and footer elements are JComponents, typically JLabels, but the
choice is yours. The legend is a JCLegend, a special type of JComponent that makes it easy
to provide a legend that itemizes each component of a chosen type that the scale contains.
Ranges are the default items for a legend, and may be itemized simply by naming the
ranges and calling gauge.getLegend().setVisible(true).

Alternatively, needles or other objects may be the items referred to in the legend list. If
you do decide to place items other than ranges in the legend you will have to write your
own legend populator. See Custom legends for details.

Also, through its inner class GaugeType, JCCircularGauge defines a set of configurations
for circular gauges, such as LOWER_RIGHT_QUARTER_CIRCLE or TOP_HALF_CIRCLE, allowing
Chapter 3 ■ Circular and Linear Gauges 27

you to confine the gauge to a quadrant or a semicircle. There are nine choices in all. See
Section 3.5.3, Properties, for the list of constants for GaugeType.

Figure 7 The major components in a circular gauge.

3.3 Features of JCLinearGauge

JCLinearGauge is a subclass of JComponent whose on-screen representation looks like an
analog linear measuring instrument. JCLinearGaugeBean is a JavaBean. It wraps
properties found in JCLinearGauge’s contained objects so that they are easily accessible in
an IDE.

JCLinearGauges are containers for interactive linear meters that use needles to point to
values and allow these values to be measured on a scale. Linear gauges are constructed
using an assortment of objects that provide structured functionality to the component as a
whole.

Figure 8 shows the components that may be used in a linear gauge. The central element is
a linear scale, which resides in a JCGaugeArea. The only way that a scale indicates its
presence is if its foreground color is different from that of the gauge. The visible objects
28 Part I ■ Components and Layout Managers

are collections of indicators, needles, ticks, and ranges. There is no center object in a linear
gauge. Needles perform measurement functions by pointing at scale values. Ticks provide
visible scale markings with optional value labels so that scale values may be read. Ranges
are bands that mark part or all of the scale to distinguish one part from another, like range
shown in Figure 8, which is the small rectangle that runs between 85 and 100. Outside the
gauge area there is room for a header, footer, and legend. Header and footer elements may
be any JComponent, typically a JLabel. The legend is a JCLegend, a special type of
JComponent that makes it easy to provide a legend that itemizes each component of a
chosen type that the scale contains. Ranges are the default items for a legend, and may be
itemized simply by naming the ranges and calling
gauge.getLegend().setVisible(true).

Figure 8 The major components of a linear gauge.

Note: Place a border around a linear gauge to ensure tick labels at the scale’s extremities
are fully visible.

3.4 JCGauge

JCGauge is the abstract superclass for JCCircularGauge and JCLinearGauge. JCGauge
creates a header, footer, and legend whenever a circular or linear gauge is instantiated,
and it has methods for adding or removing indicators, needles, ranges, and ticks.

Use the gauge’s add() methods rather than the add() methods in JComponent. The
addLabel() methods in JCCircularGauge and JCLinearGauge are there because these
objects depend on LinearConstraint and RadialConstraint classes to position labels
based on a linear extent and a pixel value, or a specified angle and radial distance. (See
Section 3.16.1, RadialConstraint and RadialLayout, for more information.)

At any given time, each gauge contains one scale. A scale holds information about the
minimum and maximum values for the scale, and the direction, forward or backward, in
which scale values increase. The circular scale has start and stop angles that determine the
portion of a full circle occupied by the scale. A needle object provides the visual
indication of a particular value on the scale. Its length is specified by setting its inner extent
and its outer extent. If the scale changes its size, the needle adjusts itself accordingly,
Chapter 3 ■ Circular and Linear Gauges 29

maintaining a proper position and proportional length relative to the size of the scale. See
Section 3.14, The Indicator and Needle Objects, for details.

3.4.1 Constructor

JCGauge has an abstract no-argument constructor that is called when a circular or linear
gauge is instantiated. It creates a default header and footer as JLabels, and a default
legend as a JCGridLegend.

3.4.2 Methods and Properties for JCGauge
JCGauge has these methods and properties:
30 Part I ■ Components and Layout Managers

../api/com/klg/jclass/swing/gauge/JCGauge.html#JCGauge()

Methods

JCGauge Method Description

addIndicator
removeIndicator

Adds or removes an indicator to the indicator collection
for this gauge. Both take an indicator as a parameter, and
an optional second parameter, an index, specifying its
position in the Vector of needles.

addNeedle()
removeNeedle()

Adds or removes a needle to the needle collection for
this gauge. Both take a needle as a parameter, and an
optional second parameter, an index, specifying its
position in the Vector of needles.

addPickListener()
removePickListener()

Adds or removes a pick listener for this needle. See
Section 3.18, Events and Listeners in JCGauge.

addRange()
removeRange()

A gauge maintains a list of ranges associated with it.
These methods add or remove a specified range from the
collection. They take the range as a parameter and an
optional second parameter, an index, for its position in
the Vector of ranges.

addTick()
removeTick()

A gauge maintains a list of ticks associated with it. These
methods add or remove a specified tick from the
collection. They take the tick as a parameter and an
optional second parameter, an index, for its position in
the Vector of ticks.

getComponentArea() Returns the JClass component's subcomponent on which
the gauge will be drawn.

getDrawingAreaHeight() Gets the height of the drawing area represented by this
gauge.

getDrawingAreaWidth() Gets the width of the drawing area represented by this
gauge.

getIndicators() Returns the list of indicators associated with this gauge.

getNeedles() Returns the list of needles associated with this gauge.

getRanges() Returns the list of ranges associated with this gauge.

getScale() Returns the scale associated with this gauge.

getTicks() Returns the tick objects for this gauge.
Chapter 3 ■ Circular and Linear Gauges 31

Properties

3.5 JCCircularGauge

3.5.1 Constructors

Of the three constructors for JCCircularGauge, the default no-argument one supplies its
own scale, then populates it with a center (a disk or an image), a needle, and a set of tick
marks. The constructor that takes a Boolean value creates a gauge with an associated

mouseClicked()
mouseDragged()
mouseEntered()
mouseExited()
mouseMoved()
mousePressed()
mouseReleased()

mouseClicked and mouseDragged send pick events to
listeners. The other methods are empty, and must be
overridden in a subclass if you wish to use them for your
own purposes.

pick() Given a screen location in pixels, returns the closest scale
value as a JCGaugePickEvent.

sendPickEvent() Broadcasts the pick event to interested listeners.

JCGauge Property Description

getFooter()
setFooter()

Returns or sets the footer for this gauge, a JComponent.

getGaugeArea()
setGaugeArea()

Returns or sets the JCGaugeArea for this gauge, a
JCGaugeArea. These methods, although declared public, are
internal to JClass. There should be no need to obtain a
reference to a JCGaugeArea.

getHeader()
setHeader()

Returns or sets the header for this gauge, a JComponent.

getLegend()
setLegend()

Returns or sets the legend for this gauge, a JCLegend.

getRepaintEnabled()
setRepaintEnabled()

Disables or enables repaints of the gauge and its components.

getSnapToValue()
setSnapToValue()

Returns or sets the snapToValue property that controls
whether the needle should snap to the closest discrete integral
scale value (true) or to any scale value (false).

JCGauge Method Description
32 Part I ■ Components and Layout Managers

circular scale if the Boolean parameter is true, or an empty gauge otherwise. In either
case, the center, indicators, needles, and ticks must be added separately. The third
constructor takes a gauge type as a parameter. It too creates an empty gauge of the
specified type. The scale, center, indicators, needles, and ticks must be added separately.

3.5.2 Methods for JCCircularGauge

JCCircularGauge subclasses from JComponent, making it a JComponent with special
capabilities for laying out subcomponents radially.

3.5.3 Properties

A JCCircularGauge has the same properties as a JComponent and these additional ones:

JCCircularGauge
Method Description

addLabel()
removeLabel()

Adds or removes a label on the gauge. This is a
general-purpose method, suitable for laying out any
JComponent it is given.

getClosestNeedle() Returns the closest needle to the clicked/dragged point.
Returns closest needle of type
CLICK/DRAG/CLICK_DRAG, or if there are none of
these, the closest needle of type NONE.

getScale()
setScale()

Gets or sets the scale used by the gauge. A scale contains the
measurement parameters associated with a circular gauge.
The getScale() method is inherited from JCGauge, but the
setScale() method is overridden so that its argument must be
a JCCircularScale. An optional second parameter to
setScale() allows you to suppress the addition of the scale to
the gauge area, but it is not expected that you will need to use
this option.

mouseClicked() Sends pick events to listeners and moves the closest needle
with a CLICK interaction enabled to the value indicated by the
mouse click.

mouseDragged() Called during mouse drag events in the gauge to move the
needle closest to the mouse.

JCCircularGauge Property Description

getCenter()
setCenter()

Returns or sets the center for this gauge.
Chapter 3 ■ Circular and Linear Gauges 33

For a full listing of the properties, see the API for
com.klg.jclass.swing.gauge.JCCircularGauge.

Type constants for JCCircularGauge
The inner class JCCircularGauge.GaugeType has these constants and methods:

getGaugeType()
setGaugeType()

Returns or sets the gauge type, one of the
JCCircularGauge.GaugeType enums.

Circular GaugeType Constant Angular Span of the Circle, Semicircle, or Quadrant

BOTTOM_HALF_CIRCLE 180-0 degrees. See Section 3.10.3, Angles In a
Circular Scale for a discussion of angular
measurement in JCCircularGauge.

FULL_CIRCLE 0-360 degrees

LEFT_HALF_CIRCLE 90-180 degrees

LOWER_LEFT_QUARTER_CIRCLE 180-270 degrees

LOWER_RIGHT_QUARTER_CIRCLE 270-0 degrees

RIGHT_HALF_CIRCLE 270-90 degrees
34 Part I ■ Components and Layout Managers

../api/com/klg/jclass/swing/gauge/JCCircularGauge.html

3.6 JCLinearGauge

3.6.1 Constructors

JCLinearGauge has a no-argument constructor that supplies its own scale, then populates
it with a needle and a set of tick marks. The constructor that takes a Boolean value creates
a gauge with an associated linear scale if the Boolean parameter is true, or an empty
gauge otherwise. In either case, indicators, needles, and ticks must be added separately.

3.6.2 Methods for JCLinearGauge

A linear gauge has methods for adding and removing labels, getting or setting its
associated linear scale, and finding the needle closest to the point where a mouse click or
drag occurred.

TOP_HALF_CIRCLE 0-180 degrees

UPPER_LEFT_QUARTER_CIRCLE 90-180 degrees

UPPER_RIGHT_QUARTER_CIRCLE 0-90 degrees

getStartAngle() A method that returns the start angle as an integer.

getSweepAngle() A method that returns the sweep angle as an integer.

JCLinearGauge
Method Description

addLabel()
removeLabel()

Adds or removes a label on the gauge. This is a
general-purpose method, suitable for laying out any
JComponent it is given.

getClosestNeedle() Returns the closest needle to the clicked/dragged point.

Circular GaugeType Constant Angular Span of the Circle, Semicircle, or Quadrant
Chapter 3 ■ Circular and Linear Gauges 35

3.6.3 Properties

A JCLinearGauge has the same properties as a JCGauge.

3.7 Headers, Footers, and Legends

Both JCCircularGauge and JCLinearGauge create a header and footer, which by default
is a JLabel, but may be any JComponent. If you wish to choose some other header or
footer than the default, methods setHeader() and setFooter() in JCGauge specify which
JComponents, typically JLabels, to use. By default, the header, footer, and legend do not
show. To display a header, use:

 // gauge is a reference to either type of JCGauge
 gauge.getHeader().setVisible(true);

A gauge’s legend is an instance of com.klg.jclass.util.JCLegend, an abstract class that
requires a subclass to provide a specific layout. By default, a gauge uses JCGridLegend to
provide a default implementation of JCLegend and delegates
DefaultLegendPopulatorRenderer to populate and render the legend. In the default case,
range names are the items in the legend. If you wish to itemize ranges in a legend, simply
show the gauge’s default legend and DefaultLegendPopulatorRenderer does the rest.

 // gauge is a reference to either type of JCGauge
 gauge.getLegend().setVisible(true);

A legend’s built-in behavior is to use range names for its items. Ranges have default
names like range0, range1, and so on. Give a range a name of your own choosing as
follows:

 // range is a reference to either type of range
 range.setRangeName("Danger zone");

getScale()
setScale()

Gets or sets the scale used by the gauge. A scale contains the
measurement parameters associated with a linear gauge. The
getScale() method is inherited from JCGauge, but the
setScale() method is overridden so that its argument must
be a JCLinearScale. An optional second parameter to
setScale() allows you to suppress the addition of the scale to
the gauge area, but it is not expected that you will need to use
this option.

mouseClicked() Sends pick events to listeners and moves the closest needle
with a CLICK interaction enabled to the value indicated by the
mouse click.

mouseDragged() Called during mouse drag events in the gauge to move the
needle closest to the mouse.
36 Part I ■ Components and Layout Managers

Custom legends
If you need a legend that itemizes other things like needles or ticks then you can subclass
DefaultLegendPopulatorRenderer and override getLegendItems() to provide your
chosen item list with instances of JCLegendItem. The method in
DefaultLegendPopulatorRenderer called createLegendItem() is used both for items and
for the legend’s title, the difference being that a null Color specification (the constructor’s
last parameter) indicates a title. Alternatively, you can use setLegendTitle() to set a title
on an existing JCLegend. Note that getLegendItems() returns a list of items. See
GaugeInteractionExample.java, which creates a legend that lists the needles used in the
gauge.

3.7.1 JCLegend

Interfaces
There are two interfaces associated with JCLegend. JCLegendPopulator is an interface
implemented by classes that wish to populate a legend with data, and JCLegendRenderer
is an interface implemented by a class that wishes to help render the legend.

DefaultLegendPopulatorRenderer implements both interfaces and provides a built-in
mechanism for itemizing range objects in a legend.

Methods in JCLegend

3.8 JCScale

JCScale is the interface that represents a graduated scale. A scale has a minimum value, a
maximum value, and a direction. Lists of other objects like JCTick and JCRange objects
are associated with the scale. These associated objects use the scale to get information that
they need to render themselves.

Method Description

getLegendPopulator()
setLegendPopulator()

Returns or sets the JCLegendPopulator instance used to
populate this legend.

getLegendRenderer()
setLegendRenderer()

Returns or sets the legend renderer class that is used to
help draw the legend.

getOrientation()
setOrientation()

Returns or sets the Orientation property that determines
how the legend information is laid out. Possible values are
JCLegend.HORIZONTAL or JCLegend.VERTICAL.
Chapter 3 ■ Circular and Linear Gauges 37

../../examples/elements/GaugeInteractionExample.java

Both circular and linear scale objects implement the JCScale interface, whose methods
are as follows.

Interface JCScale Method Description

addRange()
removeRange()

Adds or removes a scale’s range object. By supplying an
optional index you can control where this range is placed
in the list of range objects.

addTick()
removeTick()

Adds or removes a scale’s tick object. By supplying an
optional index you can control where this group of ticks is
placed in the list of tick objects.

getDirection() Returns the JCAbstractScale.Direction for this scale,
FORWARD or BACKWARD, giving the direction in which scale
values increase.

getExtent() Returns the zoomFactor for this scale. (This method is
retained for backwards compatibility. Its use is
deprecated.)

getGauge() Returns the gauge associated with this scale.

getMax() Returns the maximum value for this scale.

getMin() Returns the minimum value for this scale.

getRanges() Returns the Vector of range objects for this scale.

getTicks() Returns the Vector of tick objects for this scale.

getZoomFactor() Returns the zoomFactor for this scale.

inBounds() Returns true if the value is within the scale's minimum and
maximum.

pick() Given a screen position in pixels, returns the closest scale
value.

setBorder() Sets a Border on the scale.

setDirection() Sets the JCAbstractScale.Direction for this scale,
FORWARD or BACKWARD, giving the direction in which scale
values increase.

setExtent() Sets the double that represents the zoomFactor for this
scale.
(This method is retained for backwards compatibility. Its
use is deprecated.)

setMax() The double that represents the maximum value for this
scale.
38 Part I ■ Components and Layout Managers

Those wishing to use their own type of scale should implement this interface.

3.9 JCAbstractScale

JCAbstractScale implements JCScale. It is the superclass of both JCCircularScale and
JCLinearScale, and it encapsulates the common properties of both these concrete
classes. It does not add any methods beyond those in the interface it implements.

3.9.1 JCAbstractScale Properties

A JCAbstractScale holds the following information: the minimum and maximum values
for the quantity being measured, a direction setting, and a zoom factor. Its pick() method
is used for processing a scale value corresponding to the point at which a mouse click
occurred. Here, it is declared abstract because circular and linear scales have differing
implementations.

Min, max
These JCScale properties specify the beginning and ending values for the scale. Note that
multi-turn functionality (multiple turns required to move from min to max) is not
supported. Example:

 scale.setMax(25.0); // Maximum value for the scale
 scale.setMin(5.0); // Minimum value for the scale

Specifying the direction of travel
By default, a circular scale increases in a counterclockwise direction. A linear scale
increases from left to right if its orientation is horizontal or from bottom to top if its
orientation is vertical. In these cases this is called the forward direction. To set this
direction explicitly, call setDirection(JCAbstractScale.Direction direction) on the
scale. The two field values are:

setMin() The double that represents the minimum value for this
scale.

setZoomFactor() The double that represents the zoomFactor value for this
scale.

JCAbstractScale.
Direction.FORWARD

Values increase clockwise, or from left to right.

JCAbstractScale.
Direction.BACKWARD

Values increase counterclockwise, or from right to left.

Interface JCScale Method Description
Chapter 3 ■ Circular and Linear Gauges 39

The default value for JCScale.Direction is FORWARD.

See Deprecated way of specifying the direction of travel for a circular gauge for the
pre-JClass 5 constants for setting a direction. These have been retained for backwards
compatibility, but their use is deprecated.

Zoom factor
By default, the scale is drawn so that it fills the gauge area. If labels, ticks, or other
components need to be placed outside the scale they may be cropped. To prevent this,
use the zoomFactor property.

A circular scale has a zoomFactor property (called an extent before JClass 5) whose
purpose is to avoid scaling problems when you want to have objects extend past the
circumference of the scale. Objects exterior to the circumference may not resize properly
because the border remains a fixed number of pixels no matter how greatly the window is
resized, therefore there is a chance that the exterior objects may be clipped. By setting a
scale’s zoom factor to be less than 1.0 you can place objects outside the scale yet keep
them on the interior of the gauge area, thus avoiding clipping problems if the scale is
magnified.

For example, the code that places tick marks and their labels seemingly well outside a
circular scale’s boundary is:

 // Sets the scale factor
 scale.setZoomFactor(0.4);
 // Places the tick marks and labels
 tick.setInnerExtent(1.85);
 tick.setOuterExtent(2.0);
 tick.setLabelExtent(1.75);

These settings produce the scale shown in Figure 9 on the left.

Figure 9 Placing ticks and their labels well outside the scale.

The left-hand figure is labeled “ZF = 0.4,” which indicates the zoom factor setting. No
border was used to pad the gauge’s exterior. The effect has been accomplished just by
setting the zoom factor.

The right-hand gauge in Figure 9 has a zoom factor of 1.0. If nothing else were done, the
tick marks would lie outside the gauge area (the white rectangle), but by adding a border
40 Part I ■ Components and Layout Managers

(the gray area enclosing the gauge), the tick marks are visible within it. If you are allowing
end users to resize the gauge, use a zoom factor rather than a border.

Borders are required for linear gauges. Setting a zoom factor on a linear gauge does not
remove the necessity of setting a border to avoid the clipping of tick labels at the
extremities of the scale. Figure 10 shows that setting a zoom factor on a linear scale
compresses it in the direction perpendicular to the scale, but leaves the length of the scale
unaffected.

Figure 10 Comparison of a zoom factor (left) and a border (right) for a linear gauge.

On the other hand, setting a border around the scale allows room for the tick labels to be
properly drawn. You can adjust the individual border thicknesses to suit your application.
For more on setting a zoom factor for a linear gauge, see Setting a zoom factor, in Chapter
3.

3.10 The Circular Scale Object

The JCCircularScale object and its superclass JCAbstractScale form the basis of all the
quantifiable elements of the circular gauge1. Since a circular scale belongs to a circular
gauge, the constructor for a JCCircularScale requires an argument of type
JCCircularGauge. One circular scale object at a time may belong to a JCCircularGauge
component. Also, the gauge keeps a reference to its circular scale in JCGauge.

1. JCCircularGauge uses a start angle and a stop angle to define the angular range, rather than employing Java’s notion of
a start angle and a sweep angle. For example, a scale that occupies a lower half circle has a start angle of 180° and a stop
angle of 360°. Avoid the temptation to specify these two angles as 180° and 180°! See Section 3.10.3, Angles In a
Circular Scale, for a discussion on how angles are measured in a JCCircularScale.
Chapter 3 ■ Circular and Linear Gauges 41

3.10.1 Circular Scales
A JCCircularScale inherits its direction, minimum and maximum values, lists of ranges
and ticks, and zoom factor from JCAbstractScale. In addition it defines a start angle and
stop angle, and a radius.

Other than being able to specify its foreground color, the circular scale contains no other
visual information. Tick objects use the scale to determine what values to assign to tick
labels, and needles have a value based on their location on a scale.

3.10.2 Notes on Circular Scale’s Properties

The circular scale object’s job is to hold the required numerical information for the
construction of a circular gauge, but not any visual information except for the scale’s
foreground color. Displaying the information is the responsibility of indicators, needles,
tick marks, ranges, and so on. Some of these are shown in Figure 11, along with the
circular scale’s property values that define the direction, set the numerical range values,
determine the part of the circle that is to be displayed, and set the scale’s start and stop
angles.

Figure 11 A circular scale showing representative values for its properties.

It is also possible to provide a foreground color such as the one shown in Figure 11.
42 Part I ■ Components and Layout Managers

3.10.3 Angles In a Circular Scale

The convention for angular measurement in a circular scale defines due east as the zero
degree line. Angles increase in a counterclockwise direction, so that 90° is due north, 180°
is due west, and 270° is due south. This is the direction specified by the constant

 JCAbstractScale.Direction.FORWARD

Figure 12 illustrates the way that angular measurement is done in the circular scale,
showing the X-axis, Y-axis, and location of the zero degree line.

The start angle is usually less than the stop angle but it is not a requirement. In the default
situation, the direction is counterclockwise and the scale’s min value is attached to the
scale’s start angle.

Once the start and stop angles of a circular scale have been chosen along with the
maximum and minimum numerical values to be associated with them, one additional
parameter, direction, sets whether the start angle corresponds to the minimum value or the
maximum value. A maximum value may be attached to the scale’s start angle by setting
the direction parameter to backward.

For example, if the start and stop angles are chosen as 90° and 270°, and the values being
measured begin at 100 and end at 200, setting the direction to
JCAbstractScale.BACKWARD causes the value 200 to be located at 90°. The values
decrease around the scale in a clockwise direction, ending at 270° where a value of 100 is
located. Thus, while the coordinate system for angular measurement never changes, the
direction in which the scale’s value parameter increases can be reversed.

Figure 12 Diagram of a circular scale’s reference plane with direction set to ‘forward’.
Chapter 3 ■ Circular and Linear Gauges 43

Deprecated way of specifying the direction of travel for a circular gauge
Previously, before the release of JClass 5, the direction of travel for circular scales was
defined as:

The default value for JCScale.Direction is COUNTERCLOCKWISE.

These constants have been retained. However, if you use the new constants defined in
Specifying the direction of travel you will be able to switch between circular and linear
gauge types without causing confusion over inappropriate direction names.

Start and stop angles
The start and stop angles specify where measurements begin and end on the circular
scale. These two angles, defined in JCCircularScale, specify the compass positions at
which the min and max values are located. A circular scale positions zero degrees at due
east. Angles increase in the counterclockwise direction no matter what the value of
JCAbstractScale.Direction is. A start angle may be greater than a stop angle, which
would be the case if a scale’s min value begins at the twelve o’clock position and its max
value is at the three o’clock position. In this case, the start angle is 90° and the stop angle
is zero degrees.

These angles may be set in JCCircularScale’s constructor. Alternatively, start and stop
angles may be set using setStartAngle() and setStopAngle(). For instance:

 JCCircularScale scale = new JCCircularScale();
 scale.setStartAngle(15);

sets the scale’s start angle at 15°.

Figure 13 A case where the start angle is greater than the stop angle.

Radius
JCCircularScale has a getRadius() method that returns the size of the circular scale.
Initially, the size of the gauge may be set using JComponent’s setPreferredSize()

JCAbstractScale.Direction.CLOCKWISE Values increase clockwise.

JCAbstractScale.Direction.COUNTERCLOCK
WISE

Values increase counterclockwise.
44 Part I ■ Components and Layout Managers

method. Also, the size of the scale relative to its container is controlled by the zoomFactor
property.

Assigning a color
A scale’s color may be assigned in a JCCircularScale’s constructor, or you may use
JComponent’s setForeground() method. By default, only the portion of the scale between
its start and stop angles is colored. Any remaining portion retains the color of the gauge. If
you wish to assign the color to the full scale, set the scale’s paintCompleteBackground
property to true:

(JCCircularScale)
 gauge.getScale().setPaintCompleteBackground(true);

Figure 14 Using paintCompleteBackground to determine how much of the scale is colored.

If you want to color only the portion of the scale between the start and stop angles, use
setPaintCompleteBackground(false).

Labels in a circular gauge
Labels in a circular gauge work similarly to the way they do in a linear gauge except that
they use CircularConstraints. See Labels in a linear gauge for information.

3.11 The Linear Scale Object
JCLinearScale provides a graduated scale drawn in a linear fashion. Figure 15 shows a
simple linear scale. In addition to the scale, the gauge in the figure has two
triangularly-shaped indicators, a needle, two ranges, a set of labeled tick marks, and a
Chapter 3 ■ Circular and Linear Gauges 45

collection of labels. There is a border around the scale. It has the same color as the scale’s
background, but its presence is important to scale’s layout. See the section on Borders.

Setting a linear scale’s direction and orientation
By default, scale values increase from left to right, as shown in Figure 15. The direction
may be controlled by setting either one of:

 scale.setDirection(JCAbstractScale.Direction.BACKWARD);
 scale.setDirection(JCAbstractScale.Direction.FORWARD);

A linear scale is oriented either horizontally or vertically. The default orientation is
horizontal, and the setting is controlled by JCLinearScale.Orientation, whose values
are:

 JCLinearScale.Orientation.HORIZONTAL
 JCLinearScale.Orientation.VERTICAL

A typical call is:

 JCLinearScale scale = new JCLinearScale();
 scale.setOrientation(JCLinearScale.Orientation.VERTICAL);

Borders
You will likely want to place a border around each of your linear gauges. If you don’t, the
tick label numbers may appear to be clipped by the sides of the container. The linear
gauge in Figure 15 has a 20-pixel-wide border that was constructed as follows:

 Border border =
 BorderFactory.createLineBorder(new Color(247, 255, 206), 20);
 scale.setBorder(border);

In this case, the scale’s border has the same color as the scale’s background color, so the
viewer is not aware of its presence. The visible dark border is part of the gauge, not the
scale. Note that it’s possible to write into the border area. Parts of the Direction, Orientation,
Min, Max, and Ranges labels are actually in the scale’s border area.
46 Part I ■ Components and Layout Managers

You can use createEmptyBorder() to assign different widths to all four sides.

Figure 15 All elements shown, including the dark border, are parts of a linear gauge.

Labels in a linear gauge
Place labels using a LinearConstraint. Its constructor takes a reference to the parent
gauge, an extent, and an int representing a position along the scale. The extent
parameter is the distance from the top-left corner of the scale1. This distance is vertical for
horizontal scales and horizontal for vertical scales, and is specified as a ratio of the
required distance to the height of the scale when its orientation is horizontal, or to the
width of the scale when its orientation is vertical. The position parameter measures the
distance in pixels from the left-hand side when the gauge’s orientation is horizontal, or
from the top of the scale when its orientation is vertical.

 JLabel l1 = new JLabel("<html>Indicator One");
 l1.setToolTipText("Indicator One");
 gauge.getGaugeArea().add(l1, new LinearConstraint(gauge, 0.15, 75));

Setting a zoom factor
Your design may require that indicators, labels, and the like should appear on the outside
of the scale. You may be able to use a border to accomplish this task; however, a linear
scale provides a more flexible mechanism called a zoomFactor. In a linear scale, a zoom
factor less than one compresses the height of the scale (if the orientation is horizontal)
while leaving the width (the scale direction) unchanged. In general, the zoom factor
compresses the dimension at 90° to the scale no matter what the orientation is. Thus,
setting

 scale.setZoomFactor(0.6);

compresses the scale to 60% of its size and leaves room totalling 40% of the scale height
evenly above and below the scale. Needles or ticks with inner extents less than one or
with outer extents greater than one will display nicely even when the component is
resized.

1. The extent is measured from the scale boundary, not from any border that may enclose the scale.
Chapter 3 ■ Circular and Linear Gauges 47

For even more control, two Boolean properties, useZoomFactorForMin and
useZoomFactorForMax are available. By default, both of these are true, but if one of these
is set to false, the zoom factor will not be applied to the appropriate min and max extent
portions of the scale. If both useZoomFactorForMin and useZoomFactorForMax are set to
false, the zoom factor is ignored.

Pick: getting values from the scale by user interaction
The pick() method returns the scale value corresponding to an end user’s mouse click.

3.11.1 Methods in JCLinearScale

The table lists the commonly used methods for a JCLinearScale:

3.12 Tick Objects
Tick objects provide annotation marks on the circular or linear scale. They provide the
usual graduations that are often found on measuring devices. It is possible to have many
different tick objects associated with a scale; for instance, two tick objects can provide
major and minor graduations. Typically, major tick marks have associated labels

JCLinearScale Method Description

add() Overrides add to pass in a linear constraint. The first
parameter is the component to be added and the optional
second component is an index denoting the order among
the other components that have been added to the parent.

getLinearGauge() Returns the linear gauge associated with this scale.

getOrientation()
setOrientation()

Returns or sets the JCLinearScale.Orientation for this
linear scale. Values are:
JCLinearScale.Orientation.HORIZONTAL or
JCLinearScale.Orientation.VERTICAL, specifying the
orientation in which scale values are rendered.

getScaleSize() Calculates the rectangle that defines the position and
dimensions of the linear scale.

getUseZoomFactorForMax
setUseZoomFactorForMax

Determines whether to apply the zoom factor to the max
extents portion of the scale. Default: true.

getUseZoomFactorForMin
setUseZoomFactorForMin

Determines whether to apply the zoom factor to the min
extents portion of the scale. Default: true.
48 Part I ■ Components and Layout Managers

displaying numerical values, or you may supply your own definition for tick labels using
the JCLabelGenerator interface.

Both tick marks and tick labels may be turned on and off independently for each tick
object. A property called drawTicks controls whether tick labels are drawn, and another
called drawLabels controls whether the associated labels are drawn. Examples are given
later in this section.

You can set the start value, stop value, the tick increment value, and the inner and outer
extents for the tick marks. These extent parameters control the length of the tick line in the
radial direction in the case of a circular gauge, or the height/width in the case of a linear
gauge. They are specified as decimal fraction of the scale’s radius in the circular case, or
the scale’s height/width in the linear case. If you wish, you may specify a color and a
width for the tick object. If you do not set a particular property, the object chooses a
default value.

You can set the precision for values displayed on tick mark labels, but be aware that
reducing the precision may introduce rounding issues that may make the scale markings
confusing. See A note on precision for an explanation.
Chapter 3 ■ Circular and Linear Gauges 49

The following diagrams illustrate both circular and linear ticks.

Figure 16 Some circular gauge tick objects and their associated labels.

Figure 17 Linear gauge tick objects and their associated labels.
50 Part I ■ Components and Layout Managers

You specify where the tick marks are to begin and where they are to end. This allows you
to place tick marks over a portion of the scale as shown in the bottom left scale in Figure
16 and Figure 17. Note the different tick styles in the figures. There are custom tick style
set for the scales in the lower right of Figure 16 and Figure 17. See Defining your own tick
style for details.

Since you can control the visibility of tick marks and tick labels independently, you may
choose to have only the labels showing. This may be useful if you wish to have a single
style of tick mark but label every second one.

3.12.1 Notes on the Tick Object

Associating a tick object with a scale
Tick objects need to know the scale for which they are to provide graduations. One of the
parameters in the tick object’s constructor is the scale associated with the tick object.
Thus, a tick object cannot be instantiated without specifying its associated scale. Once you
have a tick object, you still need to add it:

 JCLinearTick tickMark;
 // Instantiate the tick...
 gauge.getScale().addTick(tickMark);

Setting the tick type
There are six built-in types: circle, diamond, line, rectangle, reverse triangle, and triangle.
The types are held in the JCTickStyle class. Example:

 JCTick tick = new JCCircularTick(...);
 tick.setTickStyle(JCTickStyle.TRIANGLE);

Defining your own tick style
You can define your own tick style by defining its shape using two arrays, one for the
X-coordinates and one for the Y-coordinates. Pass these arrays and an int specifying the
number of points to JCTickStyle’s constructor. Alternatively you could subclass
JCTickStyle and define your new styles as constants. In either case, define a shape as an
array of X- and Y-coordinate points as you would for any Rectangle:

import com.klg.jclass.swing.gauge.JCTickStyle;
public class MyTickStyle extends JCTickStyle {
 public static final JCTickStyle NOTCHED_RECTANGLE = new JCTickStyle(
 new int[] {-10, -2, 0, 2, 10, 10, 2, 0, -2, -10},
 new int[] { 3, 3, 1, 3, 3, -3, -3, -1, -2, -2},
 10);
}

Use your newly defined tick style by calling

 tick.setTickStyle(MyTickStyle.NOTCHED_RECTANGLE);
Chapter 3 ■ Circular and Linear Gauges 51

Alternatively, you can use the JCTickStyle constructor that allows you to define your
own (x, y) coordinate pairs. This example can be seen in the lower right of Figure 17:

 int xpoints[] = {-100, 0, 100, 100, 0, -100};
 int ypoints[] = { 0, 100, 100, -100, -100, 0};
 int numpoints = 6;
 tick.setTickStyle(new JCTickStyle(ypoints, xpoints, numpoints));

Note: The layout algorithm assumes that the center of the tick mark’s bounding rectangle
is at (0, 0).

Setting the tick object’s placement
Tick marks are normally required at constant increments along a scale. The tick object
accomplishes this objective by using the associated scale’s min and max values, and the
precision value, to determine appropriate values for the tick object’s start, stop, and
increment values. Alternatively, you can control the spacing by setting automatic to
False. You still control where the tick marks are to begin with startValue and where
they are to end with stopValue, but you set how many tick marks there are with
incrementValue.

Setting a tick object’s dimensions
The placement of a tick mark is controlled with innerExtent and outerExtent. The
values for both of these properties are numbers representing a proportion relative to the
size of the associated circular or linear scale. For instance, if the value set on innerExtent
is 1.0, tick marks begin right at the circumference of a circular scale, or at the edge1 of a
linear scale. For circular scales, tick marks are drawn radially outward to the value set in
outerExtent, which is also given as a ratio based on the radius of the associated circular
scale. For linear scales, the outer extent of 1.1 causes the tick mark to terminate 10% of the
scale’s vertical dimension below the bottom edge of the scale when the orientation is
horizontal, or 10% of the scale’s horizontal dimension to the right of the right edge of the
scale when the orientation is vertical.

Note: If your tick marks extend outside the scale, that is, at extents less than 0 or greater
than 1.0, and you allow the scale to be resized, you may have to increase the dimensions
of the scale’s borders to ensure that there is enough space to hold the tick marks,
otherwise their outer extents may be clipped. Alternatively, set the scale’s zoomFactor
property to a value less than 1.0 and the tick’s outer extent to 1.0 to give the appearance
of tick marks lying outside the scale. In fact, they are within the scale’s boundary, but they
appear to lie outside the colored portion of the scale. See GaugeOutsideExample.java in the
examples directory for an illustration of this technique.

If the inner extent is equal to the outer extent, no ticks are drawn, but the preferred way
of hiding tick marks is to set drawTicks to false.

1. The lower edge of a linear scale whose orientation is horizontal, or the right edge of a linear scale whose orientation is
vertical. An inner extent of 1.0 is definitely a case for surrounding the scale with a border.
52 Part I ■ Components and Layout Managers

../../examples/elements/GaugeOutsideExample.java

The width in pixels of the tick marks is specified in the tickWidth property. This property
must be set for any tick style other than JCTickStyle.LINE.

Labeling tick increments
Labeling may be on or off, depending on the value of drawLabels. In automatic mode,
one of the ways the object manages the span between labeled tick marks is by using the
precision property’s value. If you are controlling the placement of labeled tick marks
(tick.setAutomatic(false)), make sure you have set precision properly, as explained
in A note on precision.

Note: If you do place labels outside the scale and you allow the scale to be resized, you
may have to increase the dimensions of the scale’s borders to ensure that there is enough
space to hold the labels. Rather than using borders, the recommended method is to adjust
the scale’s zoomFactor property. See the previous note in Setting a tick object’s
dimensions.

Custom tick labels
Tick labels are drawn with the help of the JCLabelGenerator interface. It contains a
single method, makeLabel(), which takes three parameters: a JCTick, a scale value, and a
GaugeConstraint1. Use the method in JCAbstractTick called setLabelGenerator() to
tell the gauge to use your custom labeling mechanism.

The following code snippet uses an anonymous inner class to add an implementation of
JCLabelGenerator to a tick object. The makeLabel() method is passed a reference to the
tick object in question, the scale value for the tick mark in question, and a reference to the
tick’s RadialConstraint. Only the value parameter is used in this example. Since the tick
marks are supposed to display temperature values, the custom labels are coded to
produce temperature values along with their units of measurement, for example, 20° C.

 // create a label generator to mark
 // the temperature values with their units
 tick.setLabelGenerator(new JCLabelGenerator() {
 public JComponent makeLabel(JCTick tick, double value,
 RadialConstraint constraint) {
 String s = (value != 0) ? String.valueOf((int)value)
 : "zero";
 JLabel label = new JLabel(s + "\u00B0 C");
 label.setToolTipText(s + "\u00B0 C");
 return label;
 }
 });

The code adds “° C” to each value except 0°, where it supplies the word “zero” instead.

For an example of a custom label in a user-defined class, see GaugeSwitchExample.java.

1. The two subclasses of GaugeConstraint are LinearConstraint and RadialConstraint.
Chapter 3 ■ Circular and Linear Gauges 53

../../demos/elements/switchdemo/index.html

Another reason for using custom tick labels is to provide an offset between a label and its
associated tick mark. Normally a label lines up with its tick mark so that a line joining the
center of the scale and a tick mark also goes through the center of the tick mark’s label.
You can use JCLabelGenerator to offset the label, since a GaugeConstraint is passed as
one of the parameters of makeLabel().

A note on precision
If precisionUseDefault() is true, a default value for precision is determined. This value
should be sufficient for most situations. However, you can specify your own precision
using setPrecision(). This has the side effect of setting precisionUseDefault to false. The
precision setting affects the width of the label and therefore the number of labels that may
be used without overlapping. The effect is quite noticeable if automatic is true. The
number of labels changes as the scale is zoomed, becoming fewer during contraction so
that the label on one number does not overlap adjacent labels, or becoming more
numerous during expansion so that labeled marks do not become too widely separated.
Wider labels will be fewer in number compared to the same scale with shorter tick labels.
All this happens because the tick object automatically calculates the number of tick labels.
Note that drawLabels must be true or the labels won’t show.

The value of the precision property controls how tick labels are interpreted. There are
three cases to consider:

■ Positive values of precision indicate the number of places after the decimal place to
include. For example, setting the precision property to 3 causes the labels to be
multiples of 0.001.

■ Negative values indicate the positive number of zeros to use before the decimal place.
For example, if the value of the precision property is –3, numbering will be in
multiples of 1000.

■ A value of zero causes the labels to be integers.

Failure to set the precision property may be the source of a misleading scale. As an
example, setting the start value of a tick object at -25, the stop value at 160, and allowing
the default precision sets the precision to -1. In this case the first tick mark is where the
scale starts, that is, at -20, which is probably not what was desired. Setting the precision to
0 rectifies the problem because this specifies that digits in the units column must not be
rounded.
54 Part I ■ Components and Layout Managers

3.12.2 Methods

The tick object has the following get/set methods:

JCAbstractTick Method Description

getAutomatic()
setAutomatic()

Controls whether the tick object is functioning in automatic
mode or in manual mode. If it is in automatic mode, the
associated scale’s min and max values and the value of
precision are used to determine “pleasing” tick start, stop, and
increment values. Tick spacing is calculated by the gauge and
any settings to these properties will be ignored, that is, the
values reset to the automatic values. If the tick object is in
manual mode, whatever values you set in startValue,
stopValue, and incrementValue are honored provided they
are legal.

getDrawLabels()
setDrawLabels()

Returns the Boolean controlling the drawing of labels. If true,
use the value of precision to place a numeric label on each
tick value.

getDrawTicks()
setDrawTicks()

Returns the Boolean controlling the drawing of tick marks. If
true, use the value of precision or incrementValue to
determine how many tick marks to draw.

getFont() Returns the Font used for tick mark labels
(java.awt.Component).

getFontColor()
setFontColor()

Returns or sets the Color used for tick mark labels.

getIncrementValue()
setIncrementValue()

The tick increment value. In automatic mode, this value is
read-only. In non automatic mode, this value can be changed.

getInnerExtent()
setInnerExtent()

The inner (towards the center of a circular scale) extent of
each tick drawn. This value is related to the radius of an
associated circular or linear scale. For example, a value of 0.9
means each tick’s inner extent is 0.9 times the radius value of
the scale away from the center, or a 0.9 times the scale’s
height/width away from the top left of the scale.
Chapter 3 ■ Circular and Linear Gauges 55

getLabelExtent()
setLabelExtent()

The location of the center of each label. This value is related
to the radius of the associated circular or the height/width of
the associated linear scale; a value of 1.1 means each label’s
extent is 1.1 times the radius value of a circular scale away
from the origin, or 1.1 times the height of a linear scale away
from its top edge, or 1.1 times the width away from the left
edge, depending on its direction.

Note: extending the label outside the scale may require
adjustment of the borders.

getLabelGenerator()
setLabelGenerator()

Returns the label generator associated with this tick. Consult
the API for interface JCLabelGenerator and its makeLabel()
method for information on defining your own labels. A
minimal example is given in the section on Labeling tick
increments in this chapter.

getOuterExtent()
setOuterExtent()

The outer extent of each tick drawn. Outer extent values
increase towards the component’s boundary. This value is
related to the radius of the associated circular scale, or the
width/height of the associated linear scale. For example, a
value of 1.1 means each tick’s outer extent is 1.1 times the
radius value of the scale in a direction away from the center,
or 1.1 times the height of a linear scale away from its top edge
or 1.1 times the width away from its left edge, depending on
its orientation.

Note: extending the tick mark outside the scale may require
adjustment of the borders.

getPrecision()
setPrecision()

Affects the format of the tick label. This property defines the
number of digits of precision after the decimal point to be
used for labels. If its value is zero or less, the labels will all be
integers.
Positive values denote the number of places after the decimal
point (for example, 3 means multiples of 0.001); negative
values indicate the number of zeros to be used before the
decimal place (for example, -3 means numbering will be in
multiples of 1000).
A side effect of setting this property is to set the
corresponding precisionUseDefault property to false.

JCAbstractTick Method Description
56 Part I ■ Components and Layout Managers

3.12.3 Sample Code

The following example illustrates using the tick object’s constructor. If you create a gauge
using one of the convenience constructors you already have a tick object associated with
the scale that you can access using code; for example:

 JCCircularTick tick = (JCCircularTick)
 gauge.getScale().getTicks().elementAt(0);

Then simply set the properties you wish to change from their default values. Nonetheless,
it is often useful to create tick objects from scratch and set properties in the constructor.

getPrecision
UseDefault()

setPrecision
UseDefault()

If true, use the gauge-determined precision for tick labels,
otherwise use startValue, stopValue and incrementValue to
place ticks along the scale. If you set this property to false you
should set a value for precision as well (unless a value has
been calculated previously).

getScale() Returns the scale associated with this tick. Tick marks must be
associated with a scale (this is enforced by the Tick object’s
constructor).

getStartValue()
setStartValue()

In non automatic mode use this value as the start value. The
value must be between the associated scale's min and max
values, including end points.

getStopValue()
setStopValue()

In non-automatic mode use this value as the stop value. The
value must be between the associated scale's min and max
values, including end points.

getTickColor()
setTickColor()

The Color of the tick mark.

getTickStyle()
setTickStyle()

Predefined tick styles are JCTickStyle.CIRCLE,
JCTickStyle.DIAMOND, JCTickStyle.LINE,
JCTickStyle.RECTANGLE, JCTickStyle.REVERSE_TRIANGLE,
and JCTickStyle.TRIANGLE. Extend JCTickStyle to define
your own shape for tick marks, or define one by passing X-
and Y-coordinate points to JCTickStyle’s constructor.

getTickWidth()
setTickWidth()

The width in pixels of the widest part of the object. Ticks
whose style is circle or line ignore this property.

isReversed()
setReversed()

The reversed property is used to choose a mirror image of a
tick mark. If the default mark is <, the reversed tick mark is >.

JCAbstractTick Method Description
Chapter 3 ■ Circular and Linear Gauges 57

This way you inspect each property and determine its appropriateness for your
application. Here’s an example:

 // create a Tick object and set its properties
 JCTick tick = new JCCircularTick(
 scale, // the associated circular scale
 false, // automatic tick generation
 0, // start
 300, // stop
 25, // increment
 false, // precisionUseDefault
 0, // precision
 2, // width
 true, // draw labels
 true, // draw ticks
 0.75, // label extent
 0.85, // inner extent
 1.0, // outer extent
 Color.white,
 JCTickStyle.LINE,
 new Font("Helvetica", Font.BOLD, 18),
 Color.white);

3.13 The Range Object

On circular scales, ranges are rings or partial rings used to emphasize certain sections of
the scale by coloring them. By using range objects, an implementor can draw arcs (which
may be full circles) and provide differently colored subdivisions on the scale.

On linear scales, ranges are rectangular bars running along the direction of the scale.

Ranges may be either colored bands or images.

If the range is narrow enough it has the appearance of a tick mark. This effect may be of
use if you wish to provide special tick marks, such as those marking the dynamically
changing maximum and minimum values on a temperature scale. See the demo
TemperatureFluctuationExample.java.

Ranges are associated with a scale. There may be multiple ranges for the same scale.
58 Part I ■ Components and Layout Managers

../../demos/elements/temperature/index.html

You can control the inner and outer radii (and thus the thickness) of the range. As well,
you set start-stop values (and thus the breadth), and the color. Figure 18 shows two range
objects on a circular scale. The thinner one spans the entire scale and appears as the
circumference of the scale. The thicker one spans the region between tick marks 20 and
80. The diagram shows how a start value, stop value, inner extent, and outer extent
determine the shape of a range.

Figure 18 Two range objects for a Circular Scale object.

Figure 19 shows a Circular Gauge component in which one range object covers another,
partially obscuring it. The drawing order in Figure 19 is first the semicircular range,
followed in succession by the 20-80 range, the tick marks, the needle, and finally the
center. If the objective is to show the semicircular range, draw the 20-80 range first. This
topic is discussed in more detail in the next section.

Figure 19 A range object that is the same size as its associated scale.

3.13.1 Notes on the Range Object’s Properties

Coloring a range
A range object’s color is set by the first parameter in its constructor. Use the
setForeground() method on a JCCircularRange or JCLinearRange object to change the
color of a range once it has been instantiated.
Chapter 3 ■ Circular and Linear Gauges 59

Associating a range with a circular or linear scale
A range object has to be associated with a parent scale by providing a reference to it in
the constructor, or by using the setScale() method once a range has been instantiated.

A range spans a region of its associated scale, but to be visible it must have a thickness as
well as a span. Properties innerExtent and outerExtent control the inner and outer
limits of its thickness. Values for these properties are given as ratios based on the size of its
associated scale. For example, in a circular gauge an inner extent of 0.75 and an outer
extent of 1.25 mean that the thickness is half the radius of the associated circular scale and
is placed symmetrically over the circumference.

Extending past the scale
If you wish to use an offset to shift a range beyond the end of the tick marks, create a
circular scale spanning all the values you need to display but supply tick marks for one
portion of the scale and a range for another portion.

Figure 20 An offset is applied to the outer range of Figure 18.

As shown in Figure 20, an offset appears to begin before the start of the scale. The scale’s
settings are max = 120, min = -20, startAngle = -36°, stopAngle = 216°. These were calculated
to be consistent with the offset given to the range, and to maintain a semicircular
appearance for the labeled part of the scale.

3.13.2 Constructors for JCCircularRange and JCLinearRange

The constructors are:

 JCCircularRange(java.awt.Color foreground,
 JCCircularScale scale,
 double innerExtent,
 double outerExtent,
 double startValue,
60 Part I ■ Components and Layout Managers

 double stopValue)

public JCLinearRange(java.awt.Color foreground,
 JCLinearScale scale,
 double innerExtent,
 double outerExtent,
 double startValue,
 double stopValue)

All range properties are set in the constructor, along with associating a range with a
circular scale. Range properties are listed next.

3.13.3 Methods and Properties for JCRange and JCAbstractRange

JCAbstractRange
Method Description

getInnerExtent()
setInnerExtent()

Returns or sets the ratio of the radius' length at which to start
drawing this range from the center outwards for circular
scales, or the distance away from the inner edge for linear
scales. For example, a value of 0.5 means the inner extent
should begin one-half the distance between the scale’s origin
and the scale’s circumference or outer edge.

getOuterExtent()
setOuterExtent()

Returns or sets the value at which the outer boundary of the
range is drawn. The value is expressed as a ratio of the radius’
length. For example, a value of 1.5 means the outer extent lies
1.5 times the scale’s radius away from the center, or 1.5 times
the linear scale’s height away from the inner edge.

getScale() Returns the scale associated with this range.

getScaleImage()
setScaleImage()

Returns or sets the flag that controls whether to scale the
image within the dimensions of the range.

getStartValue()
setStartValue()

Returns or sets the scale value (not the angle) where the range
is to begin. This value should be between the associated
scale’s min and max values.

getStopValue()
setStopValue()

Returns or sets the scale value (not the angle) where the range
ends. This value should be between the associated scale’s min
and max values.

Additional Methods Description

setForeground() Method inherited from class javax.swing.JComponent. Used
to dynamically color the range after it has been instantiated.
Chapter 3 ■ Circular and Linear Gauges 61

3.13.4 Sample Code

Set the property values for the range object in its constructor using the sample below as a
guide.

 // create a range that marks the circumference of the scale
 circumference = new JCCircularRange(
 Color.black, // range color
 gauge.getScale(), // one way of referencing a scale
 0.95, // range inner extent
 1.00, // outer extent is at the radius
 0, // start value for the range
 100); // stop value for the range

3.14 The Indicator and Needle Objects

Indicators are a general mechanism for placing static1 markers on a scale. Needles are
meant for user interaction, so the JCAbstractNeedle subclass of JCAbstractIndicator
has built-in capabilities for control by end users. If you permit it, an end user can
reposition a needle by clicking, dragging, or both.

Indicator and needle objects are the visible pointers on a scale object in a JCGauge
component. Any number of indicators may be displayed on the same scale. Each

setVisible() Method inherited from class javax.swing.JComponent. Used
to dynamically show or hide a range.

1. As far as direct end user interaction is concerned. Indicators may be repositioned under program control if desired.

Additional Methods Description
62 Part I ■ Components and Layout Managers

indicator has its own value and this value determines where on the scale it is positioned.
The gauge manages its list of indicators by keeping them in a Vector.

You can control the indicator’s color, length, width, and shape. The shape scales itself by
using its length and width parameters.

The needle is drawn using its shape attribute. Basic constants exist for drawing triangles,
pointers, and arrows, or you may provide your own shape.

The position of an indicator, and therefore its associated value on a scale may be
controlled programmatically, and the needle subclass may be controlled via an end user
action. A needle can be positioned by either clicking or dragging on the scale so long as a
needle interaction is enabled. You can add a ChangeListener to a needle to respond to
mouse actions. Additionally, the gauge has a JCGaugePickListener interface that permits
retrieval of the scale value corresponding to the spot where a mouse click occurs. You can
enable click and drag interactions with a needle via the inner class called
JCNeedle.InteractionType, which contains constants that specify the possible types of
interactions between mouse actions and needles.

These are:

When a needle’s value changes, a value changed callback is called to allow the program
to disable or limit the change. Use sendEvents() to control whether an event is generated
as a result of an action taken in the callback.

Interaction Type Description

CLICK The needle snaps to a mouse click.

CLICK_DRAG The needle snaps to the mouse click, or follows a mouse drag.

DRAG The needle snaps to the position of the mouse when the drag
operation begins, then follows it until the mouse button is
released.

NONE Default case: neither clicking nor dragging affects the needle.
Chapter 3 ■ Circular and Linear Gauges 63

3.14.1 Notes on the Indicator’s Properties

Indicator shapes
An indicator has seven possible built-shapes: arrow, tailed arrow, circle, pointer,
rectangle, tailed pointer, or triangle, as shown in Figure 21. These shapes are controlled
by the constants in JCIndicatorStyle. They are ARROW, CIRCLE, POINTER, RECTANGLE,
TAILED_ARROW, TAILED_POINTER, and TRIANGLE.

Setting an indicator’s length
The indicator’s length is based on the associated scale and is set as a decimal fraction of
the scale’s dimensions using its innerExtent and outerExtent properties. In the circular
case, an indicator begins at the center of the circular scale and extends outwards. For
example, if its outerExtent property is set to 1.0, the indicator’s tip lies on the
circumference of the associated circular scale. In the linear case, an indicator’s extents are
measured from the top of the gauge area when the orientation is horizontal, or from the
left-hand edge when the scale is vertical.

Setting a needle’s length
As a subclass of JCAbstractIndicator, a needle has inner and outer extents, and because
it is a subclass of JCAbstractNeedle, it has a length property as well. Setting the needle’s
length is equivalent to setting its outer extent. If you want to have the needle begin away
from the center of a circular gauge, set its inner extent to some positive value. The value is
expressed as a ratio based on the radius. Likewise, a linear needle may be offset from the
top of a linear horizontal scale by setting its inner extent. In this case, the inner extent
may be positive or negative, but you will have to set a border on the scale to prevent the
needle from being clipped. Example:

 ((JCLinearNeedle)
 gauge.getNeedles().firstElement()).setInnerExtent(0.3);

Figure 21 The seven built-in indicator shapes.

Setting an indicator’s width
An indicator’s width is set using the indicatorWidth property, or the needleWidth
property in the case of a needle.
64 Part I ■ Components and Layout Managers

Defining a custom indicator style
It is possible to provide your own indicator style if you require a custom shape. The
method is the same as in Defining your own tick style. The simplest way is to use the
JCIndicatorStyle constructor that allows you to define a new shape. If you wish to keep
your new indicator styles for general reuse as class constants, extend JCIndicatorStyle
and define a shape as arrays of coordinate points using the same format as you would for
java.awt.Rectangle. Here is an example:

 import com.klg.jclass.swing.gauge.JCIndicatorStyle;

 public class MyIndicatorStyle extends JCIndicatorStyle {
 /**
 * A needle in the form of a diamond using these array values
 */

 public static final JCIndicatorStyle DIAMOND
 = new JCIndicatorStyle(
 new int[] { -100, 0, 100, 0},
 new int[] { 0, 100, 0, -100},
 4);

The JCIndicatorStyle constructor that allows you to define a new shape has been used
here to define the class constant.

Often an indicator style is defined so that the shape starts at the center of a circular scale.
A shape defined this way also starts at the inner edge of a linear scale. Since the DIAMOND
defined above starts at -100, it does not start at the scale’s center or edge when it is drawn.
Instead, this DIAMOND straddles the center. You’ll need to test your design to see that it
scales properly if you begin your needle away from the center and you intend to allow
scaling.

Indicators may be sized however you wish, but if the inner or outer extent specification
causes the indicator to be drawn outside the component’s boundary the indicator will be
clipped. You may increase the border size to compensate, but borders are not scaled
when components are resized. Since the indicator’s length is defined as a fraction of its
associated scale’s radius, it may still elongate past the border if the component is
expanded too much. An alternative approach is to use the scale’s zoomFactor property,
set to some value less than one. This has the effect of shrinking the scale so that its
boundary is less than its true radius. An indicator whose length is greater than 1.0 appears
to extend beyond the scale. Because it is really inside the scale’s actual boundary it can be
resized without clipping.

Coloring an indicator object
An indicator’s color is set in its constructor or by using
javax.swing.JComponent.setForeground().
Chapter 3 ■ Circular and Linear Gauges 65

Controlling a indicator’s visibility
You can show or hide an indicator by setting its java.awt.Component.setVisible()
method to true or false respectively. Test the visibility with
java.awt.Component.isShowing().

Positioning an indicator with the mouse
Use the JCAbstractNeedle.InteractionType constants to determine how the needle
responds to mouse clicks within the Circular Gauge component. To stop the needle from
responding to the mouse, use InteractionType.NONE. Other possible values are CLICK,
DRAG, or CLICK_DRAG.

3.14.2 Constructors

Both JCAbstractIndicator and JCAbstractNeedle have two constructors. The first takes
a JCScale object and creates an indicator or needle with default settings. The following
ones allow you to set properties, associate it with its parent scale, and, in the case of a
needle, specify an interaction type:

 public JCAbstractIndicator(
 Color foreground, // foreground color
 double indicatorWidth, // indicatorWidth
 JCScale scale, // associated scale
 boolean visible, // true: indicator is visible
 double inner_extent, // inner extent
 double outer_extent, // outer extent
 JCIndicatorStyle indicatorStyle, // indicator style
 double value // where to place this indicator
)

 public JCAbstractNeedle(
 java.awt.Color, // foreground color
 double width, // needleWidth
 JCScale scale, // associated scale
 JCAbstractNeedle.InteractionType, // needle interactionType
 boolean visible, // true: needle is visible
 double, // length
 JCIndicatorStyle, // needleStyle
 double value, // where to place this needle
)

3.14.3 Methods and Properties

JCAbstractIndicator is the super class for JCCircularIndicator, JCLinearIndicator,
and JCAbstractNeedle. Indicators are used to point to zero or more selected values on a
scale.
66 Part I ■ Components and Layout Managers

Indicator methods and properties

Needle methods and properties
Needle properties allow you to control most aspects of the needle’s appearance save for
its drawing order (z order) with respect to the other gauge components. By managing the
order in which gauge.addNeedle() is called relative to the other gauge.addComponent

Indicator Properties Description

getForeground()
setForeground()

In java.awt.Component, returns or sets the needle’s color, a
java.awt.Color.

getIndicatorStyle()
setIndicatorStyle()

Returns or sets the shape of the indicator. Possible values are:
JCIndicatorStyle.ARROW
JCIndicatorStyle.POINTER
JCIndicatorStyle.TAILED_ARROW
JCIndicatorStyle.TAILED_POINTER
JCIndicatorStyle.TRIANGLE

It is possible to define your own indicator style by extending
JCIndicatorStyle or by using its constructor.

getIndicatorWidth()
setIndicatorWidth()

Returns or sets the width of the indicator in pixels.

getInnerExtent()
setInnerExtent()

Returns or sets the inner extent of this indicator as a ratio of
the scale's width, height, or radius (depending on the scale's
type and orientation).

getOuterExtent()
setOuterExtent()

Returns the outer extent of this indicator as a ratio of the
scale's width, height, or radius (depending on the scale's type
and orientation).

getPreferredSize() Overridden so that the indicator scales with the gauge.

getScale() Returns the JCScale associated with this indicator.

getValue()
setValue()

Returns or sets the scale value (not the scale angle) to which
the indicator points. When setting this value care should be
taken to ensure it is between the scale’s min and max values.
An indicator may not be dragged outside the scale’s range,
that is, before its startValue or after its stopValue.

isReversed()
setReversed()

An indicator that lacks longitudinal symmetry may be
reversed. For example, the default JCIndicatorStyle.ARROW
points outwards on a circular scale. By setting the reversed
property to true the arrow points toward the center rather
than at the circumference.
Chapter 3 ■ Circular and Linear Gauges 67

methods you achieve your intended layering effect. For instance, by adding a center and
then a needle, the part of the needle under the center is obscured.

JCAbstract Needle inherits all the methods of:

Needle Methods Description

addChangeListener()
removeChangeListener()

Adds or removes a listener interested in needle
movements.

Needle Properties Description

getForeground()
setForeground()

In java.awt.Component, returns or sets the needle’s color, a
java.awt.Color.

getGauge()
setGauge()

Returns or sets the circular gauge associated with the needle.

getInteractionType()
setInteractionType()

The type of allowed mouse interaction. Possible values are:
JCAbstractNeedle.InteractionType.NONE
JCAbstractNeedle.InteractionType.CLICK
JCAbstractNeedle.InteractionType.DRAG
JCAbstractNeedle.InteractionType.CLICK_DRAG

getLength()
setLength()

Returns or sets the needle’s length, expressed as a decimal
fraction based on the circular scale’s radius. Setting a
needle’s length is the same as setting its outer extent.

getNeedleStyle()
setNeedleStyle()

Returns or sets the shape of the needle. Possible values are:
JCIndicatorStyle.ARROW
JCIndicatorStyle.POINTER
JCIndicatorStyle.TAILED_ARROW
JCIndicatorStyle.TAILED_POINTER
JCIndicatorStyle.TRIANGLE

It is possible to define your own needle style by extending
JCIndicatorStyle or by using its constructor.

getNeedleWidth()
setNeedleWidth()

Returns or sets the width of the needle in pixels.

getPreferredSize() Overridden so that the needle scales with the gauge.
68 Part I ■ Components and Layout Managers

3.14.4 Code Sample

If you have used the default gauge constructor, a needle is supplied. You can obtain a
handle to it as follows:

JCNeedle needle = ((JCNeedle)gauge.getNeedles().firstElement());

You can completely configure a needle at the time it is created. The following code
sample shows how:

 JCNeedle needleOne =
new JCCircularNeedle(

Color.red, // needle's color
10, // needle width
cscale, // associated circular scale
true, // visible?
0.0, // inner extent
1.0, // outer extent
JCNeedleStyle.POINTER, // needle style
25.0 // needle value
);

The remaining step is to add the needle to the gauge:

gauge.addNeedle(needleOne, 0); // Ensure the needle is on top

Adding a change listener for needle movements
If you wish to take some action when a needle is moved you can use the fact that a needle
movement generates a change event. You may add a change listener to the needle, for
example:

needleOne.addChangeListener(this); // For needle movements

The class (referenced by the this pointer in our example here) that is to respond to
needle movements defines a stateChanged(ChangeEvent e) method to handle whatever
action needs to be taken.

getSendEvents()
setSendEvents()

Returns or sets a sendEvents flag; true means events will be
sent when the needle's value changes, false means don't
send the events. Use this method if your code might
otherwise trigger a non-terminating sequence of events, such
as setting a needle to its value plus one.

getValue()
setValue()

Returns or sets the scale value (not the scale angle) to which
the needle points. When setting this value care should be
taken to ensure it is between the scale’s min and max values.
A needle may not be dragged outside the scale’s range, that
is, before its startValue or after its stopValue.

Needle Properties Description
Chapter 3 ■ Circular and Linear Gauges 69

3.15 The Center Object

Center object
A center object is associated with a gauge. You can set the center’s radius and its color,
then add it using the gauge’s setCenter() method. Alternatively, you can specify an
image for the center object.

A center object is used to mark the position of the center of a circular scale in a
JCCircularGauge component. It can be a colored circle or a user-supplied image. If an
image is specified, the circular disk will not be drawn.

A center object must be associated with a circular scale. Each of its three constructors
demands a scale as one of its parameters.

Figure 22 An image used as a center object.

3.15.1 Notes on the Center Object

Setting the center’s color
Set the color of the center object using the setForeground() method, or in the center
object’s constructor. The result is a circular disk of this color at the center of the scale. The
size of the disk is controlled by the center’s radius property.

Associating a center with a circular scale
Each circular gauge may have zero or one center objects. A center is associated with the
gauge through its circular scale object. Specify the circular scale using the scale
parameter in the center object’s constructor. The center object may be replaced with an
image if desired. The image does not rotate.

Sizing the disk
Set the size of the disk using the radius property. The value you pass it is a fraction based
on the size of the radius of its associated circular scale. For instance, if you set a value of
70 Part I ■ Components and Layout Managers

0.2, the circular disk marking the center has a radius 20% as long as the radius of the
circular scale.

Using an image as the visual
If you require anything other than a circular disk to mark the center of your scale, you
can supply an Image. The image is scaled to the radius of the center object if
setScaleImage() is true. In this case resizing the gauge causes a proportionate change in
the image. See Section 3.15.3, Sample Code, for an example.

The center image can be sized to fill the entire scale. In this case it can be made to appear
as a background image on which needles, ranges, and extra tick marks may be placed as
desired.

Figure 23 Using a center image as a background.

In Figure 23 the parameters for the circular scale have been chosen so that they match the
scale markings on the image, which fills the entire circular scale area. The result is an
interactive dial with a distinctive look.

Controlling visibility
Use the visible parameter in the constructor to control whether the Center object is
visible initially. After the object is created, control its visibility using the setVisible()
method.
Chapter 3 ■ Circular and Linear Gauges 71

3.15.2 Constructors, Properties, and Methods

Constructors
JCCenter has three constructors. The one-parameter version requires a reference to the
parent JCCircularGauge. The other two require a color parameter and either a size
parameter in the case of a circular disk, or an image parameter if an image is to be used.

 JCCenter(JCCircularScale scale)
 // Creates a drawn, black center disk using a default radius
 // that is 10% of the scale's radius.

 JCCenter(JCCircularScale scale,
 java.awt.Color foreground, // color of the disk
 double radius) // Center is a disk

 JCCenter(JCCircularScale scale,
 java.awt.Color foreground,
 java.awt.Image image) // Center is an image

Properties

Methods
Protected methods drawDisc() and drawImage() are used to draw the Center, and are
used by paintComponent() to actually draw the center object on the screen.
getPreferredSize() is overridden so that the center object’s proportional size relative to
the circular scale can be maintained. These methods are only of concern to those who
wish to subclass the center for custom purposes.

3.15.3 Sample Code

Follow these examples if you want to provide a center in your circular scale.

To use a colored disk as the center of circular scale, use this code:

 // create a center
 JCCenter center = new JCCenter(circularScale, Color.white, 0.1);
 gauge.setCenter(center);

Property Description

getImage()
setImage()

Determines the java.awt.Image that is to be drawn at the
center of the scale.

getRadius()
setRadius()

Gets or sets the size parameter for the center object when it is
a circular disk.

getScaleImage()
setScaleImage()

Boolean that controls whether or not to scale the image when
the gauge is resized.
72 Part I ■ Components and Layout Managers

To provide an image, use this code:

 // use an image
 Image image;
 image = Toolkit.getDefaultToolkit().getImage("arrow.gif");
 JCCenter center = new JCCenter(circularScale, Color.white, image);
 gauge.setCenter(center);

3.16 The Constraint Mechanism in JCGauge

3.16.1 RadialConstraint and RadialLayout

The RadialLayout class uses an instance of RadialConstraint to position a component at
a given angle and at a specified proportional distance from the center of the associated
circular gauge. Thus, the gauge employs RadialConstraint classes to facilitate laying out
gauge objects in such a way that the objects’ angular positions are maintained as the
gauge is resized, as well as maintaining their proper radial proportions.

It supports the placement of any component on the gauge area, not just indicators,
needles, ranges, and ticks. Usually these are labels used to annotate a Circular Gauge, but
they may be any JComponent, even another gauge.

Constructors
RadialConstraint has a single constructor which is passed a gauge, an extent, and an angle.
The extent parameter specifies the radial distance for the placement of the component.
The angle parameter specifies the angle. The center of component’s bounding rectangle
is placed on the gauge at the point defined by the two parameters. Typically an instance of
RadialConstraint is passed via the addLabel() method in JCCircularGauge, which
passes it to an add() method that knows how to use RadialLayout to position the
component.

Here’s an example:

 JCCircularGauge gauge = new JCCircularGauge();
 JLabel label = new JLabel("<html>Pressure (lbs/in²)");
 gauge.addLabel(label, new RadialConstraint(gauge, 0.35, 90));

3.16.2 Linear Constraint and Linear Layout

The LinearLayout class uses an instance of LinearConstraint to position a component at
a given extent and at a specified pixel distance from the origin of the associated circular
gauge. Thus, the gauge employs LinearConstraint classes to facilitate laying out gauge
objects in such a way that the objects’ relative positions are maintained as the gauge is
resized.

It supports the placement of any component on the gauge area, not just indicators,
needles, ranges, and ticks. Usually these are labels used to annotate a linear gauge, but
they may be any JComponent, even another gauge.
Chapter 3 ■ Circular and Linear Gauges 73

Constructors
LinearConstraint has a single constructor which is passed a gauge, an extent, and a
position. The extent parameter specifies the proportional distance from the top left of the
rectangle enclosing the gauge. The distance is vertical for horizontal scales and horizontal
for vertical scales, and is specified as a ratio of this distance to the height or width of the
scale. The position parameter specifies the distance as an integer representing a
percentage of the height or width from the top or left of the scale. The center of the
positioned component’s bounding rectangle is placed on the gauge at the point defined
by these two parameters. Typically an instance of LinearConstraint is passed via the
addLabel() method in JCLinearGauge, which passes it on an add() method that knows
how to use LinearLayout to position the component.

Here’s an example:

 JCLinearGauge gauge = new JCLinearGauge();
 JLabel label = new JLabel("Pressure Point");
 gauge.addLabel(label, new LinearConstraint(gauge, 0.35, 90));

3.17 Labels

Labels are used to annotate a gauge. Any number of them may be placed anywhere
within the boundaries of the gauge area using a gauge’s addLabel() method, which in
turn uses a RadialConstraint or a LinearConstraint. Because it is a JLabel, it has
user-controllable text, position, background and foreground color, images, and borders.

The RadialConstraint class, whose constructor is RadialConstraint(JCGauge gauge,
double extent, double angle), lets you specify a label’s position by giving a distance
from the center of the scale and an angle. The constructor for a linear constraint is
LinearConstraint(JCGauge gauge, double extent, int position), which lets you
specify a label’s position by giving the extent in the transverse direction to the scale and a
position along the scale in pixels.

Note that there is an automatic mechanism for providing numeric labels on tick objects or
for specifying labeled ticks in user-specified formats. See Section 3.12, Tick Objects, for a
discussion of tick labels.

3.17.1 Notes on the Using Labels
You can choose a location within the gauge area by specifying the location of the center of
the rectangle containing the RadialConstraint or LinearConstraint class.

You can choose a border type using setBorder and adjust its appearance using the
various border factory methods.
74 Part I ■ Components and Layout Managers

One way of setting the font is by using a JLabel’s ability to process HTML tags. Set a font
using the tag and the color using color = HTMLcolorValue within the tag. If you
are adding text to a circular gauge, you can do the following:

 JLabel l1 = new JLabel("<html>
 Start Angle = 90\u00B0");
 l1.setToolTipText("Start Angle = 90\u00B0");
 gauge.addLabel(l1, new RadialConstraint(gauge, 0.60, 15), 0);

You can control whether a text object is drawn using setVisible() and determine its
visibility with isVisible.

Aligning text
The lines of text within a label may be centered, or right justified. If text is not centered it
may appear that RadialConstraint is not positioning the text at the correct angle. In
Figure 24 both text areas are aligned vertically, but without the borders on the
components it appears that the lower label is not vertically aligned. Here is the code that
produces this layout:

 JLabel l1 = new JLabel(
 "<html>
 <P ALIGN=CENTER>Start Angle
= 0\u00B0");
 l1.setToolTipText("Start Angle = 0\u00B0");
 l1.setBorder(new BevelBorder(BevelBorder.RAISED));
 gauge.getGaugeArea().add(l1,
 new RadialConstraint(gauge, 0.50, 90), 0);

 JLabel l2 = new JLabel(
 "<html><P>Stop Angle
= 360\u00B0");
 l2.setToolTipText("Stop Angle = 360\u00B0");
 l2.setBorder(new BevelBorder(BevelBorder.RAISED));
 gauge.getGaugeArea().add(l2,
 new RadialConstraint(gauge, 0.50, 270), 0);

Figure 24 If text is not centered it may appear to be placed at the wrong angle.
Chapter 3 ■ Circular and Linear Gauges 75

Adding a component
A label (in reality, any JComponent) is an independent rectangular region that can be
placed anywhere within the gauge area by specifying the center of the component using
either the LinearConstraint or the RadialConstraint class.

3.17.2 Sample Code
The first code snippet shows the addition of a label positioned half way from the center of
a gauge to its circumference at an angle of 45°.

 RadialConstraint rConstraint = new RadialConstraint(gauge, 0.50, 45)
 JLabel label = new JLabel("Start Angle = 0");
 label.setToolTipText("Start Angle = 0\u00B0");
 gauge.getGaugeArea().add(label, rContstraint, 0);

Usage is the same for a linear constraint. This one puts a label at (0, 0) on a linear scale:

 JLabel l0 = new JLabel("<html>0");
 l0.setToolTipText("0 marks the spot!");
 gauge.getGaugeArea().add(l0, new LinearConstraint(gauge, 0.0, 0));

This snippet shows how to label tick marks with a String that specifies the units of the
measurement. It uses the JCLabelGenerator interface and its method, makeLabel().

// create a label generator to mark ticks with their units
 tick.setLabelGenerator(new JCLabelGenerator() {
 public JComponent makeLabel(JCTick tick, double value,
 RadialConstraint constraint) {
 String s = String.valueOf((int) value) + " units";
 JLabel label = new JLabel(s);
 label.setToolTipText(s);
 return label;
 }
 });

3.18 Events and Listeners in JCGauge

JCGaugePickEvent represents a pick event in JCGauge. A pick event occurs when a
JCGaugePickListener is installed on a gauge and the mouse button is pressed over a
JCGauge object.

Method Description

getComponent() The component associated with this event.

getGauge() Returns the gauge associated with this event.

getPoint() Returns the (x, y) point of the click.

getValue() The value associated with this event. This is the scale value
corresponding to the place where the mouse click occurred.
76 Part I ■ Components and Layout Managers

Interface JCGaugePickListener has one method, pick(). It is called on the object that
has installed itself as a listener by invoking gauge.addPickListener(). See
GaugePickExample.java for an example of the use of a pick listener.

3.19 Utility Functions for JCGauge

Static utility functions are found in com.klg.jclass.swing.gauge.GaugeUtil. They
perform conversions or other common functions needed within JCGauge.

3.19.1 GaugeUtil

The following table lists some methods that you might find useful. Consult the API for
full details.

toString() Returns the point where the mouse was clicked and the associated
scale value.

GaugeUtil
Method Name Description

clamp() If the passed-in value in the first parameter is between the second
(min) and third (max) parameters, leave it unchanged. Otherwise
return the min or max value, whichever is closer.

drawCircleFor
Circular
Scale()

In a circular scale, draws a filled circle based on the supplied scale
value, inner extent, and outer extent. Since the method takes a
Graphics context as a parameter, you will have to override one of
the paint() methods to use it.

drawCircleFor
Linear
Scale()

In a linear scale, draws a filled circle based on the supplied scale
value, inner extent, and outer extent. Since the method takes a
Graphics context as a parameter, you will have to override one of
the paint() methods to use it.

drawLinear
Polygon()

Draws a polygon given a linear scale, inner and outer extent,
width, a value on the scale at which to draw, and various other
attributes. The type of polygon drawn is a JCPolygon, described in
the next section.

normalize
Angle()

Transforms its (double) argument to an angle between 0° and 360°.

rotate() Rotates a Polygon by an amount given in degrees by its second
argument.

Method Description
Chapter 3 ■ Circular and Linear Gauges 77

../../examples/elements/GaugePickExample.java

3.19.2 JCPolygon

JCPolygon is the abstract super class for JCIndicatorStyle and JCTickStyle. It is a
Polygon that retains the dimensions of its bounding box.

scale() Scales a Polygon specified in its first argument by independent
amounts in the horizontal and vertical directions. The second and
third arguments are the X- and Y-scaling ratios.

fromRadians
toRadians()

normalize
Angle()

Transforms its (double) argument, which should be an angle, to an
angle in degrees or in radians.

Converts an angle of any size to one in the range 0° - 360°.

translate() Translate a Polygon by the amount given by X- and Y-parameters,
given as integers representing pixels.

valueToAngle()

valueTo
Position()

Converts a double to an angle in degrees. Parameters are value,
start_value, stop_value, start_angle, and stop_angle. The
returned value is the angle that corresponds to the input value,
which is interpreted as a scale value and thus should be between
the min and max values for the scale.

Example: A circular scale’s start_angle is 45° and its
start_value is 10. Its stop_angle is 135° and its stop_value is
55°. Given a value of 20, which is between the min and max values
for the scale, the function returns 65°, the angular position on the
given scale for that value. Note that the input value must be within
the range set by the scale.

valueToPosition() converts a value on a linear scale to its
position in pixels measured from the edge of the component.

GaugeUtil Method Name Description

getExtrema() Given a Polygon, returns its bounding Rectangle.

GaugeUtil
Method Name Description
78 Part I ■ Components and Layout Managers

3.20 JCCircularGaugeBean and JCLinearGaugeBean

The two JavaBeans in the gauge package are JCCircularGaugeBean and
JCLinearGaugeBean. Their purpose is to make it easy to set gauge properties at design
time in an integrated development environment (IDE) tool.

The JCGauge components are designed to be highly configurable. Interfaces support the
possibility of replacing indicators, needles, ranges, scales, and ticks with custom-designed
components. In the same vein, the concrete objects in JClass Elements based on these
interfaces may be subclassed to provide extra functionality. All this flexibility comes at
the price of having a gauge’s properties distributed throughout the sub objects, making
them hard to get at via an IDE’s property sheet. To solve this problem, the gauge’s
JavaBeans provide accessors for the most-needed properties, placing them all within the
JavaBean so that they are presented in one table by the IDE.

The property names as they appear in an IDE are listed in Appendix A.
Chapter 3 ■ Circular and Linear Gauges 79

The following figure shows the property sheets for JCCircularGauge and JCCLinearGauge
in JBuilder. You see that you can set many needle, scale, and tick properties.

Figure 25 The properties tables for JCGaugeBeans in JBuilder.

3.21 Adding Other Components to a Gauge

As an example of adding any JComponent to a gauge, consider a case where the need is to
provide a smaller circular gauge within a larger one, such as a stopwatch whose larger
scale counts off seconds and whose smaller scale indicates the number of minutes that
have elapsed. In the code snippet that follows, bigGauge is the one containing the second
hand and smallGauge is the one containing the minute hand. It does not show the details
80 Part I ■ Components and Layout Managers

of setting up the properties of the two scales, but once they are configured it is easy to
place the smaller gauge within the larger.

 JCCircularGauge bigGauge;
 JCCircularGauge smallGauge;
 bigGauge.addLabel(smallGauge,
 new RadialConstraint(smallGauge, 0.35, 90), -1);

Figure 26 One circular gauge within another.

3.22 JClass 4 to JClass 5: A Mini-porting Guide

The gauge classes have been extensively reorganized for the JClass 5 release, but you
should find that there is little or no impact on your existing applications that use circular
gauges. You may find that your code compiles against the new classes without the need to
change anything; however, if you discover that your application does not run with JClass
5 or newer releases, you can refer to the table below. It should encompass almost all the
issues that need attention.

In JClass 4 was: In JClass 5 becomes:

gauge.getNeedles().firstElement() (JCCircularNeedle)
gauge.getNeedles().firstElement()

gauge.getRanges().firstElement() (JCCircularRange)
gauge.getRanges().firstElement()

gauge.getScale().firstElement() (JCCircularScale)
gauge.getScale().firstElement()
Chapter 3 ■ Circular and Linear Gauges 81

gauge.getTicks().firstElement() (JCCircularTick)
gauge.getTicks().firstElement()

JCCenter(gauge) JCCenter(circularScale)

JCCircularNeedle(gauge) JCCircularNeedle(scale)

JCNeedle.InteractionType JCAbstractNeedle.InteractionType

JCNeedle.setForeground() JCAbstractNeedle.setForeground()

JCNeedleStyle JCIndicatorStyle

JCScale.Direction JCAbstractScale.Direction

In JClass 4 was: In JClass 5 becomes:
82 Part I ■ Components and Layout Managers

4
Date Chooser

Features of JCDateChooser ■ Classes and Interfaces ■ Properties ■ Methods ■ Examples

4.1 Features of JCDateChooser

JCDateChooser is a component that displays a calendar in one of four variant forms. Each
one displays the days of the month in the familiar form of a calendar, but varies the ways
that the month and year are displayed.

The different styles are:
83

■ Spin Popdown
The year is shown in a spin box; the month is shown in a popdown.

■ Dual Spin
Spin boxes are used to display both the year and the month.

■ Quick Select
The year is shown in a spin box; a table is used to display all twelve months. One of
the months may be highlighted to indicate that it has been selected.

■ Read Only
The year and month are shown in non-editable fields. The table showing the days of
the month is read-only as well. Selected “special” dates still appear highlighted.

■ Like the standard Swing components, JCDateChooser provides for the optional use of
a Tool Tip.

The accompanying figure shows the full component in its Quick Select form, so the year is
shown in a spin box, while tables are used to show months and days of the month. Note
that special days, in this case Saturdays and Sundays, are distinguishable from the others.
84 Part I ■ Components and Layout Managers

You can observe the other calendar styles by running the example called
examples.elements.DateChooser.java.

Figure 27 A JCDateChooser.
Chapter 4 ■ Date Chooser 85

4.2 Classes and Interfaces

Classes in the com.klg.jclass.util.calendar Package

4.2.1 The CalendarComponent Interface

The calendar component uses a single model for the day, month, and year.

The methods declared in public interface CalendarComponent are:

■ public void setCalendarModel(JCValueModel model)
Sets the model which provides the current date being used by the calendar
component.

■ public void setSpecialDates(JCCalendar special_dates
Sets the special dates being used by the calendar component.

■ public void setLocale(Locale locale);
Sets the locale being used by the calendar component.

AbstractLabel An abstract class for setting dates in a locale-dependent
fashion. It is used for MonthLabels and YearLabels.

DayTable The days of the month.

JCCalendarContainer A container that manages CalendarComponent children.
That is, any calls to the calendar component interface
methods are automatically passed to any calendar
component children.

JCCalendar A calendaring utility class that can define special dates and
custom date classes, such as “Tuesdays” or “April Fool’s
Day” (April 1).

JCCalendar augments java.util.Calendar by providing
extra date-specific capabilities.

JCDateChooser A GUI component with four styles of calendar. Special
dates display differently from other dates.

MonthLabel Displays a locale-specific table of month labels.

MonthPopdown Encapsulates the months of the year in a popdown.

MonthSpin Encapsulates the months of the year in a spin box.

MonthTable Encapsulates the months of the year in a table.

YearLabel Presents the designated year in a label.

YearSpin Presents the designated year in a spin box.
86 Part I ■ Components and Layout Managers

■ public void addActionListener(ActionListener l)
Adds an action listener to detect specific actions on this component.

■ public void removeActionListener(ActionListener l)
Removes action listener to detect specific actions on this component.

4.2.2 The SpecialDate Interface

This interface has only one method:

boolean isSpecialDate(int year, int month, int date, int week)

You’ll note that the numeric value for the week (1 - 52) is a redundant parameter in
isSpecialDate. This is done for efficiency’s sake. If you implement the SpecialDate
interface, you will have to supply a numeric value for the week even though it is possible
to compute it from the first three parameters in isSpecialDate. Note that you use
JCCalendar’s dayofweek() method to calculate this value.
Chapter 4 ■ Date Chooser 87

4.3 Properties

Properties of JCDateChooser

Properties of JCCalendar

For a full listing of the properties, see Appendix A.

4.4 Methods

JCDateChooser
There are four visual aspects to the date chooser: Quick Select, Dual Spin, Spin Popdown,
and Read Only. Use setChooserType(int type) to select the type you want to display.
type is one of JCDateChooser.DUAL_SPIN, JCDateChooser.QUICK_SELECT,
JCDateChooser.READ_ONLY, or JCDateChooser.SPIN_POPDOWN.

The CalendarComponent interface provides the mechanism for extracting parts of a
JCDateChooser date. The methods are getDayComponent(), getMonthComponent(), and
getYearComponent().

chooserType For specifying the date chooser type, use one of
JCDateChooser.DUAL_SPIN, JCDateChooser.QUICK_SELECT,
JCDateChooser.READ_ONLY, or
JCDateChooser.SPIN_POPDOWN.

days The days array* used by the date chooser

minimumDate,
maximumDate

Bounds between which dates are valid. Any date outside
these bounds will be rejected by the validator.

months The months array* used by the date chooser

shortMonths The months’ short form array* used by the date chooser

toolTipText The text that appears in the tool tip box when the mouse
pointer rests over the component.

value The currently selected date.

*This array must be at least as long as what the JCDateChooser’s locale expects. By
default, the array is initialized to the locale’s default list.

addSpecialDate,
removeSpecialDate

Mark a special date on the calendar, or remove one that has
already been designated as special.

isSpecialDate A Boolean indicating whether the given date is special.
88 Part I ■ Components and Layout Managers

As noted in the section on properties, you set minimum and maximum dates by
providing setMinimumDate() and setMaximumDate() with a java.util.Calendar object.

Set the currently selected date programmatically with setValue(), or determine what its
value is with getValue(). The parameter is once again a java.util.Calendar object.

JCCalendar
While not subclassed from java.util.Calendar, JCCalendar is used in conjunction with
it to provide for a classification of some dates as “special.” Special days are managed
through these methods: addSpecialDate() and removeSpecialDate(), which take a
SpecialDate object as a parameter. and isSpecialDate(). There is no restriction on how
many dates may be deemed special.

The class contains a number of utility methods. One, called isLeapYear(), can be used to
determine if any given year is a leap year. With dayOfWeek(), you can determine the day
of the week given a year, month, and day. You can clone a Calendar object using
copyCalendar().

Certain applications involving calendars require that certain days are treated specially.
For example, some businesses that are open on the weekend close on Mondays. In such a
case, it is useful to be able to lump all Mondays together and classify them as days when
the store is closed. Perhaps the store’s founder always holds a sale on his birthday, the
29th of February. In this and similar cases, it’s useful to be able to denote anniversary
days that occur on the same date every year. There are other days, such as Labor day,
which is defined as the first Monday in September. JCCalendar contains inner classes
DayOfWeek, MonthDayOfMonth, MonthWeekDayOfWeek to help you deal with these situations.
These classes allow you to store various calendar objects of the types just mentioned. The
first of these allows you to store a day, like Sunday, by declaring an instance variable

DayOfWeek sunday = new DayOfWeek(0);

From the example, you see that the seven days of the week are mapped using a zero-
based index.

To store a date like July 4, use:

MonthDayOfMonth july4 = new MonthDayOfMonth(7, 4)

To store a date like Labor Day, use:

MonthWeekDayOfWeek laborDay = new MonthWeekDayOfWeek(9, 1, 1)

4.5 Examples

The illustrative code snippets shown here demonstrate how you can create special days
and how you can set bounds on the permissible dates. Refer to the Date Chooser
Chapter 4 ■ Date Chooser 89

../../examples/elements/DateChooser.html

example, automatically installed into com/klg/jclass/examples/elements/ when you install
JClass Elements, for the complete example.

//The location of JCDateChooser
import com.klg.jclass.util.calendar.*;

//Create an instance of JCDateChooser within your class.
dateChooser = new JCDateChooser();
...
//Create a "special day"
JCCalendar special_dates = new JCCalendar();
// Make Sundays special days
special_dates.addSpecialDate(new JCCalendar.DayOfWeek(0));
...
dateChooser.setSpecialDates(special_dates);
...
//Set bounds for the calendar
Calendar max = Calendar.getInstance();

max.set(max.YEAR, 2050);
dateChooser.setMaximumDate(max);
90 Part I ■ Components and Layout Managers

../../examples/elements/DateChooser.html

5
JCPopupCalendar Component

Features of JCPopupCalendar ■ Classes

Constructors and Methods ■ Listeners and Events ■ Examples

5.1 Features of JCPopupCalendar

JCPopupCalendar is a component that allows you to edit the date and time using a drop-
down calendar. In its editable form, the popup calendar displays a text field with a button
next to it. Pushing on the button pops down a calendar from which a date and time can be
selected. By default, the calendar has spinboxes for the year, month, and time along with
a table which displays the days of the month. The day table updates each time the year
and month are changed with the mouse clicks. The time spinbox allows editing of the
hour, minute, second, and meridiem.

JCPopupCalendar is an extension of JComboBox. Instead of selecting an item from a drop-
down list, the user selects a date/time value using a popup calendar editor.
JCPopupCalendar uses a JFormattedTextField that is configured to edit dates as its text
editor. The text editor's value is kept in sync with the popup calendar editor's value, so
changing one will automatically update the other. As with JComboBox, JCPopupCalendar is
non-editable by default. In this case, the text field is replaced with a button which when
selected activates the popup calendar editor. The popup calendar editor can still change
the value in the non-editable case.

Note: This component can only be used with JDK 1.4 and above. Those using JDKs
prior to JDK 1.4 can use JCPopupField which is a part of JClass Field.
91

Figure 28 A sample popup calendar.

The default value for a JCPopupCalendar component is the current date and time.

5.2 Classes

The pertinent classes to JCPopupCalendar are:

JCPopupCalendar Creates the JCPopupCalendar component.

JCPopupCalendarEditor Interface that the popup editor must implement.

JCPopupCalendarBeanInfo Contains the JCPopupCalendar bean information.

DateTimeChooser Creates the component that the popup calendar editor
displays to the user.
This contains the JCDateChooser and TimeSpin
components that are manipulated by the user to select
a new date and/or time.

DateTimePopup Creates the actual calendar popup editor.
This class is responsible for implementing the
JCPopupCalendarEditor interface, containing the
DateTimeChooser, and communicating with the actual
popup object.

JCDateChooser Allows the date to be edited. This component can be
configured to use various formats. For more
information, see Features of JCDateChooser, in
Chapter 4.
92 Part I ■ Components and Layout Managers

TimeSpin Allows the time to be edited with a spinner.

JCPopupListener Responds to events that happen in the popup.

JCPopupEvent Gets passed to JCPopupListeners when the value is
committed from the popup calendar to
JCPopupCalendar.
Chapter 5 ■ JCPopupCalendar Component 93

5.3 Properties

Method Type Description

calendarType int Calendar type.
This must be one of the following:

■ JCPopupCalendar.DATE_TIME
(default): indicates that both the
date and time can be edited.

■ JCPopupCalendar.DATE: indicates
that only the date can be edited.

hidePopupOnDayTableClick boolean If the value is TRUE, the popup
calendar editor will pop down when a
day is selected.
If the value is FALSE (default), the day
can be changed without the editor
popping down, and the calendar will
pop down when it is double-clicked.

maximumDate java.util.Date Maximum date value.
If a date is provided, the popup
calendar cannot be set later than that
value.
Default is null, meaning that there is
no maximum.

minimumDate java.util.Date Minimum date value.
If a date is provided, the popup
calendar cannot be set earlier than that
value.
Default is null, meaning that there is
no minimum.

popupEditor JCPopupCalendarEditor Current calendar popup editor. Default
is DateTimePopup.
The DateTimeChooser is retrieved
through this property, allowing for
other properties to be set (for example,
chooserType).
Note: It is not recommended that you
build your own popupEditor, but
that you customize the one that is
provided.
94 Part I ■ Components and Layout Managers

5.4 Constructors and Methods

JCPopupCalendar Constructors
JCPopupCalendar’s constructor constructs a popup calendar, where the default date and
time can be configured, as well as the locale and calendar type.

showApplyButton boolean If the value is TRUE, an Apply button is
available on the calendar which, when
selected, will commit the current value
and will pop down the editor. This may
be useful if the
hidePopupOnDayTableClick property is
FALSE, but it is still desirable to provide
another way to dismiss the popup,
other than double clicking on the day
table.
If the value is FALSE (default), the
Apply button is not available.

showPopupOnUpDownArrow boolean If the value is TRUE (default), the
calendar popup editor will pop up when
the up or down arrow is selected in the
text editor.
If the value is FALSE, the calendar
popup editor will not pop up when the
up or down arrow is selected in the text
editor.

value java.util.Date Current value of the component.
Defaults to the current date and time.

Constructor Description

JCPopupCalendar() Constructs a JCPopupCalendar.DATE_TIME calendar
type, with the current date, the current time, and the
default locale selected.

public JCPopupCalendar
(int calendarType)

Constructs a JCPopupCalendar of the given calendar
type with the current date, the current time, and the
default locale selected.

public JCPopupCalendar
(Date d)

Constructs a JCPopupCalendar.DATE_TIME calendar
type, with the default locale and provided date and
time.

public JCPopupCalendar
(int calendarType, Date d)

Construct a JCPopupCalendar of the given type with
the default locale and provided date and time.
Chapter 5 ■ JCPopupCalendar Component 95

5.5 Listeners and Events

The JCPopupListener listens for JCPopup events, which are generated when the calendar
popup editor’s value is committed to JCPopupCalendar and the popup is popped down.
JCPopupEvent has the following methods:

5.6 Examples

Please refer to examples.elements.CalendarPopup.java to see a working popup
calendar, or refer to examples.elements.CalendarDialog.java to see a how to use the
DateTimeChooser component in a dialog editor.

The following code produces a screen with three possible popup calendars: one in
English, one in French, and one in Spanish.

import com.klg.jclass.swing.JCPopupCalendar;
import com.klg.jclass.util.swing.JCExitFrame;
import com.klg.jclass.util.swing.JCAlignLayout;
import com.klg.jclass.util.JCEnvironment;
import javax.swing.*;
import javax.swing.border.TitledBorder;
import java.awt.*;
import java.util.Locale;
import java.util.Date;

public class CalendarPopup extends JPanel {

protected JCPopupCalendar popup1, popup2, popup3;

public CalendarPopup()
{
// Set the layout
setLayout(new BorderLayout());

public JCPopupCalendar
(Date d, Locale l)

Constructs a JCPopupCalendar.DATE_TIME calendar
type, with a specified locale and provided date and
time.

public JCPopupCalendar
(int calendarType, Date d,
Locale l)

Constructs a JCPopupCalendar of the calendar type,
with a specified locale and provided date and time.

Method Description

getSource() The source of the event which is the DateTimePopup object.

getNewValue() The new value to be committed.
96 Part I ■ Components and Layout Managers

// Place all the popup fields in a panel
JPanel p = new JPanel();
add(p, BorderLayout.CENTER);
JCAlignLayout mgr = new JCAlignLayout(2, 3, 3);
p.setLayout(mgr);
p.setBorder(new TitledBorder("JClass Elements JCCalendarPopup"));

//
// Example of a Date/Time JCPopupCalendar in English
//
Locale locale = new Locale("en", "US");
popup1 = new JCPopupCalendar(JCPopupCalendar.DATE_TIME, new Date(),

locale);
popup1.setEditable(true);
Component c = popup1.getEditor().getEditorComponent();
if (c instanceof JTextField) {
((JTextField)c).setColumns(15);
}
p.add(new JLabel("Date Time Editor (English): "));
p.add(popup1);
mgr.setResizeWidth(popup1, true);

//
// Example of a Date JCPopupCalendar in French
//
locale = new Locale("fr", "FR");
popup2 = new JCPopupCalendar(JCPopupCalendar.DATE, new Date(), locale);
popup2.setEditable(true);
p.add(new JLabel("Date Editor (French): "));
p.add(popup2);
mgr.setResizeWidth(popup2, true);

//
// Example of a non-editable Date/Time JCPopupCalendar in Spanish.
//
locale = new Locale("es", "ES");
popup3 = new JCPopupCalendar(JCPopupCalendar.DATE_TIME, new Date(),

locale);
popup3.setEditable(false);
p.add(new JLabel("Date Time Editor (Spanish): "));
p.add(popup3);
mgr.setResizeWidth(popup3, true);
}

public static void main(String[] args)
{

if (JCEnvironment.getJavaVersion() < 140) {
System.err.println("\nThis example is incompatible " +

"with JDKs prior to 1.4.0
System.exit(1);

}

Chapter 5 ■ JCPopupCalendar Component 97

JCExitFrame frame = new JCExitFrame("JCPopupCalendar Examples");
CalendarPopup t = new CalendarPopup();
frame.getContentPane().add(t);
frame.pack();
frame.show();
}

}

98 Part I ■ Components and Layout Managers

6
Exit Frame

Features of JCExitFrame ■ Properties ■ Methods and Constructors ■ Examples

6.1 Features of JCExitFrame

A subclass of JFrame that listens for window close events and exits the application when
the event is received, or hides the window so that it can be made visible later on. There is
a JFrame constant in JavaTM2 v1.3 called EXIT_ON_CLOSE that performs the same function.

It is useful for applications containing a single frame. If you used the utility frames
available in JClass 3.x versions of jclass.contrib, it is useful to know that this replaces
DemoFrame and ContribFrame.

6.2 Properties
A JCExitFrame has the same properties as a JFrame, and one additional one:

For a full listing of the properties, please see Appendix A, Bean Properties Reference.

exitOnClose A Boolean property that determines whether the application should
exit when the user closes the frame or when close() is called
(default: true). If set to false, the frame is hidden; it can be made
visible later.
Note: Compare this to using JFrame.EXIT_ON_CLOSE in JDK 1.3,
which performs the same function.
99

6.3 Methods and Constructors

Methods
JCExitFrame subclasses from JFrame, making it a JFrame with a built-in mechanism for
catching window-closing events. The following methods report or control which action is
taken when a window-closing event is received.

Constructors
There are two constructors. The default constructor provides an untitled frame while the
other accepts a parameter which is used to set the frame’s title.

6.4 Examples

Use a JCExitFrame as you would a JFrame, and manage window closing events using the
exitOnClose property.

import java.awt.Font;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import com.klg.jclass.util.swing.*;

public class ExitFrameExample {

 static String message0 = "Many JClass examples and demos
 use a JCExitFrame.";
 static String message1 = "\n\nKeep in mind that you can
 hide a JCExitFrame \nrather than disposing of it entirely.";
 static String message = message0 + message1;

 static JTextArea messageArea = new JTextArea(message);

getExitOnClose() Returns false if the window will be hidden rather than exiting
when a window-closing event is received.

setExitOnClose() A Boolean method that determines whether the application
should exit when the user closes the frame or when close() is
called (default: true). If set to false, the frame is hidden; it can be
made visible later.

JCExitFrame() Default constructor.

JCExitFrame(String
title)

The parameter provides a title for the frame.
100 Part I ■ Components and Layout Managers

 public static void main(String[] args){
 String title = "A Basic Frame That Responds to Window-Closing

Events";
 JCExitFrame frame;

 frame = new JCExitFrame(title);
 frame.setSize(450, 100);
 frame.setVisible(true);
 frame.setExitOnClose(false); // Hide the window
 // instead of closing it.

 messageArea.setFont(new Font("Times-Roman", Font.BOLD, 14));
 frame.getContentPane().add(new JScrollPane(messageArea),
 "Center");
 messageArea.setVisible(true);

 }
}

Figure 29 A JCExitFrame containing a JTextArea.
Chapter 6 ■ Exit Frame 101

102 Part I ■ Components and Layout Managers

7
Font Choosers

Features of JCFontChooser and its Subclasses ■ Classes ■ Properties ■ Methods ■ Examples

7.1 Features of JCFontChooser and its Subclasses

JCFontChooser is the abstract base class for JCFontChooserBar and JCFontChooserPane.
It provides common data and methods for both components.

■ Constructors let you specify what the default fonts and sizes are, as well as letting you
set whether underlining is on.

■ JCFontChooserPane — provides a pane of controls designed to allow a user to
manipulate and select a font. It is suitable for use in a tab pane or a dialog window.
JCFontChooserPane includes a preview area with sample text.

■ JCFontChooserBar provides a pane of controls designed to allow a user to manipulate
and select a font. It is suitable for use in a JToolbar.

■ Like the standard Swing components, JCFontChooserBar provides for the optional
use of a Tool Tip.
103

Figure 30 A JCFontChooserBar and a JCFontChooserPane.
104 Part I ■ Components and Layout Managers

7.2 Classes

7.3 Properties

Properties of JCFontChooserBar and JCFontChooserPane

For a full listing of the properties, please see Properties of JCFontChooserBar and
Properties of JCFontChooserPane in Appendix A.

7.4 Methods

Because the initial choice of font parameters is made in the constructor, and subsequent
changes are made by interacting with the GUI, there are no public methods of interest in
JCFontChooserBar or JCFontChooserPane. Only the listener methods need concern you.

You listen for font changes by implementing the JCFontListener interface. Its two
methods are fontChanging(), and fontChanged(). Both methods take a JCFontEvent

JCFontEvent Used to inform listeners that the font has been changed. Its
constants are:
JCFontEvent.FONT_NAME_CHANGE,
JCFontEvent.FONT_SIZE_CHANGE
JCFontEvent.BOLD_STYLE_CHANGE,
JCFontEvent.ITALIC_STYLE_CHANGE,
JCFontEvent.UNDERLINE_STYLE_CHANGE.

JCFontChooserBar A GUI component suitable for a menu bar.

JCFontChooserPane A GUI component suitable for a dialog or a tabbed pane.

JCFontListener The listener interface. Methods are fontChanging and
fontChanged.

JCFontAdapter A convenience class that provides empty implementations of the
listener interface’s methods.

toolTipEnabled A Boolean property that indicates whether Tool Tips are being
used. The get method is called isToolTipEnabled.

selectedFont The set method of this property has three different signatures: a
single parameter Font font, a two parameter version, Font font,
boolean underline, and a version for setting every font-related
parameter, String name, int style, int size, boolean
underline.
Chapter 7 ■ Font Choosers 105

parameter. Use the first method to inspect and possibly veto the change in font, or in the
underline state. Use the second to notify of these changes.

A JCFontEvent contains information about its source, the type of change that was made,
old and new Font values, old and new underline values, and a Boolean fontChanging
parameter that indicates whether this is a vetoable change or not.

Note: The “old” font and underline values are read-only.

7.5 Examples

In this example we’ll add both a JCFontChooserBar and a JCFontChooserPane to the
same panel. Normally, you place a JCFontChooserPane in its own dialog, but adding it to
a JPanel as is done here doesn’t change the way JCFontChooserPane’s properties are set.
The code snippet shows how to instantiate both components and how to add a
JCFontListener so you can respond to font-changed events. Since the listening object is
JCFontExample, it needs to provide an implementation of fontChanged, the method that
is declared in interface JCFontListener. The JCFontChooserBar is added to a JToolbar,
as is shown first.

public class JCFontExample extends JPanel implements JCFontListener {

 ...
 bar = new JToolBar();
 Font font3 = new Font("Serif", Font.PLAIN, 12);
 font3 = JCFontChooser.setUnderline(font3, true);
 ...

 fontBar = new JCFontChooserBar(font3);
 bar.add(fontBar);
 fontBar.addJCFontListener(this);
 ...
 fontPane = new JCFontChooserPane(font3);
 fontPane.addJCFontListener(this);
 ...
}

106 Part I ■ Components and Layout Managers

Figure 31 A bug notice in a JCFontChooserPane.

Please note that there is a problem with early Java 1.2 VMs that may require an extra
block in your code. You may not see the changes in JCFontChooserPane’s preview area
unless you add the following block of code:

//================== JCFontListener interface methods

/** Font is changing. Listeners can change
 */ the font and/or underline indication. */
public void fontChanging(JCFontEvent e) {
}

/** Font has been changed. */
public void fontChanged(JCFontEvent e) {
 System.out.println("Font changed to: "+ e.getFont());

Object source = e.getSource();
 if (source instanceof JCFontChooserBar || source instanceof

JCFontChooserPane) {
Font font = e.getFont();
Container parent = sampleText.getParent();

 sampleText.setFont(font);
sampleText.repaint();

 }
}

Chapter 7 ■ Font Choosers 107

108 Part I ■ Components and Layout Managers

8
HTML/Help Panes

Features of JCHTMLPane ■ Features of JCHelpPane ■ Classes ■ Properties

Constructors and Methods ■ Examples

8.1 Features of JCHTMLPane

JCHTMLPane is a subclass of Swing’s JEditorPane which has been hard-coded to use the
HTML Editor kit. HTML display can be as simple as passing the HTML code to
JCHTMLPane’s setText() method. Alternatively, you can pass the text as a parameter to
the constructor. This class also implements a Hyperlink listener to implement link
traversal and different cursor images (hand cursor and wait cursor).

JCHTMLPane is an extension of JEditorPane that lets you:

■ Construct an HTML pane, given a URL.

■ Construct an HTML pane, given a pointer to HTML text.

■ Change the icon for the cursor when it is over a link.

■ Follow the reference in a link.

■ Use an MDIMenuBar and MDIToolBar in addition to a JMenuBar.

Note that the HTML functionality in Swing’s JEditorPane is based on
javax.swing.text.html.HTMLEditorKit, which supports most, but not all, HTML 3.2
tags. The APPLET tag is not supported (March, 2000), and care should be taken when
using OBJECT, SCRIPT, FRAME, and dynamic HTML.

8.2 Features of JCHelpPane

JCHelpPane is an extension of JCHTMLPane in that it contains two JCHTMLPanes under a
header pane. A typical use places an HTML page containing a title in the header pane, a
table of contents page on the left, and a contents page on the right. You can use it to
provide your users with a lightweight browser for a HTML-based help facility.

■ The lightweight browser becomes part of your application.

■ Once links have been followed, forward and back buttons allow users to retrace their
steps.
109

■ JCHelpPane checks to see if a URL for the title pane was specified. If it wasn't, the title
pane is not shown.

8.3 Classes

JCHTMLPane provides all the functionality necessary for an HTML-based pane, while
JCHelpPane implements a lightweight two- or three-paned help system. Both of these are
JavaBeans.

Figure 32 JCHTMLPane inherits from JEditorPane.

Figure 33 JCHelpPane inherits from JSplitPane.

8.4 Properties

JCHTMLPane’s properties are the same as JEditorPane’s. The class behaves like a
JEditorPane with extra HTML awareness.

For a full listing of JCHTMLPane’s properties, see Appendix A, Bean Properties Reference.
110 Part I ■ Components and Layout Managers

8.5 Constructors and Methods

8.5.1 Constructors

Constructors for JCHTMLPane
Along with the parameterless constructor for creating a blank pane, two others provide a
handy way of instantiating a pane and providing it with HTML content in one operation.

Constructors for JCHelpPane
JCHelpPane’s constructors let you specify source pages using URLs or Strings. The latter
may be advantageous if you generate some HTML-formatted text dynamically.

8.5.2 Methods

JCHTMLPane
The method of note is setText(), which is inherited from JEditorPane. Use it to pass text
with embedded HTML tabs to the JCHTMLPane. An alternative way to pass the text is to
via the pane’s constructor, described above.

Constructor Description

JCHTMLPane() Constructs a blank HTML pane.

JCHTMLPane(URL url) Constructs an HTML pane with the specified URL.

JCHTMLPane(String text) Constructs an HTML pane with the specified HTML
text.

Constructor Description

JCHelpPane() Constructs a single blank “contents” pane.

JCHelpPane(URL contents,
URL view)

Constructs, from the specified URLs, a help screen
with a contents pane on the left and a view pane on the
right. Note that Strings may be used in place of URLs.

JCHelpPane(URL contents,
URL view, URL title)

Constructs, from the URLs, a help screen with three
frames: a header frame that spans the top of the
window, and two side-by-side frames underneath. Note
that Strings may be used in place of URLs.
Chapter 8 ■ HTML/Help Panes 111

JCHelpPane
Although it is possible to construct a help browser using just the constructors for
JCHelpPane, it has a number of methods are provided that may help your construction:

8.6 Examples

JCHTMLPane

The following incomplete code fragment shows how you can compose your HTML text
dynamically, then pass it to an instance of JCHTMLPane. The result is shown in the
accompanying figure.

String myHTMLText = "<HTML><HEAD><TITLE>JCHTMLPane Demo</TITLE></HEAD>";
 myHTMLText += "<BODY>HTML (Bold) <P> <H1>JCHTMLPane
 understands basic HTML tags,</H1>";
 myHTMLText += "such as headings:";
 myHTMLText += "<H2 COLOR=red>A second level heading.</H2>";
 myHTMLText += "<H3 COLOR=blue>And lists:</H3>
";
 myHTMLText += "Life is like a box of choco-lates";
 myHTMLText += "Judy, Judy, Judy";
 myHTMLText += "Play it again, Sam";
 myHTMLText += "
 And links to other Web pages";
 myHTMLText += "<P>Tables too!<TABLE BORDER=10
 BORDERCOLOR=BLACK BGCOLOR=WHITE>";
 myHTMLText += "<tr><td>ROW ONE, First COLUMN cell</TD>
 <TD>ROW ONE, Second COLUMN Cell</TD>
 <TD>ROW ONE, Third COLUMN cell</TD></TR>";

getContentsPage()
setContentsPage()

Gets or sets the contents page. That is, get or set the HTML
pane on the left hand side.

getContentsPane() Returns the HTML pane on the left hand side.

getTitlePage()
setTitlePage()

Gets or sets the title page. That is, gets or sets the HTML pane at
the top.

getViewPage()
setViewPage()

Gets or sets the view page. That is, gets or sets the HTML pane
on the right hand side.

getViewPane() Returns the HTML pane on the right hand side.

isUseToolBar()
setUseToolBar()

Gets or sets the value of useToolBar.
If the set method returns true, the component traverses up the
tree to find its root pane container and adds a tool bar to it if one
does not exist. If one exists, it adds the HTML navigation
buttons to the existing toolbar. If two buttons exist in the tool bar
named Back and Forward, then it will not add the buttons, but
rather add listeners to those buttons.
112 Part I ■ Components and Layout Managers

 myHTMLText += "<tr><td>ROW TWO, First COLUMN cell</TD>
 <TD>ROW TWO, Second COLUMN Cell</TD>
 <TD>ROW TWO, Third COLUMN cell</TD></TR>";
 myHTMLText += "<tr><td>ROW THREE, First COLUMN cell</TD>
 <TD>ROW THREE, Second COLUMN Cell</TD>
 <TD>ROW THREE, Third COLUMN cell</TD></TR>";
 myHTMLText += "</TABLE>";
 myHTMLText += "</BODY></HTML>";

 JCHTMLPane pane = new JCHTMLPane(myHTMLText);
pane.setEditable(false);
 pane.setVisible(true);
 frame.getContentPane().add(pane, BorderLayout.SOUTH);

 frame.pack();
 frame.setVisible(true);

Figure 34 A JCHTMLPane whose contents are derived from HTML Strings in the class.
Chapter 8 ■ HTML/Help Panes 113

JCHelpPane
This example demonstrates instantiating JCHelpPanes with both Strings and URLs. If any
of the URLs can’t be found, the version of JCHelpPane that uses Strings is displayed.

import com.klg.jclass.util.swing.*;
import com.klg.jclass.util.value.*;
import javax.swing.*;
import java.awt.*;

/**
 * This example demonstrates the use of a JCHelpPaneExample
 */
public class HelpPaneExample {

// All the work is done in main()

public static void main(String args[]) {
 String contents = new String(
 "The contents pane of the JCHelpPane if URL isn’t found.");
 String view = new String(
 "The view pane of the JCHelpPane if URL isn’t found.");
 String title = new String("Header for the Help Pane.");
 JFrame frame = new JCExitFrame("Help Pane Example");
 JCHelpPane app = new JCHelpPane(contents, view, title);
 try {
 java.net.URL contentsFromURL = new
 java.net.URL("http://....../toc_page.html");
 java.net.URL viewFromURL = new
 java.net.URL("http://....../readme.html");
 java.net.URL titleFromURL = new
 java.net.URL("http://....../jclasslogo.html");
 app = new JCHelpPane(contentsFromURL, viewFromURL,
 titleFromURL);
 }
 catch (java.net.MalformedURLException e) {
 System.out.println("Malformed URL");
 }

 app.setPreferredSize(new Dimension(640, 400));
 frame.getContentPane().add(app);
 frame.pack();
 frame.setSize(700, 450);
 frame.show();
}

}

114 Part I ■ Components and Layout Managers

Figure 35 A JCHelpPane showing the HTML version of this manual.

Figure 36 In this example, the alternate JCHelpPane when the URL can’t be found.
Chapter 8 ■ HTML/Help Panes 115

116 Part I ■ Components and Layout Managers

9
Sortable Table

Features of JCMappingSort ■ Features of JCSortableTable ■ Classes and Interfaces

Constructors and Methods ■ Examples

9.1 Features of JCMappingSort
Sorting can be accomplished by indexing the list of objects that are going to be ordered
according to some comparison policy. It can be much more efficient to sort these indices
instead of sorting the objects themselves. The idea is to form an array of indices. Initially,
a[1] = 1, a[2] = 2, and so on, up to n, the length of the list. After sorting, the result might
be a[1] = 9, a[2] = 3, ... a[n-1] = 1, ... a[n] = 7, where now the index in a[1] corresponds to
the object that is the smallest element in the list according to the supplied comparison
rule. The index in a[2] corresponds to the next smallest object, and so on. The list hasn’t
changed, but the array supplies a mechanism for traversing the list according to some
ordering principle.

The foregoing paragraph shows you that if you want to use this type of mapping sort in
your application, you’ll need to supply an array of indices and a comparator to use with
your list. In some cases, a comparator is already available. A number of common objects
implement the Comparable interface in Java 2. You can compare any of these types
without needing to supply an explicit comparator.

JCMappingSort provides a sort() method, which takes an implementation of
JCIntComparator and an array of indices as parameters, and modifies the passed-in
array based on the compare() method defined by your implementation of
JCIntComparator.

9.2 Features of JCSortableTable
JCSortableTable uses a comparator and a configureable list of column indices, making
this class useful for establishing a sort policy that specifies what should be done when two
elements in the primary column have the same value. Elements in the primary column
117

that compare the same are arranged among themselves by sorting the secondary column.
The process can be continued as necessary by including more columns in the list.

■ Each column in a table may have an associated list of columns that are to be used as
sort keys. Normally, the column itself is specified as the primary sort key.

■ You can set whether a table is re-sorted automatically when its data changes.

■ You can set or toggle the sorting order, permitting sorting from less to greater, or from
greater to less.

■ Sort Dates, Objects that implement Comparable, and wrapped primitive types.

■ You can provide your own implementation of JCRowComparator to perform row
comparisons in the sort algorithm. See the example at the end of this chapter for
details.

9.3 Classes and Interfaces

JCMappingSort

You’ll find these classes and interfaces in com.klg.jclass.util.

CollectionIntComparator Implements JCIntComparator to compare two lists.

JCIntComparator An interface that declares a compare method taking two
indices as parameters. The compare method must be able
to compare the Objects corresponding to the indices.

JCMappingSort Contains a static sort() method that is passed a
JCIntComparator and an array of indices. The array
containing the indices is sorted rather than sorting the
list objects to which they refer.
118 Part I ■ Components and Layout Managers

JCSortableTable

Using your own comparator with JCSortableTable
If you wish to provide your own comparator for a JCSortableTable, follow these steps:

1. Create a javax.swing.table.TableModel.

2. Create a com.klg.jclass.util.swing.DefaultRowSortTableModel, giving it the
TableModel.

3. Set your comparator to this instance of a DefaultRowSortTableModel.

4. Set the DefaultRowSortTableModel on your JCSortableTable.

Note that the data model you set in step 2 should be a JCRowSortTableModel. If it is not,
JCSortableTable will wrap the data model you provide with a JCRowSortTableModel.

JCSortableTable JCSortableTable is a subclass of JTable that internally wraps any
TableModel it is given with a JCRowSortTableModel and provides
a Comparator that has a configureable list of the column indexes
that it uses for sorting. Clicking on a column header invokes the
sorting behavior tied to that column, clicking again reverses the
direction of the sort.

JCRowComparator This interface is to be used with JCRowSortModel. It sorts rows
using a specified ordered list of columns as the sort keys. By
default, it sorts on the first column.

JCRowSortModel An interface that defines methods for sorting rows by specifying
which columns are to be used as keys.
Chapter 9 ■ Sortable Table 119

9.4 Constructors and Methods

Constructors for JCSortableTable

The core of the sorting mechanism is based on providing the sort() method with a list of
indices specifying an ordered list of columns on which the sort is to be based:

 public static void sort(JCIntComparator comparator, int indices[])

 public static void sort(JCIntComparator comparator, int indices[],
 int start, int end)

Both methods require a JCIntComparator and an array of indices. The second method
includes two additional parameters that are useful in many sorting algorithms.

JCSortableTable() JCSortableTable is a subclass of JTable that internally
wraps any TableModel it is given with a
JCRowSortTableModel and provides a Comparator that
has a configureable list of the column indexes that it
uses for sorting.

JCSortableTable(
int numRows,
int numColumns)

Constructor that specifies the number of rows and
columns in the table.

JCSortableTable(
Object[][] rowData,
Object[] columnNames)

The constructor for a data source composed of an array
of Objects.

JCSortableTable(
TableModel dm)

Constructor that accepts a TableModel.

JCSortableTable(
TableModel dm,
ColumnModel cm)

Constructor that accepts both a ColumnModel and a
TableModel.

JCSortableTable(
TableModel dm,
ColumnModel cm,
ListSelectionModel sm)

Constructor that accepts a ColumnModel, a TableModel,
and a ListSelectionModel.

JCSortableTable(
Vector rowData,
Vector columnNames)

The constructor for a Vector data source.
120 Part I ■ Components and Layout Managers

Methods
In addition to the host of methods it inherits from JTable, JCSortableTable adds many
of its own:

createDefault
ColumnsFrom
Model()

Overridden from the superclass to allow auto-creation of our own
column model.

getAutoSort() Returns whether the data is automatically sorted when it changes
according the current comparator.

getCellEditor() Takes parameter int row, int column to get the cell editor for
that row and column.

getCellRenderer() Takes parameter int row, int column to get the cell editor for
that row and column.

getKeyColumns() Takes parameter int column to return the key columns used to
sort the table model when clicking on the specified column.

getUnsortedRow() Takes parameter int sortedRow to return the unsorted row index
of specified sorted row.

setAutoSort() Takes parameter boolean autoSort to specify whether the data
should be automatically sorted when it changes.

setKeyColumns() Takes parameters int column, int[] keyColumns to set the key
columns used to sort the table model when clicking on specified
column.

setModel() Takes parameter javax.swing.table.TableModel newModel to
set the data model for this table to newModel and registers with for
listener notifications from the new data model.

setTableHeader() Takes parameter javax.swing.table.JTableHeader newHeader
to overwrite the default implementation and add a
MouseListener to the new table header.

sort() Takes parameter int column to sort rows using the quicksort
algorithm.

tableChanged(e) Uses parameter avax.swing.event.TableModelEvent e to pass
information about the event. Overrides super class method to
check for a change in sorting.

unsort() Restores the unsorted order.
Chapter 9 ■ Sortable Table 121

9.5 Cell Renderers for JCSortableTable

Normally, you do not need to be concerned with the details of how table cells are
rendered because renderers for most common cases have already been supplied. On the
other hand, you may wish to use a custom renderer of your own design. While it is
possible to use setDefaultRenderer() to set a cell renderer for a JTable, the method is
not available for use with JCSortableTable. Instead, JClass uses its own powerful cell
editor/renderer mechanism. This allows all JClass products to manage collections of
JCCellRenderer types uniformly instead of having to manage the renderer types
separately. To set your own cell renderer, use JClass Cell’s EditorRendererRegistry, and
implement one of the renderer interfaces. Please see the com.klg.jclass.cell API for details.

9.6 Examples

JCMappingSort example
JCMappingSort cannot be instantiated by calling its constructor. Instead, it has two static
methods of the form:

■ public static void sort(JCIntComparator compartor, int indices[]);

■ public static void sort(JCIntComparator compartor, int indices[],
int start, int end);

The purpose of these two methods is to sort a mapping of indices instead of an array of
objects. This is particularly useful when dealing with a Collection, or some form of data
model where you reference a data element with an index. Your implementation of the
JCIntComparator interface provides the implementation details for the objects you are
sorting.

JCIntComparator should look like this:

 public interface JCIntComparator {
 public int compare(int index1, int index2);
 }
122 Part I ■ Components and Layout Managers

../api/com/klg/jclass/cell/EditorRendererRegistry.html

The CollectionIntComparator is a specific implementation of JCIntComparator that can
compare Collections. Sample code looks like this:

public class CollectionComparator implements JCIntComparator {

protected Collection collection;
protected Comparator comparator;

public CollectionComparator(Collection collection, Comparator
comparator) {

 this.collection = collection;
 this.comparator = comparator;
 }

public CollectionComparator(Collection collection) {
 this(collection, null);
 }

public int compare(int i1, int i2) {
 Object a1 = collection.get(i1);
 Object a2 = collection.get(i2);

 if (comparator != null) {
 // use comparator if provided
 return comparator.compare(a1, a2);
 }
 else if (a1 instanceof Comparable) {
 // items are comparable so get them to compare themselves
 return ((Comparable) a1).compare(a2);
 }
 else {
 // We have no comparator and the objects are not

comparable
 throw new IllegalArgumentException("Objects are not

Comparable; please provide a Comparator with the constructor:
CollectionComparator(Collection collection, Comparator

comparator)");
 }
 }

 }

JCSortableTable examples
One use of JCSortableTable is given in examples/elements/SortTable.

A full example based on SortTable.java follows. It demonstrates sorting on columnar
data containing Strings, and two types of primitives: Boolean values and integers. The
example provides its own implementation of JCRowComparator to perform a comparison
between two rows in the table.

import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Dimension;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
Chapter 9 ■ Sortable Table 123

../../examples/elements/SortTable.java

import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.Comparator;
import java.text.*;

import javax.swing.JButton;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.UIManager;
import javax.swing.table.AbstractTableModel;
import javax.swing.BoxLayout;
import javax.swing.table.DefaultTableCellRenderer;

import com.klg.jclass.util.swing.JCExitFrame;
import com.klg.jclass.util.swing.JCSortableTable;
import com.klg.jclass.util.swing.DefaultRowSortTableModel;
import com.klg.jclass.util.swing.DefaultRowComparator;
import com.klg.jclass.util.swing.JCRowSortModel;
import com.klg.jclass.util.swing.JCComparableRow;

/**
 * Sorting is allowed on these columns:
 * "First Name", "Last Name", "Position", "Favorite Number", and
* "Vegetarian"
 */
public class SortDateJCSortableTable extends JPanel implements

ActionListener {

 protected final static String[] names =
 {"First Name", "Last Name", "Position",
 "Favorite Number", "Vegetarian",
 "Calendar","GregorianCalendar"};

protected final static Object[][] data = {

{"Diana", "Zukerman", "Research Officer",
new Integer(1), new Boolean(false),"",""},
 {"Adam", "Petersen", "Consultant",
new Integer(2), new Boolean(false),"",""},
{"Mary", "Binfield", "Research Associate",
new Integer(5), new Boolean(false),"",""},
{"Michael", "Rizzo", "Research Fellow",
new Integer(2), new Boolean(true),"",""},
{"Ahmad", "Baldi", "Consultant",
new Integer(3), new Boolean(false),"",""},
{"Ian", "Clemente", "Research Fellow",
new Integer(7), new Boolean(false),"",""},
 {"David", "Rubinstein", "Consultant",
new Integer(4), new Boolean(false),"",""},

};

 protected JButton buttonUnsort = null;
 protected JCSortableTable sortableTable = null;

 /** Indicates that the first object is less than the second object.
*/
124 Part I ■ Components and Layout Managers

 public static final int LESS_THAN = -1;
 /** Indicates that the first object is equal to the second object. */
 public static final int EQUAL = 0;
 /** Indicates that the first object is greater than the second object. */
 public static final int GREATER_THAN = 1;

public SortDateJCSortableTable() {
 // Set a simple BoxLayout manager
 setLayout(new BoxLayout(this,BoxLayout.X_AXIS));

 //set up the calender values to be tested

 for (int r =0 ; r < data[0].length ; r++){
 Calendar c = Calendar.getInstance();
 c.set(1998+r, r, 1);

 GregorianCalendar gc = (GregorianCalendar)c;

 data[r][5] = c;
 data[r][6] = gc;
 }
 // Create and add the table
 sortableTable = createTable();
 add(new JScrollPane(sortableTable));

 // Create and add an Unsort button for the table
 buttonUnsort = new JButton("Unsort");
 buttonUnsort.addActionListener(this);
 add(buttonUnsort);
}

public static JCSortableTable createTable() {
EditableTableModel model = new EditableTableModel();
 JCSortableTable table = new JCSortableTable();

// JCSortTable will do this anyway,
 // but this way we have a member handle to it.
 DefaultRowSortTableModel mRSmodel =
 new DefaultRowSortTableModel(model);
 mRSmodel.setComparator(new MyComparator());

 //set model and cast it down to the "DefaultRowSortTableModel"
 table.setModel(mRSmodel);

// We use the last name if the first name is the same.
 int sort0[] = {0, 1};
 table.setKeyColumns(0, sort0);

// We use the first name if the last name is the same.
 int sort1[] = {1, 0};
 table.setKeyColumns(1, sort1);

// We use person's name if the department is the same.
 int sort2[] = {2, 0, 1};
Chapter 9 ■ Sortable Table 125

 table.setKeyColumns(2, sort2);

 //set the non primitive renderers, no editor defined for this
example

 table.getColumn("GregorianCalendar").setCellRenderer(
new CGFCalendarCellRenderer());

 table.getColumn("Calendar").setCellRenderer(
new CGFCalendarCellRenderer());

 return table;
}

public static void main(String args[]) {
JCExitFrame frame = new JCExitFrame(

"SortDateJCSortableTable Example");
SortDateJCSortableTable app =
 new SortDateJCSortableTable();

if (args.length > 0) {
if (args[0].equals("windows")) {

try {
 UIManager.setLookAndFeel(

"com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
 } catch (Exception e) {}

}
}

frame.getContentPane().add(app);
 frame.setBounds(50, 50, 650, 350);

frame.show();
}

//===== ActionListener interface method ========

public void actionPerformed(ActionEvent e) {
if (e.getSource() instanceof JButton) {

 sortableTable.unsort();
 }
}

public static class CGFCalendarCellRenderer
extends DefaultTableCellRenderer
{
protected java.text.DateFormat date_formatter =
 java.text.DateFormat.getDateInstance();

public void setValue(Object o)
{

String str = null;
if (o instanceof String) {

str = (String)o;
}
else if (o instanceof Calendar) {

str = date_formatter.format(((Calendar)o).getTime());
}

126 Part I ■ Components and Layout Managers

else {
str = o.toString();

}
 super.setValue(o == null ? "" : str);
}
}
private static class EditableTableModel extends AbstractTableModel {

 EditableTableModel() {
 super();
 }

 public int getColumnCount() {
 return names.length;
 }

 public int getRowCount() {
 return data.length;
 }

 public Object getValueAt(int row, int col) {
 return data[row][col];
 }

 public String getColumnName(int column) {
 return names[column];
 }

 public Class getColumnClass(int col) {
 return getValueAt(0,col).getClass();
 }

// Disallow edits on dates, and on favorite number
 public boolean isCellEditable(int row, int col) {
 return col != 3 && col != 5 && col != 6;
 }

 public void setValueAt(Object aValue, int row, int column) {
 data[row][column] = aValue;
 }
} // EditableTableModel

static class MyComparator extends DefaultRowComparator {

 public MyComparator(){
 super(JCRowSortModel.FORWARD);
 }
 public int compare(JCComparableRow row1, JCComparableRow row2) {
 int[] kc = super.getKeyColumns();

for (int i = 0; i < kc.length; i++) {
 Object o1 = row1.getValueAt(kc[i]);

Object o2 = row2.getValueAt(kc[i]);

 if(o1 instanceof Calendar && o2 instanceof Calendar) {
 Calendar c1 = (Calendar)o1;
Chapter 9 ■ Sortable Table 127

 Calendar c2 = (Calendar)o2;

 if(c1.equals(c2)) {
 return EQUAL;
 }
 else if(c1.before(c2)) {
 return LESS_THAN;
 }
 else {
 return GREATER_THAN;
 }
 }
 }
 return super.compare(row1, row2);

 }

}//MyComparator

} // SortDateJCSortableTable
128 Part I ■ Components and Layout Managers

10
Multiple Document Frame

Features of JCMDIPane and JCMDIFrame ■ Properties ■ Methods ■ Examples

10.1 Features of JCMDIPane and JCMDIFrame

The Multiple Document Interface (MDI) model is a common way of organizing and
presenting information in windows-style environments. The MDI model makes it
possible to arrange multiple child windows inside a parent window, such as multiple files
in a text editor, or multiple charts in one frame. In effect, the parent window becomes the
desktop within which the children operate. Before Swing, there was no way of building
MDI applications using the Abstract Windowing Toolkit (AWT).

If you were limited to using raw Swing components, you would likely build your primary
GUI application within a JFrame. The container used to hold a multiple-document
interface is a JDesktopPane, which you would put into the content pane of your JFrame.
Finally, you would add JInternalFrames as needed for your document windows.

The JClass Elements components JCMDIPane and JCMDIFrame augment the functionality
of JDesktopPane and JInternalFrame respectively. Simply replace JDesktopPane with
JCMDIPane, and JInternalFrame with JCMDIFrame, and your job is almost complete! The
only other thing you need to do is to use the setMDIMenuBar() method to set individual
129

menu bars on each of your internal frames. These menu bars will replace the default
menu bar that you set on JCMDIPane.

JClass Elements’s multiple document JCMDIPane interface component extends Swing’s
JDesktopPane view to provide the following standard MDI features:

■ True maximization. Instead of keeping two menu bars when an internal pane is
maximized, JCMDIPane optimizes screen real estate by placing menus on the desktop’s
menu bar. All necessary functionality is preserved.

■ Automatically adds a localized Windows menu containing two sections.

■ The upper section of the Windows menu allows you to select from one of three
window tiling algorithms: Cascade, Tile Horizontally, or Tile Vertically.

■ The upper section of the Windows menu also allows you to Minimize/Maximize the
selected frame, or to (re)Arrange Icons of the minimized frames.

■ The lower section of the Windows menu provides a list of the titles of the internal
frames, giving the user the ability to switch focus to any internal frame by selecting its
name from the menu.

■ Adds unmaximize/close icons to the far right of the menu bar when one of the frames
is maximized.

Figure 37 The differences between a JCMDIPane (lower image) and a JInternalFrame (upper image).
130 Part I ■ Components and Layout Managers

Public classes:

JCMDIPane — subclass of JDesktopPane
JCMDIFrame — subclass of JInternalFrame

JCMDIPane is API compatible with JDesktopPane, but the behavior differs in that it
automatically generates a Windows menu on the first toolbar it finds in its ancestral
hierarchy. This Windows menu has arrangement options Cascade, Tile Horizontally,
Tile Vertically, and Arrange Icons, and a selectable list of all the existing internal
frames. When frames are maximized the first child of an internal frame’s content pane is
reparented to a panel that is mapped on top of all the frames so that the maximized frame
makes maximal use of the existing window real estate.

Default dragging and resizing behavior is done speedily by drawing wire frames.
Chapter 10 ■ Multiple Document Frame 131

JCMDIFrame, when calling getContentPane, returns an additional child that is the single
child of the true content pane. This is done for easy reparenting purposes as well as for
support routines that aid in the manipulation of this child.

Figure 38 A JFrame containing a JCMDIPane and multiple JCMDIFrames.

Figure 39 A maximized internal frame—the iconify and close buttons have moved to the menu bar.
132 Part I ■ Components and Layout Managers

Figure 40 One frame is maximized. The Iconify, Maximize, and Close buttons appear on the menu bar.

10.2 Properties

For a full listing of these components’ properties, see Properties of JCMDIFrame and
Properties of JCMDIPane, in Appendix A.

JCMDIFrame has the same properties as JInternalFrame.

Along with the properties inherited from JDesktopPane, there are two additional
properties in JCMDIPane: frameManipulationStyle and considerIconsWhenTiling.
Setting frameManipulationStyle allows you to control how a frame is painted when it is
dragged within the desktop. The default style, JCMDIPane.DEFAULT, causes JCMDIPane to
repaint the entire frame when dragging. The second style, called wireframe, causes
JCMDIPane to repaint a rectangle that matches the size of the frame. The wireframe
dragging style is used when frameManipulationStyle is set to JCMDIPane.WIREFRAME.
The considerIconsWhenTiling property controls the way that windows are tiled (false
means that windows will be tiled using the entire desktop area; true means that windows
will not be tiled over any icons that appear on the desktop).
Chapter 10 ■ Multiple Document Frame 133

10.3 Methods

Methods of JCMDIFrame

Methods of JCMDIPane

getMDIMenuBar()
setMDIMenuBar()

Gets or sets the menu bar associated with this frame. If the parent
of this frame is a JCMDIPane, then this menu bar will become the
containing frame's menu bar when this frame becomes active.
setMDIMenuBar() takes a JMenuBar as a parameter.

getMDIToolBar()
setMDIToolBar()

Gets or sets the toolbar associated with this frame. If the parent of
this frame is a JCMDIPane, then this toolbar will become the
containing frame's toolbar when this frame becomes active.
setMDIToolBar() takes a JToolBar as a parameter.

getContentPane() Overrides getContentPane() to provide a container one level
removed so that the frame can be maximized by reparenting its
children to a different parent.

getAllNonIconifiedFrames()
getAllIconifiedFrames()

Returns all non-iconified/iconified JCMDIFrames
currently displayed in the desktop.

getDragMode()
setDragMode()

Sets the dragging style of the frames on the desktop.
Because JCMDIPane uses its own Desktop Manager, it
does not use the dragging implementation of
JDesktopPane; instead, it uses the dragging
implementation of frameManipulationStyle.
However, setting this property actually sets the
frameManipulationStyle to the equivalent style.
Valid styles are:
OUTLINE_DRAG_MODE — corresponds to WIREFRAME
LIVE_DRAG_MODE — corresponds to DEFAULT

getFrameManipulationStyle()
setFrameManipulationStyle()

Sets the frame manipulation style. Valid styles are:
WIREFRAME — drags and resizes as a wire frame,
DEFAULT — default style specified by the PLAF you
are using. The default style causes JCMDIPane to
paint the entire frame when dragging it.

setInitialLayout() Allows the layout of the MDIFrame windows to be set
before the MDIPane window has been displayed. This
has no effect after the MDIPane has been displayed
for the first time.

isMaximized()
setMaximized()

Methods to manage the maximized pane.
134 Part I ■ Components and Layout Managers

getMDIMenuBar()
setMDIMenuBar()

The parameterless version of getMDIMenuBar()
returns the menu bar used if we have no internal
frames, whereas a JInternalFrame parameter is
used to return the menu bar used for the specified
frame. If the frame is a JCMDIFrame with a non-null
MDIMenuBar, then this is returned. Otherwise, the
MDIMenuBar for the this pane is returned.

setMDIMenuBar() with a JMenuBar parameter sets
the toolbar to use if there are no internal frames.

getMDIToolBar()
setMDIToolBar()

Returns the toolbar used for the specified frame. If
the frame is a JCMDIFrame with a non-null
MDIToolBar, then this is returned; otherwise, the
MDIToolBar for the this pane is returned.
getMDIToolBar() takes a JInternalFrame as a
parameter.

Sets the toolbar to use if there are no internal frames.
setMDIToolBar() takes a JToolBar as a parameter.

getNonSelectedIcon()
setNonSelectedIcon()

Gets or sets the non-selected icon, which appears
before the non-selected items in the menu. The
default is an empty icon that acts as a placeholder so
menu items will be aligned properly. Setting both
these icons to null restores the previous behavior.

getSelectedIcon()
setSelectedIcon()

Gets or sets the icon which is to appear beside the
selected window item in the Windows menu. The
default icon is a check mark.

getPreferredSize() If this pane has an ancestor that's a scroll pane or it
has no children, then it returns the default preferred
size. If it has children and no scroll pane for an
ancestor, then it returns a size big enough to show all
its children in their current locations.

getTopFrame() Returns the topmost frame.

setInitialLayout() Allows the layout of the MDIFrame windows to be
set before the MDIPane window has been
displayed. This has no effect after the MDIPane has
been displayed for the first time. If not called, the
initial layout is unpredictable.

Pass one of these constants to the method:
JCMDIPane.TILE_HORIZONTAL,
JCMDIPane.TILE_VERTICAL, JCMDIPane.CASCADE.
Chapter 10 ■ Multiple Document Frame 135

There are a number of protected methods available to application programmers who
wish to subclass a JCMDIPane. Consult the API for a list of these methods.

activateFrame()
arrangeIcons()
cascadeWindows()

closeFrame()
deactivateFrame()

maximize()

tileWindowsHorizontally()
tileWindowsVertically()
unmaximize()

Makes this frame the active frame.
Arranges “iconified” panes along the bottom.
Arranges non-iconified panes in cascade form.

Closes or deactivates a frame.

Maximizes a pane, filling the host frame.

Tiles the frames in the specified direction

Returns the frame to its former size.

Note: These methods were protected in version 4.0
and have been made public in version 4.0.1.
136 Part I ■ Components and Layout Managers

10.4 Examples

This code snippet highlights the few things that need to be done to convert your MDI
application based on JInternalFrame into one based on JCMDIFrame.

import com.klg.jclass.swing.JCMDIPane;
import com.klg.jclass.swing.JCMDIFrame;

/**
 * The class extends JClass Elements’ JCExitFrame so you don’t have to
 * write repetitive window closing code.
 */
public class MDIInternalFrameDemo extends JCExitFrame implements
 ActionListener {
/**
 * The internal frames reside inside a JCMDIPane
 */
public MDIInternalFrameDemo() {

 super("JCMDIPane Demo");
 ...
 desktop = new JCMDIPane(); // a custom layered pane
 createFrame(); // Create first window
 ...
}
/**
 * Each frame can have its own menu bar, whose elements are
 * defined by you. A "Window" menu is added automatically.
 */
protected void createFrame() {

 JCMDIFrame iframe = new JCMDIFrame(
 "MDI Frame #" + (++MDIFrameCount),

 true, //resizable
 true, //closable
 true, //maximizable
 true);//iconifiable

...
/**
 * Use this method to set the menu bar on the frame, even though
 * it appears on the desktop rather than on the individual frame.
 */
iframe.setMDIMenuBar(mbar);
...
Chapter 10 ■ Multiple Document Frame 137

138 Part I ■ Components and Layout Managers

11
Multi-Select List

Features of JCMultiSelectList ■ Properties ■ Constructors and Methods ■ Examples

11.1 Features of JCMultiSelectList

JCMultiSelectList matches the API for JList except that two lists instead of one appear
in the component’s GUI. There are four buttons between the two lists that move items
back and forth. The left-hand list contains non-selected items and the right-hand list
contains the selected items. In the context of a JCMultiSelectList, if an item is marked
as selected, it means more than simply being highlighted. Besides providing a visual
division of list items into the two columns, selected and non-selected, there are numerous
methods for dealing with the values and indices of a set of selected values.

■ JCMultiSelectList provides a visual component that clearly distinguishes items
chosen from a given list by removing them from the original list and placing them in
another container. See the next figure for details.

■ You can create a JCMultiSelectList using one of its five constructors, four of which
correspond to the constructors of a JList. The remaining constructor has an empty
ListModel, but has a parameter for setting the horizontal gap between the two lists.

■ As with a JList, you can specify content using the ListModel interface, or you can
supply content using Objects or Vectors.

■ You are able to modify content in various ways depending on which objects you used
to populate the main list.

■ End users may perform single or multiple, contiguous or non-contiguous selections of
list items.

■ The ListSelectionModel generates a ListSelectionEvent to allow you to process
user interactions.
139

Four buttons control the movement of items in one list to the other. They are shown in
the next figure. The top button moves selected items from the left-hand list to the right-
hand list. The second from the top moves all items out of the left-hand list to the right-
hand list. The bottom two buttons perform the analogous operation, but in the other
direction.

Figure 41 GUI for JCMultiSelectList.

You set a ListModel on the component, or you can use the default model that is provided.
In the latter case, you simply add Objects to the existing component. The component
uses getSelected() to determine which items should appear in the right-hand list. Only
the non-selected items show on the left.

11.2 Properties

A selection of JCMultiSelectList’s properties are shown in the following table. Please
see Properties of JCMultiSelectList and Bean Properties Reference in Appendix A for a
complete list.

Property Description

model Gets or sets the model associated with the list.

prototypeCellValue Sets the prototypical cell value, a cell used for the calculation of
cell widths, rather than forcing the calculation to inspect every
item in the list.
140 Part I ■ Components and Layout Managers

11.3 Constructors and Methods

Constructors
There are constructors for ListModel, array, and Vector types of data models.

Methods
JCMultiSelectList subclasses from JComponent, giving it a host of inherited methods. It
overrides some, like addListSelectionListener, to provide specific functionality. The
table shows a few frequently used methods. Please refer to the API for a full list.

toolTipText Gets or sets the text that appears in the tool tip.

Method Name Description

addListSelectionListener() Adds a listener to the ListSelectionListener’s
list. Its parameters are a javax.swing.event and a
ListSelectionListener.

addSelectionInterval() Adds the specified interval to the current selection.
It takes two int parameters that specify the
beginning and ending positions of the interval.

clearSelection() Clears the selection.

deselectAll() Moves all items from the right list to the left list.

deselectItem() Moves the items selected in the right list to the left
list.

fireSelectionValueChanged() Forwards the given notification event to all
registered listeners. It takes two int parameters
that specify the begin and end positions of the
interval, and a third boolean parameter that
specifies whether this is one of a rapidly occurring
series of events. Parameters are int firstIndex,
int lastIndex, boolean isAdjusting

See javax.swing.event.ListSelectionEvent.

getAnchorSelectionIndex() Returns the first index argument from the most
recent interval selection.

getSelectedIndex() Returns the index of the first selected cell.

getSelectedIndices() Returns the array of indices of selected items.

getSelectedValues() Returns an array of the selected cell values.
Chapter 11 ■ Multi-Select List 141

http://www.javasoft.com/products/jdk/1.2/docs/api/javax/swing/event/ListSelectionEvent.html

11.4 Examples

See examples.elements.MultiSelectList for a full listing of this example.

One of JCMultiSelectList’s constructors takes an array of list items as its parameter. Call
this array data and define it as follows:

static String[] data = {"Tom", "Dick", "Harry"};

Create a JCMultiSelectList and give it the data:

JCMultiSelectList list = new JCMultiSelectList(data);

You process events generated by the list by implementing the valueChanged() method of
the ListSelectionListener interface.

setModel() Sets the list’s data model. Its single parameter is a
javax.swing.ListModel.
142 Part I ■ Components and Layout Managers

http://www.javasoft.com/products/jdk/1.2/docs/api/javax/swing/ListModel.html

12
Spin Boxes

Features of JCSpinBox and JCSpinNumberBox ■ Classes and Interfaces ■ Properties

Constructors and Methods ■ Examples

12.1 Features of JCSpinBox and JCSpinNumberBox

Swing provides checkboxes and radio buttons, but no spin boxes. The JClass spin boxes
fill the need for components that let the user select a number or an Object by clicking on
up or down arrows. You can use a JCSpinBox to spin through a list of Objects (so long as
the required editors and renderers exist, or have provided them), or use a
JCSpinNumberBox, which can display any numeric object.

■ JCSpinBox looks very much like a JComboBox except that it has no dropdown. It takes
a list of objects and presents these values in a spin box. You use the up and down
arrows to cycle through the list.

■ Use JCSpinNumberBox for incrementing and decrementing objects of type
java.lang.Number. You can select numbers of type Byte, Short, Integer, Long, or
Float, and you can set maximum and minimum values for the spin operation.

■ Both components follow Swing’s MVC paradigm. A JCSpinBoxModel interface is
used to manage the spin box’s data.

■ JCSpinBox has four constructors for the various ways in which you can supply data;
that is, as Objects, Vectors, or via a JCSpinBoxModel. A fourth parameterless
constructor is available. It uses an empty DefaultSpinBoxModel as a placeholder for
data that will be provided later.

■ Contents of a spin box may be modified via a JCSpinBoxEditor interface.
143

■ A KeySelectionManager interface defines a method for associating a keystroke to an
item in the spin box.

■ JCSpinBoxModel methods are inherited from javax.swing.ListModel and
javax.swing.ComboBoxModel. These are addListDataListener, getElementAt,
getSize, removeListDataListener, getSelectedItem, and setSelectedItem.

■ The listener is the addValueListener, and the event is JCValueEvent.

12.2 Classes and Interfaces

Interfaces

Helper Classes

12.3 Properties

JCSpinBox properties
These properties contain all of the functionality of JCSpinBox. In keeping with Swing’s
MVC design paradigm, the JCSpinBoxModel interface contains a data model for
JCSpinBox modeled after javax.swing.ComboBoxModel. JCSpinBoxModel is a

JCSpinBoxEditor The editor component used for JCSpinBox components.

JCSpinBoxModel A data model for JCSpinBox modeled after
javax.swing.ComboBoxModel.
JCSpinBoxModel is a ListDataModel with a selected item. This
selected item is in the model since it is not always in the item list.
It inherits its methods from javax.swing.ComboBoxModel and
javax.swing.ListModel.

JCSpinBox
MutableModel

Extends JCSpinBoxModel to define models that are changeable. It
declares methods for adding, inserting, and removing elements.

AbstractSpinBox The super class for JCSpinBox and JCSpinNumberBox. The class is
abstract because it does not define spinUp(), spinDown(), and
checkArrowButtons(), but it does provide the common
functionality for JCSpinBox and JCSpinNumberBox.

JCValueEvent The event object has methods getSource, getOldValue, and
getNewValue, allowing you to find out which spin box posted the
event, and its old and new values.
144 Part I ■ Components and Layout Managers

http://www.javasoft.com/products/jdk/1.2/docs/api/javax/swing/ComboBoxModel.html
http://www.javasoft.com/products/jdk/1.2/docs/api/javax/swing/ListModel.html

ListDataModel with a selected item. This selected item is in the model since it is not
always in the item list.

JCSpinNumberBox properties
These properties let you specify the operation, that is, whether the numbers in the spin
box are whole numbers or floating point numbers. Additionally, you can set the spin
increment and bounds.

For a complete list of properties, please see Properties of JCSpinBox and Properties of
JCSpinNumberBox in Appendix A.

Property Name Description

actionCommand Sets or returns the action command that is included in the event
sent to action listeners.

continuousScroll Determines how selection is handled when the mouse button is
held down on a spin arrow button. If continuousScroll is true,
the component scrolls continuously through the items in the
scroll box until the mouse button is released. If
continuousScroll is false, a separate mouse click is required
to select the next item in the scroll box.

getItemAt Returns the list item at the specified index.

getItemCount Returns the number of items in the list.

model Sets or returns the data model currently used by the JCSpinBox.

renderer Sets or returns the renderer used to display the selected item in
the JCSpinBox field.

selectedIndex Returns the index of the currently selected item in the list, or
selects the item at the position marked by the index.

selectedItem Returns the currently selected item, or sets the selected item in
the JCSpinBox by specifying the object in the list.

isEditable Returns true if the JCSpinBox is editable.

Property Name Description

continuousScroll Determines how selection is handled when the mouse button is
held down on a spin arrow button. If continuousScroll is true,
the component scrolls continuously through the items in the
scroll box until the mouse button is released. If
continuousScroll is false, a separate mouse click is required
to select the next item in the scroll box.
Chapter 12 ■ Spin Boxes 145

12.4 Constructors and Methods

Constructors

JCSpinBox methods
These methods manage a list of items by providing methods for adding and removing
items from the list of objects, and for adding listeners for these changes. See the API for
the complete list of JCSpinBox methods.

maximumValue Returns or sets the maximum value. The default is
Long.MAX_VALUE

minimumValue Returns or sets the minimum value. The default is
Long.MIN_VALUE.

numberFormat The NumberFormat object used by the spinner to parse and
format numbers

operation Takes a JCSpinNumberBox.INTEGER and sets the operation.

spinStep The spin increment. The default is 1.

value The current value of the spinner.

valueRange Convenience method to set maximum and minimum values
together. Defaults are Long.MIN_VALUE,
Long.MAX_VALUE.

JCSpinNumberBox() Use this component when you want to let your users increment
or decrement a object of type java.lang.Number.
Long.MIN_VALUE, Long.MAX_VALUE, and floating point numbers
outside the range Double.MIN_VALUE cause an exception. Use
setOperation(JCSpinNumberBox.FLOATING_POINT) when you
want to use floating point numbers. The use of
setOperation(JCSpinNumberBox.INTEGER) is optional, since this
is the default case.

JCSpinBox() Use this component when you want a spin box containing an
Object. For some non-standard objects, you may need to create
your own editor and renderer.

Method Name Description

addActionListener() Adds an ActionListener.

Property Name Description
146 Part I ■ Components and Layout Managers

12.5 Examples

To use a JCSpinNumberBox, simply instantiate it and set its parameters according to your
needs, for example:

JCSpinNumberBox float_spin = new JCSpinNumberBox();
float_spin.setName("FloatingPointSpinBox");
float_spin.setValue(new Integer(0));
float_spin.setValueRange(new JCSpinNumberBox.Range(new Integer(0),

 new Integer(12)));
float_spin.setSpinStep(new Double(1.5));
float_spin.setOperation(float_spin.FLOATING_POINT);

You don’t need to use the setOperation method when you create an INTEGER version of a
JCSpinNumberBox since that is the default type.

Similarly, you can create a JCSpinBox:

 JCSpinBox string_spin = new JCSpinBox(titles);
 string_spin.setName("StringSpinBox");
 string_spin.setSelectedIndex(0);
 string_spin.addValueListener(listener);

The figure shows that each time a mouse click changes a spin box’s value, the generated
event can report on both the old and the new value. The output in Figure 42 results from
clicking each spin box in succession twice.

removeActionListener() Removes an ActionListener.

removeAllItems() Removes all items from the item list.

addItem() Adds an item to the item list.

removeItem() Removes an item from the item list.

removeItemAt() Removes the item at anIndex. To use this method, the
JCSpinBox data model must implement
JCSpinBoxMutableModel.

addItemListener() Adds a java.awt.event.ItemListener. Its parameter is
the class that will receive the event when the selected item
changes.

removeItemListener() Removes a java.awt.event.ItemListener.

Method Name Description
Chapter 12 ■ Spin Boxes 147

Figure 42 Capturing spin box events.

Listening for Spin Box Events
JCNumberSpinBox uses the JCValueModel interface to set and get its values, and to define
its listeners. To respond to spin events, do something like this:

1. Create a listener as part of the setup for the component, for example:

JCValueListener listener = new ValueListener();

2. Then add a listener to the spin box:

float_spin.addValueListener(listener);

3. Implement the listener class and define a valueChanged method:

class ValueListener implements JCValueListener {
 public void valueChanging(JCValueEvent e) {
 }

 public void valueChanged(JCValueEvent e) {
 System.out.println(((Component) e.getSource()).getName() +

" changed from " +
e. getOldValue() +
" to " +
e.getNewValue());

}
} // end of ValueListener
148 Part I ■ Components and Layout Managers

13
Splash Screen

Features of JCSplashScreen ■ Classes and Interfaces ■ Methods and Constructors ■ Examples

13.1 Features of JCSplashScreen

A splash screen is an image that appears while an application is loading. It serves both as
an indication that the program is being loaded from disk and as a place to put notices,
such as copyrights, version or release numbers, and the like.

JCSplashScreen does the following:

■ Creates a splash screen given an Icon or the location of the image. The image
location is the package path of the image and must be in the classpath. Any Icon, such
as a GIF, JPEG, or other supported image may be used, so long as the time it takes to
load is acceptable. An example of an image is in /demos/elements/gauge/gauge.gif.

■ Once instantiated, a JCSplashScreen appears only once. Hiding it causes it to be
disposed.

13.2 Classes and Interfaces

The stand-alone class com.klg.jclass.swing.JCSplashScreen subclasses from
java.lang.Object, providing an independent mechanism for displaying an image in a
window in the middle of the screen.

No interfaces are used in JCSplashScreen.
149

13.3 Methods and Constructors

Constructors

Methods

13.4 Examples

If you compile and run the code for this example, which is given below, you’ll see a
message printed on the console informing you that the application has started. The image
for the splash screen is loaded and is made visible, then the program enters a wait state
until a sleep command times out. An application that takes a long time to load would
exhibit similar behavior. The user knows that loading is in progress because the splash
screen is visible. It contains whatever graphic information you think is appropriate.

The example uses a JCExitFrame to hold a button that controls the disposal of the splash
screen. All that is required for its disposal is the command setVisible(false), but once
it is given, the splash screen is gone for good. You would issue this command after
receiving notification that the application is ready to run.

JCSplashScreen() JCSplashScreen has two constructors for instantiating a splash
screen, one taking a String that specifies the location of the
image, and the other taking an Icon. It throws an
illegalArgumentException if the image String or image icon is
invalid.

setVisible() A Boolean method that shows or hides the splash screen. Once the
splash screen is hidden, the splash screen window will be
disposed. This means the splash screen cannot become visible
again.
150 Part I ■ Components and Layout Managers

Figure 43 The visible elements in SplashScreenExample.

import com.klg.jclass.swing.*;
import com.klg.jclass.util.swing.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.net.*;

public class SplashScreenExample extends JFrame implements
 ActionListener {
 static JCSplashScreen ss;
 static Icon image;
 SplashScreenExample() {
 URL url =
 getClass().getResource("/images/SplashScreen.gif");
 // convert URL to Image icon
 image = new ImageIcon(url);
 System.out.println(
 "\n\nLoading an image using URL\n\nURL: " + url);
 System.out.println("This example simulates the loading");
Chapter 13 ■ Splash Screen 151

 System.out.println(
 "of a large application using a sleep command.");
 // initialize(image);
 ss = new JCSplashScreen(image);
 }

 public void actionPerformed(ActionEvent e) {
 if (e.getSource() instanceof JButton) {
 ss.setVisible(false);
 }
 }

 public static void main(String[] args){
 SplashScreenExample sse = new SplashScreenExample();
 String title = "Splash Screen Appears while Application Loads";
 JCExitFrame frame;
 frame = new JCExitFrame(title);
 ss = new JCSplashScreen(image);
 ss.setVisible(true);
 try {
 Thread.currentThread().sleep(10000);
 } catch (Exception e) {}
 Container cp = frame.getContentPane();
 JButton btn = new JButton(
 "Click Me and I'll Close the Splash Screen!");
 btn.addActionListener(sse);
 cp.add(btn);
 frame.setSize(450, 100);
 frame.setVisible(true);

 frame.setExitOnClose(true); // Close the window so the
 application can exit.

 }

}

152 Part I ■ Components and Layout Managers

14
Tree/Table Components

Features of JCTreeExplorer and JCTreeTable ■ Classes and Interfaces ■ Properties ■ Examples

14.1 Features of JCTreeExplorer and JCTreeTable

Swing’s JTree and JTable are the two components that do more than merely display
data; they attempt to manage the data as well. This becomes important when you need to
organize large amounts of data and provide a view that displays a portion of it along with
an indication of its relationship to the rest. Information that has a hierarchical structure,
like a file system, can be displayed as tree data, while other types of data nicely fit a
tabular format. There are a large number of data structures that combine tree-like and
table-like properties. A file system has a hierarchical organization that begs to be
represented as a tree, yet the individual directories and files have properties, such as
name, size, type, and date modified, that fit nicely in a row-column organization.
Obviously there is a need for a component that lets you combine the look and
functionality of both a tree and a table.

JCTreeExplorer and JCTreeTable fill the need for components that have the dual
characteristics of a tree and a table, and provides these functions:

■ Allows you to view the object as a tree, with an accompanying table. Any tree node
may have tabular data associated with it.
153

■ Contains a flexible “painter” object that accommodates a Swing cell renderer or a
JClass cell renderer.

■ Permits the construction of arbitrary data sources as treetables through its
JCTreeTableModel interface. Any class can be used to supply data to the treetable,
provided that it implements the JCTreeTableModel interface.

■ The two components have advanced column sorting functionality. Each column can
have a different ordered set of columns that are to be used as secondary sort keys.
When a user clicks on a column header to sort that column, any identical cells are
arranged based on the sort order of the secondary key, or keys.

■ Cells may be edited by implementing JCCellEditor.

■ Folder icons can be customized by replacing the editor/renderer, or by setting a
JCIconRenderer.

Since JCTreeExplorer and JCTreeTable are enhancements of Swing’s JTable and JTree,
it’s a good idea to be familiar with those components to ease the learning curve. Need a
primer on Swing’s table and tree components? See the tutorial on How to Use Tables and
How to Use Trees at Sun’s javasoft Web site.

JCTreeExplorer presents a table for the currently selected node, while JCTreeTable
shows table rows for all visible nodes. See the following figure for the different visual
characteristics between the two components.

Figure 44 Views of a JCTreeTable and a JCTreeExplorer.
154 Part I ■ Components and Layout Managers

http://www.javasoft.com/docs/books/tutorial/uiswing/components/table.html
http://www.javasoft.com/docs/books/tutorial/uiswing/components/tree.html

JCTreeTable and JCTreeExplorer support Swing’s pluggable look-and-feel. The previous
figure shows the Windows look and feel, while the following two figures show the default
Metal look and feel.

Figure 45 JCTreeTable component, metal look and feel.

Figure 46 JCTreeExplorer component, metal look and feel.
Chapter 14 ■ Tree/Table Components 155

14.2 Classes and Interfaces

Interfaces for JCTreeExplorer and JCTreeTable

Here is the definition of the JCTreeTableModel interface:

public interface JCTreeTableModel {
 // Returns the value of the specific node and column
 public Object getValueAt(Object node, int column);
 // Returns whether a particular cell is editable,
 // given the node and column
 public boolean isCellEditable(Object node, int column);
 // Sets the value at a particular node and column
 public void setValueAt(Object value, Object node, int column);
 // The following methods map exactly onto
 // javax.swing.table.TableModel
 public void addTableModelListener(TableModelListener l);
 public Class getColumnClass(int column);
 public int getColumnCount();
 public String getColumnName(int column);
 public int getRowCount();

Interface Description

JCTreeIconRenderer In com.klg.jclass.util.treetable, this interface
represents a class that renders a tree icon. Not a renderer
in the strict definition of the word, it provides the icon to
be rendered. It is not necessary to make this interface do
the rendering since Icons know how to render themselves.

A default implementation of this class simply returns the
plaf icon it is passed.

The purpose of this mechanism is to allow a user to
override the icons being drawn in a tree without
a) having to figure out the default plaf for the icons that
they do not wish to override, and
b) overriding simple data-type editors.

Its single method is getNodeIcon.

JCTreeTableModel Model to use that combines the TreeModel and
TableModel interfaces. This model allows data to be
viewed as a multicolumn tree in a left-hand pane, and a
table in a right-hand pane.

Note that specific implementations need to implement
both JCTreeTableModel and TableModel for them to work
properly.
156 Part I ■ Components and Layout Managers

 public Object getValueAt(int row, int column);
 public boolean isCellEditable(int row, int column);
 public void removeTableModelListener(TableModelListener l);
 public void setValueAt(Object value, int row, int column);
 // The following methods map exactly onto javax.swing.tree.TreeModel
 public void addTreeModelListener(TreeModelListener l);
 public Object getChild(Object parent, int index);
 public int getChildCount(Object parent);
 public int getIndexOfChild(Object parent, Object child);
 public Object getRoot();
 public boolean isLeaf(Object node);
 public void removeTreeModelListener(TreeModelListener l);
 public void valueForPathChanged(TreePath path, Object newValue);
}

Chapter 14 ■ Tree/Table Components 157

Classes

Class Description

DefaultTreeTable
SelectionModel

Extends javax.swing.tree.DefaultTreeSelectionModel
and implements JCTreeTableSelectionModel. Like
JCMultiSelectList, a treetable offers different selection
modes. A treetable has an associated
DefaultTreeTableSelectionModel when it is created, but
you can define your own selection model, so long as it is a
subclass of DefaultTreeSelectionModel and implements
JCTreeTableSelectionModel.

TreeTableSupport Abstract class in com.klg.jclass.util.treetable that
provides an implementation that handles a
TreeModel/TableModel combination for use in a Table
component.

Its functionality includes tracking expanded node counts,
mapping and posting expansions, and selection events. It
also provides a node “painter” object that can be wrapped
into a Swing CellRenderer or a JClass CellRenderer.

JCSortableTable A subclass of JTable that internally wraps any TableModel it
is given with a JCRowSortTableModel and provides a
Comparator that has an adjustable list of the column indexes
that it uses for sorting. Clicking on a column header invokes
the sorting behavior tied to that column; clicking again
reverses the sort.

TreeWithSortable
Children

This class implements JCTreeTableModel and
JCRowSortModel.

It constructs a JCTreeTableModel that wraps a given
instance of a JCTreeTableModel and provides a sorted
mapping of the children for any given leaf node. The sort
order is defined by the configurable Comparator property.

com.klg.jclass.
util.treetable
BranchTree

An implementation of TreeModel that wraps a tree model so
that it only exposes branches; that is, non-leaf nodes. This is
useful for explorer-type views where the “tree view” portion
only displays the branch nodes.

DefaultTreeIcon
Renderer

An implementation of JCTreeIconRenderer, its
getNodeIcon method returns the icon to render at the right
of the specified value. This simple implementation returns
the plaf icon passed to it.
158 Part I ■ Components and Layout Managers

Providing your own sorting mechanism
If you need to provide your own sorting algorithm, one way is to subclass
JCRowComparator and pass a comparator of the new type to TreeWithSortableChildren.

14.3 Properties
For a complete list of properties, please see Properties of JCTreeExplorer and Properties
of JCTreeTable in Appendix A.

JCTreeExplorer A subclass of JSplitPane that provides a tree view on the
left-hand side of the split pane, and a table view on the right.

Constructor: JCTreeExplorer(JCTreeTableModel)

JCTreeTable A subclass of JTable that handles listeners, rendering,
editing, and painting of a component that combines tree-like
and table-like properties.

Constructor: JCTreeTable(JCTreeTableModel)

com.klg.jclass.
util.treetable
NodeChildrenTable

Maps the children of a particular node in a
JCTreeTableModel into a standard Swing TableModel.

Class Description
Chapter 14 ■ Tree/Table Components 159

Properties of JCTreeExplorer

Properties of JCTreeTable

14.4 Methods

JCTreeExplorer Methods

getTree() Returns the JTree component used.

getTable() Returns the JTable component used.

setKeyColumns() Sets which columns are to be used as primary and secondary sort
keys. It takes a column number (0, 1, 2 ...) as its first parameter,
and an array of column numbers as its second parameter.

Example: setKeyColumns(0, {1, 0}) specifies that when the
user clicks on the header in the first column, sorting takes place
based on the second column, and identical entries in the second
column are sorted based on the ordering implied by the first
column. This is a useful sort key for directories, where the first
column is the file or directory name, and the second column
contains the object’s size. Because directories have size zero, they
are sorted at the top and then arranged alphabetically.

treeTableModel The treeTableModel is the interface for the data.

treeIconRenderer Gets or sets the icon renderer. If this property is set to null, no
icon will be shown.

rootVisible You can show the root node or not, depending on the setting of
this Boolean property. The accessor method is called
isRootVisible.

showsRootHandles Determines whether the node handles are to be displayed.

getSelectionPath() Returns the javax.swing.tree.TreePath of the first
selected row inside the table view.

getSelectionPaths() Returns the javax.swing.tree.TreePath of the first
selected row inside the table view.

getTable() Returns the JTable component used.

getTree() Returns the JTree component used
160 Part I ■ Components and Layout Managers

getTreeIconRenderer() Returns the icon renderer being used.

setTreeIconRenderer() Sets the icon renderer.

setUI() Sets the javax.swing.plaf.TableUI UI.
Chapter 14 ■ Tree/Table Components 161

JCTreeTable Methods

addSelectionPath() Adds the node identified by the specified TreePath to
the current selection.

addSelectionPaths() Adds each path in the array of paths to the current
selection.

addTableHeader
MouseListener()

Adds a MouseListener to the table header.

addTreeExpansion
Listener()

Adds a listener for TreeExpansion events.

addTreeWillExpand
Listener()

Adds a listener for TreeWillExpand events.

collapsePath() Ensures that the node identified by the specified path is
collapsed and viewable.

collapseRow() Ensures that the node in the specified row is collapsed.

createSortable
TableColumn()

Creates a TableColumn.

expandPath() Ensures that the node identified by the specified path is
expanded and viewable.

expandRow() Ensures that the node in the specified row is expanded
and viewable.

getCellEditor() Overridden to return the appropriate data render for the
first column if the treetable is in tree display mode.

getCellRenderer() Overridden to return the appropriate data render for the
first column if the treetable is in tree display mode.

getClosestPath
ForLocation()

Returns the row to the node that is closest to X,Y.

getEditingPath() Returns the path to the element that is currently being
edited.

getExpandedDescendants() Returns an Enumeration of the descendants of path that
are currently expanded.

getPathForLocation() Returns the path for the node at the specified location.

getPathForRow() Returns the path that is displayed at the table row
specified.

getRowForLocation() Returns the row for the specified location.
162 Part I ■ Components and Layout Managers

getRowForPath() Returns the row that displays the node identified by the
specified path.

getRowsForPaths() Returns the rows for the visible specified paths.

getScrollsOnExpand() Returns true if the tree scrolls to show previously
hidden children.

getSelectedPath() Returns the TreePath of the first selected row.

getSelectionPath() Returns the path to the first selected node.

getSelectionPaths() Returns the paths of all selected values.

getShowNodeLines() Returns the state of ShowNodeLines. If true, the
connecting lines that are drawn between nodes in an
explorer view are shown.

getShowsRootHandles() Returns true if handles for the root nodes are displayed.

getTreeIconRenderer() Returns the icon renderer being used.

getTreeSelectionModel() Returns the model for selections.

getTreeTableModel() Returns the JCTreeTableModel that is providing the
data.

getView() Returns the current view.

isPathSelected() Returns true if the item identified by the path is
currently selected.

isRootVisible() Returns true if the root node of the tree is displayed.

isSortable() Is the treetable sortable? Returns the value of the
sortable property.

makeVisible() Ensures that the node identified by a path is currently
viewable.

removeTreeExpansion
Listener()

Removes a listener for TreeExpansion events.

removeTreeWillExpand
Listener()

Removes a listener for TreeWillExpand events.

setRootVisible() Determines whether or not the root node from the
TreeModel is visible.
Chapter 14 ■ Tree/Table Components 163

14.5 Examples

Implementing a custom node icon for a JCTreeTable
Your application may require that you supply your own custom node icon for the tree
view. Create your own implementation of JCTreeIconRenderer, and write a method
similar to the one whose signature is shown here:

public Icon getNodeIcon(TreeModel treemodel,
 Object node,
 Object value,
 Class object_class,
 boolean is_leaf,
 boolean is_expanded,
 Icon plaf_icon)

setScrollsOnExpand() Determines the behavior of a node when it is expanded.
If true, the viewport will scroll to show as many
descendants as possible when the node is expanded; if
false, the viewport will not scroll.

setSelectionPath() Selects the node identified by the specified path.

setSelectionPaths() Selects the specified paths.

setShowNodeLines() Allows you override the plaf-specified behavior for
drawing lines.

setShowsRootHandles() Determines whether the node handles are to be
displayed.

setSortable() Sets whether the treetable is sortable.

setSwitchPolicy() Sets the switchPolicy variable that determines whether
or not to allow view switching Options are:
JCTreeTable.SWITCH_BUTTON_DONT_SHOW,
JCTreeTable.SWITCH_VIEW_NEVER,
JCTreeTable.SWITCH_VIEW_TO_TABLE_ON_SORT,
JCTreeTable.SWITCH_VIEW_ON_ICON_ONLY.

setTreeIconRenderer() Sets the icon renderer.

setTreeTableModel() Sets the TreeModel that will provide the data.

setTreeTable
SelectionModel()

Sets the tree's selection model.

setUI() Sets the javax.swing.plaf.TableUI UI.

setView() Sets whether the view is for a tree or a table.

updateUI() Updates the UI.
164 Part I ■ Components and Layout Managers

You may want to have two icons, one for nodes with children and one for leaf elements.
In that case, use the boolean parameter is_leaf to choose which icon will be used.

The method should return the Icon you want to use. Pass your implementation of
JCTreeIconRenderer to your instance of a JCTreeTable using
setTreeIconRenderer(JCTreeIconRenderer renderer).

Please see TreeExplorer.java and TreeTable.java in the JCLASS_HOME\examples\elements\
directory for some examples of using both JCTreeExplorer and JCTreeTable.
Chapter 14 ■ Tree/Table Components 165

166 Part I ■ Components and Layout Managers

15
Wizard Creator

Features of JCWizard and JCSplitWizard ■ Classes

Constructors and Methods ■ Events ■ Examples

15.1 Features of JCWizard and JCSplitWizard

JCWizard lets you create and manage a Wizard-style group of dialogs by supplying
informative events and special page components with standard buttons. You add a
JCWizardListener to your JCWizardPages to invoke the actions that each page needs to
perform.

Figure 47 A sample Wizard page.

JCWizard supplies these features:

■ Standard Next, Back, Finish, Cancel and Help buttons that are characteristic of
Wizard dialogs.

■ You provide instructions for the end-user on each page, and define the actions
corresponding to the choices made by the end-user.

■ The Wizard’s pages are instances of JCWizardPage. As is usual with Swing
components, you do not add children to JCWizardPage. Instead, you call its
getContentPane() method and add items to it.
167

The JCWizard component is a container that manages JCWizardPages. The pages are
added to it in a way that only one of them shows at a time, but navigation buttons let the
end user move back and forth through the deck. The component posts a JCWizardEvent
as changes occur.

The JCWizardPage provides a getContentPane() method to return the panel to which
you add content. It automatically builds content to manage the Next, Previous, Finish,
Cancel, Help buttons at the bottom right of the page.

JCSplitWizard, on the other hand, creates a split-Wizard layout, which allows for one
page to be created with multiple panels, rather than multiple pages with one panel.

Figure 48 A sample split-Wizard page.
168 Part I ■ Components and Layout Managers

The button features provided for a standard Wizard are also available for the split-Wizard,
though there is only one set that will apply to the entire Wizard. (The Back button is
automatically unavailable on the first page, and the Next button is automatically
unavailable on the last page.) Pages that are added are displayed in the right pane, while
the left pane is used for the progress list, if one has been created.

15.2 Classes

The classes in the JCWizard group are:

The classes in the JCSplitWizard group are:

15.3 Constructors and Methods

JCWizard Constructors
JCWizardPage’s constructor lets you specify the buttons you want on a page by combining
JCWizardPage constants, as follows:

page = new JCWizardPage(JCWizardPage.NEXT |
 JCWizardPage.PREVIOUS |
 JCWizardPage.FINISH |
 JCWizardPage.CANCEL |
 JCWizardPage.HELP);

JCSplitWizard Constructors
JCSplitWizard has two constructors. There is a constructor that can be used to create a
standard two-pane Wizard, along with buttons and an empty string as a title. The second
constructor is equipped with two arguments:

■ The int argument that specifies which buttons should be included;

JCWizard Creates and manages a Wizard-style set of dialogs. To create your
own Wizard, design JCWizardPages and add Wizard listeners.

JCWizardPage A JCBox that knows about Wizard-style actions.

JCWizardEvent The event object that carries information about changes to
JCWizard pages.

JCWizardListener The listener for JCWizard events.

JCSplitWizard Creates a wizard with two panes, and a bottom button
panel. The panes can contain any component, or left
pane can optionally contain an automatically generated
list of Steps.
Chapter 15 ■ Wizard Creator 169

■ The String title that specifies the title of the progress list.

JCWizard Methods
JCWizard inherits both properties and methods from JPanel. Listed here are the methods
that JCWizard itself defines to provide the needed functionality for managing Wizard
pages.

JCSplitWizard Methods
Listed here are the methods that JCSplitWizard itself defines to provide the needed
functionality for managing split-Wizard pages.

Method Description

add() Adds a page to the Wizard.

addWizardListener() Adds a new JCWizardListener to the list.

cancel() Invokes the registered “cancel” action.

finish() Invokes the registered “finish” action.

first() Moves to the first page in the Wizard.

help() Invokes the registered “help” action.

last() Moves to the last page in the Wizard.

next() Advances to the next page in the Wizard.

previous() Moves to the previous page in the Wizard.

show() The method takes a parameter (String name), and moves to
the Wizard page with the specified name.

Method Description

addPage() Adds a page to the right panel of the Wizard.

getLeftPanel() Accesses the left panel, which can contain an automatically
generated list of steps based on titles, an image, help text, or
any other desired components.

cancel() Invokes the registered “cancel” action.

finish() Invokes the registered “finish” action.

first() Moves to the first page in the Wizard.

help() Invokes the registered “help” action.

last() Moves to the last page in the Wizard.
170 Part I ■ Components and Layout Managers

15.4 Events

A JCWizard or JCSplitWizard listens for JCWizardEvents. A JCWizardEvent contains
information on the Object that triggered the event, the Component’s current page and
new page, two Booleans, whether the event occurred on the last page, and whether the
event should be allowed to finish processing.

Interface JCWizardListener methods are:

15.5 Examples

Please refer to examples.elements.Wizard.java to see how to construct regular Wizard
pages. Briefly, these are the steps:

1. Add an instance of a JCWizard to a JPanel or similar component.

2. Create a JCWizard page.

3. Specify the buttons that should appear on each page.

4. Name the page.

5. The content for each page will likely be a JPanel. Add it to the Wizard page’s content
pane.

6. Add the page to the JCWizard.

7. Continue adding pages as necessary.

next() Advances to the next page in the Wizard.

previous() Moves to the previous page in the Wizard.

nextBegin Invoked before advancing to the next page. Calling
e.setAllowChange(false) will prevent the advance to the next
page. Check e.isLastPage() to see if you are on the last page.

nextComplete Invoked after advancing to the next page.

previousBegin Invoked before returning to the previous page. Calling
e.setAllowChange(false) will prevent the return to the
previous page.

previousComplete Invoked after advancing to the previous page.

finished Invoked if a “finish” action is triggered.

canceled Invoked if the “cancel” action is triggered.

help Invoked if the “help” action is triggered
Chapter 15 ■ Wizard Creator 171

Please refer to examples.elements.SplitWizard.java to see how to construct split-
Wizard pages. Briefly, these are the steps:

1. Create an instance of a JCSplitWizard, adding the desired buttons and determining
whether or not a progress list should be generated.
To create a progress list, pass the title of the list as the second argument in the
constructor.
If no progress list is desired, simply leave the title null, or use the no-argument
constructor.

2. Create content for the right-hand wizard pages. These can be any instance of
JComponent.

3. Add the pages to the wizard using wizard.addPage(JComponent, page title),
where page title is the title of the page.

4. Add the wizard to a container; add listeners, if desired.

5. If a progress list has not been specified, call getLeftPage() to add content to the left
pane.
172 Part I ■ Components and Layout Managers

16
Layout Managers

Features of the Layout Managers in JClass Elements ■ Interfaces ■ Properties

Constructors and Methods ■ Examples

16.1 Features of the Layout Managers in JClass Elements

This chapter describes JClass Elements’ layout managers and the components that are
closely associated with them. The layout managers are JCAlignLayout, JCColumnLayout,
JCElasticLayout, JCGridLayout, and JCRowLayout. JCBorder, JCBox, JCBrace, and
JCSpring are the associated components.

16.1.1 Layout Manager Classes

JCAlignLayout
JCAlignLayout is a layout manager that provides a simple way to lay out a vertically
arranged group of control components, each with an associated label (or other
component) placed to its left.

JCColumnLayout
JCColumnLayout is a simple subclass of JCElasticLayout that allows layout in a single
column.

JCElasticLayout
JCElasticLayout is a layout manager that supports JCElastic components either
horizontally or vertically. A component is considered elastic if it either implements the
JCElastic interface or it has a constraint object that implements the JCElastic interface.
Layout is performed in either a single row or column (depending on its orientation when
created). The preferred size is calculated in the direction of orientation. If the container is
bigger than the preferred size of all the components then the extra space is divided up
between the components that are “elastic” in the direction of the orientation. The extra
space is allocated to each of the components with respect to their “elasticity”. If all the
elastic components have the same elasticity (in the direction of the orientation) then they
are equally stretched. If there is an uneven number of pixels to apportion, then the first n
units of elasticity are allocated the extra pixels, where n is the remainder when the total
elasticity is divided by the number representing the extra pixels (n = total_elasticity mod
extra_pixels).
173

JCGridLayout
JCGridLayout is an improved subclass of GridLayout. It lays out a grid of rows and
columns based on the attributes of the individual rows and columns. Whereas
GridLayout uses the widest and tallest child to size each cell, JCGridLayout uses the
widest element in a column to set the width of that column, and the tallest element in a
row to set the height of that row.

JCRowLayout
JCRowLayout is a simple subclass of JCElasticLayout that allows layout in a single row.

16.1.2 Associated Component Classes

JCBorder
JCBorder can be used with any layout manager. With it you can place a border anywhere,
not just around a component. You draw a border by overriding the component’s paint
method and calling JCBorder.draw(). Its parameters allow you to specify the Graphics
object it will be passed, along with its border style, border size in pixels, placement of the
top left corner relative to its parent, its width and height, and the shadow colors for its
sides. Please refer to the API for a full description of the two variations of the parameter
list for this method.

Border styles may be any one of the following:

JCBox
JCBox is a Swing container that uses the JCElasticLayout to lay out components in a
single row or column. Use the orientation property within an IDE to control the
orientation of the box. The JCSpring and JCBrace components are useful Beans to use in
conjunction with this container.

JCBorder.ETCHED_IN Double line, border appears inset.

JCBorder.ETCHED_OUT Double line, border appears raised.

JCBorder.FRAME_IN 1-pixel shadow-in at edge, border appears framed.

JCBorder.FRAME_OUT 1-pixel shadow-out at edge, border appears framed.

JCBorder.IN Border appears inset.

JCBorder.OUT Border appears raised.

JCBorder.CONTROL_IN MS-Windows control shadows.

JCBorder.CONTROL_OUT MS-Windows control shadows.

JCBorder.PLAIN Border drawn in foreground color.

JCBorder.NONE No border drawn.
174 Part I ■ Components and Layout Managers

JCBrace
An implementation of a component that participates in a layout even though it has no
view. It is called a brace because its main function is to reserve space as a way of
controlling the layout of the visible components. A brace usually has equal minimum and
preferred sizes, and an unlimited maximum size.

JCSpring
This is a stretchable concrete implementation of the JCElasticLayout interface, which
specifies components as stretchable for the JCElasticLayout manager and its subclasses.
A JCSpring has independently settable elasticity parameters for both the horizontal and
vertical directions.

16.2 Interfaces
JCElasticLayout — The interface that informs enabled layout managers that a particular
component should be stretched to its maximum before stretching any non-elastic
components.
Chapter 16 ■ Layout Managers 175

16.3 Properties

JCBox

JCBrace

JCSpring

16.4 Constructors and Methods

16.4.1 Layout Managers

JCAlignLayout

alignment One of SwingConstants.LEFT, SwingConstants.CENTER, or
SwingConstants.RIGHT, specifying the alignment of the
layout.

orientation One of JCElasticLayout.HORIZONTAL or
JCElasticLayout.VERTICAL, specifying how the container is
to lay out its components.

orientation One of JCElasticLayout.HORIZONTAL or
JCElasticLayout.VERTICAL, specifying whether it is a
horizontal or a vertical brace.

length This is the value of both the minimum size and the preferred
size. Whether the length refers to a horizontal or a vertical
dimension depends on the orientation.

horizontalElasticity
verticalElasticity

These are properties with integer values specifying the
relative elasticities of the components to which they refer.

getLabelVertical
Alignment()

Returns the vertical position of a label relative to its control.

setResizeHeight() Sets whether the control should be resized vertically to the
height of the largest component in its row (default: false). This
value is ignored for labels (the components in odd columns).

setResizeWidth() Sets whether the control should be resized horizontally to its
parent's right edge if it is in the last column (default: false).
176 Part I ■ Components and Layout Managers

JCColumnLayout
A simple subclass of JCElasticLayout that arranges layout in a single column.

JCElasticLayout
Use its constructors to provide the layout you want.

When adding an elastic constraint to an object, you can use one of these constants:

■ JCElasticLayout.HORIZONTALLY_ELASTIC_CONSTRAINT,

■ JCElasticLayout.VERTICALLY_ELASTIC_CONSTRAINT,

■ JCElasticLayout.COMPLETELY_ELASTIC_CONSTRAINT

For example:

add(c, JCElasticLayout.HORIZONTALLY_ELASTIC_CONSTRAINT);

JCGridLayout
Like GridLayout in the AWT, JCGridLayout has a two-parameter constructor in which
you specify the number of rows and columns for your grid, and a four-parameter version
in which you specify horizontal and vertical gaps as well. Use this constructor just as you
would a GridLayout. Unlike the AWT’s GridLayout, JCGridLayout’s rows may have
different heights and its columns may have different widths. See the example later on in
this chapter for a visual comparison between the two layout managers.

setLabelVertical
Alignment()

Sets the vertical position of a label relative to its control.
Choices are TOP, MIDDLE (default), or BOTTOM.

JCColumnLayout() Creates a column layout that aligns components on the left.

JCColumnLayout(
int alignment)

Creates a column layout that aligns components to the specified
alignment: SwingConstants.LEFT, SwingConstants.CENTER, or
SwingConstants.RIGHT

JCElasticLayout
(int
orientation)

Creates a row layout that by default aligns components to the
left of the row or column.

JCElasticLayout
(int
orientation,
int alignment)

Creates a column layout that aligns components as specified by
the second parameter, which can be one of the
SwingConstants.LEFT, SwingConstants.RIGHT,
SwingConstants.TOP, SwingConstants.BOTTOM, or
SwingConstants.CENTER.
Chapter 16 ■ Layout Managers 177

16.4.2 Associated Components

JCBox

JCBrace

JCSpring

16.5 Examples

JCGridLayout

JCBox() Creates a horizontal JCBox container. The constructor may
have an optional parameter, int orientation. In this
case, valid values are JCBox.HORIZONTAL or
JCBox.VERTICAL.

createHorizontalBox()
createVerticalBox()

Convenience methods for creating JCBoxes.

getAlignment()
setAlignment(int

alignment)

Describes how the component is aligned. The alignment
parameter is one of SwingConstants.LEFT,
SwingConstants.CENTER, or SwingConstants.RIGHT.

getOrientation()
setOrientation(int

orientation)

The box uses the orientation to determine whether its
components are arranged horizontally or vertically.

getOrientation()
setOrientation(int

orientation)

The parameter in the set method can be one of
JCElasticLayout.HORIZONTAL or
JCElasticLayout.VERTICAL, specifying how the container
is to lay out its components.

getLength()
setLength(int length)

This is the value of both the minimum size and the
preferred size. Whether the length refers to a horizontal or
a vertical dimension depends on the orientation.

get/setHorizontal
Elasticity()

get/setVertical
Elasticity()

The set methods take an integer parameter specifying the
relative elasticity of the JCSpring. When two or more
springs are used, the elasticities are used as weighted
values for the springiness.

get/setMaximumSize()
get/setMinimumSize()
get/setPreferredSize()

The set methods require a Dimension parameter, which
the get methods return.
178 Part I ■ Components and Layout Managers

The example shown here illustrates the difference between AWT’s GridLayout and
JClass Elements’ JCGridLayout, which conserves space by permitting rows to have
different heights and columns to have different widths. The height of each row is
determined by the height of the tallest component in that row, and the width of a column
is determined by widest component in the column, independent of the width of other
columns. With JCGridLayout, rows have varying heights and columns have varying
widths.

Figure 49 A comparison of JCGridLayout and GridLayout.

JCAlignLayout
This layout manager makes it easy to provide a vertical arrangement of data input fields
and their associated labels. You can provide for more than two columns and, as the
example shows, you aren’t restricted to text fields.

Although its intended use is one with labels in the first column, JCAlignLayout lets you
place any component in any column.

Use it as you would any layout manager for a frame or panel:

 JCAlignLayout layout = new JCAlignLayout(2, 5, 5);
 setLayout(layout);
Chapter 16 ■ Layout Managers 179

Figure 50 Using JCAlignLayout.
180 Part I ■ Components and Layout Managers

Part
II

Utility
Classes

17
Introduction to the Utility Classes

Utilities

17.1 Utilities

JClass Elements’s utilities live for the most part in two packages: com.klg.jclass.util,
and com.klg.jclass.util.swing. Some components, like JCTreeTable, rely on support
classes found in a util subpackage, in this case in com.klg.jclass.util.treetable, and
JCDateChooser has a package of its own, com.klg.jclass.util.calendar.

Here is a brief description of the utility classes:

Name of Utility Description

JCDebug Place debug statements in your Java code that contain an optional
level indication. Use a print level setting to control the detail in
your debugging printout. A PERL script lets you remove all
debug statements when your code is ready for release.

JCIconCreator There are times when you would like to have a custom image as
part of your toolbars, labels, buttons, and so on, yet you don’t
want to go to the trouble of using a paint package. JCIconCreator
lets you use String arrays to create image icons. The format is
similar to that used in XPixMap (XPM) format files.
183

JCEncode
Component

You can encode the image information for any component in
your application with this utility. Since all the children of the
chosen component are also encoded, you can capture a picture of
your entire user interface for any well-behaved component
hierarchy, or any single one of its child components. The utility
encodes images in the public-domain Portable Network Graphics
(PNG) format.

Note: If you wish to export your images in GIF format,
you’ll need a license from the copyright holder, Unisys
Corp. Quest Software will send you the GIF encoder class
upon receipt of a copy of your license from Unisys.

You need JClass PageLayout to encode components in EPS,
PS, PDF, or PCL. JClass PageLayout is available as a part of
the JClass DesktopViews suite.

JCListenerList JCListenerList is a class that assists with keeping track of event
listeners in a thread-safe manner.

JCMappingSort Sorting can be accomplished by indexing the list of objects that
are going to be ordered according to some comparison policy. It
can be much more efficient to sort these indices instead of sorting
the objects themselves. The idea is to form an array of indices.
The utility is documented with JCSortableTable.

JCProgress
Helper

JCProgressHelper is a class that lets you create and manage a
thread-safe progress dialog. With it, you can monitor a potentially
time-consuming operation and present a visual record of its
progress. If it the operation will take more than a specified time, a
progress dialog will be popped up.

JCString
Tokenizer

JCStringTokenizer provides simple linear tokenization of a
String. The set of delimiters, which defaults to common
whitespace characters, can be specified either during creation or
on a per-token basis. It is similar to java.util.StringTokenizer,
but delimiters can be included as literals by preceding them with a
backslash character (the default). It also fixes a known problem: if
one delimiter immediately follows another, a null String is
returned as the token instead of being skipped over.

JCSwing
Utilities

This class currently contains a single method: setEnabled(),
which takes a Component and a Boolean as parameters. It uses the
Boolean parameter to enable or disable all the children of the
component, which are themselves Components.

Name of Utility Description
184 Part II ■ JClass Elements’ Utility Classes

Thread Safety The JCSwingRunnable class helps you manage your threads by
providing a class that you can subclass easily. It provides methods
that simplify handling execution in the proper threads.

JCTreeSet This class adds to Swing’s functionality by providing you with a
way of representing the elements of a set as a binary-sorted tree. If
the elements of the set have an defined ordering principle, it is
used by default to construct the B-tree, but other ordering
mechanisms are possible.

JCTypeConverter
and
JCSwingType

Converter

You frequently need to convert objects to Strings, and Strings to
objects, when you are coding a user interface. For example, a user
types a String as input that you would like to convert to an object.
The input String might consist of a sequence of integers, delimited
by commas, that you would like to convert to an array. There are
also times when you need to convert an object to a String so that
you can place the text on a label or a button. The JClass type
converters are a collection of the most useful conversions from
String to object, and from object to String. The static methods of
JCTypeConverter let you retrieve parameters from an application
or applet, and convert these parameters to particular data types.

JCWordWrap JCWordWrap provides a static method called wrapText that
performs basic word-wrap logic on a String, given a line width
and new line delimiter.

Name of Utility Description
Chapter 17 ■ Introduction to the Utility Classes 185

186 Part II ■ JClass Elements’ Utility Classes

18
Debugging Tools

Features of JCDebug ■ Classes and Scripts ■ Methods

Removing JCDebug Statements from Your Code ■ Examples

18.1 Features of JCDebug

JCDebug is a utility class that allows you to add debugging statements to your source code,
in order to facilitate development tasks. Once the statements are in the code, the
debugging mechanism can easily be turned on or off. To activate normal debug output,
simply call setEnabled(true); to turn off debugging without removing it from the source,
call setEnabled(false) to globally disable JCDebug printing. To permanently remove the
debugging code from the source, just the jcdebug.pl perl script, located in the
JCLASS_HOME/bin directory.

It is also possible to group debugging statements by providing a tag parameter along with
the text to be printed. For example:

JCDebug.println("tag1", "This is printed when setEnabled(true) and
setTag(\"tag1\") are in effect.").

Thus, if you wish to enable print statements marked by parameter tag1, call
setTag("tag1"). If you wish to turn on debugging print statements with various tags, call
setTags(String new_tags[]), passing in an array of tag names. Initially, the array of tag
names is null, which means that no tagged statements will be output. Thus, once some
tags have been set, they can all be turned off by calling setTag(null).

Another useful construct is the concept of “levels.” The advantage of this is that by
calling, for example, setLevel(2), you will avoid seeing any debug messages marked 3
or below. This is useful for controlling the amount of detail you are viewing without
removing the debug information.

Note that JClass distribution bytecode does not contain any references to JCDebug.

JCDebug helps you accomplish the following:

■ Place multi-level print statements in your code for debugging purposes and remove
them after testing is complete.

■ Force a stack trace to occur at any point in your code.
187

■ Optionally use a Perl script to place /*DEBUG_START*/ ... /*DEBUG_END*/ blocks in
your code. The debug statements are removed or commented out at ship-time using
the PERL script JCLASS_HOME/bin/jcdebug.pl.

18.2 Classes and Scripts

18.3 Methods

Printing debug information
You can define a numerical order-of-importance to your print statements. Print statements
labeled with lower numbers are deemed to be more important than those with higher-
numbered labels. By setting a global print level variable at 3, for example, all print
statements labeled with a number higher than three will be ignored. Those labeled with a
print level variable of 1, 2, or 3 will all be printed.

Also, it’s possible to supply a list of tags. All print statements with print level variables
matching a String in the list will be processed, all other print statements will be ignored.

com.klg.jclass.util.JCDebug Class containing static methods for assertions and
debug statements.

jcdebug.pl The Perl script that removes or comments out
JCDebug statements from source code.

setPrintStream() Sets the output stream to use. The default is System.out.

getPrintStream() Returns the PrintStream currently in use.

println() Prints debug information on the current output stream.

println
(String text)

Always prints a message, unless debugging is turned off.

println(int
plevel, String
text)

The int parameter is for level-controlled diagnostic printing.
Any print statement with a plevel greater than the currently set
print level is not printed.

println(String
ptag, String
text)

The ptag parameter for tag-controlled diagnostic printing. Any
print statement with a ptag matching than the currently set tag
list is printed.
188 Part II ■ JClass Elements’ Utility Classes

Notes on tags and level numbers:

■ If you do not supply a tag as one of the parameters in your print statement, the tag is
deemed to be null. Statements with null tags are always printed as long as debugging
is enabled.

■ As long as you get a match from the level number or the tags you’ll have some
diagnostic printout.

■ You don’t have to use either tags or level numbers. You can simply use unadorned
JCDebug.println statements. In this case, you don’t have any selectivity other than
being able to turn debugging on and off.

Forcing a stack trace
The following methods help force a stack trace:

println(int
plevel, String
ptag, String
text)

Prints the text according to level and tag filter options. This
method is a combination of println(int plevel, String
text) and println(Sting ptag, String text).

setEnabled(true) Activates debug output.

isEnabled() Determines if debugging is on or off.

setLevel(int
new_level)

Output occurs for statements marked with the specified level or
lower. To see all debug statements, set new_level to a very large
number.

getLevel() Returns the level that determines what gets printed. All levels
less than or equal to the returned integer are printed.

setTag("myString"
)

Sets one tag. A second call to setTag() causes the first tag to be
forgotten.

setTags(arrayOfSt
rings)

Sets the array of tags to use for the debugging session.

printStackTrace() Forces a stack trace at the current location.

printStackTrace(
String s)

Forces a stack trace at the current location, and prints an
identifying message as a header.

printStackTrace(
String ptag,
Throwable t)

Prints a stack trace for the specified exception if the specified tag is
currently enabled.
Chapter 18 ■ Debugging Tools 189

18.4 Removing JCDebug Statements from Your Code

To remove the JCDebug statements from your code, you will need a Perl interpreter. If
you don’t have one, it is available at the central Web site for the Perl community
(http://www.perl.com).

Running the Perl script
The script you will need to call is jcdebug.pl. It has three options: -e, -d, and -r. The -e
option enables your debugging statements. It places markers in the form of comments
before and after each debug statement, leaving the statement itself exposed to the Java
compiler. These markers have the form /* JCDEBUG_START* / and /* JCDEBUG_END */,
with the JCDebug statement in between.

The -d option removes the inner pair of matching * / /* brackets to form one long
comment which includes the JCDebug statement.

The -r option completely removes all JCDebug statements. You might want to use this
option just before shipping the final product. Just realize that once the debug statements
are removed using this option, they can’t be recovered.

Here’s an example of a command to delete JCDebug statements by turning them into
comments:

perl jcdebug.pl -d MyCode.java

After executing this command, all JCDebug statements begin with /* JCDEBUG_START and
end with JCDEBUG_END */. Since this is the syntax for the start and end of a comment,
anything between these tags is not compiled.

Execute the following command:

perl jcdebug.pl -e MyCode.java

This will modify the file by replacing the inner pair of matching * / /* brackets so that all
JCDebug statements begin with /* JCDEBUG_START */ and end with /* JCDEBUG_END */.
The JCDebug statement itself is no longer part of the comment.

As was mentioned above, the script removes all lines with JCDebug.print in them, and
any import com.klg.jclass.util.JCDebug statements that may exist. If you just want to
turn off the debugging code without removing it from your source, call
setEnabled(false) to globally disable JCDebug assertions and printing.

18.5 Examples

This example illustrates the following points about the use of JCDebug:

■ JCDebug.setEnabled(true) must be in effect for the debug mechanism to be turned
on.
190 Part II ■ JClass Elements’ Utility Classes

http://www.perl.com

■ If tags are used, JCDebug.setTag() controls which tagged print statements are active.
The example uses tag2 and tag3 as arbitrary labels. Print statements involving tag2
will be active, but those involving tag3 will not.

import com.klg.jclass.util.JCDebug;

public class TestJCDebug {

public static void main(String args[])
{

JCDebug.setEnabled(true);
System.out.println("Starting the test:");

//Set a tag so that all JCDebug statements with this tag will print
JCDebug.setTag("tag2");

//These should print
JCDebug.println("Debugging is on so this should be printed!");
JCDebug.println("tag2", "Label tag2 is enabled, " + "so this should be

printed.");

//This should not print because it does not match the tag
JCDebug.println("tag3", "The tag for this print statement is tag3 " +

"so this should not be printed.");

//Now turn off debugging
JCDebug.setEnabled(false);

//The following two lines will not be printed.
JCDebug.println("Debugging is off. This should not be printed!");
JCDebug.println("tag2", "This label is enabled, but debugging is off, "

+ "so this should not be printed");
}

}

The output from this test program is reproduced here.

Starting the test:
Debugging is on so this should be printed!
Label tag2 is enabled, so this should be printed.
Chapter 18 ■ Debugging Tools 191

192 Part II ■ JClass Elements’ Utility Classes

19
JCFileFilter

Features of JCFileFilter ■ Constructors ■ Methods ■ Example

19.1 Features of JCFileFilter

JCFileFilter enhances Swing’s JFileChooser by allowing you to pass it file extensions.
These are the only ones that appear in the file chooser dialog. Extensions are of the type
“.txt,” “.java,” and so on, which are typically found on Windows and Unix platforms, but
not on the Macintosh. Case is ignored, so “.txt” is equivalent to “.TXT” as far as the filter
is concerned.

The class has versatile constructors and convenience methods for setting both the
extensions that are to be filtered and an optional descriptive phrase.

19.2 Constructors

JCFileFilter has four constructors:

JCFileFilter() The default constructor. This form of the constructor is
used to list all file types. To filter files, use the
addExtension() method. To provide a human-readable
description for the extension, use the setDescription()
method.

JCFileFilter(String
extension)

Creates a file filter that, initially at least, shows only files of
the type whose extension is specified by the String
argument. The period (dot) before the extension is
optional. More filename extensions may be added using
the addExtension() method.
193

19.3 Methods

These methods let you set or examine the elements of the filtering process:

JCFileFilter(String[]
filters)

Creates a file filter for a list of file extensions given as a
String array. More may be added using the
addExtension() method.

JCFileFilter(String
extension, String
description)

Creates a file filter that, initially at least, shows only files of
the type whose extension is specified by the String
argument. The period (dot) before the extension is
optional. More filename extensions may be added using
the addExtension() method.
The human-readable description is retrieved using the
getDescription() method.

addExtension(String
extension)

Places an additional filename extension in the list of those to
filter against. Any filename matching this extension is listed
in the file dialog, as well as those that have been added in
the constructor. The method may be used multiple times to
form a list of extensions to filter against.

accept(File f) This Boolean method is used to determine if the given
filename has an extension that is in the list of those to be
filtered, that is, to be displayed in the file dialog.
Files that begin with “.” are ignored, but directories are
always shown.

getExtension(Strings) Returns the extension portion of a String.

set/getDescription() Sets or gets the human readable description of this filter.
This String is used to preface the list of file extensions that
shows up in the file dialog’s “Files of type:” combo box.

For example, if the filter is set to:
String[] filterTypes = {"gif", "jpg"};
and the description is specified as "JPEG & GIF Images",
then the combo box displays “JPEG & GIF Images (*.gif,
*.jpg)”

setExtensionListIn
Description(

boolean b)
isExtensionListIn

Description()

Determines whether the extension list, for example (*.jpg,
*.gif), should show up in the human-readable description.
The corresponding Boolean method returns the policy
currently in effect.
194 Part II ■ JClass Elements’ Utility Classes

19.4 Example

The following code snippet sets up a filter for GIF and Java source files. The description,
which appears in the file chooser’s “Files of type:” combo box along with the extensions
themselves, is provided through a parameter passed to the constructor.

Note that you can control whether either part of the description actually appears through
the use of setDescription() and setExtensionListInDescription().

JFileChooser chooser = new JFileChooser();
String[] filterTypes = {"gif", "java"};
JCFileFilter filter =
 new JCFileFilter(filterTypes, "GIF Images and Java source files");
chooser.addChoosableFileFilter(filter);

Figure 51 A JCFileFilter for Java source files and GIF images.
Chapter 19 ■ JCFileFilter 195

196 Part II ■ JClass Elements’ Utility Classes

20
Icon Creator

Features of JCIconCreator ■ Classes ■ Constructors and Methods ■ Examples

20.1 Features of JCIconCreator

There are times when you would like to have a custom image as part of your toolbars,
labels, buttons, and so on, yet you don’t want to go to the trouble of using a paint
package. JCIconCreator lets you use String arrays to create image icons. The advantages
of using JCIconCreator include:

■ A simple and convenient way of defining an image from a String of characters.

■ Keeping the image information in the class that uses it, rather than having to manage
the location of associated image files.

■ Designing small-sized custom images or diagrams without the need of a paint
program.

■ Having a simple way of associating the image with the standard
javax.swing.ImageIcon class.

20.2 Classes

This utility consists of a single class, com.klg.jclass.util.swing.JCIconCreator,
subclassed from java.lang.Object.

20.3 Constructors and Methods

The JCIconCreator has two constructors are JCIconCreator(), which creates an
uninitialized image icon, and JCIconCreator(int w, int h), where the parameters
measure the size, in pixels, of the two dimensional array used to hold the characters
representing the image.
197

Methods in JCIconCreator
The following is a list of the methods available for JCIconCreator:

20.4 Examples

The following code section shows how to declare a String array, use it as the source for
defining the pixels in an icon, and how to convert the JCIconCreator object to an
ImageIcon for use as the graphic part of a label.

...
private static final String testIcon[] = {
" BBBBBBBBB ",
" B OOO B ",
" B OOOOO B ",
" B OOOOO B ",
" B OOOOO B ",
" B OOO B ",
" B B ",
" B B ",

clear() Clears the icon so that no image is associated with it.

getIcon() Gets the icon created by this instance of JCIconCreator. An
overloaded version of this method takes a passed-in byte array (as
might be obtained from a database's image field) and attempts to
convert it into an Image.

Use getIcon() method to return an ImageIcon. For example:
ImageIcon myLabelIcon = ic.getIcon();

setColor() Sets the color corresponding to a character passed as its first
parameter. Its second parameter is a Color object or an RGB int.

Use the setColor() method to associate a character in the array
with a color. For example, if ic is an instance of a JCIconCreator,
ic.setColor('G', Color.green);
associates a “G” in the pixel map with a green pixel.

setPixels() Sets the pixel data. If its parameter is an array of Strings, this
represents the data for all rows. If the parameters are a row index
and a String, this represents the pixel data for one row.

If pixelMap is an array of characters representing pixels, inform
the instance about them with
ic.setPixels(pixelMap);

setSize() Width and height int parameters are used to set the width and
height for the image.
198 Part II ■ JClass Elements’ Utility Classes

" B B ",
" B B ",
" B B ",
" B B ",
" BBBBBBBBB " };

JButton b1;

public ToolbarIcons() {
 JToolBar bar;
 JLabel label;

 setBackground(Color.lightGray);
 setLayout(new BorderLayout());

 JCIconCreator ic = new JCIconCreator(13, 13);
 ic.setColor('B', Color.black);
 ic.setColor('O', Color.orange);
 ic.setPixels(testIcon);
 ImageIcon icon = ic.getIcon();
 ...
 bar = new JToolBar();
 b1 = new JButton("Caution", icon);
 bar.add(b1);
 ...

Figure 52 Three labels with custom icons created using JCIconCreator.
Chapter 20 ■ Icon Creator 199

200 Part II ■ JClass Elements’ Utility Classes

21
Image Encoder

Features of JCEncodeComponent ■ Classes and Interfaces ■ Constructors and Methods ■ Examples

21.1 Features of JCEncodeComponent

You can encode the image information for any component in your application with this
utility. Since all the children of the chosen component are also encoded, you can capture
a picture of your entire user interface for any well-behaved component hierarchy, or any
single one of its child components. The utility encodes images in the public-domain
Portable Network Graphics (PNG) format. Other common formats are available if you
also have JClass PageLayout installed. JClass PageLayout is available as part of the
JClass DesktopViews suite.

The advantages of using JCEncodeComponent include:

■ Saving an image of a component in PNG format.

■ A simple way to encode a component: just call JCEncodeComponent.encode().

Please note that the JPEG format is not supported because it loses information as a result
of the compression.

Note: If you wish to export your images in GIF format, you’ll need a license from
the copyright holder, Unisys Corp. Quest Software will send you the GIF
encoder class upon receipt of a copy of your license from Unisys.

21.2 Classes and Interfaces

The com.klg.jclass.util.swing.encode package contains an interface, a main class
called JCEncodeComponent, and various helper classes that output the various supported
image formats.

The interface that defines an image encoder contains a single method: encode(). Its
parameters are the component whose image is to be encoded, and the stream on which to
place the encoded information.

There is also an exception class, EncoderException. It is raised by JCEncodeComponent or
one of its subclasses. The exception may be subclassed for exceptions thrown by
201

subclasses of JCEncodeComponent. It represents any problem encountered while encoding
an image. The message is used to state the type of error.

JCEncodeComponent has a public static inner class named Encoding that is used to provide
instances of the various valid encodings or to supply an error message if an attempt fails.

21.3 Constructors and Methods

JCEncodeComponent
The Encode inner class is used to instantiate a particular encoding type, such as PDF. It
defines methods that provide information about the encoder, including a failure message
if the encoder fails to load.

The array called ENCODINGS contains, as instances of Encode, the supported encoding
types. You pass an element of this array to the encode method, along with your
component and a Stream specifier, to produce an encoding of the component which is
sent to the stream. The method is overloaded so that you can write the information to a
file if you wish.

getEncoder() Returns an encoder for this encoding type.

getFailureMessage() Message stating possible reasons for encoder load failure.

getLongName() Returns the fully qualified name of the supported encoding
type.

getShortName() Returns the descriptive name of the supported encoding type.

toString() Returns both the short name and the long name in a single
String.

encode(Encoding
encoding, Component
component,
OutputStream output)

Invoke this method on a Java component to encode its
image in the specified format, and send the encoded
information to the specified stream.

encode(Encoding
encoding, Component
component,
File file)

Encodes the component’s image in the specified
format. Sends the encoded information to the specified
file.
202 Part II ■ JClass Elements’ Utility Classes

21.4 Examples

Below is an example that encodes an entire frame in PNG format, then stores the result in
a file. Most of the code simply serves to create a frame containing a few components.
Since the process of encoding can result in an exception being thrown, the single-line
command that does all the work is enclosed in a try block.

import com.klg.jclass.util.swing.encode.JCEncodeComponent;
import com.klg.jclass.util.swing.JCExitFrame;
import java.io.File;
import javax.swing.JPanel;
import javax.swing.JLabel;
import javax.swing.JButton;
import javax.swing.JTextField;

public class EncoderExample {

 public static void main(String[] args) {
 JCExitFrame eFrame;
 eFrame = new JCExitFrame("Encoder Example");
 JPanel jp = new JPanel();
 JLabel jl = new JLabel("PNG Encoding");
 JButton jb = new JButton("Just a button");
 JTextField jt = new JTextField(
 "The entire frame will be encoded");
 jp.add(jl);
 jp.add(jb);
 jp.add(jt);
 jp.setVisible(true);
 eFrame.getContentPane().add(jp);
 eFrame.setSize(350, 100);
 eFrame.setVisible(true);
 File efps = new File("efps.png");
 try {
 JCEncodeComponent.encode(JCEncodeComponent.PNG,
 eFrame, efps);
 } catch (Exception e) {
 System.out.println("Exception caught: " + e);
 }
 }
}

Figure 53 The result of encoding the entire JCExitFrame.

You can find another example, Encode.java, in the examples/elements directory. In that
example, a single component, a button, is encoded. A combo box lets you choose the
encoding format, a text field displays the current choice, and a button-press initiates
encoding to a file. This example is more realistic in that the encoding process is initiated
Chapter 21 ■ Image Encoder 203

by the end user through some action, such as a menu choice, or, as in this case, by
pressing a button.

The result is shown in the next figure.

Figure 54 Encoding a single component using examples.elements.Encode.

If you attempt to encode a component using a GIF format, you will see the following
error dialog:

Figure 55 The error dialog that appears if you do not have GIF encoding installed.

Note: You need JClass PageLayout to encode components in EPS, PS, PDF, or PCL.
JClass PageLayout is available as a part of the JClass DesktopViews suite.
204 Part II ■ JClass Elements’ Utility Classes

22
Listener List

Features of JCListenerList ■ Classes ■ Examples

22.1 Features of JCListenerList

JCListenerList is a class that assists with keeping track of event listeners in a thread-safe
manner. The use of static methods on the JCListenerList class prevents any problems
from occurring if the list being modified is null. To send events to the listener in the list,
simply get the JCListenerListEnumeration of the list and walk through the elements.
There is no ordering guarantee.

22.2 Classes

The following is a list of the JCListenerList classes:

22.3 Methods

The following is a list of the JCListenerList methods:

JCListenerList The thread-safe listener list class.

JClistenerListEnumeration Implements java.util.Enumeration and takes a
JCListenerList as its parameter. It defines methods
hasMoreElements() and nextElement().

add() Adds an element to the list of listeners.

remove() Removes an element to the list of listeners.

elements() Returns an Enumeration object.
205

22.4 Examples

To add a listener using a JCListenerList:

JCListenerList someList = null;
...
public synchronized void addSomeListener(SomeListener l) {
 someList = JCListenerList.add(someList, l);
 }

 To remove a listener:

 public synchronized void removeSomeListener(SomeListener l) {
 someList = JCListenerList.remove(someList, l);
 }

The use of static methods on the JCListenerList class prevents any problems from
occurring if the list being modified is null.

To send events to the listener in the list, simply get the Enumeration of the list and walk
through the elements. There is no ordering guarantee.
206 Part II ■ JClass Elements’ Utility Classes

23
Progress Helper

Features of JCProgressHelper ■ Constructors and Associated Classes

JCProgressHelper Methods ■ Examples

23.1 Features of JCProgressHelper

JCProgressHelper is a class that lets you create and manage a thread-safe progress dialog.
With it, you can monitor some potentially time-consuming operation and present a visual
indication of its progress. If it looks like the operation will take some time, a progress
dialog appears. Before the operation is started the JCProgressHelper should be given a
numeric range and a descriptive String. Initially, there is no JProgressBar. As the
operation progresses, call the updateProgress() method to indicate how far along the
[min .. max] range the operation is. After the first timeToDecideToPopup milliseconds
(default 500) the progress monitor will predict how long the operation will take. If it is
longer than timeToPopup (default 2 seconds) a JProgressBar is popped up.

Figure 56 A JCProgressHelper showing the methods used for labelling.

The advantages of JCProgressHelper include:

■ You are able to quantify the process that the JCProgressHelper is monitoring by
setting two integers representing a minimum and a maximum of some value that
proportionately measures the progress of some time-consuming operation. As the
process continues, you call updateProgress() with a parameter indicating how far
along things are.

■ The progress helper transforms all your calls to it into Thread-safe calls to the parent
Swing component to encourage frequent updating.

■ A descriptive, dynamically updatable, message informs users about the progress of
the operation.
207

■ The progress dialog contains a Cancel button, permitting the end-user to terminate
long-running processes.

■ The progress dialog waits for a time that you set in setTimeToDecideToPopup()
before checking whether to pop up, and does not pop up at all unless the operation is
projected to take at least a minimum time, which you may set also, in
setPopupTime().

23.2 Constructors and Associated Classes

23.2.1 Constructors
■ JCProgressHelper(Component parent)

■ JCProgressHelper(Component parent,
 String static_message,
 int min,
 int max)

■ JCProgressHelper(Component parent,
 String static_message,
 int min,
 int max,
 boolean show_dynamic_message,
 boolean is_modal,
 boolean is_dismissable)

The parameters in the constructors are:

parent The object whose computations are to be monitored.

min, max Integer parameters that represent a time scale for the operation.
The progress bar is scaled between these values. Thus, if min =
40 and max = 90, and the current value is 50, then (50 - 40)/(90 -
40) = 1/5, and 1/5, that is 20%, of the length of the progress bar
is shaded.

static_message The first message line. This message cannot be changed once the
dialog has popped up.

show_dynamic
_message

The changeable part of the message in the line below the static
message of the progress dialog can be turned on and off using
this Boolean parameter.

is_modal If true, the progress dialog must remain the active window.

is_dismissable If false, the user cannot cancel the computation that this
progress meter is monitoring.
208 Part II ■ JClass Elements’ Utility Classes

23.2.2 Associated Classes

Following is a list of the JCProgressHelper associated classes:

23.2.3 Using the Event and Listener Classes

Depending on your needs, there are four ways to use the progress mechanism:

■ Use the JCProgressHelper GUI and let it handle all updates without any need to
invoke events and listeners in your code. In this case, you call startProgress() and
updateProgress() to control the progress bar. See
examples.elements.BasicProgressHelperExample.java in the
JCLASS_HOME/examples/elements directory.

JCProgressEvent JCProgressEvent is used to monitor the status of a process.
The event contains information about the process name, the
current unit being processed, and the total unit count for the
process. The setAbort() method allows the listener to
abort the process, and the isAborted() method checks to
see if the process is aborted.

JCProgress
Listener

The listener interface that may be used for processes which
are to be monitored by a progress bar. Methods are:
processingBegin(), invoked when a process has begun,
processingEnd(), invoked when the process has been
compeleted, processingError(), invoked when a process
encounters an error, and processingUnit(), invoked when
a process unit has been completed.

JCProgress
CancelledEvent

JCProgressCancelledEvent is used to notify interested
listeners when the user has cancelled progress via the
Cancel button on the JCProgressHelper.

JCProgress
CancelledListener

The listener interface which is used to detect a user-
cancellation action in the JCProgressHelper.

JCProgressCancelledEvent is fired when the user has
cancelled progress via the Cancel button on the
JCProgressHelper. Implementations of this interface may
detect the cancellation in their application and react to it.

JCProgressHelper The progress monitor itself.

JCProgress
AbortedException

Used to create an exception that tells the process that it
should exit.

JCProgressAdapter An abstract class that acts as an adapter. It provides null
implementations of all the methods defined in
JCProgressListener.
Chapter 23 ■ Progress Helper 209

../../examples/elements/BasicProgressHelperExample.java

■ Use createProgressListener() to have JCProgressHelper manage events
internally. In this case, you call listener methods like processingBegin() and
processingUnit(), which are implemented by the progress meter itself. You don’t
have to supply the code.

■ Create your own addProgressListener() method and have it register
JCProgressListeners. This option gives you the most control. You’ll need to have
one of your classes implement JCProgressListener, or you can extend
JCProgressAdapter. You override the listener methods you need, and you will have
to provide implementations of addProgressListener(JCProgressListener),
removeProgressListener(JCProgressListener), and
fireProgressEvent(JCProgressEvent) in the class that wishes to control the
progress meter. See ProgressListenerExample.java in the
JCLASS_HOME/examples/elements directory.

■ Use an implementation of JCProgressCancelledListener to handle what must be
done if the end user clicks the JCProgressHelper’s Cancel button. A
JCProgressCancelledEvent is sent to all JCProgressCancelledListeners when this
button is clicked. If you use this listener your application is notified immediately
when the Cancel button has been clicked, rather than having to wait until
processingUnit() is called from JCProgressListener.
210 Part II ■ JClass Elements’ Utility Classes

../../examples/elements/ProgressListenerExample.java

23.3 JCProgressHelper Methods

23.4 Examples

Add a JCProgressHelper to your component as follows:

JCProgressHelper jpr = new JCProgressHelper(eFrame,
 "Here is a progress message", 0, 10,
 true, true, true);

completeProgress() Call this method when your computation has finished to allow
for cleanup.

isOkayToContinue() Is false if the user has pressed the Cancel button. You can
use it in your code to force a cancellation of the computation.

setDynamicMessage() The changeable part of the progress meter’s message.

setCancelString Sets the String in the Cancel button. Default is “Cancel”.

setDialogTitle Sets the String in the dialog’s title bar. Default is “Progress...”

setMaximum() You model the duration of a process by inventing an integer
range min .. max. Choose the range so that it is easy to
calculate the integer that represents your computation’s
degree of completion. Set the maximum-time integer using
this method.

setMinimum() Use this method to set the minimum-time integer.

setRange() A convenience method that combines setMinimum and
setMaximum.

setStaticMessage() Use this method to define the unchanging part of the progress
meter’s message.

setTimeToDecideTo
Popup()

The progress meter waits until this time before attempting to
predict how long the process it is monitoring will take. It then
uses the time set in setTimeToPopup() to decide whether to
pop up at all.

setTimeToPopup() The progress meter won’t pop up if the progress meter’s
calculation estimates that the process will take less time than
the time you set here. The default is 500 ms.

startProgress() Call this method within your object to inform the progress
meter that timing has begun.

updateProgress() Call this method with a integer parameter that represents your
computation’s degree of completion.
Chapter 23 ■ Progress Helper 211

Set a time which it is unnecessary to display a progress meter and call setPopupTime()
with this value. Decide when you want the progress helper to calculate its estimation of
the monitored process’ completion time and call setTimeToDecideToPopup() with this
time. This time should be long enough that the tracking variable is no longer at its
minimum value, so that the progress meter has a way of estimating how long the
operation will take to complete.

Call the updateProgress() method periodically to update the tracking variable:

jpr.updateProgress(5); // Progress indicator is half-way along

When the process has completed, call completeProgress() to remove the dialog.

A full example
The following code causes a progress dialog to appear. It sets both a static message and a
dynamic message that is changed every time the progress bar is updated. Since the dialog
is managed in an AWT thread, you may have to make sure that it is given a chance to
212 Part II ■ JClass Elements’ Utility Classes

run, especially if you wish to perform some initialization of the progress dialog in the
mainline thread and you wish it to appear in the dialog.

import javax.swing.*;
import com.klg.jclass.util.swing.JCProgressHelper;

public class ProgressHelper extends JFrame {

 // Use the constructor that permits setting a static message
 public ProgressHelper() {
 JCProgressHelper jpr = new JCProgressHelper(this,
 "Here is a static progress message", 0, 100,
 true, true, false);
 // Pop up the progress dialog.
 // There will be a delay, determined in part
 // by the two popup time parameters.
 jpr.startProgress();
 for (int j = 1; j < 11; j++){
 // Simulate an ongoing process ...
 try {
 Thread.sleep(1000);
 } catch (Exception e) {
 }
 // ... and update the progress meter periodically,
 jpr.updateProgress(j*10);
 // changing the dynamic message as the meter updates.
 jpr.setDynamicMessage("Dynamic "+ j*10);
 }
 // Dispose of the progress meter
 jpr.completeProgress();
 // The mainline program can continue as required...
 // ... until its tasks are completed.
 System.exit(0);
 }

 public static void main(String[] args) {
 ProgressHelper ph = new ProgressHelper();
 }
}

Chapter 23 ■ Progress Helper 213

214 Part II ■ JClass Elements’ Utility Classes

24
String Tokenizer

Features of JCStringTokenizer ■ Classes ■ Methods ■ Examples

24.1 Features of JCStringTokenizer

JCStringTokenizer provides simple linear tokenization of a String. The set of
delimiters, which defaults to common whitespace characters, can be specified either
during creation or on a per-token basis. It is similar to java.util.StringTokenizer, but
delimiters can be included as literals by preceding them with a backslash character (the
default). It exhibits this useful behavior: if one delimiter immediately follows another, a
null String is returned as the token instead of being skipped over.

JCStringTokenizer has these capabilities:

■ Parses a String using a delimiter you specify.

■ Parses a String using the specified delimiter and escape character.

■ Counts the number of tokens in the String using the specified delimiter.

24.2 Classes

This utility consists of a single class called JCStringTokenizer.

Pass the String to be tokenized to the constructor:

 String s = "Hello my friend";
 JCStringTokenizer st = new JCStringTokenizer(s);

Process the tokens in the String tokenizer with methods hasMoreTokens() and
nextToken().
215

24.3 Methods

These are the methods of JCStringTokenizer:

24.4 Examples

At one point, there are two side-by-side commas in the String that is to be split into
tokens. The delimiter for tokenization is a comma, so a null is returned as the token in this
case. Upon encountering it, println() outputs the word “null” as part of the print stream.
Note that leading spaces are not stripped from the tokenized word.

 String token, s = "this, is, a,, test";
 JCStringTokenizer st = new JCStringTokenizer(s);
 while (st.hasMoreTokens()) {
 token = st.nextToken(',');
 System.out.println(token); }

countTokens() Returns the next number of tokens in the String using the
delimiter you specify.

getEscapeChar() Gets the escape character (default: \).

getPosition() Returns the current scan position within the String.

hasMoreTokens() Used with nextToken(). Returns true if more tokens exist in the
String tokenizer.

nextToken() Gets the next token from the delimited String. If required, the
delimiter can be “escaped” by a backslash character.

To include a backslash character, precede it by another backslash
character.

nextToken() Gets the next whitespace-delimited token.

parse() Given a String a delimiter, and an optional escape character, this
method parses the String using the specified delimiter and returns
the values in an array of Strings.

Use the second form of the command if you wish to set an escape
character different from the default, which is the backslash
character.

setEscapeChar() Sets the escape character (default: \). If 0, no escape character is
used.
216 Part II ■ JClass Elements’ Utility Classes

This prints the following to the console:

 this
 is
 a
 null
 test

You can remove the leading spaces by passing each token in turn to another String
tokenizer whose delimiter is a space.

In the next example, a slightly longer String is parsed based on the delimiter being the
space character. As in the previous example, side-by-side spaces are interpreted as having
a null token between them.

import com.klg.jclass.util.JCStringTokenizer;

public class StringTokenizerExample {

 public static void main(String args[]){

 String token, s = "this is a test of the string " +
 + "tokenizer called JCStringTokenizer. " +
 "\nThe whitespace between the repeated words is a tab tab. ";
 System.out.println("First, the string: " + s);
 JCStringTokenizer st = new JCStringTokenizer(s);
 while (st.hasMoreTokens()) {
 token = st.nextToken(' ');
 System.out.println(token);
 }

 }
}

Chapter 24 ■ String Tokenizer 217

This time, the output is:

First, the string: this is a test of the string tokenizer called
JCStringTokenizer.
The whitespace between the repeated words is a tab tab.
this
null
null
is
a
null
test
of
the
string
tokenizer
called
JCStringTokenizer.

The
whitespace
between
the
repeated
words
is
a
tab
 tab.
218 Part II ■ JClass Elements’ Utility Classes

25
Thread Safety Utilities

Features of the Thread Safety Classes ■ Methods

25.1 Features of the Thread Safety Classes

JCMessageHelper lets you build a message dialog based on JOptionPane. The advantages
of the JCMessageHelper are:

■ JCMessageHelper invokes JOptionPane in a thread-safe manner.

■ You can set an audible indication when the dialog appears as a parameter in the
constructor.

■ JCMessageHelper utilizes JCSwingRunnable, an abstract runnable class that provides
the run() method. You can create an object of this type, and call the runSafe method
to get it going.

25.2 Methods

JCMessageHelper
JCMessageHelper has static methods that resemble those in JOptionPane. These are:

showError() Shows an error message, given a title and the message String as
parameters.

showInformation
()

Parameters are two Strings: title and message. The message
appears in an information dialog.

showWarning() Parameters are two Strings: title and message. The message
appears in a warning dialog.
219

http://www.javasoft.com/products/jdk/1.2/docs/api/javax/swing/JOptionPane.html

JCSwingRunnable

showMessage() There is an optional first parameter that lets you specify a parent
Component. The next two parameters are Strings, title and
message. The next parameter is an int specifying the message
type, and the optional last parameter is a Boolean that specifies
whether to emit an audible beep when the dialog appears. The
possible message types are
javax.swing.JOptionPane.ERROR_MESSAGE
javax.swing.JOptionPane.INFORMATION_MESSAGE
javax.swing.JOptionPane.WARNING_MESSAGE
javax.swing.JOptionPane.QUESTION_MESSAGE
javax.swing.JOptionPane.PLAIN_MESSAGE

See javax.swing.JOptionPane for a description of the various
dialogs.

run() Since this class implements Runnable and is used to create a
thread, its run() method will be called to start the thread.
220 Part II ■ JClass Elements’ Utility Classes

26
Tree Set

Features of JCTreeSet ■ Constructors and Methods ■ Examples

26.1 Features of JCTreeSet

This class adds a convenience constructor to java.util.TreeSet, which provides you
with a way of representing an array of Objects as a sorted set. If the elements of the set
have a defined ordering principle, it is used by default to construct the tree, or you can
provide a Comparator. The ordering must be compatible with the conditions for a
java.util.TreeSet. If your array contains duplicate items, JCTreeSet will ensure that
only one of them is placed in the sorted set.

JCTreeSet adds this convenience constructor:

■ Construct a new JCTreeSet containing the elements in a specified array, sorted
according to the elements’ natural ordering principle.

JCTreeSet includes the following TreeSet standard constructors:

■ Construct an empty TreeSet using a specified Collection, sorted according to the
elements’ natural ordering principle.

■ Construct a new TreeSet containing the elements in the specified Collection, sorted
according to the elements’ natural ordering principle.

■ Construct a new JCTreeSet containing the same elements as the given SortedSet,
sorted according to the same ordering.

26.2 Constructors and Methods

JCTreeSet has constructors that allow you to form a sorted set from the elements of a
Collection, an array of Objects, or a SortedSet. A no-parameter constructor lets you
221

instantiate an empty tree set using natural ordering, or you can supply a Comparator to
specify how the elements are to be sorted.

JCTreeSet defines no methods of its own. Its methods are inherited from
java.util.TreeSet, java.util.AbstractSet, java.util.AbstractCollection, and
java.lang.Object.

26.3 Examples

The example shown here illustrates passing an array of Strings to the constructor. Some
Strings are duplicates, but the resulting sorted set contains no duplicates.

import com.klg.jclass.util.JCTreeSet;

public class TreeSetExample {

 public static void main(String args[]){
 System.out.println("Starting TreeSetExample");
 String[] items =
 {"moe", "joe", "poe", "zoe", "aoe", "poe", "joe", "moe"};
 JCTreeSet ts = new JCTreeSet(items);
 System.out.println("The number of items in the array is: "
 + items.length);
 System.out.println("The number of items in JCTreeSet "
 + ts + " is: " + ts.size());
 System.out.println("The last element of " + ts + " is: "
 + ts.last());
 }
}

The output of the program is:

Starting TreeSetExample
The number of items in the array is: 8
The number of items in JCTreeSet [aoe, joe, moe, poe, zoe] is: 5
The last element of [aoe, joe, moe, poe, zoe] is: zoe
222 Part II ■ JClass Elements’ Utility Classes

27
Type Converters

Features of JCTypeConverter ■ Features of JCSwingTypeConverter

Classes ■ Methods ■ Examples

27.1 Features of JCTypeConverter

There is frequently a need to convert objects to Strings and Strings to objects when you
are coding a user interface. For example, a user types a String as input that you would like
to convert to an object. The input String might consist of a sequence of integers, delimited
by commas, that you would like to convert to an array. There are also times when you
need to convert an object to a String so that you can place the text on a label or a button.
The JClass type converters are a collection of the most useful conversions from String to
object, and from object to String. The static methods of JCTypeConverter let you retrieve
parameters from an application or applet and convert these parameters to particular data
types.

JCTypeConverter performs these functions:

■ Returns a trimmed String, with trailing nulls removed.

■ Converts a String to an integer.

■ Converts a String to a double.

■ Converts a String to a Boolean.

■ Converts a String to an array of Strings.

■ Converts a String to an array of integers or Integer objects.

■ Converts a String to an array of Double objects.

■ Converts all occurrences of "\n" to newlines.

■ Converts all occurrences of char '\n' to String "\n".

■ Converts a delimited list of String tokens to a Vector.

■ Converts a String to an enum, or a list of enums.

■ Converts an enum to a String.

■ Converts an object to a String.

■ Converts a String to a Date.
223

■ Removes “escape” characters (backslashes) from the String.

■ Allows parsing errors to be printed or shown in a dialog.

27.2 Features of JCSwingTypeConverter

JCSwingTypeConverter can perform these functions:

■ Converts a String to a Color, or an array of Colors.

■ Converts color to one of the Color enums, or RGB format.

■ Converts list to a comma-separated list of tokens.

■ Converts a font name to a font instance, or a Font to a name-style-size String, or a
String like Helvetica-plain-10 to a Font.

■ Converts a String to an Insets instance, or creates a String from an AWT Insets
value.

■ Converts a String to a Dimension instance.

■ Converts a String to a Point instance.

27.3 Classes

The two type converter classes are com.klg.jclass.util.JCTypeConverter and
com.klg.jclass.util.swing.JCSwingTypeConverter. Both contain static methods for
converting from one standard type to another. JCTypeConverter is for converting Java
types, and JCSwingTypeConverter is for Swing types.

27.4 Methods

JCTypeConverter
JCTypeConverter contains static methods for retrieving parameters from a source file or
applet, and for converting parameters to particular data types.

The methods in JCTypeConverter are:

checkEnum() Checks the validity of an enum.

error() Writes a parse error message to the standard output device.

fromEnum() Converts an enum to a String.

fromNewLine() Converts all occurrences of char '\n' to String "\n"

removeEscape() Removes escape characters (backslashes) from the String.
224 Part II ■ JClass Elements’ Utility Classes

toBoolean() Converts a String to a Boolean. The method takes two
parameters: the String representation of the Boolean, and a
boolean default value to use if a parse error occurs.

toDate() Converts a String to a Date.

toDouble() Converts a String to a double. The method takes two parameters:
the String representation of the number, and a Double default
value to use if a parse error occurs.

toDoubleList() Converts a String to an array of Double objects based on the
provided delimiter. An optional third parameter is the default
value, returned if a parse error occurs.

toEnum() Converts a String to an enum. If the String cannot be converted,
an error message is written to the console. The first three of its six
parameters are the String to be converted, the enum type
specified as a String, and a PARAM name for the enum (used in
an error message). The next two are two-dimensional arrays that
link enum types and their corresponding values. The last
parameter is the value that should be returned it the Strings
cannot be converted.
The method has other signatures as well. See the API for details.

toEnumList() Converts a String to a list of enums. If the String cannot be
converted, an error message is written to the console.

toInt() Converts a String to an integer. The method takes two parameters:
the String representation of the integer, and an integer default
value to use if a parse error occurs.

toIntegerList() Converts a String to an array of Integers based on the provided
delimiter. An optional third parameter is the default value,
returned if a parse error occurs.

toIntList() Converts a String to an array of Integer objects based on the
provided delimiter. An optional third parameter is the default
value, returned if a parse error occurs.

toNewLine() Converts all occurrences of “\n” to newlines.

toString() Converts an object to a String. If a String, newlines are replaced
by “\n”. If a Vector, it is converted to a comma-separated list.

toStringList() Converts a String to an array of Strings. There are three
signatures: (a) a comma-separated String, (b) a String and a
delimiter, and (c) the String, delimiter, and a Boolean indicating
whether the String should be trimmed. Strings are trimmed by
default.
Chapter 27 ■ Type Converters 225

JCSwingTypeConverter
The methods in JCSwingTypeConverter are:

27.5 Examples

The following example gives you an indication of how the static methods in
JCSwingTypeConverter can be used.

import java.awt.Dimension;
import java.awt.Font;
import java.awt.Color;
import com.klg.jclass.util.swing.JCSwingTypeConverter;

toVector() Converts a delimited list of tokens to a Vector. The second
parameter is the delimiter that separates the tokens in the String.
An optional third parameter is the default value, returned if a
parse error occurs.

trim() Returns a trimmed String, with trailing nulls removed.

toInsets() Converts a String to an Insets instance.

fromInsets() Creates a String from an AWT Insets value.

toDimension() Converts a String in the form “40x30” to a Dimension instance.

toPoint() Converts a String to a Point instance.

toColorList() Converts a String to an array of Colors. An optional second
parameter allows you to specify a default Color list if an error
occurs while parsing the String.

toColor() Converts a String to a Color. An optional second parameter
allows you to specify a default Color if an error occurs while
parsing the String.

fromColorList() Converts list to a comma-separated list of tokens, to one of the
Color enums, or to RGB format.

toFont() Converts a font name to a font instance, or a font name in format
“name-style-size”, for instance, “Helvetica-plain-10.”

fromFont() Returns font in format “name-style-size.”
226 Part II ■ JClass Elements’ Utility Classes

class SwingTypeConverterExamples {

 public static void main(String[] args){

System.out.println("++");
 String s;
 Font f = new Font("System", 10, 10);
 s = JCSwingTypeConverter.fromFont(f);
 System.out.println("The name of the font is " + s);

System.out.println("++");

 String colors = "red, blue, green";
 Color[] colorarray = JCSwingTypeConverter.toColorList(colors,

null);
 for (int i=0; i<colorarray.length; i++)
 System.out.println("The array of colors is: " +
colorarray[i].toString(
System.out.println("++");

 Color[] mycolors = JCSwingTypeConverter.toColorList(new String

 ("black, blue, cyan"));
 for (int i=0; i<mycolors.length; i++)
 System.out.println("The Color array is: " +

mycolors[i].toString());

System.out.println("++");
 Color yourcolor = JCSwingTypeConverter.toColor("darkGray",

Color.gray);
 System.out.println("The color is: " + yourcolor.toString());

System.out.println("++");
 Dimension dim = JCSwingTypeConverter.toDimension("40x30", null);
 System.out.println("The dimension is: " + dim.toString());

 }
}

The output of this program is:

+++
The name of the font is System-PLAIN-10
+++
The array of colors is: java.awt.Color[r=255,g=0,b=0]
The array of colors is: java.awt.Color[r=0,g=0,b=255]
The array of colors is: java.awt.Color[r=0,g=255,b=0]
+++
The Color array is: java.awt.Color[r=0,g=0,b=0]
The Color array is: java.awt.Color[r=0,g=0,b=255]
The Color array is: java.awt.Color[r=0,g=255,b=255]
+++
Chapter 27 ■ Type Converters 227

The color is: java.awt.Color[r=64,g=64,b=64]
+++
The dimension is: java.awt.Dimension[width=40,height=30]

The static methods of JCTypeConverter are called in a similar fashion, as illustrated next.

import java.util.Date;
import java.text.DateFormat;
import com.klg.jclass.util.JCTypeConverter;

class TypeConverterExamples {

 public static void main(String[] args){
 System.out.println("+++");
 String s = "10.777";
 double dd = 10;
 double d = JCTypeConverter.toDouble(s, dd);
 System.out.println("The value of the double is: " + d);

 System.out.println("+++");

 s = "Abel, Ben, Curry, Dave";
 String[] sa = JCTypeConverter.toStringList(s, ',', true);
 for (int i=0; i<sa.length; i++)
 System.out.println("The array element is: " + sa[i]);
 System.out.println("+++");

 s = "1, 1, 2, 3, 5, 8, 13";
 int [] da = {1,1,1,1,1,1,1};
 int[] ii = JCTypeConverter.toIntList(s, ',', da);
 for (int i=0; i<ii.length; i++)
 System.out.println("The Integer array element is: " +
 ii[i]);

 System.out.println("+++++++++++++++++++++++++++++++++++++++");
 s = "Feb 30, 2000";
 Date today = new Date("June 12, 1999");
 Date myDate = JCTypeConverter.toDate(s, today);
 System.out.println("The date is: " + myDate.toString());

 }
 }

Here is the output:

DOS: %JAVA_HOME%\bin\java TypeConverterExamples
+++
The value of the double is: 10.777
+++
The array element is: Abel
The array element is: Ben
The array element is: Curry
The array element is: Dave
+++
The Integer array element is: 1
The Integer array element is: 1
The Integer array element is: 2
228 Part II ■ JClass Elements’ Utility Classes

The Integer array element is: 3
The Integer array element is: 5
The Integer array element is: 8
The Integer array element is: 13
+++
The date is: Sat Jun 12 00:00:00 EDT 1999
Chapter 27 ■ Type Converters 229

230 Part II ■ JClass Elements’ Utility Classes

28
Word Wrap

Features of JCWordWrap ■ Methods ■ Examples

28.1 Features of JCWordWrap

JCWordWrap provides a static method called wrapText() that performs basic word-wrap
logic on a String, given a line width in pixels and a delimiter to insert just before the line
width is reached. While the delimiter is most often a newline, it can be any String.

The resulting String produced by JCWordWrap has lines no longer than the line width
supplied as one of the parameters. Since the width of a line is measured in pixels, the
number of words in a line depends on the FontMetrics currently in effect.

The other static method in this class is replace(). Its parameters are three Strings. The
first parameter is the text String to be searched for occurrences of the second parameter.
Any such occurrences are replaced with the third parameter.

28.2 Methods

Following is a list of the JCWordWrap methods:

wrapText() This static method returns a word-wrapped String, given an
input String, a FontMetrics object, a line width in pixels, a
delimiter such as a newline, and a Boolean to indicate whether
left-alignment is in effect. Word-wrap logic breaks lines by spaces,
but provides no hyphenation logic. The original String is
returned if the number of characters is less than 10.

replace() Returns a String stripped of a delimiter, or replaces one String
with another.
231

28.3 Examples

The code fragment shown here takes one rather long text String and constructs a
reformatted one by adding newlines every so often. The new String s inserts newlines so
that the lines never exceed 100 pixels, based on the current font.

...
FontMetrics fm = g.getFontMetrics(f);

String text = "It has flown away";
text += "The nightingale that called ";
text += "Waking me at midnight ";
text += "Yet its song seems "
text += "Still by my pillow.";

s = JCWordWrap.wrapText(text, fm, 100, delimiter, true);
Figure 57It has flown away

The nightingale that
called Waking me at
midnight Yet its song
seems Still by my
pillow.

If the length for word wrapping is decreased to 50 pixels,

s = JCWordWrap.wrapText(text, fm, 50, delimiter, true);

The output String s is formatted as shown:

It has
flown
away The
nightingale
that called
Waking
me at
midnight
Yet its
song
seems
Still by my
pillow.

Taking this second case, use replace() to put the word -STOP- in place of a newline:

String s1 = JCWordWrap.replace(s, "\n", "-STOP-");

This would yield:

It has -STOP-flown -STOP-away The -STOP-nightengale -STOP-that called -
STOP-Waking -STOP-me at -STOP-midnight -STOP-Yet its -STOP-song -STOP-seems
-STOP-Still by my -STOP-pillow.
232 Part II ■ JClass Elements’ Utility Classes

Part
III

Reference
Appendices

Appendix A
Bean Properties Reference

Beans in the Swing Package ■ Beans in the com.klg.jclass.util.swing Package

The following is a listing of the JClass Elements Bean properties and their default values.
The properties are arranged alphabetically by property name. The second entry on any
given row names the data type returned by the method. Note that a small number of
properties are really read-only variables, and therefore only have a get method. These
properties are marked with a “(G)” following the property name.

A.1 Beans in the Swing Package

A.1.1 Properties of JCCircularGauge

Property Type DefaultValue

autoTickGeneration Boolean True

centerColor java.awt.Color 0,0,0

centerRadius double 0.1

direction int DIRECTION_COUNTERCLOCKWISE

drawTickLabels Boolean True

drawTickMarks Boolean True

needleColor java.awt.Color (null)

needleInteractionType int INTERACTION_NONE

needleStyle int NEEDLE_ARROW

needleValue double 0.0

needleWidth double 15.0

paintCompleteBackgrou
nd

Boolean False

precision int 0
235

A.1.2 Properties of JCLinearGauge

scaleColor java.awt.Color 255,255,255

scaleExtent double 1.0

scaleMax double 100.0

scaleMin double 0.0

snapToValue Boolean False

startAngle double 0.0

stopAngle double 360.0

tickColor java.awt.Color 0,0,0

tickFont java.awt.Font (null)

tickFontColor java.awt.Color 0,0,0

tickIncrement double 10.0

tickInnerExtent double 0.85

tickLabelExtent double 0.8

tickOuterExtent double 1.0

tickStartValue double 0.0

tickStopValue double 100.0

tickStyle int TICK_LINE

tickWidth double 2.0

type int TYPE_FULL_CIRCLE

useDefaultPrecision Boolean True

Property Type DefaultValue

autoTickGeneration Boolean True

direction int DIRECTION_COUNTERCLOCKWISE

drawTickLabels Boolean True

drawTickMarks Boolean True

needleColor java.awt.Color (null)

Property Type DefaultValue
236 Part III ■ Reference Appendices

A.1.3 Properties of JCMultiSelectList

needleInteractionType int INTERACTION_NONE

needleStyle int NEEDLE_ARROW

needleValue double 0.0

needleWidth double 15.0

precision int 0

scaleColor java.awt.Color 255,255,255

scaleExtent double 1.0

scaleMax double 100.0

scaleMin double 0.0

snapToValue Boolean False

startAngle double 0.0

stopAngle double 360.0

tickColor java.awt.Color 0,0,0

tickFont java.awt.Font (null)

tickFontColor java.awt.Color 0,0,0

tickIncrement double 10.0

tickInnerExtent double 0.85

tickLabelExtent double 0.8

tickOuterExtent double 1.0

tickStartValue double 0.0

tickStopValue double 100.0

tickStyle int TICK_LINE

tickWidth double 2.0

useDefaultPrecision Boolean True

Property Type Default Value

about (G) String com.klg.jclass.swing x.x.x

Property Type DefaultValue
Appendix A ■ Bean Properties Reference 237

../api/com/klg/jclass/swing/JCMultiSelectList.html

A.1.4 Properties of JCMDIFrame

alignmentX float 0.5

alignmentY float 0.5

background Color (null)

border javax.swing.border.
Border

(null)

debugGraphicsOptions int 0

doubleBuffered Boolean false

enabled Boolean true

fixedCellHeight int -1

fixedCellWidth int -1

font Font (null)

foreground Color (null)

maximumSize Dimension [32767, 32767]

minimumSize Dimension [153, 42]

model javax.swing.ListModel SetValue

name String (null)

nextFocusableComponent Component (null)

opaque Boolean false

preferredSize Dimension [232, 200]

prototypeCellValue java.lang.Object (null)

requestFocusEnabled Boolean true

selectionBackground Color 204,204,255

selectionForeground Color 0,0,0

toolTipText String (null)

Property Type Default Value

about (G) String com.klg.jclass.swing x.x.x

Property Type Default Value
238 Part III ■ Reference Appendices

../api/com/klg/jclass/swing/JCMDIFrame.html

A.1.5 Properties of JCMDIPane

alignmentX float 0.5

alignmentY float 0.5

background Color (null)

border javax.swing.border.
Border

javax.swing.plaf.metal.
MetalBorders
$InternalFrameBorder

debugGraphicsOptions int 0

doubleBuffered Boolean false

enabled Boolean true

font Font (null)

foreground Color (null)

maximumSize Dimension [MAX_VALUE, MAX_VALUE]

minimumSize Dimension [120, 24]

name String (null)

nextFocusableCompone
nt

Component (null)

opaque Boolean false

preferredSize Dimension [10, 34]

requestFocusEnabled Boolean true

toolTipText String (null)

Property Type Default Value

about (G) String com.klg.jclass.swing x.x.x

alignmentX float 0.5

alignmentY float 0.5

background Color 153,153,204

border javax.swing.border.
Border

(null)

Property Type Default Value
Appendix A ■ Bean Properties Reference 239

../api/com/klg/jclass/swing/JCMDIPane.html

A.1.6 Properties of JCTreeExplorer

considerIconsWhen
Tiling

boolean false

debugGraphicsOptions int 0

doubleBuffered Boolean false

dragMode int LIVE_DRAG_MODE
(corresponds to DEFAULT
for
frameManuipulationStyle)

enabled Boolean true

font Font (null)

foreground Color (null)

frameManipulationStyle int DEFAULT

maximumSize Dimension [100, 100]

minimumSize Dimension [300, 200]

name String (null)

nextFocusableComponent Component (null)

opaque Boolean true

preferredSize Dimension [300, 200]

requestFocusEnabled Boolean true

toolTipText String (null)

Property Type Default Value

about (G) String com.klg.jclass.swing
x.x.x

alignmentX float 0.0

alignmentY float 0.0

background Color (null)

Property Type Default Value
240 Part III ■ Reference Appendices

../api/com/klg/jclass/swing/JCTreeExplorer.html

A.1.7 Properties of JCTreeTable

border javax.swing.border.
Border

javax.swing.plaf.basic.
BasicBorders$SplitPane
Border

debugGraphicsOptions int 0

doubleBuffered Boolean false

enabled Boolean true

font Font (null)

foreground Color (null)

maximumSize Dimension [MAX_VALUE, MAX_VALUE]

minimumSize Dimension [46, 24]

name String (null)

nextFocusableComponent Component (null)

opaque Boolean false

preferredSize Dimension [515, 405]

requestFocusEnabled Boolean true

toolTipText String (null)

Property Type Default Value

about (G) String com.klg.jclass.swing x.x.x

alignmentX float 0.5

alignmentY float 0.5

autoSort Boolean true

background Color 255,255,255

border javax.swing.border.
Border

(null)

debugGraphicsOptions int 0

doubleBuffered Boolean false

enabled Boolean true

Property Type Default Value
Appendix A ■ Bean Properties Reference 241

../api/com/klg/jclass/swing/JCTreeTable.html

A.1.8 Properties of JCWizard

font Font null

foreground Color 0,0,0

maximumSize Dimension [0, 20]

minimumSize Dimension [0, 20]

name String (null)

nextFocusableComponent Component (null)

opaque Boolean true

preferredSize Dimension [0, 20]

requestFocusEnabled Boolean true

rootVisible Boolean true

scrollsOnExpand Boolean true

showNodeLines int Use Plaf

showsRootHandles Boolean false

sortable Boolean true

toolTipText String (null)

view int Tree

Property Type Default Value

about (G) String com.klg.jclass.swing x.x.x

alignmentX float 0.5

alignmentY float 0.5

background Color 204,204,204

border javax.swing.border.
Border

(null)

debugGraphicsOptions int 0

doubleBuffered Boolean true

enabled Boolean true

Property Type Default Value
242 Part III ■ Reference Appendices

../api/com/klg/jclass/swing/JCWizard.html

A.1.9 Properties of JCWizardPage

font Font null

foreground Color 0,0,0

maximumSize Dimension [MAX_VALUE, MAX_VALUE]

minimumSize Dimension [0, 0]

name String (null)

nextFocusableComponent Component (null)

opaque Boolean true

preferredSize Dimension [0, 0]

requestFocusEnabled Boolean true

toolTipText String (null)

Property Type Default Value

about (G) String com.klg.jclass.swing x.x.x

alignmentX float 0.0

alignmentY float 0.0

background Color 204,204,204

border javax.swing.border.
Border

(null)

debugGraphicsOptions int 0

doubleBuffered Boolean true

enabled Boolean true

font Font null

foreground Color 0,0,0

maximumSize Dimension [33174, 131068]

minimumSize Dimension [407, 37]

name String VerticalBox0

nextFocusableComponent Component (null)

Property Type Default Value
Appendix A ■ Bean Properties Reference 243

../api/com/klg/jclass/swing/JCWizardPage.html

A.2 Beans in the com.klg.jclass.util.swing Package

A.2.1 Properties of JCBox

opaque Boolean true

preferredSize Dimension [407, 39]

requestFocusEnabled Boolean true

toolTipText String (null)

Property Type Default Value

about String com.klg.jclass.util x.x.x

alignment int Top

alignmentX float 0.0

alignmentY float 0.0

background Color 204,204,204

border javax.swing.border.
Border

(null)

debugGraphicsOptions int 0

doubleBuffered Boolean True

enabled Boolean True

font java.awt.Font null

foreground Color 0,0,0

maximumSize Dimension [0, 0]

minimumSize Dimension [0, 0]

name String HorizontalBox0

nextFocusableComponent Component (null)

opaque Boolean True

orientation int Horizontal

preferredSize Dimension [0,0]

Property Type Default Value
244 Part III ■ Reference Appendices

../api/com/klg/jclass/util/swing/JCBox.html

A.2.2 Properties of JCBrace

A.2.3 Properties of JCCheckBoxList

requestFocusEnabled Boolean True

toolTipText String (null)

Property Type Default Value

about String com.klg.jclass.util x.x.x

alignmentX float 0.5

alignmentY float 0.5

background Color (null)

doubleBuffered Boolean False

enabled Boolean True

font java.awt.Font (null)

foreground Color (null)

length int 10

maximumSize Dimension [10, 32767]

minimumSize Dimension [10, 0]

name String (null)

opaque Boolean True

orientation int Horizontal

preferredSize Dimension [10, 0]

Property Type Default Value

about String com.klg.jclass.util x.x.x

alignmentX float 0.5

alignmentY float 0.5

background Color 255,255,255

Property Type Default Value
Appendix A ■ Bean Properties Reference 245

../api/com/klg/jclass/util/swing/JCBrace.html
../api/com/klg/jclass/util/swing/JCCheckBoxList.html

A.2.4 Properties of JCExitFrame

border javax.swing.border.
Border

(null)

debugGraphicsOptions int 0

doubleBuffered Boolean False

enabled Boolean True

fixedCellHeight int -1

fixedCellWidth int -1

font java.awt.Font null

foreground Color 0,0,0

maximumSize Dimension [0, 0]

minimumSize Dimension [0, 0]

model javax.swing.
ListModel

SetValue

null

name String (null)

nextFocusableComponent Component (null)

opaque Boolean True

preferredSize Dimension [0, 0]

prototypeCellValue java.lang.Object (null)

requestFocusEnabled Boolean True

selectionBackground Color 204,204,255

selectionForeground Color 0,0,0

selectionMode int Multiple Interval

toolTipText String (null)

visibleRowCount int 8

Property Type Default Value

about String com.klg.jclass.util x.x.x

Property Type Default Value
246 Part III ■ Reference Appendices

../api/com/klg/jclass/util/swing/JCExitFrame.html

A.2.5 Properties of JCFontChooserBar

alignmentX float 0.5

alignmentY float 0.5

background Color 204,204,204

doubleBuffered Boolean False

enabled Boolean True

exitOnClose Boolean True

font java.awt.Font (null)

foreground Color (null)

maximumSize Dimension [MAX_VALUE, MAX_VALUE]

minimumSize Dimension [0, 0]

name String frame0

opaque Boolean True

preferredSize Dimension [0, 0]

Property Type Default Value

UIClassID String (null)

accessibleContext javax.accessibility.
AccessibleContext

(null)

alignmentX float (null)

alignmentY float (null)

autoscrolls Boolean (null)

background Color (null)

border javax.swing.border.
Border

(null)

component (null) null

componentCount int (null)

components Component[] (null)

debugGraphicsOptions int (null)

Property Type Default Value
Appendix A ■ Bean Properties Reference 247

../api/com/klg/jclass/util/swing/JCFontChooserBar.html

doubleBuffered Boolean (null)

enabled Boolean (null)

focusCycleRoot Boolean (null)

focusTraversable Boolean (null)

font java.awt.Font (null)

foreground Color (null)

graphics Graphics (null)

height int (null)

insets java.awt.Insets (null)

layout java.awt.
LayoutManager

(null)

managingFocus Boolean (null)

maximumSize Dimension (null)

minimumSize Dimension (null)

name String (null)

nameList String[] (null)

nextFocusableComponent Component (null)

opaque Boolean (null)

optimizedDrawingEnabled Boolean (null)

paintingTile Boolean (null)

preferredSize Dimension (null)

registeredKeyStrokes javax.swing.
KeyStroke[]

(null)

requestFocusEnabled Boolean (null)

rootPane javax.swing.
JRootPane

(null)

selectedFont java.awt.Font (null)

toolTipText String (null)

topLevelAncestor java.awt.Container (null)

Property Type Default Value
248 Part III ■ Reference Appendices

A.2.6 Properties of JCFontChooserPane

underline Boolean (null)

validateRoot Boolean (null)

visible Boolean (null)

visibleRect java.awt.Rectangle (null)

width int (null)

x int (null)

y int (null)

Property Type Default Value

about String com.klg.jclass.util
x.x.x

alignmentX float 0.5

alignmentY float 0.5

background Color (null)

border javax.swing.border.
Border

(null)

debugGraphicsOptions int 0

doubleBuffered Boolean False

enabled Boolean True

font java.awt.Font (null)

foreground Color (null)

maximumSize Dimension [32767, 32767]

minimumSize Dimension [274, 236]

name String (null)

nextFocusableComponent Component (null)

opaque Boolean False

preferredSize Dimension [274, 369]

requestFocusEnabled Boolean True

Property Type Default Value
Appendix A ■ Bean Properties Reference 249

../api/com/klg/jclass/util/swing/JCFontChooserPane.html

A.2.7 Properties of JCHelpPane

selectedFont java.awt.Font null

styleControls int null

toolTipEnabled Boolean True

toolTipText String (null)

Property Type Default Value

about String com.klg.jclass.util x.x.x

alignmentX float 0.0

alignmentY float 0.0

background Color (null)

border javax.swing.border.
Border

javax.swing.plaf.basic.
BasicBorders$SplitPane
Border@16b328a8

contentsPage java.net.URL (null)

debugGraphicsOptions int 0

doubleBuffered Boolean False

enabled Boolean True

font java.awt.Font (null)

foreground Color (null)

maximumSize Dimension [MAX_VALUE, MAX_VALUE]

minimumSize Dimension [46, 24]

name String (null)

nextFocusableComponent Component (null)

opaque Boolean False

preferredSize Dimension (null)

requestFocusEnabled Boolean True

titlePage java.net.URL (null)

toolTipText String (null)

Property Type Default Value
250 Part III ■ Reference Appendices

../api/com/klg/jclass/util/swing/JCHelpPane.html

A.2.8 Properties of JCHTMLPane

useToolBar Boolean True

viewPage java.net.URL (null)

Property Type Default Value

about String com.klg.jclass.util x.x.x

alignmentX float 0.5

alignmentY float 0.5

background Color 255,255,255

border javax.swing.border.
Border

javax.swing.plaf.basic.
BasicBorders
$MarginBorder instance

debugGraphicsOptions int 0

doubleBuffered Boolean False

enabled Boolean True

font java.awt.Font null

foreground Color 0,0,0

maximumSize Dimension [MAX_VALUE, MAX_VALUE]

minimumSize Dimension (null)

name String (null)

nextFocusableComponent Component (null)

opaque Boolean True

page java.net.URL (null)

preferredSize Dimension (null)

requestFocusEnabled Boolean True

toolTipText String (null)

Property Type Default Value
Appendix A ■ Bean Properties Reference 251

../api/com/klg/jclass/util/swing/JCHTMLPane.html

A.2.9 Properties of JCSortableTable

A.2.10 Properties of JCSpinBox

Property Type Default Value

about String com.klg.jclass.util x.x.x

alignmentX float 0.5

alignmentY float 0.5

autoSort Boolean False

background Color 255,255,255

border javax.swing.border.
Border

(null)

debugGraphicsOptions int 0

doubleBuffered Boolean False

enabled Boolean True

font java.awt.Font null

foreground Color 0,0,0

maximumSize Dimension [0, 0]

minimumSize Dimension [0, 0]

name String (null)

nextFocusableComponent Component (null)

opaque Boolean True

preferredSize Dimension [0, 0]

requestFocusEnabled Boolean True

toolTipText String (null)

Property Type Default Value

about String com.klg.jclass.util x.x.x

actionCommand String spinBoxChanged

alignmentX float 0.5

alignmentY float 0.5
252 Part III ■ Reference Appendices

../api/com/klg/jclass/util/swing/JCSortableTable.html
../api/com/klg/jclass/util/swing/JCSpinBox.html

A.2.11 Properties of JCSpinNumberBox

arrowKeySpinningAllowed Boolean True

background Color (null)

border javax.swing.border.
Border

(null)

debugGraphicsOptions int 0

doubleBuffered Boolean False

editable Boolean True

enabled Boolean True

font java.awt.Font (null)

foreground Color (null)

maximumSize Dimension [32767, 32767]

minimumSize Dimension [0, 0]

model com.klg.jclass.util.
swing.JCSpinBoxModel

null

name String (null)

nextFocusableComponent Component (null)

opaque Boolean False

preferredSize Dimension [24, 21]

requestFocusEnabled Boolean True

selectedIndex int -1

toolTipText String (null)

Property Type Default Value

about String com.klg.jclass.util x.x.x

alignmentX float 0.5

alignmentY float 0.5

arrowKeySpinningAllowed Boolean True

background Color (null)

Property Type Default Value
Appendix A ■ Bean Properties Reference 253

../api/com/klg/jclass/util/swing/JCSpinNumberBox.html

A.2.12 Properties of JCSpring

border javax.swing.border.
Border

(null)

debugGraphicsOptions int 0

doubleBuffered Boolean False

editable Boolean True

enabled Boolean True

font java.awt.Font (null)

foreground Color (null)

maximumSize Dimension [32767, 32767]

minimumSize Dimension [0, 0]

name String (null)

nextFocusableComponent Component (null)

opaque Boolean False

operation int Integer

preferredSize Dimension [173, 21]

requestFocusEnabled Boolean True

spinStep java.lang.Number 1.0

toolTipText String (null)

value java.lang.Number (null)

Property Type Default Value

about String com.klg.jclass.util x.x.x

alignmentX float 0.5

alignmentY float 0.5

background Color (null)

doubleBuffered Boolean False

enabled Boolean True

Property Type Default Value
254 Part III ■ Reference Appendices

../api/com/klg/jclass/util/swing/JCSpring.html

A.2.13 Properties of JCDateChooser

font java.awt.Font (null)

foreground Color (null)

horizontalElasticity int 1

maximumSize Dimension [32767, 32767]

minimumSize Dimension [0, 0]

name String BidirecionalSpring0

opaque Boolean True

preferredSize Dimension [0, 0]

verticalElasticity int 1

Property Type Default Value

about java.lang.String com.klg.jclass.util x.x.x
Preview

alignmentX float 0.0

alignmentY float 0.0

background java.awt.Color 204,204,204

border javax.swing.border.
Border

(null)

days String[] locale default array

debugGraphicsOptions int 0

doubleBuffered Boolean True

enabled Boolean True

font java.awt.Font null

foreground java.awt.Color 0,0,0

maximumDate java.util.Calendar (null)

maximumSize java.awt.Dimension java.awt.Dimension
[width=203, height=231]

minimumDate java.util.Calendar (null)

Property Type Default Value
Appendix A ■ Bean Properties Reference 255

minimumSize java.awt.Dimension java.awt.Dimension
[width=90, height=54]

months String[] locale default array

name java.lang.String (null)

nextFocusableComponent java.awt.Component (null)

opaque Boolean True

preferredSize java.awt.Dimension java.awt.Dimension
[width=203, height=231]

requestFocusEnabled Boolean True

shortMonths String[] locale default array

toolTipText java.lang.String (null)

value java.util.Calendar null

Property Type Default Value
256 Part III ■ Reference Appendices

Appendix B
Distributing Applets and Applications

Using JarMaster to Customize the Deployment Archive

B.1 Using JarMaster to Customize the Deployment Archive

The size of the archive and its related download time are important factors to consider
when deploying your applet or application.

When you create an applet or an application using third-party classes such as JClass
components, your deployment archive will contain many unused class files unless you
customize your JAR. Optimally, the deployment JAR should contain only your classes
and the third-party classes you actually use. For example, the jchigrid.jar, which you may
have used to develop an applet or application, contains classes and packages that are only
useful during the development process and that are not referenced by your application.
These classes include the Property Editors and BeanInfo classes. JClass JarMaster helps
you create a deployment JAR that contains only the class files required to run your
application.

JClass JarMaster is a robust utility that allows you to customize and reduce the size of the
deployment archive quickly and easily. Using JClass JarMaster you can select the classes
you know must belong in your JAR, and JarMaster will automatically search for all of the
direct and indirect dependencies (supporting classes).

When you optimize the size of the deployment JAR with JClass JarMaster, you save
yourself the time and trouble of building a JAR manually and determining the necessity
of each class or package. Your deployment JAR will take less time to load and will use less
space on your server as a direct result of excluding all of the classes that are never used by
your applet or application.

For more information about using JarMaster to create and edit JARs, please consult its
online documentation.

JClass JarMaster is included with the JClass DesktopViews suite of products. For more
details please refer to Quest Software’s Web site.
257

http://www.quest.com

258 Part III ■ Reference Appendices

Appendix C
Colors and Fonts

Colorname Values ■ RGB Color Values ■ Fonts

This section provides information on common colorname values, specific RGB color
values and fonts applicable to all Java programs. You may find it useful as a guide for
choosing colors for cells.

C.1 Colorname Values

The following lists all the colornames that can be used within Java programs. The
majority of these colors will appear the same (or similar) across different computing
platforms.

C.2 RGB Color Values

The following lists all the main RGB color values that can be used within
JClass Elements. RGB color values are specified as three numeric values representing the
red, green and blue color components; these values are separated by dashes (“-”).

■ black ■ lightGray

■ blue ■ lightBlue

■ cyan ■ magenta

■ darkGray ■ orange

■ darkGrey ■ pink

■ gray ■ red

■ grey ■ white

■ green ■ yellow

■ lightGray
259

The following RGB color values describe the colors available to Unix systems. It is
recommended that you test these color values in a JClass program on a Windows or
Macintosh system before utilizing them.

The list begins with all of the variations of white, then blacks and grays, and then
describes the full color spectrum ranging from reds to violets.

Example code from an HTML file:

 <PARAM NAME=backgroundList VALUE="(4, 5 255-255-0)">

RGB Value Description

255-250-250 Snow

248-248-255 Ghost White

245-245-245 White Smoke

220-220-220 Gainsboro

255-250-240 Floral White

253-245-230 Old Lace

250-240-230 Linen

250-235-215 Antique White

255-239-213 Papaya Whip

255-235-205 Blanched Almond

255-228-196 Bisque

255-218-185 Peach Puff

255-222-173 Navajo White

255-228-181 Moccasin

255 248-220 Cornsilk

255-255-240 Ivory

255-250-205 Lemon Chiffon

255-245-238 Seashell

240-255-240 Honeydew

245-255-250 Mint Cream

240-255-255 Azure

240-248-255 Alice Blue

230-230-250 Lavender

255-240-245 Lavender Blush

255-228-225 Misty Rose
260 Part III ■ Reference Appendices

255-255-255 White

0-0-0 Black

47-79-79 Dark Slate Grey

105-105-105 Dim Gray

112- 128-144 Slate Grey

119- 136-153 Light Slate Grey

190- 190-190 Grey

211- 211-211 Light Gray

25-25-112 Midnight Blue

0-0-128 Navy Blue

100- 149 237 Cornflower Blue

72-61-139 Dark Slate Blue

106-90-205 Slate Blue

123- 104 238 Medium Slate Blue

132-112- 255 Light Slate Blue

0-0-205 Medium Blue

65-105-225 Royal Blue

0-0-255 Blue

30-144-255 Dodger Blue

0-19 -255 Deep Sky Blue

135-206-235 Sky Blue

135-206-250 Light Sky Blue

70-130-180 Steel Blue

176-196- 222 Light Steel Blue

173-216-230 Light Blue

176-224-230 Powder Blue

175-238-238 Pale Turquoise

0-206-209 Dark Turquoise

72-209-204 Medium Turquoise

64-224-208 Turquoise

0-255-255 Cyan

224-255-255 Light Cyan

RGB Value Description
Appendix C ■ Colors and Fonts 261

95-158-160 Cadet Blue

102-205-170 Medium Aquamarine

127-255-212 Aquamarine

0-100-0 Dark Green

85-107-47 Dark Olive Green

143-188-143 Dark Sea Green

46-139-87 Sea Green

60-179-113 Medium Sea Green

32-178-170 Light Sea Green

152-251-152 Pale Green

0-255-127 Spring Green

124-252- 0 Lawn Green

0-255-0 Green

127-255- 0 Chartreuse

0-250-154 Medium Spring Green

173-255-47 Green Yellow

50-205-50 Lime Green

154-205-50 Yellow Green

34-139-34 Forest Green

107-142-35 Olive Drab

189-183-107 Dark Khaki

240-230-140 Khaki

238-232-170 Pale Goldenrod

250-250-210 Light Goldenrod Yellow

255-255-224 Light Yellow

255-255-0 Yellow

255-215-0 Gold

238-221-130 Light Goldenrod

218-165-32 Goldenrod

184-134-11 Dark Goldenrod

188-143-143 Rosy Brown

205-92-92 Indian Red

RGB Value Description
262 Part III ■ Reference Appendices

139-69-19 Saddle Brown

160-82-45 Sienna

205-133-63 Peru

222-184- 135 Burlywood

245-245-220 Beige

245-222-179 Wheat

244-164-96 SandyBrown

210-180-140 Tan

210-105-30 Chocolate

178-34-34 Firebrick

165-42-42 Brown

233-150-122 Dark Salmon

250-128-114 Salmon

255-160-122 Light Salmon

255-165- 0 Orange

255-140-0 Dark Orange

255-127-80 Coral

240-128-128 Light Coral

255-99-71 Tomato

255-69-0 Orange Red

255-0-0 Red

255-105-180 Hot Pink

255-20-147 Deep Pink

255-192-203 Pink

255-182-193 Light Pink

219-112-147 Pale Violet Red

176-48-96 Maroon

199-21-133 Medium Violet Red

208-32-144 Violet Red

255-0-255 Magenta

238-130-238 Violet

221-160-221 Plum

RGB Value Description
Appendix C ■ Colors and Fonts 263

C.3 Fonts

There are nine different logical font names that can be specified in any Java 2 program.
They are:

■ Courier

■ Dialog

■ DialogInput

■ Helvetica

■ Monospaced

■ SansSerif

■ Serif

■ TimesRoman

■ ZapfDingbats

Note: Font names are case-sensitive.

There are also four standard font style constants that can be used. The valid Java 2 font
style constants are:

■ Font.BOLD

■ Font.BOLD | Font.ITALIC

■ Font.ITALIC

■ Font.PLAIN

These values are strung together with dashes (“-”) when used with the VALUE attribute.
You must also specify a point size by adding it to other font elements. To display a text
using a 12-point italic Helvetica font, use the following:

Helvetica-italic-12

218-112-214 Orchid

186-85-211 Medium Orchid

153-50-204 Dark Orchid

148-0-211 Dark Violet

138-43-226 Blue Violet

160- 32-240 Purple

147-112-219 Medium Purple

216-191-216 Thistle

RGB Value Description
264 Part III ■ Reference Appendices

All three elements (font name, font style and point size) must be used to specify a
particular font display; otherwise, the default font is used instead.

Note: Font display may vary from system to system. If a font does not exist on a system,
the default font is displayed instead.
Appendix C ■ Colors and Fonts 265

266 Part III ■ Reference Appendices

Index

A
AbstractLabel 86
AbstractSpinBox

super class of JCSpinBox and JCSpinNumberBox 144
accept

JCFileFilter method 194
actionCommand

property of JCSpinBox 145
activateFrame

method in JCMDIPane 136
add

a JComponent to a gauge 80
method in JCLinearScale 48
method in JCWizard 170
method of JCListenerList 205

addActionListener
method in JCSpinBox 146

addChangeListener
method in JCAbstractNeedle 68

addExtension
JCFileFilter method 194

addIndicator
method in JCGauge 31

addItem
method in JCSpinBox 147

addItemListener
method in JCSpinBox 147

addLabel 23
method in JCCircularGauge 33
method in JCLinearGauge 35

addListSelectionListener
method in JCMultiSelectList 141

addNeedle
method in JCGauge 31

addPickListener
method in JCGauge 31

addRange
method in JCGauge 31
method in JCScale 38

addSelectionInterval
method in JCMultiSelectList 141

addSelectionPath
JCTreeTable method 162

addSelectionPaths
JCTreeTable method 162

addSpecialDate

property of JCCalendar 88
addTableHeaderMouseListener

JCTreeTable method 162
addTick

method in JCGauge 31
method in JCScale 38

addTreeExpansionListener
JCTreeTable method 162

addTreeWillExpandListener
JCTreeTable method 162

addWizardListener
method in JCWizard 170

alignment
JCBox property 176

angles
defined for JCCircularScale 43
start and stop in JCCircularScale 44

API 4
applets

distributing 257
JarMaster 257

applications
distributing 257
JarMaster 257

arrangeIcons
method in JCMDIPane 136

B
Beans

com.klg.jclass.util.swing package 244
JCBox 244
JCBrace 245
JCCheckBoxList 245
JCDateChooser 255
JCExitFrame 246
JCFontChooserBar 247
JCFontChooserPane 249
JCHelpPane 250
JCHTMLPane 251
JCSortableTable 252
JCSpinBox 252
JCSpinNumberBox 253
JCSpring 254

JCCircularGaugeBean 79
JCLinearGaugeBean 79
267

property reference 235
Swing package 235

JCCircularGauge 235
JCLinearGauge 236
JCMDIFrame 238
JCMDIPane 239
JCMultiSelectList 237
JCTreeExplorer 240
JCTreeTable 241
JCWizard 242
JCWizardPage 243

borders
linear scale 46
with JCBorder 174

BOTTOM_HALF_CIRCLE
constant in JCCircularGauge.GaugeType 34

box component 174

C
CalendarComponent

interface 86
cancel

method in JCWizard 170
canceled

method in JCWizardListener 171
cascadeWindows

method in JCMDPane 136
center

associating with circular scale 70
center object in JCCircularGauge 70
color 70
object 27
setting a center on a JCCircularGauge 23
sizing 70
use image 71
visibility 71

change listener
for needle movements 69

checkbox-list component 17
checkEnum

method in JCTypeConverter 224
chooserType

property of JCDateChooser 88
circular gauges 21

definition 21
labels 45
the circular gauge component 27
zoom 40

circular scale 27
angles 43
associating a range 60
center 70
in JCCircularGauge 41
properties 42

clamp
method in GaugeUtil 77

classes
gauge, organization 25
JCBorder, associated component 174
JCBox, associated component 174
JCBrace, associated component 175
JCCheckBoxList 18
JCDebug 188
JCEncodeComponent 201
JCFontChooser 105
JCHelpPane 110
JCHTMLPane 110
JCListenerList 205
JCMappingSort 118
JCProgressHelper 209
JCSortableTable 119
JCSpinBox, helper 144
JCSpinNumberBox, helper 144
JCSplashScreen 149
JCStringTokenizer 215
JCTreeExplorer 158
JCTreeTable 158
JCWizard 92, 169
utility 183

clear
method in JCIconCreator 198

clearSelection
method in JCMultiSelectList 141

CLICK
constant in JCAbstractNeedle.InteractionType 63

CLICK_DRAG
constant in JCAbstractNeedle.InteractionType 63

closeFrame
method in JCMDIPane 136

collapsePath
JCTreeTable method 162

collapseRow
JCTreeTable method 162

CollectionIntComparator 118
colors

assigning, in JCCircularScale 45
colorname values 259
RGB color value list 259
RGB values 259

com.klg.jclass.util.calendar 86
com.klg.jclass.util.treetableBranchTree 158
com.klg.jclass.util.treetableNodeChildrenTable 159
comments on product 7
completeProgress

method in JCProgressHelper 211
components

adding to a gauge 80
checkbox-list 17
description of SwingSuite’s 11
JCGauge 21
268 Index

list 12
table 153
tree 153

constants
circular gauge type 34
JCCircularGauge 34

constraint mechanism 73
constructors 95, 169

JCAbstractIndicator 66
JCAbstractNeedle 66
JCCenter 72
JCCircularGauge 32
JCCircularRange 60
JCEncodeComponent 202
JCExitFrame 100
JCFileFilter 193
JCGauge 30
JCHelpPane 111
JCHTMLPane 111
JCIconCreator 197
JCLinearGauge 35
JCLinearRange 60
JCMulitSelectList 141
JCProgressHelper 208
JCSortableTable 120
JCSpinBox 146
JCSpinNumberBox 146
JCSplashScreen 150
JCTreeSet 221
LinearConstraint 74
RadialConstraint 73

container 24
continuousScroll

property of JCSpinBox and JCSpinNumberBox 145
countTokens

method in JCStringTokenizer 216
createDefaultColumnsFromModel

method in JCSortableTable 121
createSortableTableColumn

JCTreeTable method 162
custom

indicator style, in JCGauge 65
labels, for tick marks 53
legend, in JCGauge 37

D
days

property of JCDateChooser 88
DayTable 86
deactivateFrame

method in JCMDIPane 136
debugging 187

Perl script 190
printing debug information 188

removing from code 190
stack trace 189

DefaultTreeIconRenderer 158
DefaultTreeTableSelectionModel 158
deselectAll

method in JCMultiSelectList 141
deselectItem

method in JCMultiSelectList 141
direction of travel

in a scale object 39
distributing applets and applications 257
DRAG

constant in JCAbstractNeedle.InteractionType 63
drawCircleForCircularScale

method in GaugeUtil 77
drawCircleForLinearScale

method in GaugeUtil 77
drawLinearPolygon

method in GaugeUtil 77
dual spin 84

E
elements

method of JCListenerList 205
error

method in JCWordWrap 224
events

in JCGauge 76
JCProgressHelper 209
JCWizard 171
spin box 148

examples
JCAlignLayout 179
JCCheckBoxList 18
JCGridLayout 178
JCListenerList 206
JCMappingSort 122
JCSortableTable 123

exit frame 99
expandPath

JCTreeTable method 162
expandRow

JCTreeTable method 162
extents 24

F
FAQs 7
feature overview 1
finish

method in JCWizard 170
finished

method in JCWizardListener 171
Index 269

fireSelectionValueChanged
method in JCMultiSelectList 141

first
method in JCWizard 170

fontChanging
method in JCFontListener 105

fonts
chooser 103
names 264
point size 264
style constants 264

footer
gauge 22
in JCCircularGauge 36

frame
exit 99
multiple document 129

fromColorList
method in JCSwingTypeConverter 226

fromEnum
method in JCTypeConverter 224

fromFont
method in JCSwingTypeConverter 226

fromInsets
method in JCSwingTypeConverter 226

fromNewLine
method in JCTypeConverter 224

fromRadians
method in GaugeUtil 78

FULL_CIRCLE
constant in JCCircularGauge.GaugeType 34

G
gauge

adding component 80
appearance 22
circular and linear 21
circular gauge component 27
class organization 25
constraint 22
footer 22
header 21
indicators 22
interactivity 22
layout 22
mouse interaction mechanism 22
needles 22
parts, invisible 22
parts, visible 21
pick mechanism 22
placeable labels 22
scale 22
tick 22
tick labels 22

GaugeUtil
methods 77

getAllIconifiedFrames
method in JCMDIPane 134

getAllNonIconifiedFrames
method in JCMDIPane 134

getAnchorSelectionIndex
method in JCMultiSelectList 141

getAutomatic
method in JCAbstractTick 55

getAutoSort
method in JCSortableTable 121

getCellEditor
JCTreeTable method 162
method in JCSortableTable 121

getCellRenderer
JCTreeTable method 162
method in JCSortableTable 121

getCenter
method in JCCircularGauge 33

getClosestNeedle
method in JCCircularGauge 33
method in JCLinearGauge 35

getClosestPathForLocation
JCTreeTable method 162

getComponent
method in JCPickEvent 76

getComponentArea
method in JCGauge 31

getContentPane
method in JCMDIFrame 134

getContentsPage
method in JCHelpPane 112

getContentsPane 112
getDayComponent

method in JCDateChooser 88
getDescription

JCFileFilter method 194
getDirection

method in JCScale 38
getDragMode

method in JCMDIPane 134
getDrawingAreaHeight

method in JCGauge 31
getDrawingAreaWidth

method in JCGauge 31
getDrawLabels

method in JCAbstractTick 55
getDrawTicks

method in JCAbstractTick 55
getEditingPath

JCTreeTable method 162
getEncoder

method in JCEncodeComponent 202
getEscapeChar

method in JCStringTokenizer 216
270 Index

getExitOnClose
method in JCExitFrame 100

getExpandedDescendants
JCTreeTable method 162

getExtension
JCFileFilter method 194

getExtent
method in JCScale 38

getExtrema
method in JCPolygon 78

getFailureMessage
method in JCEncodeComponent 202

getFont
method in JCTick 55

getFontColor
method in JCAbstractTick 55

getFooter
method in JCGauge 32

getForeground
method in JCAbstractIndicator 67
method in JCAbstractNeedle 68

getFrameManipulationStyle
method in JCMDIPane 134

getGauge
method in JCAbstractNeedle 68
method in JCPickEvent 76
method in JCScale 38

getGaugeArea
method in JCGauge 32

getGaugeType
method in JCCircularGauge 34

getHeader
method in JCGauge 32

getIcon
method in JCIconCreator 198

getImage
method in JCCenter 72

getIncrementValue
method in JCAbstractTick 55

getIndicators
method in JCGauge 31

getInnerExtent
method in JCAbstractIndicator 67
method in JCAbstractRange 61
method in JCAbstractTick 55

getInteractionType
method in JCAbstractNeedle 68

getItemAtl
property of JCSpinBox 145

getItemCountl
property of JCSpinBox 145

getKeyColumns
method in JCSortableTable 121

getLabelExtent
method in JCAbstractTick 56

getLabelGenerator

method in JCAbstractTick 56
getLabelVerticalAlignment

JCAlignLayout method 176
getLegend

method in JCGauge 32
getLegendPopulator

method in JCLegend 37
getLegendRenderer

method in JCLegend 37
getLength

method in JCAbstractNeedle 68
getLevel

method in JCDebug 189
getLinearGauge

method in JCLinearScale 48
getLongName

method in JCEncodeComponent 202
getMax

method in JCScale 38
getMaximumValue

property of JCSpinNumberBox 146
getMDIMenuBar

method in JCMDIFrame 134
method in JCMDIPane 135

getMDIToolBar
method in JCMDIFrame 134
method in JCMDIPane 135

getMin
method in JCScale 38

getMonthComponent
method in JCDateChooser 88

getNeedles
method in JCGauge 31

getNeedleStyle
method in JCAbstractIndicator 67
method in JCAbstractNeedle 68

getNeedleWidth
method in JCAbstractIndicator 67
method in JCAbstractNeedle 68

getNonSelectedIcon
method in JCMDIPane 135

getNumberFormat
property of JCSpinNumberBox 146

getOrientation
method in JCLegend 37
method in JCLinearScale 48

getOuterExtent
method in JCAbstractIndicator 67
method in JCAbstractRange 61
method in JCAbstractTick 56

getPathForLocation
JCTreeTable method 162

getPathForRow
JCTreeTable method 162

getPoint
method in JCPickEvent 76
Index 271

getPosition
method in JCStringTokenizer 216

getPrecision
method in JCAbstractTick 56

getPrecisionUseDefault
method in JCAbstractTick 57

getPreferredSize
method in JCAbstractIndicator 67
method in JCAbstractNeedle 68
method in JCMDIPane 135

getPrintStream
method in JCDebug 188

getRadius
method in JCCenter 72
method in JCCircularScale 44

getRanges
method in JCGauge 31
method in JCScale 38

getRepaintEnabled
method in JCGauge 32

getRowForLocation
JCTreeTable method 162

getRowForPath
JCTreeTable method 163

getRowsForPaths
JCTreeTable method 163

getScale
method in JCAbstractIndicator 67
method in JCAbstractRange 61
method in JCAbstractTick 57
method in JCCircularGauge 33
method in JCGauge 31
method in JCLinearGauge 36

getScaleImage
method in JCAbstractRange 61
method in JCCenter 72

getScaleSize
method in JCLinearScale 48

getScrollsOnExpand
JCTreeTable method 163

getSelectedIcon
method in JCMDIPane 135

getSelectedIndex
method in JCMultiSelectList 141

getSelectedIndices
method in JCMultiSelectList 141

getSelectedPath
JCTreeTable method 163

getSelectedValues
method in JCMultiSelectList 141

getSelectionPath
JCTreeExplorer method 160
JCTreeTable method 163

getSelectionPaths
JCTreeExplorer method 160
JCTreeTable method 163

getSendEvents
method in JCAbstractNeedle 69

getShortName
method in JCEncodeComponent 202

getShowNodeLines
JCTreeTable method 163

getShowsRootHandles
JCTreeTable method 163

getSnapToValue
method in JCGauge 32

getStartAngle
method in JCCircularGauge.GaugeType 35

getStartValue
method in JCAbstractRange 61
method in JCAbstractTick 57

getStopValue
method in JCAbstractRange 61
method in JCAbstractTick 57

getSweepAngle
method in JCCircularGauge.GaugeType 35

getTable
JCTreeExplorer method 160
property of JCTreeExplorer 160

getTickColor
method in JCAbstractTick 57

getTicks
method in JCGauge 31
method in JCScale 38

getTickStyle
method in JCAbstractTick 57

getTickWidth
method in JCAbstractTick 57

getTitlePage
method in JCHelpPane 112

getTopFrame
method in JCMDIPane 135

getTree
JCTreeExplorer method 160
property of JCTreeExplorer 160

getTreeIconRenderer
JCTreeExplorer method 161
JCTreeTable method 163

getTreeSelectionModel
JCTreeTable method 163

getTreeTableModel
JCTreeTable method 163

getUnsortedRow
method in JCSortableTable 121

getUseZoomFactorForMax
method in JCLinearScale 48

getUseZoomFactorForMin
method in JCLinearScale 48

getValue
method in JCAbstractIndicator 67
method in JCAbstractNeedle 69
method in JCPickEvent 76
272 Index

property of JCSpinNumberBox 146
getView

JCTreeTable method 163
getViewPage

method in JCHelpPane 112
getViewPane

method in JCHelpPane 112
getYearComponent

method in JCDateChooser 88
getZoomFactor

method in JCScale 38
Graphical User Interface 11
GridLayout

JClass Elements equivalent 15

H
hasMoreTokens

method in JCStringTokenizer 216
header

gauge 21
in JCCircularGauge 36

help
method in JCWizard 170
method in JCWizardListener 171
panes 109

horizontalElasticity
JCSpring property 176

HTML panes 109

I
icons

creating 197
image

encoder 201
using an image as the center of a JCCircularGauge 71

inBounds
method in JCScale 38

indicator
adding an indicator to a JCGauge 23
color 65
custom style 65
gauge 22
indicator object in JCGauge 62
length 64
object in JCCircularGauge 62
positioning with a mouse 66
properties 64
shapes, in JCGauge 64
visibility, controlling 66
width 64

inner extents 24
interactivity

gauge 22
interfaces

JCEncodeComponent 201
JCMappingSort 118
JCSortableTable 119
JCSpinBox 144
JCSpinNumberBox 144
JCSplashScreen 149
JCTreeExplorer 156
JCTreeTable 156

internationalization 16
isEditable

property of JCSpinBox 145
isEnabled

method in JCDebug 189
isExtensionListInDescription

JCFileFilter method 194
isMaximized

method in JCMDIPane 134
isOkayToContinue

method in JCProgressHelper 211
isPathSelected

JCTreeTable method 163
isReversed

method in JCAbstractIndicator 67
method in JCAbstractTick 57

isRootVisible
JCTreeTable method 163

isSortable
JCTreeTable method 163

isSpecialDate
JCDateChooser method 88

J
JAR 257
JarMaster 257
JCAbstractIndicator

constructors 66
methods 66
properties 66

JCAbstractNeedle
constructors 66
methods 67
properties 67

JCAbstractRange
properties 61

JCAbstractScale 39
properties 39

JCAbstractTick
methods 55
sample code 57

JCAlignLayout 173, 176
description 15

JCBorder 174
Index 273

JCBox 174
associated components 178
properties 176, 244

JCBrace 175
associated components 178
properties 176, 245

JCCalendar 86
methods 89
properties 88

JCCalendarContainer 86
JCCenter

constructors 72
methods 72
properties 72

JCCheckBoxList 17
classes 18
description 12
examples 18
methods 18
properties 18, 245

JCCircularGauge 32
circular scale 41
constructors 32
description 12, 15
features 27
footer 36
header 36
legend 36
methods 33
properties 33, 235
radial constraints 73
radial layout 73
type constants 34

JCCircularGaugeBean 79
JCCircularScale

assigning color 45
radius 44

JCColumnLayout 173, 177
JCDateChooser 83, 86

description 12, 16
dual spin 84
methods 88
properties 88, 255
quick select 84
read only 84
spin popdown 84
Tool Tip 84
types of 83

JCDebug 183, 187
classes 188
methods 188
Perl script 190
remove from code 190
scripts 188
setAllowEnabled 190
setLevel 187

jcdebug.pl 188
JCElasticLayout 173, 175, 177

description 15
JCEncodeComponent 184, 201

classes 201
constructors 202
interfaces 201
methods 202

JCExitFrame 99
constructors 100
description 12, 15
methods 100
properties 99, 246
property of exitOnClose 99

JCFileFilter 193
constructors 193
methods 194

JCFontAdapter
JCFontChooser class 105

JCFontChooser 103
classes 105
description 15
methods 105
properties 105

JCFontChooserBar 103
description 15
JCFontChooser class 105
properties 247
Tool Tip 103

JCFontChooserPane 103
description 12, 15
JCFontChooser class 105
properties 249

JCFontEvent
JCFontChooser class 105

JCFontListener
JCFontChooser class 105

JCGauge 21, 25
constraint mechanism 73
constructors 30
description of 29
events 76
labels 74
listeners 76
methods 30
properties 30
utility functions 77

JCGridLayout 174, 177
JCHelpPane 109, 112

classes 110
constructors 111
description 12
properties 110, 250

JCHTMLPane 109
classes 110
constructors 111
274 Index

description 12, 15
methods 111
properties 110, 251

JCIconCreator 183, 197
advantages 197
constructors 197
methods 197

JCIntComparator 118
JClass JarMaster 257
JClass technical support 6

contacting 6
JCLegend

for use in JCCircularGauge 37
interfaces 37
methods 37

JCLegendPopulator 37
JCLegendRenderer 37
JCLinearGauge 35

constructors 35
description 12, 15, 28
methods 35
properties 36, 236

JCLinearGaugeBean 79
JCLinearScale

methods 48
JCListenerList 184, 205

classes 205
methods 205

JCMappingSort 117, 118, 184
classes 118
interfaces 118

JCMDIFrame 129, 132
description 13, 15
methods 134
properties 133, 238

JCMDIPane 129, 131
description 13, 15
methods 134
properties 133, 239

JCMessageHelper 219
methods 219

JCMultiSelectList 139
constructors 141
description 13
methods 141
properties 140, 237

JComboBox
JClass Elements equivalent 15

JCPolygon 78
methods 78

JCProgressAbortedException
class associated with JCProgressHelper 209

JCProgressAdapter 209
JCProgressCancelledEvent

class associated with JCProgressHelper 209
JCProgressCancelledListener

class associated with JCProgressHelper 209
JCProgressEvent

class associated with JCProgressHelper 209
JCProgressHelper 184, 207, 209

classes 209
constructors 208
description 16
events 209
listeners 209
methods 211

JCProgressListener 209
JCRange

properties 61
JCRowComparator 119

used with JCSortableTable 123
JCRowLayout 174
JCRowSortModel 119
JCScale 37

methods 38
JCSortableTable 117, 119, 158

cell renderers 122
classes 119
constructors 120
description 13
interface 119
methods 121
properties 252
using your own comparator with 119

JCSpinBox 143
classes, helper 144
constructors 146
description 13, 15
interface 144
methods 146
properties 144, 252

JCSpinBoxEditor
interface for JCSpinBox 144

JCSpinBoxModel
interface for JCSpinBox 144

JCSpinBoxMutableModel
interface for JCSpinBox 144

JCSpinNumberBox 143
classes, helper 144
constructors 146
description 13, 15
interface 144
properties 145, 253

JCSplashScreen 149
classes 149
constructors 150
description 13
interfaces 149
methods 150

JCSpring
associated components 178
classes
Index 275

JCSpring, associated component 175
properties 176, 254

JCStringTokenizer 184, 215
classes 215
methods 216

JCSwingRunnable 219
methods 220

JCSwingTypeConverter 185, 224
methods 226

JCSwingUtilities 184
JCTreeExplorer 153, 159

classes 158
description 13, 15
interfaces 156
methods 160
properties 160, 240

JCTreeSet 185, 221
constructors 221
methods 221

JCTreeTable 153, 159
classes 158
description 14, 15
interfaces 156
methods 162
properties 160, 241

JCTypeConverter 185, 223
methods 224

JCValueEvent
for JCSpinBox and JCSpinNumberBox 144

JCWizard 95, 167, 169
classes 92, 169
description 14
events 171
methods 170
properties 242

JCWizardEvent 169, 171
JCWizardListener 169, 171
JCWizardPage 169

properties 243
JCWordWrap 185, 231

description 16
methods 231

JEditorPane
JClass Elements equivalent 15

JFrame
JClass Elements equivalent 15

JInternalFrame
JClass Elements equivalent 15

JOptionPane 219
JPane

JClass Elements equivalent 15
JTable

JClass Elements equivalent 15
JTree

JClass Elements equivalent 15

L
labels

adding component 76
adding to specific locations 23
aligning text 75
in a circular gauge 45
in JCGauge 74
linear gauge 47
placing text labels on a JCGauge 76
using 74

last
method in JCWizard 170

layout managers 173, 176
classes 173
description of SwingSuite’s 11, 14
JCAlignLayout 173
JCColumnLayout 173
JCElasticLayout 173
JCGridLayout 174
JCRowLayout 174
list 12

LEFT_HALF_CIRCLE
constant in JCCircularGauge.GaugeType 34

legend
custom legends in JCGauge 37
in JCCircularGauge 36

length
JCBrace property 176

levels 187
linear constraints

in JCLinearGauge 73
linear gauges 21

definition 21
labels 47
zoom 40

linear layout
in JCLinearGauge 73

linear scale 28, 45
associating a scale 60
borders 46
direction 46
orientation 46
pick 48
user interaction 48
zoom factor 47

LinearConstraint
constructors 74

listeners
in JCGauge 76
JCProgressHelper 209
list 205

lists
multi-select 139

localization 16
LOWER_LEFT_QUARTER_CIRCLE
276 Index

constant in JCCircularGauge.GaugeType 34
LOWER_RIGHT_QUARTER_CIRCLE

constant in JCCircularGauge.GaugeType 34

M
makeVisible

JCTreeTable method 163
maximize

method in JCMDIPane 136
maximumDate

property of JCDateChooser 88
MDIPane 129
methods 78

GaugeUtil 77
JCAbstracIndicator 66
JCAbstractNeedle 67
JCAbstractTick 55
JCCalendar 89
JCCenter 72
JCCheckBoxList 18
JCCircularGauge 33
JCDateChooser 88
JCDebug 188
JCEncodeComponent 202
JCExitFrame 100
JCFileFilter 194
JCFontChooser 105
JCGauge 30
JCHelpPane 112
JCHTMLPane 111
JCIconCreator 197
JCLegend 37
JCLinearGauge 35
JCLinearScale 48
JCListenerList 205
JCMDIFrame 134
JCMDIPane 134
JCMessageHelper 219
JCMultiSelectList 141
JCProgressHelper 211
JCScale 38
JCSortableTable 121
JCSpinBox 146
JCSplashScreen 150
JCStringTokenizer 216
JCSwingRunnable 220
JCSwingTypeConverter 226
JCTreeExplorer 160
JCTreeSet 221
JCTreeTable 162
JCTypeConverter 224
JCWizard 170
JCWordWrap 231

minimumDate

property of JCDateChooser 88
minimumValue

property of JCSpinNumberBox 146
model

property of JCMultiSelectList 140
property of JCSpinBox 145

MonthLabel 86
MonthPopdown 86
months

property of JCDateChooser 88
MonthSpin 86
MonthTable 86
mouse interaction mechanism

gauge 22
mouseClicked

method in JCCircularGauge 33
method in JCGauge 32
method in JCLinearGauge 36

mouseDragged
method in JCCircularGauge 33
method in JCGauge 32
method in JCLinearGauge 36

mouseEntered
method in JCGauge 32

mouseExited
method in JCGauge 32

mouseMoved
method in JCGauge 32

mousePressed
method in JCGauge 32

mouseReleased
method in JCGauge 32

multiple document frame 129
multiple document interface 129
multi-select list 139

N
needle 27

adding a needle to a JCGauge 23
change listener 69
gauge 22
length 64
needle object in JCGauge 62
object in JCCircularGauge 62
shapes, in JCGauge 64

next
method in JCWizard 170, 171

nextBegin
method in JCWizardListener 171

nextComplete
method in JCWizardListener 171

nextToken
method in JCStringTokenizer 216

NONE
Index 277

constant in JCAbstractNeedle.InteractionType 63
normalizeAngle

method in GaugeUtil 77, 78
numbering precision in tick labels 54

O
object

center 27, 70
indicator 62
linear scale 45
list 15
needle 62
range 58
tick marks 48

organization
of the manual 11

orientation
JCBox property 176
JCBrace property 176

outer extents 24

P
panes

help 109
HTML 109

parse
method in JCStringTokenizer 216

Perl script
JCDebug 190

pick
linear scale 48
mechanism 22
method in JCGauge 32
method in JScale 38

placeable labels
gauge 22

porting
a circular gauge application to JClass 5 81

precision 54
in tick mark labels in JCGauge 54

previous
method in JCWizard 170, 171

previousBegin
method in JCWizardListener 171

previousComplete
method in JCWizardListener 171

printing debug information 188
println

method in JCDebug 188
printStackTrace

method for forcing a stack trace, in JCDebug 189
product feedback 7

progress helper 207
properties

Beans
reference 235

circular scales 42
Color 259
Font 264, 265
indicator 64
JCAbstractIndicator 66
JCAbstractNeedle 67
JCAbstractRange 61
JCAbstractScale 39
JCBox 176, 244
JCBrace 176, 245
JCCalendar 88
JCCenter 72
JCCheckBoxList 18, 245
JCCircularGauge 33, 235
JCDateChooser 88, 255
JCExitFrame 99, 246
JCFontChooser 105
JCFontChooserBar 247
JCFontChooserPane 249
JCGauge 30
JCHelpPane 110, 250
JCHTMLPane 110, 251
JCLinearGauge 36, 236
JCMDIFrame 238
JCMDIPane 239
JCMultiSelectList 140, 237
JCRange 61
JCSortableTable 252
JCSpinBox 144, 252
JCSping 254
JCSpinNumberBox 145, 253
JCSpring 176
JCTreeExplorer 160, 240
JCTreeTable 160, 241
JCWizard 242
JCWizardPage 243
range 59

prototypeCellValue
property of JCMultiSelectList 140

Q
Quest Software technical support

contacting 6
quick select 84

R
radial constraints

in JCCircularGauge 73
278 Index

radial layout
in JCCircularGauge 73

RadialConstraint 73
constructors 73

RadialLayout 73
radius

in JCCircularScale 44
range 27

adding a range to a JCGauge 23
associating with circular or linear scale 60
coloring 59
extending past the scale 60
properties 59
range object in JCGauge 58

read only 84
related documents 5
remove

method of JCListenerList 205
removeActionListener

method in JCSpinBox 147
removeAllItems

method in JCSpinBox 147
removeChangeListener

method in JCAbstractNeedle 68
removeEscape

method in JCTypeConverter 224
removeIndicator

method in JCGauge 31
removeItem

method in JCSpinBox 147
removeItemAt

method in JCSpinBox 147
removeItemListener

method in JCSpinBox 147
removeLabel

method in JCCircularGauge 33
method in JCLinearGauge 35

removeNeedle
method in JCGauge 31

removePickListener
method in JCGauge 31

removeRange
method in JCGauge 31
method in JCScale 38

removeSpecialDate
property of JCCalendar 88

removeTick
method in JCGauge 31
method in JCScale 38

removeTreeExpansionListener
JCTreeTable method 163

removeTreeWillExpandListener
JCTreeTable method 163

removing debug statements from code 190
render list 24
renderer

property of JCSpinBox 145
rendering order

in JCGauge 24
replace

method in JCWordWrap 231
RGB values 259
RIGHT_HALF_CIRCLE

constant in JCCircularGauge.GaugeType 34
rootVisible

property of JCTreeTable 160
rotate

method in GaugeUtil 77
run

method in JCSwingRunnable 220

S
scale

gauge 22
method in GaugeUtil 78
object

direction of travel 39
setting a scale on a JCGauge 23
tick mark 51

scripts
JCDebug 188

selectedFont
property in JCFontChooserBar 105

selectedIndex
property of JCSpinBox 145

selectedItem
property of JCSpinBox 145

sendPickEvent
method in JCGauge 32

setAutomatic
method in JCAbstractTick 55

setAutoSort
method in JCSortableTable 121

setBorder
method in JCScale 38

setCancelString
method in JCProgressHelper 211

setCenter
method in JCCircularGauge 33

setColor
method in JCIconCreator 198

setContentsPage
method in JCHelpPane 112

setDescription
JCFileFilter method 194

setDialogTitle
method in JCProgressHelper 211

setDirection
method in JCScale 38

setDragMode
Index 279

method in JCMDIPane 134
setDrawLabels

method in JCAbstractTick 55
setDrawTicks

method in JCAbstractTick 55
setDynamicMessage

method in JCProgressHelper 211
setEnabled

method in JCDebug 189
setEscapeChar

method in JCStringTokenizer 216
setExitOnClose

method in JCExitFrame 100
setExtensionListInDescription

JCFileFilter method 194
setExtent

method in JCScale 38
setFontColor

method in JCAbstractTick 55
setFooter

method in JCGauge 32
setForeground

method in JCAbstractIndicator 67
method in JCAbstractNeedle 68
method in JCRange 61

setFrameManipulationStyle
method in JCMDIPane 134

setGauge
method in JCAbstractNeedle 68

setGaugeArea
method in JCGauge 32

setGaugeType
method in JCCircularGauge 34

setHeader
method in JCGauge 32

setImage
method in JCCenter 72

setIncrementValue
method in JCAbstractTick 55

setInitialLayout
method in JCMDIPane 134, 135

setInnerExtent
method in JCAbstractIndicator 67
method in JCAbstractRange 61
method in JCAbstractTick 55

setInteractionType
method in JCAbstractNeedle 68

setKeyColumns
method in JCSortableTable 121
property of JCTreeExplorer 160

setLabelExtent
method in JCAbstractTick 56

setLabelGenerator
method in JCAbstractTick 56

setLabelVerticalAlignment
JCAlignLayout method 177

setLegend
method in JCGauge 32

setLegendPopulator
method in JCLegend 37

setLegendRenderer
method in JCLegend 37

setLength
method in JCAbstractNeedle 68

setLevel
method in JCDebug 189

setMax
method in JCScale 38

setMaximized
method in JCMDIPane 134

setMaximum
method in JCProgressHelper 211

setMDIMenuBar
method in JCMDIFrame 134
method in JCMDIPane 135

setMDIToolBar
method in JCMDIFrame 134
method in JCMDIPane 135

setMin
method in JCScale 39

setMinimum
method in JCProgressHelper 211

setModel
method in JCMultiSelectList 142
method in JCSortableTable 121

setNeedleStyle
method in JCAbstractIndicator 67
method in JCAbstractNeedle 68

setNeedleWidth
method in JCAbstractIndicator 67
method in JCAbstractNeedle 68

setNonSelectedIcon
method in JCMDIPane 135

setOperation
property of JCSpinNumberBox 146

setOrientation
method in JCLegend 37
method in JCLinearScale 48

setOuterExtent
method in JCAbstractIndicator 67
method in JCAbstractRange 61
method in JCAbstractTick 56

setPaintCompleteBackground
method in JCCircularScale 45

setPixels
method in JCIconCreator 198

setPrecision
method in JCAbstractTick 56

setPrecisionUseDefault
method in JCAbstractTick 57

setPrintStream
method in JCDebug 188
280 Index

setRadius
method in JCCenter 72

setRange
method in JCProgressHelper 211

setRepaintEnabled
method in JCGauge 32

setResizeHeight
JCAlignLayout method 176

setResizeWidth
JCAlignLayout method 176

setReversed
method in JCAbstractIndicator 67
method in JCAbstractTick 57

setRootVisible
JCTreeTable method 163

setScale
method in JCCircularGauge 33
method in JCLinearGauge 36

setScaleImage
method in JCAbstractRange 61
method in JCCenter 72

setScrollsOnExpand
JCTreeTable method 164

setSelectedIcon
method in JCMDIPane 135

setSelectionPath
JCTreeTable method 164

setSelectionPaths
JCTreeTable method 164

setSendEvents
method in JCAbstractNeedle 69

setShowNodeLines
JCTreeTable method 164

setShowsRootHandles
JCTreeTable method 164

setSize
method in JCIconCreator 198

setSnapToValue
method in JCGauge 32

setSortable
JCTreeTable method 164

setSpinStep
property of JCSpinNumberBox 146

setStartAngle
in circular scale object 44

setStartValue
method in JCAbstractRange 61
method in JCAbstractTick 57

setStaticMessage
method in JCProgressHelper 211

setStopValue
method in JCAbstractRange 61
method in JCAbstractTick 57

setSwitchPolicy
JCTreeTable method 164

setTableHeader

method in JCSortableTable 121
setTag

method in JCDebug 189
setTags

method in JCDebug 189
setTickColor

method in JCAbstractTick 57
setTickStyle

method in JCAbstractTick 57
setTickWidth

method in JCAbstractTick 57
setTimeToDecideToPopup

method in JCProgressHelper 211
setTimeToPopup

method in JCProgressHelper 211
setTitlePage

method in JCHelpPane 112
setTreeIconRenderer

JCTreeExplorer method 161
JCTreeTable method 164

setTreeTableModel
JCTreeTable method 164

setTreeTableSelectionModel
JCTreeTable method 164

setUI
JCTreeExplorer method 161
JCTreeTable method 164

setUseToolBar
method in JCHelpPane 112

setUseZoomFactorForMax
method in JCLinearScale 48

setUseZoomFactorForMin
method in JCLinearScale 48

setValue
method in JCAbstractIndicator 67
method in JCAbstractNeedle 69

setView
JCTreeTable method 164

setViewPage
method in JCHelpPane 112

setVisible
method in JCRange 62
method in JCSplashScreen 150

setZoomFactor
method in JCScale 39, 47

shortMonths
property of JCDateChooser 88

show
method in JCWizard 170

showError
method in JCMessageHelper 219

showInformation
method in JCMessageHelper 219

showMessage
method in JCMessageHelper 220

showsRootHandles
Index 281

property of JCTreeTable 160
showWarning

method in JCMessageHelper 219
size

of a linear or circular scale 40
sort

mechanism 159
method in JCSortableTable 120, 121
utilities 117

SpecialDate
interface 87

spin box 143
events 148

spin popdown 84
splash screen 149
stack trace 187

forcing 189
start angle 44
startProgress

method in JCProgressHelper 211
stop angle 44
string tokenizer 215
style

tick mark 51
support 6, 7

contacting 6
FAQs 7

Swing package
Beans 235

SwingSuite’s layout managers 173
switch

implementing a switch in JCCircularGauge 24

T
table components 153
tableChanged

method in JCSortableTable 121
technical support 6, 7

contacting 6
FAQs 7

text
aligning labels 75
placing text labels on a JCGauge 76

thread safety 185
thread safety classes 219
tick 27

adding a tick object to a JCGauge 23
gauge 22
labels

gauge 22
marks

associate with a scale 51
custom labels 53
defining styles 51

dimensions 52
increments 53
placement 52
precision, labels 54
the tick object in JCCircularGauge 48
tick type 51

tileWindowsHorizontally
method in JCMDIPane 136

tileWindowsVertically
method in JCMDIPane 136

toBoolean
method in JCTypeConverter 225

toColor
method in JCSwingTypeConverter 226

toColorList
method in JCSwingTypeConverter 226

toDate
method in JCTypeConverter 225

toDimension
method in JCSwingTypeConverter 226

toDouble
method in JCTypeConverter 225

toDoubleList
method in JCTypeConverter 225

toEnum
method in JCTypeConverter 225

toEnumList
method in JCTypeConverter 225

toFont
method in JCSwingTypeConverter 226

toInsets
method in JCSwingTypeConverter 226

toInt
method in JCTypeConverter 225

toIntegerList
method in JCTypeConverter 225

toIntList
method in JCTypeConverter 225

toNewLine
method in JCTypeConverter 225

tool tip 84, 103
toolTipEnabled

property in JCFontChooserBar 105
toolTipText

property of JCDateChooser 88
property of JCMultiSelectList 141

TOP_HALF_CIRCLE
constant in JCCircularGauge.GaugeType 35

toPoint
method in JCSwingTypeConverter 226

toRadians
method in GaugeUtil 78

toString
method in JCEncodeComponent 202
method in JCPickEvent 77
method in JCTypeConverter 225
282 Index

toStringList
method in JCTypeConverter 225

toVector
method in JCTypeConverter 226

translate
method in GaugeUtil 78

tree
components 153
set 221

treeIconRenderer
property of JCTreeTable 160

treeTableModel
property of JCTreeTable 160

TreeTableSupport 158
TreeWithSortableChildren 158
trim

method in JCTypeConverter 226
type converter 223
typographical conventions 2

U
unmaximize

method in JCMDPane 136
unsort

method in JCSortableTable 121
updateProgress

method in JCProgressHelper 211
updateUI

JCTreeTable method 164
UPPER_LEFT_QUARTER_CIRCLE

constant in JCCircularGauge.GaugeType 35
UPPER_RIGHT_QUARTER_CIRCLE

constant in JCCircularGauge.GaugeType 35
user interaction

linear scale 48
useZoomFactorForMax

property in JCLinearScale 48
useZoomFactorForMin

property in JCLinearScale 48
property in JCScale 48

utilities
classes 183
functions, for JCGauge 77
sorting 117
thread safety 219

V
value

property of JCDateChooser 88
valueRange

property of JCSpinNumberBox 146
valueToAngle

method in GaugeUtil 78
valueToPosition

method in GaugeUtil 78
verticalElasticity

JCSpring property 176

W
wizard 167
word wrap 231
wrapText

method in JCWordWrap 231

Y
YearLabel 86
YearSpin 86

Z
zoom factor

for a linear scale 47
in circular or linear gauge 40
see extent 40

z-order 24
in JCGauge 24
Index 283

284 Index

	JClass Elements
	Preface
	Introducing JClass Elements
	Assumptions
	Typographical Conventions in this Manual
	Overview of the Manual
	API Reference
	Licensing
	Related Documents
	About Quest
	Contacting Quest Software
	Customer Support
	Product Feedback and Announcements

	Components and Layout Managers
	Introducing JClass Elements
	1.1 How the Manual is Organized
	1.2 Components and Layout Managers
	1.3 Internationalization

	CheckBox-List Component
	2.1 Features of JCCheckBoxList
	2.2 Classes
	2.3 Properties
	2.4 Methods
	2.5 Examples

	Circular and Linear Gauges
	3.1 Circular and Linear Gauges
	3.2 Features of JCCircularGauge
	3.3 Features of JCLinearGauge
	3.4 JCGauge
	3.5 JCCircularGauge
	3.6 JCLinearGauge
	3.7 Headers, Footers, and Legends
	3.8 JCScale
	3.9 JCAbstractScale
	3.10 The Circular Scale Object
	3.11 The Linear Scale Object
	3.12 Tick Objects
	3.13 The Range Object
	3.14 The Indicator and Needle Objects
	3.15 The Center Object
	3.16 The Constraint Mechanism in JCGauge
	3.17 Labels
	3.18 Events and Listeners in JCGauge
	3.19 Utility Functions for JCGauge
	3.20 JCCircularGaugeBean and JCLinearGaugeBean
	3.21 Adding Other Components to a Gauge
	3.22 JClass 4 to JClass 5: A Mini-porting Guide

	Date Chooser
	4.1 Features of JCDateChooser
	4.2 Classes and Interfaces
	4.3 Properties
	4.4 Methods
	4.5 Examples

	JCPopupCalendar Component
	5.1 Features of JCPopupCalendar
	5.2 Classes
	5.3 Properties
	5.4 Constructors and Methods
	5.5 Listeners and Events
	5.6 Examples

	Exit Frame
	6.1 Features of JCExitFrame
	6.2 Properties
	6.3 Methods and Constructors
	6.4 Examples

	Font Choosers
	7.1 Features of JCFontChooser and its Subclasses
	7.2 Classes
	7.3 Properties
	7.4 Methods
	7.5 Examples

	HTML/Help Panes
	8.1 Features of JCHTMLPane
	8.2 Features of JCHelpPane
	8.3 Classes
	8.4 Properties
	8.5 Constructors and Methods
	8.6 Examples

	Sortable Table
	9.1 Features of JCMappingSort
	9.2 Features of JCSortableTable
	9.3 Classes and Interfaces
	9.4 Constructors and Methods
	9.5 Cell Renderers for JCSortableTable
	9.6 Examples

	Multiple Document Frame
	10.1 Features of JCMDIPane and JCMDIFrame
	10.2 Properties
	10.3 Methods
	10.4 Examples

	Multi-Select List
	11.1 Features of JCMultiSelectList
	11.2 Properties
	11.3 Constructors and Methods
	11.4 Examples

	Spin Boxes
	12.1 Features of JCSpinBox and JCSpinNumberBox
	12.2 Classes and Interfaces
	12.3 Properties
	12.4 Constructors and Methods
	12.5 Examples

	Splash Screen
	13.1 Features of JCSplashScreen
	13.2 Classes and Interfaces
	13.3 Methods and Constructors
	13.4 Examples

	Tree/Table Components
	14.1 Features of JCTreeExplorer and JCTreeTable
	14.2 Classes and Interfaces
	14.3 Properties
	14.4 Methods
	14.5 Examples

	Wizard Creator
	15.1 Features of JCWizard and JCSplitWizard
	15.2 Classes
	15.3 Constructors and Methods
	15.4 Events
	15.5 Examples

	Layout Managers
	16.1 Features of the Layout Managers in JClass Elements
	16.2 Interfaces
	16.3 Properties
	16.4 Constructors and Methods
	16.5 Examples

	Utility Classes
	Introduction to the Utility Classes
	17.1 Utilities

	Debugging Tools
	18.1 Features of JCDebug
	18.2 Classes and Scripts
	18.3 Methods
	18.4 Removing JCDebug Statements from Your Code
	18.5 Examples

	JCFileFilter
	19.1 Features of JCFileFilter
	19.2 Constructors
	19.3 Methods
	19.4 Example

	Icon Creator
	20.1 Features of JCIconCreator
	20.2 Classes
	20.3 Constructors and Methods
	20.4 Examples

	Image Encoder
	21.1 Features of JCEncodeComponent
	21.2 Classes and Interfaces
	21.3 Constructors and Methods
	21.4 Examples

	Listener List
	22.1 Features of JCListenerList
	22.2 Classes
	22.3 Methods
	22.4 Examples

	Progress Helper
	23.1 Features of JCProgressHelper
	23.2 Constructors and Associated Classes
	23.3 JCProgressHelper Methods
	23.4 Examples

	String Tokenizer
	24.1 Features of JCStringTokenizer
	24.2 Classes
	24.3 Methods
	24.4 Examples

	Thread Safety Utilities
	25.1 Features of the Thread Safety Classes
	25.2 Methods

	Tree Set
	26.1 Features of JCTreeSet
	26.2 Constructors and Methods
	26.3 Examples

	Type Converters
	27.1 Features of JCTypeConverter
	27.2 Features of JCSwingTypeConverter
	27.3 Classes
	27.4 Methods
	27.5 Examples

	Word Wrap
	28.1 Features of JCWordWrap
	28.2 Methods
	28.3 Examples

	Reference Appendices
	Bean Properties Reference
	A.1 Beans in the Swing Package
	A.2 Beans in the com.klg.jclass.util.swing Package

	Distributing Applets and Applications
	B.1 Using JarMaster to Customize the Deployment Archive

	Colors and Fonts
	C.1 Colorname Values
	C.2 RGB Color Values
	C.3 Fonts

	Index

