
JClass Field
Programmer’s Guide

Version 6.3
for Java 2 (JDK 1.3.1 and higher)

Complete Input and Validation
for Popular Data Types

TM

8001 Irvine Center Drive
Irvine, CA 92618
949-754-8000
www.quest.com

April 2004 RefNo: PRGDE-JCFLD/630-04/2004

© Copyright Quest Software, Inc. 2004. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used or copied
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording
for any purpose other than the purchaser's personal use without the written permission of Quest Software,
Inc.

Warranty

The information contained in this document is subject to change without notice. Quest Software makes no
warranty of any kind with respect to this information. QUEST SOFTWARE SPECIFICALLY
DISCLAIMS THE IMPLIED WARRANTY OF THE MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Quest Software shall not be liable for any direct, indirect, incidental,
consequential, or other damage alleged in connection with the furnishing or use of this information.

Trademarks

JClass, JClass Chart, JClass Chart 3D, JClass DataSource, JClass Elements, JClass Field, JClass HiGrid,
JClass JarMaster, JClass LiveTable, JClass PageLayout, JClass ServerChart, JClass ServerReport,
JClass DesktopViews, and JClass ServerViews are trademarks of Quest Software, Inc. Other trademarks and
registered trademarks used in this guide are property of their respective owners.

World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com
e-mail: info@quest.com
U.S. and Canada: 949.754.8000

Please refer to our Web site for regional and international office information.

This product includes software developed by the Apache Software Foundation http://www.apache.org/.

The JPEG Encoder and its associated classes are Copyright © 1998, James R. Weeks and BioElectroMech.
This product is based in part on the work of the Independent JPEG Group.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, all
files included with the source code, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

http://www.quest.com
http://www.apache.org/

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This product includes software developed by the JDOM Project (http://www.jdom.org/). Copyright © 2000-
2002 Brett McLaughlin & Jason Hunter, all rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions,
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions, and the disclaimer that follows these conditions in the documentation and/or other
materials provided with the distribution.

3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
license@jdom.org.

4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in
their name, without prior written permission from the JDOM Project Management
(pm@jdom.org).

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

http://www.jdom.org/
mailto:license@jdom.org
mailto:pm@jdom.org

Table of Contents

Preface . 1
Introducing JClass Field . 1
Typographical Conventions in this Manual 2
Assumptions . 2
Overview of the Manual . 3
API Reference . 3
Licensing . 4
Related Documents . 4
About Quest . 4
Contacting Quest Software 5
Customer Support . 5
Product Feedback and Announcements 6

Part I: Using JClass Field

1 JClass Field Basics . 9
1.1 Terminology . 9
1.2 Overview of GUI Components and Field Data Types 10

JClass Field’s GUI components 10
Data Types Handled by JClass Field 11
GUI Component Support for Data Types 12

1.3 JClass Field Components and Data Types 12
JCTextField . 13
JCSpinField . 14
JCComboField 15
JCPopupField 17
JCLabelField 19
Data Bound Components 19

1.4 The Structure of a JClass Field Component 20
1.5 Validators . 21

Validator Functions 21
The Validation Process 22
The useFormatting flag 24
Validators and Value Models 24
i

1.6 JClass Field Inheritance Hierarchy 25
1.7 Events . 27
1.8 Keystroke Actions 28
1.9 An Example Program 29

Programming the Example 32
The Property Sheet 33
Using the Property Sheet 33
Editing JClass Field Properties 34

1.10 Internationalization 35

2 JClass Field’s Properties. 37
2.1 Introduction . 37
2.2 Field’s Key Properties 37

The Value Model 37
The Validator Property 38
InvalidInfo Properties 42
Other Properties 43
addValueListener, removeValueListener 44

2.3 Format Tables . 44
Date Formats . 44
Mask Characters 45
Number Format Characters 46

2.4 Property Summaries 46
Properties for JClass Field Components 47
Properties for Numeric and IPAddress Validators 47
Properties for JCStringValidator 48
Properties for Date/Time Validators 49
InvalidInfo Properties 50
ValueModel Properties 50

2.5 Exploring the Form Demo 51
JCPromptHelper 51
JCFormUtil . 51

3 Building a Field . 53
3.1 Determining Which Technique to Use 53

Using an Integrated Development Environment 53
Setting Properties Programmatically 53

3.2 Creating a New Field Component (Using an IDE) 53
ii Contents

3.3 Creating a New Field Component (Programmatically) 54
Customizing a New Field Component 55

3.4 Data Binding . 56
Data Binding in Borland JBuilder 57
Data Binding with JClass DataSource 59

3.5 Handling Two-Digit Year Values 63

4 Example Code for Common Fields .65
4.1 Example Programs 65
4.2 Examples of Text Fields 68

JCTextField with String Validator 68
JCTextField with Integer Validator 68
JCTextField with Long Validator 69
JCTextField with Short Validator 69
JCTextField with Byte Validator 70
JCTextField with Double Validator 70
JCTextField with BigDecimal Validator 71
JCTextField with Float Validator 71
JCTextField with DateTime Validator 72
JCTextField with Date Validator 72
JCTextField with Time Validator 73
JCTextField with IP Address Validator 73

4.3 Examples of Spin Fields 74
JCSpinField with String Validator 74
JCSpinField with Integer Validator 75
JCSpinField with Long Validator 75
JCSpinField with Short Validator 76
JCSpinField with Byte Validator 76
JCSpinField with Double Validator 77
JCSpinField with BigDecimal Validator 77
JCSpinField with Float Validator 78
JCSpinField with DateTime Validator 78
JCSpinField with Date Validator 79
JCSpinField with Time Validator 79
JCSpinField with IP Address Validator 80
Contents iii

4.4 Examples of Combo Fields 81
JCComboField with String Validator 81
JCComboField with Integer Validator 81
JCComboField with Long Validator 82
JCComboField with Short Validator 83
JCComboField with Byte Validator 83
JCComboField with Double Validator 84
JCComboField with BigDecimal Validator 85
JCComboField with Float Validator 85
JCComboField with IP Address Validator 86

4.5 Examples of Popup Fields 86
JCPopupField with DateTime Validator 86
JCPopupField with Date Validator 87

4.6 Examples of Label Fields 88
JCLabelField with String Validator 88
JCLabelField with Integer Validator 88
JCLabelField with Long Validator 89
JCLabelField with Short Validator 89
JCLabelField with Byte Validator 90
JCLabelField with Double Validator 90
JCLabelField with BigDecimal Validator 91
JCLabelField with Float Validator 91
JCLabelField with DateTime Validator 91
JCLabelField with Date Validator 92
JCLabelField with Time Validator 92
JCLabelField with IP Address Validator 93

4.7 Event Programming 93

Part II: Reference Appendices

 A JClass Field Property Listings . 99

 B Distributing Applets and Applications on a Web Server 111
B.1 Using JarMaster to Customize the Deployment Archive . . . 111

 C Porting JClass 3.6.x Applications. 113
C.1 Key Concept Differences 113
C.2 Code Differences 114
iv Contents

C.3 Property Changes 115
C.4 Porting Guidelines 117
C.5 Event Handling Changes 117

 D Using JCField’s Autocomplete Feature. 119
D.1 Using Autocomplete in a JCComboField 119
D.2 Autocomplete Methods 122
D.3 Autocomplete Modes 123
D.4 Code Examples 123
D.5 Setting and Updating the List of Autocomplete Strings 125
D.6 Porting Guidelines 127

Index . 129
Contents v

vi Contents

Preface
Introducing JClass Field ■ Assumptions ■ Typographical Conventions in this Manual

Overview of the Manual ■ API Reference ■ Licensing ■ Related Documents ■ About Quest

Contacting Quest Software ■ Customer Support ■ Product Feedback and Announcements

Introducing JClass Field

JClass Field is a set of Java components that permits the collection, validation, and
display of textual, calendar, and numeric data. You can use the components of
JClass Field for data entry applications. You can present a list of pre-programmed choices
in a combo field or in a spin field from which users make a selection, or you can permit
them to type into various fields. In the latter case, you can provide both a validation
format and a “prompt” format. The validation format accepts a certain class of characters
at each input position, for example, three letters followed by four numbers. The prompt
format gives the user an idea of what data the field is expecting by filling the field with a
generic example. The user types over the prompt text, replacing it with valid data. Using
JClass Field, your applications can collect calendar, numeric, and textual information.
Built-in validation methods permit you to apply various consistency checks on the
information and to give the end-user visual and audible feedback when the validator
detects an incorrect entry.

All JClass Field components are written entirely in Java; so as long as the Java
implementation for a particular platform works, JClass Field will work.

You can freely distribute Java applets and applications containing JClass components
according to the terms of the License Agreement that appears during the installation.

Feature Overview
You can set the properties of JClass Field components to determine how your data entry
elements will look and behave. You can govern:

■ the type of text that end-users are allowed to type in by using an input validation
mask

■ through the use of place holder characters, representative contents for the field that
the end-user can overtype

■ the look of the data display and edit formats for calendar, date and time fields

■ data binding to display and edit field values from a database

■ the association of words with integer values in integer combo boxes and integer spin
fields—a useful feature for database applications where numeric indices are used
internally to denote possibly lengthy field descriptors

■ field appearance attributes including border, text alignment, font, and color
1

■ user feedback, such as an audible beep and a change of color upon entry of invalid
data

■ cell editability and traversability: a field may be read-only, or it may accept changes
only from a list of valid values in a spin or combo field

■ the display or modification of time values using date and calendar popups

■ the range of acceptable values in numeric fields

JClass Field also provides several methods which:

■ contain capabilities for internationalization

■ allow you to return data about fields inside a container

■ set an area which dynamically displays prompt text for the fields in a container

Typographical Conventions in this Manual

Assumptions

This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming and
Java programming concepts such as classes, methods, and packages before proceeding

Typewriter Font Used for:

■ Java language source code and examples of file contents.
■ JClass Field and Java classes, objects, methods, properties,

constants, and events.
■ HTML documents, tags, and attributes.
■ Commands that you enter on the screen.

Italic Text Used for:

■ Pathnames, filenames, URLs, programs, and method
parameters.

■ New terms as they are introduced, and important words
requiring emphasis.

■ Figure and table titles.
■ The names of other documents referenced in this manual, such

as Java in a Nutshell.

Bold Used for:

■ Keyboard key names and menu references.
2 Preface

with this manual. See Related Documents later in this section of the manual for additional
sources of Java-related information.

Overview of the Manual

Part I —Using JClass Field – describes how to program with the JClass Field components.

Chapter 1, JClass Field Basics, should be read by all programmers learning
JClass Field. It introduces the JClass Field components, and provides basic
terminology and conventions used throughout the documentation.

Chapter 2, JClass Field’s Properties, describes the Java Bean properties that are
exposed in the Beans Development Kit (BDK) and other integrated development
environment (IDE) tools.

Chapter 3, Building a Field, provides hands-on examples of creating different kinds of
fields and detailed information on data binding with JClass Field.

Chapter 4, Example Code for Common Fields, contains extensive description of the
examples included in the distribution.

Part II —Reference Appendices – contains additional detailed technical reference on all
JClass Field properties and other reference information related to programming with
JClass Field.

Appendix A, JClass Field Property Listings, lists all of the available properties in
JClass Field and their default values.

Appendix B, Distributing Applets and Applications on a Web Server, provides a
method of releasing your applet or application to your users.

Appendix C, Porting JClass 3.6.x Applications, shows on how to convert your code
created with earlier versions of JClass Field.

Appendix D, Using JCField’s Autocomplete Feature, outlines the autocomplete
mechanism in JCComboField which may be used to simplify selecting items in a
combo box.

API Reference

The API reference documentation (Javadoc) is installed automatically when you install
JClass Field and is found in the JCLASS_HOME/docs/api/ directory.
Preface 3

../api/index.html

Licensing
In order to use JClass Field, you need a valid license. Complete details about licensing are
outlined in the JClass DesktopViews Installation Guide, which is automatically installed when
you install JClass Field.

Related Documents

The following is a selection of useful references to Java and Java Beans programming:

■ “Java Platform Documentation” at http://java.sun.com/docs/index.html and the “Java
Tutorial” at http://java.sun.com/docs/books/tutorial/index.html from Sun Microsystems

■ For an introduction to creating enhanced user interfaces, see “Creating a GUI with
JFC/Swing” at http://java.sun.com/docs/books/tutorial/uiswing/index.html

■ Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc. See the O’Reilly Java
Resource Center at http://java.oreilly.com.

■ Resources for using Java Beans are at http://java.sun.com/beans/resources.html

These documents are not required to develop applications using JClass Field, but they
can provide useful background information on various aspects of the Java programming
language.

About Quest

Quest Software, Inc. (NASDAQ: QSFT) is a leading provider of application management
solutions. Quest provides customers with Application Confidencesm by delivering
reliable software products to develop, deploy, manage and maintain enterprise
applications without expensive downtime or business interruption. Targeting high
availability, monitoring, database management and Microsoft infrastructure
management, Quest products increase the performance and uptime of business-critical
applications and enable IT professionals to achieve more with fewer resources.
Headquartered in Irvine, Calif., Quest Software has offices around the globe and more
than 18,000 global customers, including 75% of the Fortune 500. For more information on
Quest Software, visit www.quest.com.
4 Preface

http://www.quest.com
../getstarted/index.html
http://java.sun.com/docs/index.html
http://java.sun.com/docs/programmer.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.oreilly.com
http://java.sun.com/beans/resources.html

Contacting Quest Software

Please refer to our Web site for regional and international office information.

Customer Support

Quest Software’s world-class support team is dedicated to ensuring successful product
installation and use for all Quest Software solutions.

You can use SupportLink to do the following:

■ Create, update, or view support requests

■ Search the knowledge base, a searchable collection of information including program
samples and problem/resolution documents

■ Access FAQs

■ Download patches

■ Access product documentation, API reference, and demos and examples

Please note that many of the initial questions you may have will concern basic installation
or configuration issues. Consult this product’s readme file and the JClass DesktopViews
Installation Guide (available in HTML and PDF formats) for help with these types of
problems.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying the
following information will help us serve you better:

■ Your name, email address, telephone number, company name, and country

E-mail sales@quest.com

Address

Quest Software, Inc.
World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
USA

Web site www.quest.com

Phone 949.754.8000 (United States and Canada)

SupportLink www.quest.com/support

E-mail support@quest.com
Preface 5

mailto:sales@quest.com
http://www.quest.com
http://www.quest.com/support
mailto:support@quest.com
../api/index.html
../../readme.html
../getstarted/index.html
../getstarted/index.html

■ The product name, version and serial number

■ The JDK (and IDE, if applicable) that you are using

■ The type and version of the operating system you are using

■ Your development environment and its version

■ A full description of the problem, including any error messages and the steps required
to duplicate it

Product Feedback and Announcements
We are interested in hearing about how you use JClass Field, any problems you
encounter, or any additional features you would find helpful. The majority of
enhancements to JClass products are the result of customer requests.

Please send your comments to:
Quest Software
8001 Irvine Center Drive
Irvine, CA 92618

Telephone: 949-754-8000
Fax: 949-754-8999

JClass Direct Technical Support

JClass Support Email support@quest.com

Telephone 949-754-8000

Fax 949-754-8999

European Customers
Contact Information

Telephone: +31 (0)20 510-6700
Fax: +31 (0)20 470-0326
6 Preface

mailto:support@quest.com

Part
I

Using
JClass Field

1
JClass Field Basics

Terminology ■ Overview of GUI Components and Field Data Types

JClass Field Components and Data Types ■ The Structure of a JClass Field Component ■ Validators

Events ■ Keystroke Actions ■ JClass Field Inheritance Hierarchy ■ An Example Program

Internationalization

The following topics cover basic information that anyone who intends to create
JClass Field objects should be familiar with. After you can recognize the basic
JClass Field processes and vocabulary, you can begin using JClass Field’s objects and
data validators to simplify the development of your data entry applications.

1.1 Terminology

There are five basic graphical user interface (GUI) styles of visual components in
JClass Field: Text, Spin, Combo, Popup and Label. Each of these styles is represented by
one of Field’s standard Beans: JCTextField, JCSpinField, JCComboField, JCPopupField,
and JCLabelField, respectively.

One or more of the data types supported by JClass Field are handled by each of these
Beans. Regardless of what data type the Bean handles, the name of the field is the same.
9

In all, there are five standard field components and five data-bound components. The
following BeanBox illustration shows the standard JClass Field Bean components:

1.2 Overview of GUI Components and Field Data Types

1.2.1 JClass Field’s GUI components

Your choice of the type of visual object will be based in part on the type of validation you
wish to perform on the data. The following image shows the five types of visual objects in
JClass Field:

■ A text field is a visual component which displays a single piece of alphanumeric data
entered by the user. The contents of the field and the position of the cursor within the
field are under program control. You can validate all types of data in this field.

■ A spin field allows the user to spin through a range of values. The range of values
shown in the spin field is determined by one of two mechanisms.

The upper and lower limits on the range can be determined by predefining min and
max values. The intermediate values are controlled by the increment property.

A pick list offers all the possible values that the spin field can contain. This has
precedence over the increment method.
10 Part I ■ Using JClass Field

Only one value at a time is shown in the spin field. Up and down-arrow buttons are
used to change the value by “spinning.” The spin field has access to the same
validator functions as the text field.

■ A combo field contains a text field and a drop-down list in combination. If the number
of items available for selection is small enough, the drop-down list can show all
possible pre-assigned values at once. Otherwise, a vertical scrollbar is used to position
the items in the drop-down list window. You can also allow users to enter data not
contained in the list.

■ A popup field is used to display a monthly calendar in rectangular format where the
user can select the month and year using spin fields, and the day of the month from
the resulting calendar. If you are using a time or date/time validator, the user can set
the hour, minute, second, and meridiem using spin fields.

■ A label field is similar to a text field in that it is used to display a single piece of
alphanumeric data; however, it functions as a heading or label because its value
cannot be changed by the user and it is displayed as a label. It can be bound to a
database and present dynamic data.

1.2.2 Data Types Handled by JClass Field

The following table lists the data types handled by JClass Field:

JCField DataType Stored As

Byte java.lang.Byte

Integer java.lang.Integer

Short java.lang.Short

Long java.lang.Long

Float java.lang.Float

Double java.lang.Double

BigDecimal java.math.BigDecimal

String java.lang.String

Calendar java.util.Calendar

Date
SqlDate

java.util.Date
or
java.sql.Date

SqlTime java.sql.Time

SqlTimeStamp java.sql.TimeStamp

JCIPAddress com.klg.jclass.util.JCIPAddress
Chapter 1 ■ JClass Field Basics 11

Note that the Date data type is stored as two different representations. You can select
either type at design time, or you can set the type programmatically.

The SQL data types are usually used when binding to a database.

1.2.3 GUI Component Support for Data Types

The following table shows the commonly used data types and GUI component
combinations:

In actuality, you can use any data type with any GUI component; however, some
combinations may not be as useful as others. For example, a popup field that uses the
byte data type will not display a popup.

1.3 JClass Field Components and Data Types
This section provides a brief description of the standard JClass Field components
combined with each appropriate data type, and the databound components.

Data Type Text Field Spin Field Combo
Field

Popup
Field

Label
Field

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

java.lang.String

java.util.Calendar

java.util.Date

java.sql.Date

java.sql.Time

java.sql.Timestamp

com.klg.jclass.util.JC
IPAddress
12 Part I ■ Using JClass Field

1.3.1 JCTextField

Data Type(s) Description

java.lang.Byte
java.lang.Integer
java.lang.Short
java.lang.Long
java.lang.Double
java.lang.Float
java.math.BigDecimal

Numeric values in a JCTextField are displayed while in edit
mode using an edit pattern, and displayed in a possibly
different format after editing is complete. The field may be
editable, in which case values may be typed in, or it may be
set to simply display a value supplied by your program.
Example of an integer type in a text field:

java.lang.String The String type in a text component permits entry of data
that can be validated using a mask. For instance, the field
may be for phone numbers, whose formats follow a fixed
rule. Optionally, place-holder characters may be supplied to
indicate the type of data that the field is programmed to
accept. The user types over these characters using them as a
guide when typing in valid data.
Example of a String type in a text field:

java.util.Calendar
java.util.Date
java.sql.Date
java.sql.Time
java.sql.Timestamp

The date and time data types in a JCTextField presents the
date in a locale-specific format. The time text field may be
programmed to accept any of a set of standard time formats,
such as “h:mm:ss a”, which stands for colon-delimited
hours, minutes, and seconds entries followed by an “a” or a
“p,” standing for “AM” or “PM.” A property (maskInput)
can be set so that the component insists on a pre-defined
format for input, and dates cannot be entered in any other
format.
Example of a calendar type in a text field:

com.klg.jclass.util.
JCIPAddress

The IP address data type is created to allow validation of IP
addresses in period-delimited subfields.
Example of a IP address data type in a text field:
Chapter 1 ■ JClass Field Basics 13

1.3.2 JCSpinField

Data Type(s) Description

java.lang.Byte
java.lang.Integer
java.lang.Short

The spin field increments by integral values, between preset
minimum and maximum values.
Example of an integer type in a spin field:

java.lang.Double
java.lang.Float
java.math.BigDecimal

Values may be selected by using the spin arrows or by
typing in the field. After a value has been entered, it can be
checked to ensure that it lies in the acceptable range.
Typically, the arrow buttons are be disabled when the top or
bottom of the list is reached, indicating that there are no
more data items in that direction.
Example of a double type in a spin field:

java.lang.String The String data type in a JCSpinField is useful for
providing a list of names or other Strings that can be
accessed by spinning. By default the action of the spinners is
set so that the data is accessible as if it were arranged in a
continuous loop.
Example of a String type in a spin field:

java.util.Calendar
java.util.Date
java.sql.Date
java.sql.Time

This component permits the selection of other values by
using the spin arrows in conjunction with the mouse. The
subfield is selected using the mouse pointer, then the arrow
buttons are used to change the value of this subfield.
Example of a calendar type in a spin field:

com.klg.jclass.util.
JCIPAddress

The IP address data type is created to allow validation of IP
addresses in period-delimited subfields.
Example of a IP address data type in a spin field:

14 Part I ■ Using JClass Field

1.3.3 JCComboField

Data Type(s) Description

java.lang.Byte
java.lang.Integer
java.lang.Short
java.lang.Long
java.lang.Float
java.lang.Double
java.math.BigDecimal

This combo field component can show choices expressed in
textual form as well as numeric. No matter how the items in
the combo field appear, they are associated with numeric
values. In the example shown below, the item “Mr.” has a
value of 0, and “Mrs.” has a value of 1.
Example of an integer type in a combo field:

java.lang.String The String type in a combo field behaves similarly to its
integer relative except that the values that appear in the
field are the actual values.
Example of a String type in a combo field:

com.klg.jclass.util.
JCIPAddress

The IP address data type is created to allow validation of IP
addresses in period-delimited subfields.
Example of a IP address data type in a combo field:
Chapter 1 ■ JClass Field Basics 15

Autocomplete Feature Description

JClass Field’s combo box
autocomplete feature has
three modes:

■ suggest – a drop-down
list appears as soon as
the end user begins
typing

■ refine – the drop-down
list updates itself to just
those items that match
what has already been
typed

■ append – the first
candidate that matches
what has been typed
appears in the text
field. The completed
part is highlighted

See Appendix D, Using
JCField’s Autocomplete
Feature, for a complete
description of the combo
box’s autocomplete
facility.

As an end user begins typing in a combo field with
autocomplete on, those list items that match what has
already been typed are presented. Pressing ENTER selects
the choice currently in the text field. Another choice from
the drop-down list may be selected by clicking it.
16 Part I ■ Using JClass Field

1.3.4 JCPopupField

Data Type(s) Description

java.util.Calendar The Calendar data type displays the time and date, along with
an arrow button in the popup component. Clicking on the
arrow button produces a pop-down calendar with spin fields
for the year, month, hour, minute, second, and meridian.
When the year and month fields respond to mouse clicks by
incrementing or decrementing their values each time an arrow
button is pressed, the calendar display updates accordingly by
showing the days of the month.
The default value for all calendar components is the current
date and time.
Example of the calendar type in a popup field:
Chapter 1 ■ JClass Field Basics 17

java.util.Date
java.sql.Date

This combination is similar to the calendar type and popup
field, except that there are no time spinners in this component,
and it contains no time information. Month and year values
are changed using the two spin boxes at the top of the
calendar, and the day of the month is selected by clicking on it
in the calendar.
Example of the date type in a popup field:

Data Type(s) Description
18 Part I ■ Using JClass Field

1.3.5 JCLabelField

1.3.6 Data Bound Components
JClass Field includes additional components that can be bound to a column in a JDBC or
IDE-based database data source. These components are contained in separate JAR files

Data Type(s) Description

java.lang.Byte
java.lang.Integer
java.lang.Short
java.lang.Long
java.lang.Double
java.lang.Float
java.math.BigDecimal

Numeric values in a label field can be displayed in different
formats.
Example of an integer type in a label field:

java.lang.String String values can be used in label fields to simulate headings
or to display a constant value.
Example of a String type in a label field:

java.util.Calendar
java.util.Date
java.sql.Date
java.sql.Time

Calendar data types in a label field can display dates and
times in locale-specific and standard formats. You can also
set the format to your own specifications.
Example of a calendar type in a label field:

com.klg.jclass.util.
JCIPAddress

The IP address data type is created to allow validation of IP
addresses in period-delimited subfields.
Example of a IP address data type in a label field:
Chapter 1 ■ JClass Field Basics 19

for each development environment. Please see the JClass DesktopViews Installation Guide
for more information.

Note: “DSdb” components only bind with data sources included with JClass DataSource;
“JBdb” components only bind with Borland JBuilder 3 data sources.

1.4 The Structure of a JClass Field Component

JClass Field components are comprised of four elements:

■ a visual component: either JCTextField, JCComboField, JCSpinField, JCPopupField,
or JCLabelField.

■ the value model, which determines the data type of the component and contains the
initial and current values of the field.

■ the validator which supports the data type and contains properties specific to that data
type.

■ the InvalidInfo object, which contains additional properties that can be used by all
data types and validators to direct the behavior of the field when it encounters an
invalid value.

A field starts with the visual component. Each of the three objects that define the field’s
properties is contained within this visual component. The first object, the value model,
specifies the data type of the values the field will hold. Once you declare the value model,
the appropriate validator to support the data type is automatically determined. You can
then declare that validator. The InvalidInfo object is automatically created when the field
is declared.

You can create a field in several ways. If you want a standard field with the minimum
customization, you can use the constructor that requires the data type class. For example,
JCComboField(java.util.Double.class c). This way, the selection of the data type
automatically creates the correct value model and validator. To access the properties in

JCField Component Description

DSdbTextField (JClass DataSource)
JBdbTextField (Borland JBuilder)
DSdbSpinField (JClass DataSource)
JBdbSpinField (Borland JBuilder)
DSdbComboField (JClass DataSource)
JBdbComboField (Borland JBuilder)
DSdbPopupField (JClass DataSource)
JBdbPopupField (Borland JBuilder)
DSdbLabelField (JClass DataSource)
JBdbLabelField (Borland JBuilder)

JClass Field data bound Beans have virtually the
same interactive behavior and properties as
JClass Field’s standard Beans. They are
designed to be bound to a column in a
JClass DataSource or Borland JBuilder data
source component. Once bound, the data type is
read from the database query results.
20 Part I ■ Using JClass Field

../getstarted/index.html

the validator, you would use the getDataProperties() method. If you want slightly more
control over the field, you can declare the value model and validator separately from the
field. See Example Programs, in Chapter 4, for an example of this code.

1.5 Validators

JClass Field validators are used to ensure, as much as possible, the integrity of the
information in the field. Initially they parse the text in the field and create an object to be
examined by the validator. Once the validity of the object is established, the validator
formats the object into appropriate text for the field. You can use validators to enforce a
standard format for data fields, and you can prevent the typing of unwanted variants, such
as “three” instead of “3.” For more information, refer to Section 1.5.2, The Validation
Process.

JClass Field validators are available for all of the data types. Therefore, you should assign
the component a validator that is appropriate for the type of information that you want
the data field to contain.

Note that the JCDateTimeValidator supports both the java.util.Calendar data type
and the java.sql.Timestamp data type. The JCDateValidator supports both
java.util.Date and java.sql.Date. All other validators correspond exactly to the
names of the data types they support.

1.5.1 Validator Functions

The following list describes some of the functions supported by the validators. For a more
detailed description of the supported functions see The Validator Property, in Chapter 2.

■ display pattern, edit pattern (numbers only)

The way that numeric data is input and displayed can be modified to suit the
circumstances. You can choose to display negative numbers by enclosing them in
brackets, or you can add a fixed text String to the numeric field.

■ mask (Strings only)

This allows you to display dates using any of the standard display formats, and you
can choose an input format that differs from the display format if you wish.

■ min and max (numbers only)

You can set limits on the range of numeric data the field will accept.

■ a valid character list: validChars, an invalid character list: invalidChars

There are times when you wish to restrict input to a short list of valid characters, and
other times when there are only a few characters you wish to prohibit. Having both
ways of setting character lists lets you choose the one that is shorter and more
descriptive.
Chapter 1 ■ JClass Field Basics 21

■ defaultValue

A field is given a default value when it is created. You might want to change this
value, or you might not want a default to appear at all when the field is created. This
property can also be used as a reference when a user types in invalid data.

1.5.2 The Validation Process

The following diagram shows the steps of parsing and validation that occur when a user
enters text in a field. When the text is committed or the field loses focus, this process will
be performed.
22 Part I ■ Using JClass Field

You can intercept the new value between the parse and validation processes. You might
want to change the value a user has entered using the JCValueModel.SetNewValue()
method, or simply monitor the user’s data.

Figure 1 The validation and parsing process.
Chapter 1 ■ JClass Field Basics 23

1.5.3 The useFormatting flag

A useFormatting flag is available for JCBigDecimalValidator, JCFloatValidator, and
JCDoubleValidator. It is used to dictate whether or not formatting is enforced. By default,
the value for this flag is true for JCFloatValidator and JCDoubleValidator.

This flag is set to false by default for the JCBigDecimalValidator, as formatting may
result in a loss of precision for BigDecimal data types. This risk is not applicable to the
other two properties.

1.5.4 Validators and Value Models

Each validator can be used with specific value models; the following table indicates the
value model to use with the different validators.

Validator Supported Types Value Model Class

JCBigDecimalValidator BigDecimal BigDecimalValueModel

JCByteValidator Byte ByteValueModel

JCDateTimeValidator java.util: Calendar, Date,
GregorianCalendar
java.sql: Date, Time,
TimeStamp

CalendarValueModel,
DateValueModel,
SqlValueModel,
SqlTimeStampValueModel,
SqlTimeValueModel

JCDateValidator java.util: Calendar, Date,
GregorianCalendar
java.sql: Date

CalendarValueModel,
DateValueModel,
SqlValueModel

JCDoubleValidator Double DoubleValueModel

JCFloatValidator Float FloatValueModel

JCIntegerValidator Integer IntegerValueModel

JCIPAddressValidator JCIPAddress IPAddressValueModel

JCLongValidator Long, Byte, Integer, Short LongValueModel

JCShortValidator Short ShortValueModel

JCStringValidator String, StringBuffer StringValueModel

JCTimeValidator java.util: Calendar,
GregorianCalendar
java.sql: Time, TimeStamp

CalendarValueModel,
SqlTimeValueModel,
SqlTimeStampValueModel
24 Part I ■ Using JClass Field

1.6 JClass Field Inheritance Hierarchy

JClass Field’s visual components are subclassed entirely from Swing. In previous versions
of Field, some components were subclassed from JClass BWT. Using Swing and
JClass Field, you can do everything without BWT.

The following two diagrams show the inheritance hierarchy for the JClass Field Bean
components. The first diagram shows the inheritance of the basic classes in JClass Field.

Figure 2 JClass Field’s Component Classes - the basic classes.
Chapter 1 ■ JClass Field Basics 25

Here is the hierarchy of classes within JClass Field:

Figure 3 JClass Field’s Component Classes - classes inside JClass Field.
26 Part I ■ Using JClass Field

The following diagram shows the inheritance properties for JClass Field’s validators. The
object at the top signifies java.lang.Object, from which all JCField’s validators are
subclassed.

Figure 4 JClass Field’s validator Classes.

1.7 Events
Events are a mechanism used to propagate state change notifications between a source
object and one or more target listener objects. Events are typically used within windowing
toolkits for delivering notifications of such things as mouse or keyboard actions, or other
programmatically-defined actions.

Bean-compliant JClass products (like JClass Field) provide the means for an application
to be notified when an event occurs through event listeners. It works as follows: if a
component is acted upon by the user or from within the program, a JCFooEvent is fired
(where “Foo” is the place holder for the actual event name). The JCFooListener (which
has been registered by calling addFooListener() on the component) receives the
Chapter 1 ■ JClass Field Basics 27

instance and enacts the action to be taken. The developer uses the JCFooListener to
define what action or actions should take place when it receives the JCFooEvent.

JClass Field Events

The event listener that receives the events generated by the four editable Fields is called
JCValueListener. Its methods are valueChanging() and valueChanged(). Changes to
any one of the Fields are handled by invoking addValueListener(). You supply the code
to implement the JCValueListener interface. To register the method, please see
addValueListener, removeValueListener, in Chapter 2.

The methods of the JClass Field event listener are described below:

1.8 Keystroke Actions

Most key actions are intuitive, however there are some circumstances that may need
explanation.

■ The Escape key cancels any changes made in a field as long as the data has not been
committed by pressing the Return key. However, if no valid data has previously been
committed to the field and the default value is zero or null, then the Escape key will
not cancel the changes.

■ Arrow keys perform dual functions in calendar popups. If the calendar popup is
visible, the arrow keys may be used to move to adjacent days. If the popup is hidden,
the right and left arrow keys move the cursor through the date field, and the down
arrow opens the popup.

■ In combo fields, the down arrow key may be used to spin through the entries in the
combo field’s list. To actually pop down the list, use CTRL+Down Arrow.

Event Methods Description

JCValueListener.value
Changing()

The field has been edited, as signalled by the end-user
pressing the Return key or leaving the field, or the
setValue() method has been called programmatically,
and the new value is about to replace the old value.
valueChanging() is invoked whenever the value is about
to change. Catching this event allows a change of the new
value at this point if desired.

JCValueListener.value
Changed()

The value has been changed.
28 Part I ■ Using JClass Field

1.9 An Example Program

Now that you have seen an overview of JClass Field’s objects and validators, here is a
sample program that illustrates several features of some JClass Field components.

You can create fields for your applications programmatically, or in an IDE. Either way,
you are using the same Bean. The following sections describe building a field using an
IDE. For more detailed information about the process of creating fields, both with an
IDE or programmatically, see Building a Field, in Chapter 3.

The class Examples contains a main method and an init method and, therefore, it is both
an applet and a program. The file is located in the examples directory. When run using the
command java examples.field.Examples, the program produces the output shown in
the figure below.

Figure 5 JClass Field examples.

Here is the program code:

package examples.field:

import com.klg.jclass.field.JCTextField;
import com.klg.jclass.field.JCComboField;
import com.klg.jclass.field.JCSpinField;
import com.klg.jclass.field.validate.*;
import com.klg.jclass.util.swing.JCExitFrame;
import com.klg.jclass.util.value.*;
import com.klg.jclass.field.JCInvalidInfo;
import com.klg.jclass.util.swing.JCListModel;

import javax.swing.*;
import javax.swing.border.TitledBorder;

import java.awt.GridLayout;
import java.awt.BorderLayout;
import java.awt.Color;
import java.util.Calendar;

public class Examples extends JApplet {

protected JCTextField text1, text2, text3, text4;
Chapter 1 ■ JClass Field Basics 29

protected JCComboField combo1;
protected JCSpinField spin1;

public void init() {

// set the layout
getContentPane().setLayout(new BorderLayout());

// place all the text fields in a panel
JPanel p = new JPanel();
getContentPane().add(p, BorderLayout.CENTER);
p.setLayout(new GridLayout(5,2));
p.setBorder(new TitledBorder("JClass Field Examples"));

//
// Example of a JCTextField using JCStringValidator
// with a mask set
//
p.add(new JLabel("String JCTextField: "));
p.add(text1 = new JCTextField());

// create the validator
JCStringValidator sv1 = new JCStringValidator();

// set the validator properties
sv1.setMask("\\Licence \\#: UUU @@@");
sv1.setPlaceHolderChars("Licence #: FLX 999");
sv1.setAllowNull(false);

// set the value model and validator
text1.setValueModel(new StringValueModel());
text1.setValidator(sv1);

//
// Example of a JCTextField using JCStringValidator
//
p.add(new JLabel("String JCTextField: "));
p.add(text2 = new JCTextField());

// create validator
JCStringValidator sv2 = new JCStringValidator();

// set validator properties
sv2.setMask("AA @@@@@");
sv2.setPlaceHolderChars("CA 90210");
sv2.setAllowNull(true);

// set the value model and validator
text2.setValueModel(new StringValueModel());
text2.setValidator(sv2);

//
// Example of a JCTextField using JCDoubleValidator
// with currency property
//
30 Part I ■ Using JClass Field

p.add(new JLabel("Double JCTextField (currency): "));
p.add(text3 = new JCTextField());

// create validator
JCDoubleValidator cv = new JCDoubleValidator();

// set validator properties
cv.setAllowNull(true);
cv.setCurrency(true);
cv.setDefaultValue("0");

// set the invalidinfo properties
JCInvalidInfo ii1 = text3.getInvalidInfo();
ii1.setInvalidPolicy(JCInvalidInfo.CLEAR_FIELD);

// set the value model, invalidinfo and validator
text3.setValueModel(new DoubleValueModel(new Double(100.00)));
text3.setInvalidInfo(ii1);
text3.setValidator(cv);

//
// Example of a JCComboField using JCIntegerValidator
//
p.add(new JLabel("Integer JCComboField:"));
p.add(combo1 = new JCComboField());
combo1.setEditable(false);

// create validator
JCIntegerValidator iv = new JCIntegerValidator();

// set validator properties
Integer[] int_values = {new Integer(1), new Integer(2),

new Integer(3), new Integer(4)};
String[] display = {"0 - 25", "26 - 50", "51 - 75", "75 - 100"};
iv.setAllowNull(true);
iv.setPickList(new JCListModel(int_values));
iv.setDisplayList(display);

// set the value model and validator
combo1.setValueModel(new IntegerValueModel());
combo1.setValidator(iv);
combo1.setSelectedIndex(0);

//
// Example of a JCSpinField using JCTimeValidator
//
p.add(new JLabel("Time JCSpinField: "));
p.add(spin1 = new JCSpinField());

// create validator
JCTimeValidator tv = new JCTimeValidator();

// set validator properties
Chapter 1 ■ JClass Field Basics 31

tv.setMaskInput(true);
tv.setAllowNull(true);

// set value model and validator
spin1.setValueModel(new CalendarValueModel(

Calendar.getInstance()));
spin1.setValidator(tv);

}
public static void main(String[] args) {

JCExitFrame frame = new JCExitFrame("JCField Examples");
Examples t = new Examples();
t.init();
frame.getContentPane().add(t);
frame.pack();
frame.show();

}
}

1.9.1 Programming the Example

The five objects reside in a container and are introduced on the left by explanatory text
labels. Neither the container itself nor the explanatory text is part of JClass Field, but they
illustrate how JClass Field components and other JClass components are used with
standard Java objects to achieve a desired result.

The setMask() method specifies the general format for any changes to the field. In the
case of the text1 object, the mask specifies that entered data will be validated against a
pattern matching a North American license plate number. The @ symbol specifies that
only digits are allowed in each of these positions and the U symbol specifies that only
alphabetic characters are allowed in these positions. Any lowercase letters entered will be
converted to uppercase.

The mask for text2 specifies two letters followed by five digits. In this example, the
setPlaceHolderChars() method displays a zip code in the field. This is not a default, but
a prompt for the appropriate type entry.

The third object shows a default value of $100.00. This shows the use of a text field with
type double and the setCurrency() method set to true. The field also uses the
setInvalidPolicy() method, which is contained in the InvalidInfo object, to clear the
field if the user enters an amount that is out of range. The range of valid values is
determined by the setRange() method.

The field, combo1, uses the methods setPickList() and setDisplayList() to provide the
user with meaningful choices while still using the type integer for the field value’s data
type.

The last object is a spin field that allows the user to change the time value. As for all
objects with date or time types, the default, if none is set explicitly, is the current date and
time.
32 Part I ■ Using JClass Field

1.9.2 The Property Sheet

It is possible to examine and experiment with the component properties of the
JClass Field objects using the Bean Development Kit (BDK) or any IDE. You can use the
Property sheet to change the properties of the JClass Field component under
consideration.

Instructions on loading and running the BeanBox can be found online at
http://java.sun.com/beans/bdk_download.html.

Figure 6 A JClass TextField component’s properties as seen in the Property sheet.

The association between the property sheet and the design is dynamic, so any changes
you make are automatically applied to the component in the BeanBox. Because the
changes are immediately displayed as you edit properties, you can see how a change
affects the JClass Field component without leaving the property sheet. You can continue
to make changes and observe the results.

1.9.3 Using the Property Sheet

The following sections illustrate some steps for using the property sheet to customize the
properties of a JClass Field Bean. You may wish to launch an appropriate program and
execute the steps as they are described.

In the design window, click the JClass Field component you wish to customize. The
property sheet’s contents change to correspond to the component selected, as shown in
the previous illustration.
Chapter 1 ■ JClass Field Basics 33

http://www.javasoft.com/beans/bdk_download.html

1.9.4 Editing JClass Field Properties

The following lists the steps required to edit the properties for a JClass Field Bean:

1. In the design window, select the JClass Field component that you want to edit.

All the editable Bean properties (and some read-only properties as well) appear in the
Properties window.

2. Double click on the DataProperties property to invoke a property customizer that
contains the value, validator, and invalidinfo object properties.

3. Before you can set the desired properties, you must select a data type from the list on
the left of the DataProperties editor. Then you can customize the field using the
properties in the Value, Validator, and Invalid tabs of the DataProperties editor.

4. When you make changes in the DataProperties editor, you must click Apply and
then Done before the changes will be displayed.

Figure 7 The property customizer of a JClass Field component.
34 Part I ■ Using JClass Field

5. Some properties, such as about, are read-only. They are included in the property
sheet as information only. For example, double clicking on the about property will
display the JClass help information. There is another read-only property, called
state, that is used to describe whether the current contents of the field are valid, in-
valid, or in the process of being changed. Properties listed in Appendix A with a “(G)”
after the property name have only a get method.

By now you should have a good idea of what JClass Field has to offer. The next chapter
will explain in more detail the properties of the JClass Field components.

1.10 Internationalization
Internationalization is the process of making software that is ready for adaptation to
various languages and regions without engineering changes. JClass products have been
internationalized.

Localization is the process of making internationalized software run appropriately in a
particular environment. All Strings used by JClass that need to be localized (that is,
Strings that will be seen by a typical user) have been internationalized and are ready for
localization. Thus, while localization stubs are in place for JClass, this step must be
implemented by the developer of the localized software. These Strings are in resource
bundles in every package that requires them. Therefore, the developer of the localized
software who has purchased source code should augment all .java files within the /resource/
directory with the .java file specific for the relevant region; for example, for France,
LocaleInfo.java becomes LocaleInfo_fr.java, and needs to contain the translated French
versions of the Strings in the source LocaleInfo.java file. (Usually the file is called
LocaleInfo.java, but can also have another name, such as LocaleBeanInfo.java or
BeanLocaleInfo.java.)

Essentially, developers of the localized software create their own resource bundles for
their own locale. Developers should check every package for a /resources/ directory; if one
is found, then the .java files in it will need to be localized.

For more information on internationalization, go to:
http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html.
Chapter 1 ■ JClass Field Basics 35

http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html

36 Part I ■ Using JClass Field

2
JClass Field’s Properties

Introduction ■ Field’s Key Properties ■ Format Tables

Property Summaries ■ Exploring the Form Demo

2.1 Introduction

This chapter discusses how to use JClass Field’s key properties, and provides a quick
summary of the properties arranged by data type. See Appendix A, JClass Field Property
Listings, for a complete summary of JClass Field’s properties, and the API for complete
reference information.

Date, number, and format tables are included for reference purposes, since JClass Field
components may be used for date and time information, for displaying and editing
numbers and currencies, and for validating text entries. These formats follow standard
Java conventions.

2.2 Field’s Key Properties

The key properties of JClass Field components are contained in three objects:
JCValueModel, JCValidator, and JCInvalidInfo. The properties, which you set to dictate
the format and behavior of the JClass Field components, are not directly exposed by the
Bean, but are accessed through the property customizer, DataProperties, or can be set
programmatically.

JClass Field is designed to be used within an IDE, so almost all of its properties, including
the property customizer, can be manipulated by using the property sheet in the IDE. Of
course, you can set the properties programmatically as well.

2.2.1 The Value Model

value
value is the fundamental property of a field. A field’s value changes dynamically as the
end-user supplies data and has it validated. Because value is initially null, and allowNull
is false by default, the field starts out in an invalid state.
37

The data member value is used to record both the initial value given to a field and its
current value. It is initially set to null. If the allowNull property is true, the field may be
left in this condition. However, the field is usually edited by the user and its null value
changed to the value set by the user’s input. After it has been inspected and approved by
the field’s validator, this change becomes the new value. Thus, in a typical application,
value is updated through user interaction with the field. You see the current value
displayed in the field and you can inspect value programmatically using the method
getValue() to determine this central property of a field.

2.2.2 The Validator Property

By setting a data type with a JClass Field component, you associate a corresponding
validator with that component. Here are some of the important properties contained in
one or more of the JClass Field validators:

displayPattern, editPattern
You use these properties to control the appearance of values in number fields. When the
field has focus, editPattern is in effect. When the field loses focus, displayPattern
comes into effect. Both properties take their formats from one of the possible conventions
for number formatting in the current locale, but you can choose a different format while
in edit mode from that in display mode. Thus, you can allow the user to type a minus sign
when entering a negative number, yet display it in the accounting fashion, using brackets
instead of the minus sign.

It is possible to supply a type of feedback to users by appending a text String to the
number that was entered, perhaps to remind users of the units that are expected in the
field. For example, if the application is using a JCTextField with a property set for integer
to collect a length measurement, and the required unit of measurement is feet, you could
cause “ft.” to display after the number by incorporating that String in the number format
that you specify for displayPattern. The internal value of the field is unchanged; it
remains a pure number, and no units are associated with it.

For JDK 1.3.1 and higher, numeric validators support scientific notation.

editFormats
This is a list of String formats that are used to match a user’s input in fields that contain
date and time values. The input is assumed to represent a partially completed field that
the validator attempts to expand into a full date. There are a number of standard locale
specific formats that can be used. The default edit formats are listed here:

■ h:mm:ss ’o"clock’ a z EEEE, MMMM d, yyyy

■ h:mm:ss a z EEEE, MMMM d, yyyy

■ h:mm:ss a EEEE, MMMM d, yyyy
38 Part I ■ Using JClass Field

The symbols dd, mm, M, and so on, must follow the convention specified in the javadoc
entry in the setFormat method of JCDateTimeValidator. You can construct a date format
in any way you choose, so long as you assemble it from date format elements. This
manual contains a copy of the date format conventions in Section 2.3.1, Date Formats,
and in Appendix A, JClass Field Property Listings.

Note that the maskInput property potentially has an effect on editFormats. If you set
maskInput to true, its format specification may override the one in editFormats.

mask, numMaskMatch
mask is a property of JCStringValidator and JCDateTimeValidator. You use it to specify
the type of character that is admissible at each position. For example, in an instance of a
JCTextField with a String validator, the line:

 TextFieldInstance.setMask("\\Licence \\#: UUU @@@");

results in the following being displayed:

The cursor is placed at the first editable position, where an alphabetic character is
expected. The effect of a U in the mask is to convert lower case input to upper case. After
three letters are typed, which match the three Us in the mask, the cursor skips over the
space, and then is ready to accept three numeric characters, represented by the three “at”
signs (@) in the mask. Note that the prompt String, Licence #, contains both a letter L and
a number sign. These are mask characters which have special meaning. To use them as
character literals, you need to preface them with double backslashes. For a list of the
special mask characters and their meaning, see Section 2.3.2, Mask Characters.

numMaskMatch is a property of JCStringValidator. With it, you set the number of
characters to match against the mask, going from left to right. This number does not
include any literals that you may have embedded between mask characters. If the value is
negative, the entire mask will be matched. An example of the use of this property is in a

■ h:mm a EEEE, MMMM d, yyyy

■ h:mm:ss ’o"clock’ a z dd-MMM-yy

■ h:mm:ss a dd-MMM-yy

■ h:mm a dd-mm-yy

■ h:mm:ss ’o"clock’ a z M/d/yy

■ h:mm:ss a M/d/yy

■ MM d yy h:mm:ss or d MM yy or EE MM d
Chapter 2 ■ JClass Field’s Properties 39

../api/com/klg/jclass/field/validate/JCDateTimeValidator.html

field that is designed to collect an office telephone number and extension. The mask
might be:

TextFieldInstance.setMask("Phone \\#: (@@@) @@@-@@@@ Ext. @@@@");

If the value of numMaskMatch is set as follows:

TextFieldInstance.setNumMaskMatch(10);

then only the first ten digits are needed for the input to be considered valid, although
fourteen digits will be accepted. Note that in the absence of a placeHolderChars String,
the field will be blank; the pattern used in setMask() will not appear in the field.

placeHolderChars
You can use the property placeHolderChars to override the appearance of a field when a
mask has been used. Notice that in our mask, numMaskMatch example, the part of the
field where the licence plate number is to be typed is blank. You can give the end-user a
better idea of what the contents of the field should be by extending the prompt String to
appear as follows.

Using a JCTextField with type String as an example, the command

TextFieldInstance.setPlaceHolderChars("Licence #: FLX 999");

results in the following being displayed:

The field now contains characters in the editable part of the field that give the user a good
idea of what is expected.

If you use placeHolderChars, it is a good idea to match the mask String character by
character. This means that you supply the same number of characters in the
placeHolderChars String as there are in the mask String. If the mask String and
placeHolderChars String have differing lengths or character placement, the field will use
the character spacing of the mask and the display of the placeHolderChars String, which
will likely confuse the user.

maskInput
The maskInput property exists for the date and time validators. If this Boolean property is
true, the user’s input must exactly match the date format that has been specified for the
field. If it is false, the validator will attempt to complete a partial date as long as the input
matches one of the currently set date formats.

When you use placeHolderChars with Calendar objects, maskInput must be true. The
format is then transformed into a non-ambiguous form, and it is possible to use a
placeHolderChars String as long as you are aware of the possible pitfall presented by
ambiguous date formats. For example, if you use the ambiguous date format h:mm:ss, it is
40 Part I ■ Using JClass Field

internally converted to hh:mm:ss. Thus, an acceptable placeHolderChars String is shown
in the following code fragment:

CalendarComponent.setMaskInput(true);
CalendarComponent.setPlaceHolderChars("HH:MM:SS");

The best approach is to use only non-ambiguous date format Strings.

Note that if you are using the JCDateTimeValidator or JCTimeValidator, the
incrementField of the JCSpinFields depends on the maskInput property. In this case, if
maskInput is set to true, the subfield will spin where the cursor is located. Otherwise, it
will spin the subfield indicated by the incrementField property if it is explicitly set, or the
hours subfield if it is not.

pickList, matchPickList, displayList
pickList is a property which provides a list of values for combo and spin fields with
numeric and String data types. You can restrict the choices to just those given in the pick
list by setting the Boolean property matchPickList to true. The property displayList
provides further control over the way that the field displays its values. By defining a
display list, values in the pick list are associated with the corresponding items in the
display list. This additional capability is useful if you want to display Strings, yet couple
them with integer values, in effect forming an associative array. The user sees the array
element, and the field reports the index corresponding to that element as the value of the
field. The following code snippet shows how:

// create validator
JCIntegerValidator IntVal= new JCIntegerValidator();

// set validator properties

Integer picklist[] = {new Integer(-10), new Integer(-5),
new Integer(-1),new Integer(0), new Integer(1),
new Integer(5), new Integer(10)};

String[] displaylist = {"minus ten", "minus five", "minus one", "zero",
"one", "five", "ten"};

IntVal.setPickList(new JCListModel(picklist));
IntVal.setMatchPickList(true);
IntVal.setDisplayList(displaylist);

The code creates a JCIntegerValidator and declares a pick list of seven integer values.
Since matchPickList is true, these values would be the only ones capable of being
displayed in the field, except that a display list is also declared and set. Thus, instead of
seeing the sequence of values from the pick list, -10, -5, -1, 0, 1, 10, in the combo box, the
user sees the display list values, “minus ten”, “minus five”, “minus one”, “zero”, “one”,
“five”, “ten”. The value of the field is the associated integer, not the String that is
displayed.
Chapter 2 ■ JClass Field’s Properties 41

defaultValue
All fields are given a default value when they are created. You may decide to change this
value as part of your own initialization of the field, but one way or the other a field has an
initial default value as well as a value. Typically, the default value is zero for numeric
fields, null for String fields, and the current date and time for calendar fields. The data
member defaultValue is used to hold a representative value for the field that does not
get changed by user input or by the validation process. Note that the default value only
displays in the field when the JCInvalidInfo.RESTORE_DEFAULT policy is in effect and the
user has entered an invalid value. If you set the default value in a spin field without setting
a value for the field, the field will be blank until the users clicks one of the arrows. The
field will then spin from the default value to the next value.

You may wish to replace an invalid input with the default value as a way of providing the
user with a reasonable starting place for further data entry. See invalidPolicy below for a
description of how the invalidPolicy property is useful in this regard.

isCurrency
The isCurrency property allows you to specify whether a numeric type should be treated
as currency. If the property is set to true, the value is displayed in the currency format
appropriate to the set locale. The default value for this property is false. Note that if you
set the property to true in a integer, short, byte, or long validator, the value will display
with zero sub-units and the field will not allow the user to enter any fraction of the
currency unit.

2.2.3 InvalidInfo Properties

invalidBackground, invalidForeground, beepOnInvalid
You use these three properties to provide visual and auditory warnings that an attempt
has been made to enter invalid data in a field. By default, colors are inherited and
beepOnInvalid is true. Examples are:

 invalidInfoInstance.setInvalidBackground(Color.red);
 invalidInfoInstance.setInvalidForeground(Color.white);
 invalidInfoInstance.setBeepOnInvalid(false);
42 Part I ■ Using JClass Field

invalidPolicy
This property gives you four choices for the behavior of the field when invalid data is
entered.

■ JCInvalidInfo.SHOW_INVALID is the default value. It leaves the data in the field even
after the field loses focus. To highlight the fact that the data is invalid, you can show it
in different colors using the invalidBackground and invalidForeground properties.

■ JCInvalidInfo.RESTORE_DEFAULT displays the default value. If the field loses focus,
still containing an invalid value, setting invalidPolicy to this parameter causes the
field to replace the invalid entry with the default.

■ JCInvalidInfo.RESTORE_PREVIOUS replaces an invalid entry by the last valid value
that was committed in the field.

■ JCInvalidInfo.CLEAR_FIELD clears a field containing invalid data upon loss of focus.
In this case, the field is blank and the value of the field is undefined.

2.2.4 Other Properties

state
state is one of the few read-only properties in JClass Field. Using getState(), you can
determine if the value of the field is valid, invalid, or indeterminate. An indeterminate
value arises when the field is currently being edited, so the validator must defer its
decision until editing is complete. A field becomes “under edit” when the user types a
key, and remains so until the field loses focus, the user presses the Enter key, or the field
is resolved programmatically by the commit() method.

editable
This boolean property lets you decide whether or not a field can be edited via the
keyboard. If you are concerned that it will be all too easy for the user to make a mistake if
keyboard entry is allowed, you can set this property to false and restrict the user to
employing the mouse. The items that you have placed in spin, combo, and popup fields
contain (presumably) valid choices, so your users are constrained to one of these valid
choices. You would set editable to true when the user must supply more generalized and
unpredictable information, such as names and addresses.

You can make spin and combo fields extensible by allowing users to type new values into
the field, but you are responsible for adding the programming code that adds these new
values to the pick list. See Event Programming, in Chapter 4 for an example of this code.
See pickList, matchPickList, displayList for a description of pick lists.

max and min
These properties set the minimum and maximum values of numeric fields. A
convenience method, setRange(), allows you to set both properties in a single command.
There are examples of its use in the code snippets in Chapter 4. In an IDE only the min
and max properties are available.
Chapter 2 ■ JClass Field’s Properties 43

2.2.5 addValueListener, removeValueListener

Changes to JClass Field are handled by invoking addValueListener(). Just as with any
other listener, you supply the code to implement the JCValueListener interface, and add
the event handler to the Field. For example:

 myField.addValueListener(new MyJCValueListener);

The removeValueListener() method removes the named listener object.

2.3 Format Tables

The format Strings for date and time validators, the mask characters for the String
validator, and number format characters for fields using numeric validators are listed in
the next three sections.

2.3.1 Date Formats

Symbol(s) Meaning

y Year within the current century (1 or 2 digits).

yy Year within the current century (2 digits).

yyyy Year including century (4 digits).

M Numeric month of year (1 or 2 digits).

MM Numeric month of year (2 digits).

MMM Abbreviated month name.

MMMM Full month name.

EE Day of the Week (abbreviated).

EEEE Day of the Week (full name).

d Numeric day of month (1 or 2 digits).

dd Numeric day of month (2 digits).

h Hour of day (1-12) (1 or 2 digits).

hh Hour of day (1-12) (2 digits).

H Hour of day (0-23) (1 or 2 digits).

HH Hour of day (0-23) (2 digits).
44 Part I ■ Using JClass Field

2.3.2 Mask Characters

m Minutes (1 or 2 digits).

mm Minutes (2 digits).

s Seconds (1 or 2 digits).

ss Seconds (2 digits).

a AM/PM representation.

p AM/PM representation.

z Time zone abbreviation.

zz Time zone abbreviation.

zzzz Time zone (full name).

D Day in year (1, 2, or 3 digits).

DDD Day in year (3 digits).

Symbol Meaning

Any digit, minus sign, comma, decimal point, or plus sign.

@ Any digit.

H Any hexadecimal digit.

U Any alphabetic character. Lower case characters will be converted
to upper case.

L Any alphabetic character. Upper case characters will be converted
to lower case.

A Any alphabetic character. No case conversion.

* Any character.

^ An alphanumeric character — one of the set {0-9a-zA-Z}.

\\ The next character that follows is to be treated as a literal, even if it
is one of the above characters.

Symbol(s) Meaning
Chapter 2 ■ JClass Field’s Properties 45

2.3.3 Number Format Characters

Notes:
If there is no explicit negative sub-pattern, - is prefixed to the positive form. That is,
“0.00” alone is equivalent to “0.00;-0.00”.

Illegal formats, such as “#.#.#” or mixing '-' and '*' in the same format, will cause a
ParseException to be thrown. From that ParseException, you can find the place in the
String where the error occurred.

The grouping separator is commonly used for thousands, but in some countries for ten-
thousands. The interval is a constant number of digits between the grouping characters,
such as 100,000,000 or 1,0000,0000.

If you supply a pattern with multiple grouping characters, the interval between the last
one and the end of the integer is the one that is used. So, the grouping interval for each of
“#,##,###,####”, “######,####”, and “##,####,####” is four.

2.4 Property Summaries
The first property list shown below details the properties common to all fields. The
following lists are organized according to properties contained in the three main
validators of the JClass Field components and the InvalidInfo and ValueModel objects.
You can use these lists for quick reference to the properties that a particular object
possesses; however, the best reference is the API for a particular component.

Symbol Meaning

0 Any digit, zeros show as zero.

A digit, zero shows as absent.

. Placeholder for decimal separator.

, Placeholder for grouping separator.

E Separates mantissa and exponent for exponential formats.

; Separates formats.

- Locale-specific negative prefix.

X Any other characters can be used in the prefix or suffix.

' Used to quote special characters in a prefix or suffix.

other Appears literally in the output.
46 Part I ■ Using JClass Field

These lists differ from the single list given in Appendix A, JClass Field Property Listings,
where the property is listed and the JClass Field types which can be customized by it are
listed in the second column.

A small number of properties are read-only variables, and therefore only have a get
method. These properties are marked with a “(G)” following their property name. There
is also one property that has only a set method, and is marked with an “(S)” f following the
property name.

2.4.1 Properties for JClass Field Components

2.4.2 Properties for Numeric and IPAddress Validators

Property Type Default

about String com.klg.jclass.field 4.5.0

background Color inherited

doubleBuffered boolean false

editable boolean true

enabled boolean true

font Font inherited

foreground Color inherited

maximumSize Dimension dynamic

minimumSize Dimension dynamic

name String null

preferredSize Dimension dynamic

required boolean true

selectOnEnter boolean false

state (G) int N/A

toolTipText String null

Property Type Default

allowNull boolean false

casePolicy int JCValidator.AS_IS

continuousScroll boolean false
Chapter 2 ■ JClass Field’s Properties 47

2.4.3 Properties for JCStringValidator

currency boolean false

currencyLocale Locale locale dependent

currencySymbol (G) String locale dependent

defaultValue Object 0

displayLista String null

displayPattern String locale dependent

editPattern String Byte, Short, Integer, Long: 0
Float, Double, BigDecimal: 0.###

firstValidCursor
Position (G)

int usually 0, but dependent on mask set

increment Number 1

invalidChars String null

locale Locale Locale.getDefault

matchPickList boolean true

max int type dependent

min int type dependent

pickList ListModel null

pickListIndex (G) Object N/A

range (S) int type dependent

spinPolicy int JCValidator.SPIN_FIELD

useIntlCurrencySymbol boolean false

validChars String null

a. Only byte, short, integer and long types possess these properties.

Property Type Default

allowNull boolean false

casePolicy int JCValidator.AS_IS

continuousScroll boolean false

Property Type Default
48 Part I ■ Using JClass Field

2.4.4 Properties for Date/Time Validators

defaultValue Object null

firstValidCursor
Position (G)

int 0

invalidChars String null

locale Locale Locale.getDefault

mask String null

maskChars String #@HULA*^\

matchPickList boolean true

numMaskMatch int -1

pickList ListModel null

pickListIndex (G) Object N/A

placeHolderChars String null

spinPolicy int JCValidator.SPIN_WRAP

validChars String null

Property Type Default

allowNull boolean false

casePolicy int JCValidator.AS_IS

continuousScroll boolean false

defaultDetail int medium

defaultEditFormats (G) String N/A

defaultFormat (G) String N/A

defaultValue Object null

editFormats String locale dependent

firstValidCursor
Position (G)

int 0

format String locale dependent

increment int 1

Property Type Default
Chapter 2 ■ JClass Field’s Properties 49

2.4.5 InvalidInfo Properties

2.4.6 ValueModel Properties

invalidChars String null

locale Locale Locale.getDefault

mask String null

maskChars String #@HULA*^\\

maskInput boolean true for JCSpinField with any date
type; false otherwise

matchPickList boolean true

milleniumThreshold int 69

numMaskMatch int -1

parsedMask (G) String N/A

pickList ListModel null

pickListIndex (G) Object N/A

placeHolderChars String null

spinPolicy int JCValidator.SPIN_SUBFIELD

timeZone java.util.
TimeZone

locale dependent

validChars String null

Property Type Default

beepOnInvalid boolean true

invalidBackground Color null

invalidForeground Color null

invalidPolicy int JCInvalidInfo.SHOW_INVALID

Property Type Default

value Object null

Property Type Default
50 Part I ■ Using JClass Field

2.5 Exploring the Form Demo
JClass Field includes more extended sample programs. For example, the Form demo
implements a complete data-entry form containing all of the elements needed by such an
application. The code is located in the demos/field/form directory.

This program uses two additional classes of JClass Field. The following sections describe
them.

2.5.1 JCPromptHelper

JCPromptHelper extends the function of the toolTipText property. This class allows you
to set a label in the specified container that takes the value of the tool tip text associated
with the field in focus.

For example, in the illustration above, the text above the console output area is the tool
tip text for the field containing the cursor Last Name.

2.5.2 JCFormUtil
The class JCFormUtil provides several useful methods for collecting different sets of
information based on the JClass Field components in a container.

valueClass (G) java.lang.Class N/A
Chapter 2 ■ JClass Field’s Properties 51

■ The clearFieldComponents() method allows you to set the values in all of the
JClass Field components in a specified container to null. The
resetFieldComponents() method can be used to reset all fields to their default
values.

■ The getFieldComponents() method returns a list of the JClass Field components in a
specified container.

■ The getInvalidRequiredFieldComponents() method returns a list of the required
JClass Field components in the container that are in an invalid state.

■ The getRequiredFieldComponents() method returns a list of the required
JClass Field components in a container.

■ The isFieldComponentContainerComplete() method returns a value of true if all
the required JClass Field components in a container have valid values.

The form program demonstrates all of these functions. You can view the return values in
your command window. In addition, demos.field.form.Form has a scrollable text
window where you can view the values directly. It also displays messages that inform the
user of invalid input and incomplete entries.
52 Part I ■ Using JClass Field

3
Building a Field

Determining Which Technique to Use ■ Creating a New Field Component (Using an IDE)

Creating a New Field Component (Programmatically) ■ Data Binding

3.1 Determining Which Technique to Use

JClass Field offers several options when it comes to modifying properties. The choice of
technique is a personal preference; however, the following two sections illustrate some
important points to consider when deciding which technique to use.

3.1.1 Using an Integrated Development Environment
JClass Field can be used with a Java Integrated Development Environment (IDE), and its
properties can be manipulated at design time. Consult the IDE documentation for details
on how to load third-party Bean components into the IDE. To modify properties of the
component in an IDE, you simply drag the component onto the form, then edit the
properties exposed by the Bean and the properties in the DataProperties editor. You can
use many of Field’s default properties “as is” and set the few that are specific to your
application.

3.1.2 Setting Properties Programmatically

Setting properties programmatically requires writing the actual Java code that will
accomplish the task. This approach offers more control, because elements not exposed by
the Bean model may be accessed.

As mentioned previously, most properties in JClass Field have set and get methods
associated with them. For example, to retrieve the value of the value property in a
JCTextField instance, do the following:

TextFieldValueModel.getValue();

3.2 Creating a New Field Component (Using an IDE)
The following steps provide an outline for building a new Field component in an IDE.

1. Add the field you want to build to your container.

2. Set the general bean properties available in the property editor.
53

3. Open the DataProperties editor and select a data type for your field. Now you can
test your field by entering data into it.

4. Set the field’s initial value and other properties under the Invalid and Validator tabs
in the DataProperties editor. Refer to the bottom panel of the window for descrip-
tive help on the properties.

Since you can associate most validators to most JClass Field components, there are
some validator properties that will have no effect on a particular field. For example,
although you can set a pick list for a text field, the user will never see the pick list
values.

Note that the changes to the JClass Field Component do not take effect until you click
Apply and close the DataProperties editor.

Figure 8 The DataProperties editor.

3.3 Creating a New Field Component (Programmatically)

You might want to use existing JClass Field example code as a starting point for the new
object. The examples and demos provided with JClass Field distribution are a good
54 Part I ■ Using JClass Field

starting point. You can use the following steps as a general outline for creating a field
component programmatically or start with the appropriate example field and modify to
your specifications.

1. Create a container for your new field component.

2. Declare an instance of the type of field you want (JCTextField, JCSpinField, JCCom-
boField, JCPopupField, or JCLabelField) and add it to the component.

3. Select the data type you want to use and declare the appropriate validator as follows:
JC<DataType>Validator val = new JC<DataType>Validator();

4. Set the validator properties using the Property Summaries tables found in
JClass Field’s Properties, in Chapter 2.

5. If you want to define the behavior of the field when it receives an invalid entry, de-
clare an InvalidInfo object:
JCInvalidInfo ii = NewField.getInvalidInfo();
then set the InvalidInfo Properties using the table found in Section 2.4.5.

6. Associate a value model, and the validator and the InvalidInfo objects with the
field, as follows:
NewField.setValueModel(new <DataType>ValueModel());
NewField.setValidator(val);
NewField.setInvalidInfo(ii);
You can use the ValueModel declaration to set the initial value for the field.

7. You can also integrate the field with your application by associating it with events and
by using utility classes such as JCPromptHelper and JCFormUtil.

3.3.1 Customizing a New Field Component

Now that you have created your field, you can modify it to suit your specific needs. The
following lists present the most common ways to customize a field. Use them as a guide to
customizing your field. Example code for some of the methods here appears in chapter 4.

JCString Validator Only

■ Specify the valid characters at each position in the field using setMask().

■ Limit the number of characters to match with the mask using setNumMaskMatch().

■ Put in place-holder characters to provide a hint of the required format using
setPlaceHolderChars().

■ Provide a list of valid or invalid characters, using setValidChars() or
setInvalidChars().

Numeric Validators Only

■ Set the amount by which a spin field will increase or decrease when the user clicks an
arrow using setIncrement().
Chapter 3 ■ Building a Field 55

■ Format the appearance of the field during and after editing using editPattern() and
displayPattern().

■ Set a numeric field’s value to be treated as currency using isCurrency().

■ Specify the valid values for a numeric field using setRange().

Date/Time Validators Only

■ Set the appearance of date and time fields using setFormat().

■ Allow several formats for entering date and time information using editFormats().

Multiple Validators

■ Specify values available in a spin or combo component and their displayed values
using setPickList() and setDisplayList().

■ Determine whether the user can enter values that are not on the pick list using
matchPickList().

■ Set a default value for the field using setDefaultValue().

■ Specify a case policy of upper case or lower case using setCasePolicy().

JCInvalidInfo Customization

■ Specify the behavior of a field when the user enters an invalid value using
setInvalidPolicy().

■ Specify the colors of the field when it contains invalid data using
setInvalidForeground() and setInvalidBackground().

■ Set an auditory warning for invalid entries using setBeepOnInvalid().

Other JCField Customization

■ Add prompt text for a mouse-over or for use with JCPromptHelper using
setToolTipText().

■ Determine whether the component is editable using isEditable().

3.4 Data Binding

JClass Field provides special components that connect and bind to IDE or JDBC-
compliant data sources, including the database components that are part of Borland
JBuilder 3.0 or later.

Fields are bound to a particular column of a query result set and display the value at the
current record. You can enable users to change the value, and have the field validate the
change before committing the change back to the database. You can also change the
current record displayed in the field programmatically or by using a GUI query
navigation component.
56 Part I ■ Using JClass Field

Preliminaries
There are five types of GUI components provided for data binding — a text field, a spin
field, a combo field, a popup field, and a label field. JClass Field’s data-bound Beans
dynamically determine their data type at runtime, based on the data type of the column
they are bound to.

The Beans are packaged in a separate JAR file for each IDE environment; be sure you are
using the correct one for your environment (please see the JClass DesktopViews Installation
Guide for details). The following table lists the data-bound Field Beans included with this
release:

Note: You must be using Borland JBuilder 3.0 or later to use the “JBdb” IDE-specific
Beans. Earlier versions will not work.

Before proceeding, you should ensure that your IDE and database are configured
correctly and that you can create simple database applications.

JClass DataSource
JClass DataSource is a platform-independent JDBC-compliant hierarchical data source
product. With it, your applications can bind to databases without being locked into an
IDE-specific data binding solution.

JClass DataSource is available as part of the JClass DesktopViews product bundle. Visit
http://www.quest.com for more information and downloads.

3.4.1 Data Binding in Borland JBuilder

Binding a field to a database in Borland JBuilder involves adding a database connection
and query functionality using JBuilder Data Express components, and then using a
JClass Field “JBdb” component to connect to the dataset column and display the data.
This section walks through these steps.

JClass Field
Databound Bean IDE Requirements and Data Source Compatibility

DSdbTextField
DSdbSpinField
DSdbComboField
DSdbPopupField
DSdbLabelField

■ JClass DataSource 4.5 or higher
■ Works with Data Bean and TreeData Bean data source

components which connect to JDBC- or ODBC-compliant
databases

JBdbTextField
JBdbSpinField
JBdbComboField
JBdbPopupField
JBdbLabelField

■ Borland JBuilder 3.0
■ Works with DataExpress data source components such as

QueryDataSet.
Chapter 3 ■ Building a Field 57

http://www.quest.com
../getstarted/index.html
../getstarted/index.html

Note: Database setup, connection, and querying are handled by JBuilder components.
Our coverage of these components is only intended as a guide. Consult your JBuilder
documentation for detailed information on JBuilder database connectivity.

Step 1: Connect to a Database
Use JBuilder’s Database Bean to create a database connection. This component is located
on the DataExpress tab in the Component Palette.

Add an instance to your frame. Then, use the connection property to specify the URL of
the database you want to use.

Step 2: Query the Data
To query the database, add an instance of JBuilder’s QueryDataSet (also on the
DataExpress tab) to your frame.

Select the columns you want to retrieve with the query property editor. For example, to
select all of the columns from a table named OrderDetails, you would use a statement
similar to:

 select * from OrderDetails

You can include all columns at this step, and then use a “JBdb” data-bound Bean to
specify the column to display. Each column can be bound to a different “JBdb” field
component.

Step 3: Bind a Field to the DataSet
With the database connection established and the query created, you can now add a data
binding field Bean and connect it to the JBuilder DataSet to display the data. The data
58 Part I ■ Using JClass Field

binding properties of the JBdbTextField, JBdbSpinField, JBdbComboField,
JBdbPopupField, and JBdbLabelField Beans are dataSet and columnName.

Add a “JBdb” Bean to your frame.

Select a query from the dataSet property’s pull-down menu. If the database connection
and query are set up correctly, there should be one or more queries in the list.

Then, select the column to display in the field using the columnName property. Enter the
column name into the property editor. The case must match that of the column name in
the table.

Step 4: Add Navigation Controls (optional)
The field displays the value at one particular record in the table; this is known as the
current record. To display the value at another record, add a database navigation
component such as the borland.jbcl.control.NavigatorControl component, and
connect it to the QueryDataSet. You should then be able to traverse through the query,
displaying each row in your data-bound fields.

With your connection established, you can then use the other Bean properties, such as
DataProperties, to configure the field’s validation behavior. Note that because the data
type of a field is determined by the column to which it is bound, you cannot access its
type dependent properties in the DataProperties editor until it is bound to a specific
column.

3.4.2 Data Binding with JClass DataSource

The third way to add data binding to a JClass Field application is to use the data source
components provided with JClass DataSource, a separately-available product from
Quest. JClass DataSource is a platform-independent JDBC-compliant hierarchical data
source product.

Binding a field to a database with JClass DataSource involves adding a database
connection and query using JClass DataSource’s JCData Bean and JCTreeData Bean
components, and then using a JClass Field “DSdb” component to connect to the
JClass DataSource and display the data. This section walks through these steps using the
JCData Bean component.

Database setup, connection, and querying are handled by JClass DataSourcee. Our
coverage of these components is only intended as a guide. Consult your
JClass DataSource documentation for detailed information on configuring its
components.
Chapter 3 ■ Building a Field 59

Step 1: Connect to a Database
Add a JCData Bean instance to your design area.

Then, use the dataBeanComponent property editor to specify the URL of the database you
want to use and the database query.

The first thing to do is to set up a serialization file under the Serialization tab. This file
saves information and settings about the connection. You can then proceed to set up a
connection.

To set up a database connection, display the Data Model > JDBC > Connection tab
and specify the Server Name and Driver for the database you want to connect to. Test the
connection. When the connection is successful you can proceed to set up a query. The
JClass DataSource documentation contains complete details on using the
dataBeanComponent property editor.
60 Part I ■ Using JClass Field

Step 2: Query the Data
Display the Data Model > JDBC > SQL Statement tab to show the query options:

You can create your entire query using mouse clicks (or you can enter it directly in the
text window if you are proficient with SQL). First, add a table, and then create a query by
selecting columns. When you have built the query, click Set/Modify and then Done.

You can include all columns at this step, and then use a “DSdb” data-bound Bean to
specify the column to display. Each column can be bound to a different “DSdb” field
component.

Step 3: Bind a Field to the Data Bean
With the database connection established and the query created, you can now add a data
binding field Bean and connect it to the JClass DataSource JCData Bean to display the
Chapter 3 ■ Building a Field 61

data. The data binding property of the DSdbTextField, DSdbSpinField, DSdbComboField,
DSdbPopupField, and DSdbLabelField Beans is dataBinding.

First, add a “DSdb” Bean to your design area.

Click the dataBinding property to display its property editor. If the JCData Bean’s
database connection and query are set up correctly, there should be one or more queries
in the list.

Double-click a query to display the available columns. Select the column to display in the
field and click Done.

Step 4: Add Navigation Controls (optional)
The field displays the value at one particular record in the table; this is known as the
current record. You need to use a database navigation component to traverse to another
record and display that value. JClass DataSource provides a Navigator Bean that you can
use for this purpose.

Add a DSdbNavigator or DSdbJNavigator to the design area and connect it to the JCData
Bean. You should then be able to traverse through the query, displaying each row in your
data-bound fields.

With your connection established, you can then use the other Bean properties, such as
validator, to configure the field’s validation behavior. Note that because the data type of
62 Part I ■ Using JClass Field

a field is determined by the column to which it is bound, you cannot access its type
dependent properties in the DataProperties editor until it is bound to a specific column.

Examples
JClass Field includes several sample programs that work with JClass DataSource, located
in examples/field/db.

3.5 Handling Two-Digit Year Values

An application can use JClass Field to display and store abbreviated year values. For
example, June 15, 1966 could be displayed as “15/06/66” in a date-type JCTextField.

Using two-digits for year values introduces an ambiguity about which century or
millennium the date applies to, especially near the beginning or end of a century. That is,
“15/06/66” could be interpreted as either June 15, 1966 or June 15, 2066.

The best approach for avoiding Year 2000 problems in your application is to use four
digits to specify year values. If this is not possible, JClass Field provides a
milleniumThreshold property that you can use to interpret two-digit years.

Located in the com.klg.jclass.field.validate.JCDateTimeValidator class,
milleniumThreshold controls the interpretation of two-digit years. Any two-digit year less
than the value of this property is considered to be after the year 2000, while any value
greater than or equal to the threshold is considered to be after the year 1900.

The default threshold is 69. This means that a year value of “95” is treated as 1995 and a
“01” value is treated as 2001. The following image shows the effect of using
milleniumThreshold (the bottom field is invalid because 1900 is not a leap year).

Figure 9 Four-digit year (top), two-digit year 2000 date (middle), and two-digit 1900 year (bottom).
Chapter 3 ■ Building a Field 63

64 Part I ■ Using JClass Field

4
Example Code for Common Fields

Example Programs ■ Examples of Text Fields ■ Examples of Spin Fields ■ Examples of Combo Fields

Examples of Popup Fields ■ Examples of Label Fields ■ Event Programming

4.1 Example Programs

This chapter contains example code fragments that demonstrate the common uses of
JClass Field components. In most cases, the properties used are exposed in IDEs, making
the job of producing a GUI considerably easier. However, even if you are using an IDE,
this code will extend a field’s capabilities beyond the properties provided in the IDE.

The code listings below are snippets from the examples in the distribution, which contain
a main method so that they can be run as an application as well as in a browser.

The table below provides a quick reference to the examples in this chapter.

For Code On... See...

Using place holder characters to
indicate the parts to be filled in;

Section 4.2.1, JCTextField with String
Validator
Section 4.3.1, JCSpinField with String
Validator
Section 4.6.1, JCLabelField with String
Validator

Controlling the field’s appearance
before and during user edit;

Section 4.2.2, JCTextField with Integer
Validator
Section 4.3.7, JCSpinField with BigDecimal
Validator
Section 4.4.5, JCComboField with Byte
Validator
Section 4.6.2, JCLabelField with Integer
Validator

Selecting the contents of the field
whenever it receives focus;

Section 4.2.3, JCTextField with Long
Validator
Section 4.6.3, JCLabelField with Long
Validator
65

Defining a range of valid input, and
providing a visual and audio warning
to the user when the field is invalid;

Section 4.2.4, JCTextField with Short
Validator
Section 4.3.5, JCSpinField with Byte
Validator
Section 4.6.4, JCLabelField with Short
Validator

Defining a range of valid input, and a
default value when the user’s input is
invalid;

Section 4.2.5, JCTextField with Byte Validator
Section 4.4.7, JCComboField with
BigDecimal Validator
Section 4.6.5, JCLabelField with Byte
Validator

Displaying the content of a field as a
currency of a given locale;

Section 4.2.6, JCTextField with Double
Validator
Section 4.3.6, JCSpinField with Double
Validator
Section 4.4.6, JCComboField with Double
Validator
Section 4.6.6, JCLabelField with Double
Validator

Setting an invalid policy to restore the
previous valid value;

Section 4.2.7, JCTextField with BigDecimal
Validator
Section 4.6.7, JCLabelField with BigDecimal
Validator

Setting an invalid policy to clear the
field when the user’s input is invalid;

Section 4.2.8, JCTextField with Float
Validator
Section 4.3.2, JCSpinField with Integer
Validator
Section 4.3.8, JCSpinField with Float
Validator
Section 4.4.8, JCComboField with Float
Validator
Section 4.6.8, JCLabelField with Float
Validator

Allowing date input in several
formats, and to attempt to complete a
partially entered date;

Section 4.2.9, JCTextField with DateTime
Validator
Section 4.6.9, JCLabelField with DateTime
Validator

For Code On... See...
66 Part I ■ Using JClass Field

Allowing date input in one format,
specified by place holder characters,
and converting all characters to
uppercase;

Section 4.2.10, JCTextField with Date
Validator
Section 4.6.10, JCLabelField with Date
Validator

Displaying and updating time
information;

Section 4.2.11, JCTextField with Time
Validator
Section 4.3.11, JCSpinField with Time
Validator
Section 4.6.11, JCLabelField with Time
Validator

Displaying IP addresses; Section 4.2.12, JCTextField with IP Address
Validator
Section 4.3.12, JCSpinField with IP Address
Validator
Section 4.4.9, JCComboField with IP Address
Validator
Section 4.6.12, JCLabelField with IP Address
Validator

Associating numeric field values in
the pick list with text displayed in the
spin field;

Section 4.3.3, JCSpinField with Long
Validator

Allowing the user to enter a value not
contained in the pick list;

Section 4.3.4, JCSpinField with Short
Validator
Section 4.4.1, JCComboField with String
Validator
Section 4.4.4, JCComboField with Short
Validator

Allowing the user to set date and/or
time;

Section 4.3.9, JCSpinField with DateTime
Validator
Section 4.5.1, JCPopupField with DateTime
Validator
Section 4.5.2, JCPopupField with Date
Validator

Creating date and time formats for a
spin field;

Section 4.3.10, JCSpinField with Date
Validator

Allowing the user to pick only a value
from the pick list; any other input is
cleared;

Section 4.3.3, JCSpinField with Long
Validator
Section 4.4.3, JCComboField with Long
Validator

For Code On... See...
Chapter 4 ■ Example Code for Common Fields 67

4.2 Examples of Text Fields
The following code snippets are from TextFields.java found in the examples/field directory.
Run the examples using the command:
 java examples.field.TextFields

4.2.1 JCTextField with String Validator
This example demonstrates the effect of using place holder characters to supplement the
more limited display capabilities of the mask property. You can fill the field with visible
underscores to indicate the parts to be filled in.

 p.add(new JLabel("String JCTextField: "));
 p.add(text1 = new JCTextField());

 // create the validator and set its properties
 JCStringValidator sv = new JCStringValidator();
 sv.setMask("(@@@)@@@-@@@@ Ext. @@@");
 sv.setPlaceHolderChars("(___)___-____ Ext. ___");
 sv.setAllowNull(true);

 // set the value model and validator
 text1.setValueModel(new StringValueModel());
 text1.setValidator(sv);

Figure 10 JCTextField with String validator.

4.2.2 JCTextField with Integer Validator
This example demonstrates how the displayPattern and editPattern properties
determine the format of the field depending on whether it has focus.

 p.add(new JLabel("Integer JCTextField: "));
 p.add(text2 = new JCTextField());

 // create validator and set its properties
 JCIntegerValidator iv = new JCIntegerValidator();
 iv.setAllowNull(true);
 iv.setDisplayPattern("0 inches");
 iv.setEditPattern("");

Presenting the user with a choice of
items internally associated with
ordinal numbers, for example for
database applications;

Section 4.4.2, JCComboField with Integer
Validator

For Code On... See...
68 Part I ■ Using JClass Field

 // set the value model and validator
 text2.setValueModel(new IntegerValueModel(new Integer(100000)));
 text2.setValidator(iv);

Figure 11 JCTextField with integer validator showing edit (top) and display formats.

4.2.3 JCTextField with Long Validator
This field uses a bean property to select the value in the field when it received focus. It
also uses the default display and edit formats.

 p.add(new JLabel("Long JCTextField: "));
 p.add(text3 = new JCTextField());

 // create validator and set its properties
 JCLongValidator lv = new JCLongValidator();
 lv.setAllowNull(true);

 // set the value model and validator
 text3.setValueModel(new LongValueModel(new Long(1000000000000l)));
 text3.setValidator(lv);
 text3.setSelectOnEnter(true);

Figure 12 JCTextField with long validator showing edit (top) and display formats.

4.2.4 JCTextField with Short Validator
This example illustrates the use of a validator to confine user input to an acceptable
range, and to provide a visual warning to the user when the field is invalid.

 p.add(new JLabel("Short JCTextField: "));
 p.add(text4 = new JCTextField());

 // create the validator and set its properties
 JCShortValidator shv = new JCShortValidator();
 shv.setAllowNull(true);
 shv.setRange(new Short((short)0), new Short((short)10));

 // set the invalid info properties
 JCInvalidInfo shii = text4.getInvalidInfo();
 shii.setInvalidBackground(Color.red);

 // set value model, validator, and invalidinfo
 text4.setValueModel(new ShortValueModel(new Short((short)10)));
 text4.setValidator(shv);
 text4.setInvalidInfo(shii);
Chapter 4 ■ Example Code for Common Fields 69

Figure 13 JCTextField with short validator is given an invalid entry.

4.2.5 JCTextField with Byte Validator

This example shows how the invalidPolicy, JCInvalidInfo.RESTORE_DEFAULT, forces
the field to display the default value after the user attempts to commit a number to the
field that is out of range.

 p.add(new JLabel("Byte JCTextField: "));
 p.add(text5 = new JCTextField());

 // create the validator and set its properties
 JCByteValidator bytev = new JCByteValidator();
 bytev.setDefaultValue(new Byte((byte)5));
 bytev.setAllowNull(true);
 bytev.setRange(new Byte((byte)1), new Byte((byte)10));

 // set the invalidinfo properties
 JCInvalidInfo byteii = text5.getInvalidInfo();
 byteii.setInvalidPolicy(JCInvalidInfo.RESTORE_DEFAULT);

 // set the value model, validator, and invalidinfo
 text5.setValueModel(new ByteValueModel(new Byte((byte)1)));
 text5.setValidator(bytev);
 text5.setInvalidInfo(byteii);

Figure 14 JCTextField with byte validator showing default value.

4.2.6 JCTextField with Double Validator

The double validator associated with this text field is augmented by the isCurrency
property so that the value is treated as currency. The display format uses the currency
format associated with the current locale.

 p.add(new JLabel("Double JCTextField (currency): "));
 p.add(text6 = new JCTextField());

 // create validator and set its properties
 JCDoubleValidator dv = new JCDoubleValidator();
 dv.setAllowNull(true);
 dv.setCurrency(true);

 // set value and validator
 text6.setValueModel(new DoubleValueModel(new Double(100.00)));
 text6.setValidator(dv);
70 Part I ■ Using JClass Field

Figure 15 JCTextField with double validator and currency set showing edit (top) and display formats.

4.2.7 JCTextField with BigDecimal Validator

This field does not allow null values, so when the field is cleared, the invalidPolicy
forces the field to display the previous valid value.

 p.add(new JLabel("BigDecimal JCTextField: "));
 p.add(text7 = new JCTextField());

 // create validator and set its properties
 JCBigDecimalValidator bdv = new JCBigDecimalValidator();
 bdv.setAllowNull(false);

 // set the invalidinfo properties
 JCInvalidInfo bdii = text7.getInvalidInfo();
 bdii.setInvalidPolicy(JCInvalidInfo.RESTORE_PREVIOUS);

 // set the value model, validator, and invalidinfo
 text7.setValueModel(new BigDecimalValueModel(new

BigDecimal(100000.111)));
 text7.setValidator(bdv);
 text7.setInvalidInfo(bdii);

Figure 16 JCTextField with BigDecimal validator.

4.2.8 JCTextField with Float Validator

The invalidPolicy for this field forces it to clear when the user enters an invalid value.

 p.add(new JLabel("Float JCTextField: "));
 p.add(text8 = new JCTextField());

 // create the validator and set its properties
 JCFloatValidator fv = new JCFloatValidator();
 fv.setRange(new Float((float)-10000), new Float((float)10000));
 fv.setAllowNull(true);

 // set the invalidinfo properties
 JCInvalidInfo fii = text8.getInvalidInfo();
 fii.setInvalidPolicy(JCInvalidInfo.CLEAR_FIELD);

 // set the value model, validator, and invalidinfo
 text8.setValidator(fv);
 text8.setValueModel(new FloatValueModel(new Float(-3033.32)));
 text8.setInvalidInfo(fii);
Chapter 4 ■ Example Code for Common Fields 71

Figure 17 JCTextField with float validator.

4.2.9 JCTextField with DateTime Validator

This example allows the user to enter date values in several formats. Because the
maskInput property is set to false, when the user enters a partial date that meets one of
the allowed formats, the field attempts to complete the date.

 p.add(new JLabel("DateTime(Calendar) JCTextField: "));
 p.add(text9 = new JCTextField());

 // create validator and set its properties
 JCDateTimeValidator dtv = new JCDateTimeValidator();
 dtv.setMaskInput(false);
 dtv.setEditFormats(new String[] {"yyyy/MM/dd", "MMM d, yyyy"});
 dtv.setAllowNull(true);

 // set value model and validator
 text9.setValueModel(new CalendarValueModel());
 text9.setValidator(dtv);

Figure 18 JCTextField with datetime validator showing two different edit formats.

4.2.10 JCTextField with Date Validator
The format property works as a mask for Date/Time validators. If you set maskInput to
true, this field will only allow input that is in the format specified by the format property.
It also prompts the user with place holder characters and uses the casePolicy property to
convert all characters to uppercase.

 p.add(new JLabel("Date JCTextField: "));
 p.add(text10 = new JCTextField());

 // create the validator and set its properties
 JCDateValidator datev = new JCDateValidator();
 datev.setFormat("MMM dd/yy");
 datev.setMaskInput(true);
 datev.setPlaceHolderChars("MMM DD/YY");
 datev.setCasePolicy(JCDateValidator.UPPERCASE);
 datev.setAllowNull(true);

 // set value model and validator
 text10.setValueModel(new DateValueModel());
 text10.setValidator(datev);
72 Part I ■ Using JClass Field

Figure 19 JCTextField with date validator.

4.2.11 JCTextField with Time Validator

You use this field and validator combination to display and update time information. You
can maintain a running clock if you wish. One way is to start a thread that sleeps for one
second, then fires an event. You catch the event and update the time field using
setValue().

This example shows the defaultDetail’s FULL setting.

 p.add(new JLabel("Time JCTextField: "));
 p.add(text11 = new JCTextField());

 // create the validator and set its properties
 JCTimeValidator timev = new JCTimeValidator();
 timev.setMaskInput(true);
 timev.setDefaultDetail(JCTimeValidator.FULL);
 timev.setAllowNull(false);

 // set the invalidinfo properties
 JCInvalidInfo timeii = text11.getInvalidInfo();
 timeii.setInvalidPolicy(JCInvalidInfo.RESTORE_DEFAULT);

 // set value model, validator, and invalidinfo
 text11.setValueModel(new DateValueModel());
 text11.setValidator(timev);
 text11.setInvalidInfo(timeii);

Figure 20 JCTextField with time validator showing default (top) and FULL display detail.

4.2.12 JCTextField with IP Address Validator

You use this field and validator combination to display IP addresses. The
setIPValidators() method takes an array of JCIntegerValidators and uses their min
and max values.

 p.add(new JLabel("JCIPAddress JCTextField: "));
 p.add(text12 = new JCTextField());

 // create the validator and set its properties
 JCIPAddressValidator ipv = new JCIPAddressValidator();
 JCIntegerValidator[] validators = new JCIntegerValidator[4];
 validators[0] = new JCIntegerValidator();
 validators[0].setMin(new Integer(1));
 validators[0].setMax(new Integer(128));
Chapter 4 ■ Example Code for Common Fields 73

 validators[1] = new JCIntegerValidator();
 validators[1].setMin(new Integer(30));
 validators[1].setMax(new Integer(50));
 validators[2] = new JCIntegerValidator();
 validators[2].setMin(new Integer(1));
 validators[2].setMax(new Integer(10));
 validators[3] = new JCIntegerValidator();
 validators[3].setMin(new Integer(100));
 validators[3].setMax(new Integer(200));
 ipv.setIPValidators(validators);
 // set value model and validator
 text12.setValueModel(new IPAddressValueModel());
 text12.setValidator(ipv);
 text12.setValue(new JCIPAddress("121.35.2.150"));

Figure 21 JCTextField with IP address validator.

4.3 Examples of Spin Fields
The following code snippets are from SpinFields.java found in the examples/field directory.
Run the examples with the command:
 java examples.field.SpinFields

4.3.1 JCSpinField with String Validator
This example uses the mask property and place holder characters to provide clues about
the kind of input the field is expecting.

String validators use JCValidator.SPIN_WRAP as the default spin policy.

 p.add(new JLabel("String JCSpinField: "));
 p.add(spin1 = new JCSpinField());

 // create the validator and set its properties
 JCStringValidator sv = new JCStringValidator();
 String[] string_values = {"4165941026620", "8005551234567",

"5195555941323"};
 sv.setMask("(@@@)@@@-@@@@ Ext. @@@");
 sv.setPlaceHolderChars("(___)___-____ Ext. ___");
 sv.setAllowNull(true);
 sv.setPickList(new JCListModel(string_values));

 // set the value model and validator
 spin1.setValueModel(new StringValueModel());
 spin1.setValidator(sv);

Figure 22 JCSpinField with String validator.
74 Part I ■ Using JClass Field

4.3.2 JCSpinField with Integer Validator
There is no display list associated with the pick list in this example. The pick list values
themselves appear in the field. Since matchPickList is true by default, only four values
are possible: 1, 2, 3, and 4. Any attempt by the user to type other values in the field will
result in it being cleared.

 p.add(new JLabel("Integer JCSpinField: "));
 p.add(spin2 = new JCSpinField());

 // create validator and set its properties
 JCIntegerValidator iv = new JCIntegerValidator();
 Integer[] int_values = {new Integer(1), new Integer(2),

new Integer(3), new Integer(4)};
 iv.setAllowNull(true);
 iv.setPickList(new JCListModel(int_values));
 iv.setSpinPolicy(JCIntegerValidator.SPIN_WRAP);

 // create the invalidinfo and set its properties
 JCInvalidInfo iii = spin2.getInvalidInfo();
 iii.setInvalidPolicy(JCInvalidInfo.CLEAR_FIELD);

 // set value model, validator, and invalidinfo
 spin2.setValueModel(new IntegerValueModel());
 spin2.setValidator(iv);
 spin2.setInvalidInfo(iii);

Figure 23 JCSpinField with integer validator.

4.3.3 JCSpinField with Long Validator

This field uses the displayList property to associate the numeric field values in the pick
list with text that will be displayed in the field. Notice that by default the top spin arrow is
disabled when the last title in the array is reached.

 p.add(new JLabel("Long JCSpinField: "));
 p.add(spin3 = new JCSpinField());

 // create validator and set its properties
 JCLongValidator lv = new JCLongValidator();
 Long[] long_values = {new Long(1), new Long(2), new Long(3),

new Long(4)};
 String[] long_display = {"Mr.", "Mrs.", "Ms.", "Miss", "Dr."};
 lv.setMatchPickList(true);
 lv.setAllowNull(true);
 lv.setPickList(new JCListModel(long_values));
 lv.setDisplayList(long_display);

 // set the value model and validator
 spin3.setValueModel(new LongValueModel());
 spin3.setValidator(lv);
Chapter 4 ■ Example Code for Common Fields 75

Figure 24 JCSpinField with long validator.

4.3.4 JCSpinField with Short Validator
In this example, the matchPickList property is set to false, so that the user is able to
enter a value not contained in the pick list.

 p.add(new JLabel("Short JCSpinField: "));
 p.add(spin4 = new JCSpinField());

 // create the validator and set its properties
 JCShortValidator shv = new JCShortValidator();
 Short[] short_values = {new Short((short)1), new Short((short)2),

new Short((short)3), new Short((short)4)};
 shv.setMatchPickList(false);
 shv.setAllowNull(true);
 shv.setPickList(new JCListModel(short_values));

 // create the invalidinfo and set its properties
 JCInvalidInfo shii = spin4.getInvalidInfo();
 shii.setInvalidPolicy(JCInvalidInfo.RESTORE_DEFAULT);

 // set value model, validator, and invalidinfo
 spin4.setValueModel(new ShortValueModel());
 spin4.setValidator(shv);
 spin4.setInvalidInfo(shii);

Figure 25 JCSpinField with short validator.

4.3.5 JCSpinField with Byte Validator

Here, we set limits on the field using the setRange() method. Alternatively you can set
limits in your IDE. The equivalent statements are:

 bytev.setMin(0);
 bytev.setMax(10);

The setRange() method makes the program slightly easier to maintain because the
numerical limits are kept together in one statement.

The field also sets an invalid policy which turns the background red when the user enters
a value that is out of range.

 p.add(new JLabel("Byte JCSpinField: "));
 p.add(spin5 = new JCSpinField());

 // create the validator and set its properties
 JCByteValidator bytev = new JCByteValidator();
 bytev.setAllowNull(true);
76 Part I ■ Using JClass Field

 bytev.setRange(new Byte((byte)0), new Byte((byte)10));

 // create the invalidinfo and set its properties
 JCInvalidInfo byteii = spin5.getInvalidInfo();
 byteii.setInvalidBackground(Color.red);

 // set the value model, validator, and invalidinfo
 spin5.setValueModel(new ByteValueModel());
 spin5.setValidator(bytev);
 spin5.setInvalidInfo(byteii);

Figure 26 JCSpinField with byte validator.

4.3.6 JCSpinField with Double Validator

The isCurrency property in this field is set to true so the value will be treated as
currency. The field also uses an increment value of five.

 p.add(new JLabel("Double JCSpinField (currency): "));
 p.add(spin6 = new JCSpinField());

 // create validator and set its properties
 JCDoubleValidator dv = new JCDoubleValidator();
 dv.setAllowNull(true);
 dv.setCurrency(true);
 dv.setIncrement(new Double(5.0));

 // set value and validator
 spin6.setValueModel(new DoubleValueModel());
 spin6.setValidator(dv);

Figure 27 JCSpinField with double validator and currency set showing edit (top) and display formats.

4.3.7 JCSpinField with BigDecimal Validator
Setting the display pattern, as in this field, gives the user the context for the value
entered.

 p.add(new JLabel("BigDecimal JCSpinField: "));
 p.add(spin7 = new JCSpinField());

 // create validator and set its properties
 JCBigDecimalValidator bdv = new JCBigDecimalValidator();
 bdv.setAllowNull(false);
 bdv.setDisplayPattern("0.00 inches");
 bdv.setEditPattern("");

 // create the invalidinfo and set its properties
Chapter 4 ■ Example Code for Common Fields 77

 JCInvalidInfo bdii = spin7.getInvalidInfo();
 bdii.setInvalidPolicy(JCInvalidInfo.RESTORE_DEFAULT);

 // set the value model, validator, and invalidinfo
 spin7.setValueModel(new BigDecimalValueModel());
 spin7.setValidator(bdv);
 spin7.setInvalidInfo(bdii);

Figure 28 JCSpinField with BigDecimal validator showing edit (top) and display formats.

4.3.8 JCSpinField with Float Validator

This example sets the increment value to 0.1. The invalid policy will clear the field if the
user enters an invalid value.

 p.add(new JLabel("Float JCSpinField: "));
 p.add(spin8 = new JCSpinField());

 // create the validator and set its properties
 JCFloatValidator fv = new JCFloatValidator();
 fv.setIncrement(new Float(0.1));
 fv.setAllowNull(true);

 // create the invalidinfo and set its properties
 JCInvalidInfo fii = spin8.getInvalidInfo();
 fii.setInvalidPolicy(JCInvalidInfo.CLEAR_FIELD);

 // set the value model, validator, and invalidinfo
 spin8.setValidator(fv);
 spin8.setValueModel(new FloatValueModel());
 spin8.setInvalidInfo(fii);

Figure 29 JCSpinField with float validator.

4.3.9 JCSpinField with DateTime Validator

The default spin policy for date and time validators is JCValidator.SPIN_SUBFIELD,
which allows the user to click a single set of arrow buttons to manipulate the subfields that
comprise a complete date and time specification.

 p.add(new JLabel("DateTime(Calendar) JCSpinField: "));
 p.add(spin9 = new JCSpinField());

 // create validator and set its properties
 JCDateTimeValidator dtv = new JCDateTimeValidator();
 dtv.setMaskInput(true);
 dtv.setAllowNull(true);
78 Part I ■ Using JClass Field

 // set value model and validator
 spin9.setValueModel(new CalendarValueModel());
 spin9.setValidator(dtv);

Figure 30 JCSpinField with datetime validator.

Note: The spin increment determines how many elements will be scrolled through for
each spin.The spin increment can be set for a JCSpinField with Date validator to more
than one, which is its default setting.

4.3.10 JCSpinField with Date Validator

The format property for date and time validators is useful for presenting the value of the
field in a way that is familiar to a specific group of users.

 p.add(new JLabel("Date JCSpinField: "));
 p.add(spin10 = new JCSpinField());

 // create the validator and set its properties
 JCDateValidator datev = new JCDateValidator();
 datev.setMaskInput(true);
 datev.setFormat("MMMM d 'yy");

 // set value model and validator
 spin10.setValueModel(new DateValueModel());
 spin10.setValidator(datev);

Figure 31 JCSpinField with date validator.

Note: The spin increment determines how many elements will be scrolled through for
each spin.The spin increment can be set for a JCSpinField with Date validator to more
than one, which is its default setting.

4.3.11 JCSpinField with Time Validator

A basic spin field with the time validator takes the current time as its default. This field
presents the default time in full format.

 p.add(new JLabel("Time JCSpinField: "));
 p.add(spin11 = new JCSpinField());

 // create the validator and set its properties
Chapter 4 ■ Example Code for Common Fields 79

 JCTimeValidator timev = new JCTimeValidator();
 timev.setDefaultDetail(JCTimeValidator.FULL);

 // create the invalidinfo and set its properties
 JCInvalidInfo timeii = spin11.getInvalidInfo();
 timeii.setInvalidPolicy(JCInvalidInfo.RESTORE_DEFAULT);

 // set value model, validator, and invalidinfo
 spin11.setValueModel(new DateValueModel());
 spin11.setValidator(timev);
 spin11.setInvalidInfo(timeii);

Figure 32 JCSpinField with time validator.

Note: The spin increment determines how many elements will be scrolled through for
each spin.The spin increment can be set for a JCSpinField with Time validator to more
than one, which is its default setting.

4.3.12 JCSpinField with IP Address Validator

You use this field and validator combination to display IP addresses. The
setIPValidators() method takes an array of JCIntegerValidators and uses their min
and max values.

 p.add(new JLabel("JCIPAddress JCSpinField: "));
 p.add(spin12 = new JCSpinField());

 // create the validator and set its properties
 JCIPAddressValidator ipv = new JCIPAddressValidator();
 JCIntegerValidator[] validators = new JCIntegerValidator[4];
 validators[0] = new JCIntegerValidator();
 validators[0].setMin(new Integer(1));
 validators[0].setMax(new Integer(128));
 validators[1] = new JCIntegerValidator();
 validators[1].setMin(new Integer(30));
 validators[1].setMax(new Integer(50));
 validators[2] = new JCIntegerValidator();
 validators[2].setMin(new Integer(1));
 validators[2].setMax(new Integer(10));
 validators[3] = new JCIntegerValidator();
 validators[3].setMin(new Integer(100));
 validators[3].setMax(new Integer(200));
 ipv.setIPValidators(validators);

 // set value model and validator
 spin12.setValueModel(new IPAddressValueModel());
 spin12.setValidator(ipv);
 spin12.setValue(new JCIPAddress("121.35.2.150"));
80 Part I ■ Using JClass Field

Figure 33 JCSpinField with IP address validator.

4.4 Examples of Combo Fields
The following code snippets are from ComboFields.java found in the examples/field
directory. Run the examples using the command:
 java examples.field.ComboFields

4.4.1 JCComboField with String Validator
This field has matchPickList set to true. Because users might have their own unique
honorific (such as Lord or Count), you may want to add new entries to the pick list. To do
this you would set matchPickList to false and write code to add the user’s typed entry to
the pick list. An example is shown in Section 4.7, Event Programming.

 p.add(new JLabel("String JCComboField: "));
 p.add(combo1 = new JCComboField());

 // create the validator and set its properties
 JCStringValidator sv = new JCStringValidator();
 String[] string_values = {"Mr.", "Mrs.", "Ms.", "Miss", "Dr."};
 sv.setMatchPickList(true);
 sv.setAllowNull(true);
 sv.setPickList(new JCListModel(string_values));

 // set the value model and validator
 combo1.setValueModel(new StringValueModel());
 combo1.setValidator(sv);

Figure 34 JCComboField with String validator.

4.4.2 JCComboField with Integer Validator
The displayList property is useful whenever you wish to present the user with a
selection of items that are internally associated with ordinal numbers, perhaps for
database applications. Note that the associated String value is displayed in the field, not its
numerical value, even when the field loses focus.

 p.add(new JLabel("Integer JCComboField: "));
 p.add(combo2 = new JCComboField());

 // create validator and set its properties
Chapter 4 ■ Example Code for Common Fields 81

 JCIntegerValidator iv = new JCIntegerValidator();
 Integer[] integer_values = {new Integer(1), new Integer(2),

new Integer(3), new Integer(4)};
 String[] integer_display = {"apple", "banana", "orange", "pear"};
 iv.setMatchPickList(true);
 iv.setAllowNull(true);
 iv.setPickList(new JCListModel(integer_values));
 iv.setDisplayList(integer_display);

 // create the invalidinfo and set its properties
 JCInvalidInfo iii = combo2.getInvalidInfo();
 iii.setInvalidPolicy(JCInvalidInfo.CLEAR_FIELD);

 // set the value model, validator, and invalidinfo
 combo2.setValueModel(new IntegerValueModel());
 combo2.setValidator(iv);
 combo2.setInvalidInfo(iii);

Figure 35 JCComboField with integer validator.

4.4.3 JCComboField with Long Validator

This example allows the user to choose an astrological sign. Since there are only 12
astrological signs, it makes sense that matchPickList is set to true.

 p.add(new JLabel("Long JCComboField: "));
 p.add(combo3 = new JCComboField());

 // create validator and set its properties
 JCLongValidator lv = new JCLongValidator();
 Long[] long_values = {new Long(1), new Long(2), new Long(3),

new Long(4), new Long(5), new Long(6), new Long(7),
new Long(8), new Long(9), new Long(10), new Long(11),
new Long(12)};

 String[] long_display = {"Aries", "Taurus", "Gemini", "Cancer",
"Leo", "Virgo", "Libra", "Scorpio", "Sagittarius",
"Capricorn", "Aquarius", "Pisces"};

 lv.setPickList(new JCListModel(long_values));
 lv.setDisplayList(long_display);
 lv.setMatchPickList(true);
 lv.setAllowNull(true);

 // set the value model and validator
 combo3.setValueModel(new LongValueModel());
 combo3.setValidator(lv);
82 Part I ■ Using JClass Field

Figure 36 JCComboField with long validator.

4.4.4 JCComboField with Short Validator

In this example, the matchPickList property is set to false, so that the user is able enter
a value not contained in the pick list.

 p.add(new JLabel("Short JCComboField: "));
 p.add(combo4 = new JCComboField());

 // create the validator and set its properties
 JCShortValidator shv = new JCShortValidator();
 Short[] short_values = {new Short((short)1), new Short((short)2),

new Short((short)3), new Short((short)4)};
 shv.setMatchPickList(false);
 shv.setAllowNull(true);
 shv.setPickList(new JCListModel(short_values));

 // set the value model and validator
 combo4.setValueModel(new ShortValueModel());
 combo4.setValidator(shv);

Figure 37 JCComboField with short validator.

4.4.5 JCComboField with Byte Validator
Setting the display pattern in a combo field allows the user to see the context of the value
in the drop-down list.

 p.add(new JLabel("Byte JCComboField: "));
 p.add(combo5 = new JCComboField());

 // create the validator and set its properties
 JCByteValidator bytev = new JCByteValidator();
 Byte[] byte_values = {new Byte((byte)10), new Byte((byte)20),

new Byte((byte)30), new Byte((byte)40)};
Chapter 4 ■ Example Code for Common Fields 83

 bytev.setDisplayPattern("0 feet");
 bytev.setEditPattern("");
 bytev.setAllowNull(true);
 bytev.setPickList(new JCListModel(byte_values));

 // set the value model and validator
 combo5.setValueModel(new ByteValueModel());
 combo5.setValidator(bytev);

Figure 38 JCComboField with byte validator: dropdown list (top), edit format (middle), display format
(bottom).

4.4.6 JCComboField with Double Validator
This example uses the isCurrency property to indicate the value is a currency amount.
The pick list values are displayed in the default currency format for the present locale.

 p.add(new JLabel("Double JCComboField (currency): "));
 p.add(combo6 = new JCComboField());

 // create validator and set validator properties
 JCDoubleValidator dv = new JCDoubleValidator();
 Double[] double_values = {new Double(100), new Double(200),

new Double(300), new Double(400)};
 dv.setAllowNull(true);
 dv.setCurrency(true);
 dv.setPickList(new JCListModel(double_values));

 // set value model and validator
 combo6.setValueModel(new DoubleValueModel());
 combo6.setValidator(dv);

Figure 39 JCComboField with double validator.
84 Part I ■ Using JClass Field

4.4.7 JCComboField with BigDecimal Validator

This example shows how the invalidPolicy, JCInvalidInfo.RESTORE_DEFAULT forces
the field to display the default value after the user attempts to enter an invalid number.

 p.add(new JLabel("BigDecimal JCComboField: "));
 p.add(combo7 = new JCComboField());

 // create validator and set its properties
 JCBigDecimalValidator bdv = new JCBigDecimalValidator();
 BigDecimal[] bigdecimal_values = {new BigDecimal(10.0),
 new BigDecimal(20.0), new BigDecimal(30.0), new BigDecimal(40.0)};
 bdv.setDefaultValue(new BigDecimal(-1));
 bdv.setAllowNull(false);
 bdv.setPickList(new JCListModel(bigdecimal_values));

 // create the invalidinfo and set its properties
 JCInvalidInfo bdii = combo7.getInvalidInfo();
 bdii.setInvalidPolicy(JCInvalidInfo.RESTORE_DEFAULT);

Figure 40 JCComboField with BigDecimal validator.

4.4.8 JCComboField with Float Validator

The invalidPolicy for this field forces it to clear when the user enters an invalid value.

 p.add(new JLabel("Float JCComboField: "));
 p.add(combo8 = new JCComboField());

 // create the validator and set its properties
 JCFloatValidator fv = new JCFloatValidator();
 Float[] float_values = {new Float((float)100.101),

new Float((float)200.202), new Float((float)300.303),
new Float((float)400.404)};

 fv.setAllowNull(true);
 fv.setPickList(new JCListModel(float_values));
 fv.setMatchPickList(true);

 // create the invalidinfo and set its properties
 JCInvalidInfo fii = combo8.getInvalidInfo();
 fii.setInvalidPolicy(JCInvalidInfo.CLEAR_FIELD);

 // set the value model, validator, and invalidinfo
 combo8.setValidator(fv);
 combo8.setValueModel(new FloatValueModel());
 combo8.setInvalidInfo(fii);
Chapter 4 ■ Example Code for Common Fields 85

Figure 41 JCComboField with float validator.

4.4.9 JCComboField with IP Address Validator
You use this field and validator combination to display IP addresses.

 p.add(new JLabel("JCIPAddress JCComboField: "));
 p.add(combo9 = new JCComboField());

 // create the validator and set its properties
 JCIPAddressValidator ipv = new JCIPAddressValidator();
 JCIPAddress[] ip_values = new JCIPAddress[3];
 ip_values[0] = new JCIPAddress("0.0.0.0");
 ip_values[1] = new JCIPAddress("24.190.120.3");
 ip_values[2] = new JCIPAddress("123.10.3.15");
 ipv.setPickList(new JCListModel(ip_values));

 // set value model and validator
 combo9.setValueModel(new IPAddressValueModel());
 combo9.setValidator(ipv);
 combo9.setValue(new JCIPAddress("121.35.2.150"));

Figure 42 JCComboField with IP address validator.

4.5 Examples of Popup Fields
The following code snippets are from PopupFields.java found in the examples/field directory.
Run the examples with the command:
 java examples.field.PopupFields

4.5.1 JCPopupField with DateTime Validator

In this example you can spin the year, month, and time fields and select the date from the
calendar display. This field also uses the format property to present the selected date and
time in a suitable format.

 p.add(new JLabel("Date Time JCPopupField: "));
 p.add(popup1 = new JCPopupField());

86 Part I ■ Using JClass Field

 // create the validator and set the validator properties
 JCDateTimeValidator dtv = new JCDateTimeValidator();
 dtv.setAllowNull(true);
 dtv.setFormat("MMM d 'yy H:mm:ss");

 // set the value model and validator
 popup1.setValueModel(new CalendarValueModel(

Calendar.getInstance()));
 popup1.setValidator(dtv);

Figure 43 JCPopupField with datetime validator.

Note: If the format for the JCDateTimeValidator specifies the use of military hours (i.e.
hours ranging from 0-23), the hour spinner in the popup field will also use military hours.

4.5.2 JCPopupField with Date Validator

Once the user selects the date, the value is displayed in the field with defaultDetail set
to JCValidator.LONG and the casePolicy set to JCValidator.UPPERCASE.

 p.add(new JLabel("Date JCPopupField: "));
 p.add(popup2 = new JCPopupField());

 // create the validator and set the validator properties
 JCDateValidator dv = new JCDateValidator();
 dv.setAllowNull(true);
 dv.setDefaultDetail(JCDateValidator.LONG);
 dv.setCasePolicy(JCDateValidator.UPPERCASE);

 // set the value model and validator
 popup2.setValueModel(new DateValueModel(new Date()));
 popup2.setValidator(dv);
Chapter 4 ■ Example Code for Common Fields 87

Figure 44 JCPopupField with date validator.

4.6 Examples of Label Fields
The following code snippets are from LabelFields.java found in the examples/field directory.
Run the examples using the command:
 java examples.field.LabelFields

4.6.1 JCLabelField with String Validator

This example demonstrates the effect of using the mask property.

 p.add(new JLabel("String JCLabelField: "));
 p.add(label1 = new JCLabelField());

 // create the validator and set its properties
 JCStringValidator sv = new JCStringValidator();
 sv.setMask("(@@@)@@@-@@@@ Ext. @@@");
 sv.setAllowNull(true);

 // set the value model and validator
 label1.setValueModel(new StringValueModel());
 label1.setValidator(sv);
 label1.setValue("4165941026");

Figure 45 JCLabelField with String validator.

4.6.2 JCLabelField with Integer Validator

This example demonstrates how the displayPattern property determines the format of
the field.

 p.add(new JLabel("Integer JCLabelField: "));
 p.add(label2 = new JCLabelField());

88 Part I ■ Using JClass Field

 // create validator and set its properties
 JCIntegerValidator iv = new JCIntegerValidator();
 iv.setAllowNull(true);
 iv.setDisplayPattern("0 inches");

 // set the value model and validator
 label2.setValueModel(new IntegerValueModel());
 label2.setValidator(iv);
 label2.setValue(new Integer(100));

Figure 46 JCLabelField with integer validator.

4.6.3 JCLabelField with Long Validator

This field displays a long value.

 p.add(new JLabel("Long JCLabelField: "));
 p.add(label3 = new JCLabelField());

 // create validator and set its properties
 JCLongValidator lv = new JCLongValidator();
 lv.setAllowNull(true);

 // set the value model and validator
 label3.setValueModel(new LongValueModel(new Long(1000000000000)));
 label3.setValidator(lv);

Figure 47 JCLabelField with long validator.

4.6.4 JCLabelField with Short Validator

This example illustrates the use of a validator to provide a visual warning to the user
when the field is invalid, that is when the field contains a value that is out of the set
acceptable range.

 p.add(new JLabel("Short JCLabelField: "));
 p.add(label4 = new JCLabelField());

 // create the validator and set its properties
 JCShortValidator shv = new JCShortValidator();
 shv.setAllowNull(true);
 shv.setRange(new Short((Short)0), new Short((Short)10));

 // set the invalid info properties
 JCInvalidInfo shii = text4.getInvalidInfo();
 shii.setInvalidBackground(Color.red);

 // set value model, validator, and invalidinfo
Chapter 4 ■ Example Code for Common Fields 89

 label4.setValueModel(new ShortValueModel(new Short((Short)10)));
 label4.setValidator(shv);
 label4.setInvalidInfo(shii);

Figure 48 JCLabelField with short validator is given an invalid entry.

4.6.5 JCLabelField with Byte Validator

This example shows how the invalidPolicy, JCInvalidInfo.RESTORE_DEFAULT forces
the field to display the default value after the field receives a number that is out of range.

 p.add(new JLabel("Byte JCLabelField: "));
 p.add(label5 = new JCLabelField());

 // create the validator and set its properties
 JCByteValidator bytev = new JCByteValidator();
 bytev.setDefaultValue(new Byte((Byte) 5));
 bytev.setAllowNull(true);
 bytev.setRange(new Byte((Byte) 1), new Byte((Byte) 10));

 // set the invalidinfo properties
 JCInvalidInfo byteii = text5.getInvalidInfo();
 byteii.setInvalidPolicy(JCInvalidInfo.RESTORE_DEFAULT);

 // set the value model, validator, and invalidinfo
 label5.setValueModel(new ByteValueModel(new Byte(5));
 label5.setValidator(bytev);
 label5.setInvalidInfo(byteii);
 label5.setValue(new Byte("11"));

Figure 49 JCLabelField with byte validator showing default value.

4.6.6 JCLabelField with Double Validator
The double validator associated with this text field is augmented by the isCurrency
property so that the value is treated as currency. The display format uses the currency
format associated with the current locale.

 p.add(new JLabel("Double JCLabelField (currency): "));
 p.add(label6 = new JCLabelField());

 // create validator and set its properties
 JCDoubleValidator dv = new JCDoubleValidator();
 dv.setAllowNull(true);
 dv.setCurrency(true);

 // set value and validator
 label6.setValueModel(new DoubleValueModel(new Double(100.00)));
 label6.setValidator(dv);
90 Part I ■ Using JClass Field

Figure 50 JCLabelField with double validator and currency set.

4.6.7 JCLabelField with BigDecimal Validator
This field displays a BigDecimal type value.

 p.add(new JLabel("BigDecimal JCLabelField: "));
 p.add(label7 = new JCLabelField());

 // create validator and set its properties
 JCBigDecimalValidator bdv = new JCBigDecimalValidator();
 bdv.setAllowNull(true);

 // set the value model and validator
 label7.setValueModel(new BigDecimalValueModel());
 label7.setValidator(bdv);
 label7.setValue(new BigDecimal("100000000.111"));

Figure 51 JCLabelField with BigDecimal validator.

4.6.8 JCLabelField with Float Validator

This field displays a float data type value.

 p.add(new JLabel("Float JCLabelField: "));
 p.add(label8 = new JCLabelField());

 // create the validator and set its properties
 JCFloatValidator fv = new JCFloatValidator();
 fv.setAllowNull(true);

 // set the value model and validator
 label8.setValidator(fv);
 label8.setValueModel(new FloatValueModel());
 label8.setValue(new Float("1000.0000"));

Figure 52 JCLabelField with float validator.

4.6.9 JCLabelField with DateTime Validator

This example shows date and time values. The setValue() method gives the field the
current date and time as its initial value.

 p.add(new JLabel("DateTime(Calendar) JCLabelField: "));
 p.add(label9 = new JCLabelField());

 // create validator and set its properties
 JCDateTimeValidator dtv = new JCDateTimeValidator();
Chapter 4 ■ Example Code for Common Fields 91

 dtv.setMaskInput(true);
 dtv.setAllowNull(true);

 // set value model and validator
 label9.setValueModel(new CalendarValueModel());
 label9.setValidator(dtv);
 label9.setValue(Calendar.getInstance());

Figure 53 JCLabelField with datetime validator.

4.6.10 JCLabelField with Date Validator

The format property for date and time validators is useful for presenting the value of the
field in a way that is familiar to a specific group of users.

The format property works as a mask for Date/Time validators. The field also uses the
casePolicy property to convert all characters to uppercase.

 p.add(new JLabel("Date JCLabelField: "));
 p.add(label10 = new JCLabelField());

 // create the validator and set its properties
 JCDateValidator datev = new JCDateValidator();
 datev.setMaskInput(true);
 datev.setFormat("MMMM d 'yy");
 datev.setCasePolicy(JCDateValidator.UPPERCASE);

 // set value model and validator
 label10.setValueModel(new DateValueModel());
 label10.setValidator(datev);
 label10.setValue(new Date());

Figure 54 JCLabelField with date validator.

4.6.11 JCLabelField with Time Validator

You use this field and validator combination to display and update time information. You
can maintain a running clock if you wish. One way is to start a thread that sleeps for one
second, then fires an event. You catch the event and update the time field using
setValue().

This example shows the defaultDetail’s FULL setting.

 p.add(new JLabel("Time JCLabelField: "));
 p.add(label11 = new JCLabelField());

 // create the validator and set its properties
 JCTimeValidator timev = new JCTimeValidator();
 timev.setMaskInput(true);
 timev.setDefaultDetail(JCTimeValidator.FULL);
92 Part I ■ Using JClass Field

 timev.setAllowNull(false);

 // set value model and validator
 label11.setValueModel(new DateValueModel());
 label11.setValidator(timev);
 label11.setValue(new Date());

Figure 55 JCLabelField with time validator.

4.6.12 JCLabelField with IP Address Validator

You use this field and validator combination to display IP addresses.

 p.add(new JLabel("JCIPAddress JCLabelField: "));
 p.add(label12 = new JCLabelField());

 // create the validator and set its properties
 JCIPAddressValidator ipv = new JCIPAddressValidator();

 // set value model and validator
 label12.setValueModel(new IPAddressValueModel());
 label12.setValidator(ipv);
 label12.setValue(new JCIPAddress("121.35.2.150"));

Figure 56 JCLabelField with IP address validator.

4.7 Event Programming

A class can be notified both before and after a field’s value has changed by implementing
com.klg.jclass.util.value.JCValueListener and registering itself with the field via
addValueListener(). In this code snippet, combo is an instance of an editable
JCComboField with a JCStringValidator. If the user types a new value into the field
instead of choosing one of the values in the combo field, the code shown below adds the
new information to the pick list.

First, the line of code that registers the field with the listener:

 combo.addValueListener(this);

Now the event handling code:

public void valueChanged(JCValueEvent e) {
// Gets the contents of the combo box’s text field

String newValue = ((String) combo.getValue()).trim();
boolean found = false;
int position = 0;
// Make sure there is something in the text field
if(newValue != null && newValue.length() > 0){
Chapter 4 ■ Example Code for Common Fields 93

for (int i = 0; i < dm.getSize(); i++){
// See if the pick list contains an item matching the text field
if (newValue.compareTo((String)dm.getElementAt(i)) == 0) {

found = true;
} else {

// Set the insertion point for a new item
if (newValue.compareToIgnoreCase(

 (String)dm.getElementAt(i)) > 0) {
position = i + 1;

}
 }

 }
}
// Add a new item to the data model
if (!found && newValue != null && newValue.length() > 0) {

dm.add(position, (String) newValue);
combo.setPickList(dm);
combo.setSelectedIndex(position);

}
}

Items may be appended to the list in the combo field with autocomplete off or on. It is
recommended that the append mode in autocomplete be turned off because end users
may find interaction with the text field awkward.

Removing items from a JCComboField’s list model does not require implementing the
JCValueListener interface. All that is required is a reference to the combo box’s list
model and a core Java listener. For instance, if you provide a button that allows the end
user to remove the item currently in the text field, the code might be something like:

JButton removeButton = new JButton("Remove Selection");
removeButton.addActionListener(this);
...
public void actionPerformed(ActionEvent e){

String newValue = null;
 if (combo.getValue() != null){

newValue = ((String) combo.getValue()).trim();
 }
 boolean found = false;
 int position = 0;
 if(newValue != null && newValue.length() > 0){

for (int i = 0;i < dm.getSize();i++){
if (newValue.compareTo((String)dm.getElementAt(i)) == 0) {

found = true;
position = i;
dm.removeElementAt(i);
combo.setPickList(dm);
combo.setValue("");
break;

}
}
}

}

94 Part I ■ Using JClass Field

The following figure shows how an item may be removed with the use of a button whose
action listener uses the code shown above.

Figure 57 A combo field before and after the removal of an item.

The combo field shown on the left of Figure 57 illustrates the addition of an unwanted
item. A user has typed the words “bad type” and has pressed the Enter key, thus adding
the entry to the combo field’s list model. Realizing the error, the user has pressed the
Remove Selection button. The item in the text box is removed from the list, no longer
appearing in the right-hand combo field of Figure 57.
Chapter 4 ■ Example Code for Common Fields 95

96 Part I ■ Using JClass Field

Part
II

Reference
Appendices

Appendix A
JClass Field Property Listings

The following is a listing of most of the available properties in JClass Field and their
default values. The properties are arranged alphabetically by property name. The second
entry on any given row details the group or groups for which the property is appropriate.
The third entry names the data type of the method’s argument. A small number of
properties are read-only variables, and therefore only have a get method. These
properties are marked with a “(G)” following their property name. There is also one
property that has only a set method. It is marked with an “(S)” following the property
name.

For a list of properties categorized by validator, component, and invalid, see Property
Summaries, in Chapter 2.

Property JCField Group Type Default

about (G) All String JClass Field X.Y.Z

A read-only variable that contains the version number for this release of
JClass Field. This read-only property is supplied as a convenience
function.

allowNull All boolean false

Describes whether or not a null value is to be interpreted as a valid
value. See state (G).

background All Color inherited

The background color of the field. Typically, the color is lightGray.

beepOnInvalid All boolean true

If beepOnInvalid is true then the field will beep whenever the state is
switched to INVALID.
Appendix A ■ JClass Field Property Listings 99

casePolicy Date/Time
String integer JCValidator.AS_IS

Determines the case of the characters displayed in the field. When the
case policy is set to JCValidator.AS_IS, typed characters are left alone,
while in the other two cases typed input is converted as required. The
possible property values are listed below with their corresponding
meanings.

■ JCValidator.AS_IS — Leave characters as entered.

■ JCValidator.UPPERCASE — Convert characters to upper case.

■ JCValidator.LOWERCASE — Convert characters to lower case.

columnName Data bound String null

Specifies the column in the data source to which the field is bound.
Borland JBuilder only.

continuousScroll All boolean false

Determines how selection is handled when the mouse button is held
down on a spin arrow button. If continuousScroll is true, the
component scrolls continuously through the items in the scroll box until
the mouse button is released. If continuousScroll is false, a separate
mouse click is required to select the next item in the scroll box.

currency Numeric boolean false

Controls whether the value in a numeric field is treated as currency.

currencyLocale Numeric Locale locale dependent

The currency locale controls the display of currency in a numeric field
by using the currency formatting conventions of the given locale.

currencySymbol (G) Numeric String locale dependent

A read-only variable that contains the currency symbol used in the
given currency locale.

dataBinding Data bound String null

Binds the field to a data source component. The value specifies the
name of the data source component combined with the table column to
bind to. The format of the value is specific to each type of data source.
JClass DataSource only.

Property JCField Group Type Default
100 Part II ■ Reference Appendices

dataSet Data bound
borland.
jbcl.
dataset.
DataSet

null

Binds the field to a data source component.
Borland JBuilder only.

defaultDetail Date/Time integer JCCalendarValidator.MEDIUM

Specifies the detail level of the default format for date/time validators.
Has no effect when the format property has been changed. The possible
property values are listed below with examples of their display.

JCCalendarValidator.FULL — Fri, Apr 30, 1999 01:33:05 PM EST
JCCalendarValidator.LONG — Apr 30, 1999 01:34:21 PM EST
JCCalendarValidator.MEDIUM — Apr 30, 1999 01:35:08 PM
JCCalendarValidator.SHORT — 04/30/99 01:35 PM

defaultEditFormats (G) Date/Time String locale dependent

This property contains the edit format determined by the locale, for
displaying date and time values.

defaultFormats (G) Date/Time String locale dependent

This property contains formats determined by the locale, for date and
time values.

defaultValue All Object null

The default value of the field which is used if invalidPolicy’s value is
JCInvalidInfo.RESTORE_DEFAULT. (See invalidPolicy.)

displayList byte, short,
integer, long String null

Given an array of Strings, the setDisplayList() method associates the
elements of the array with the corresponding integers in the pick list.
(See pickList) The end-user sees String-type choices in the combo field
or spin field, yet the value returned by getValue() method is that of the
associated integer.

Property JCField Group Type Default
Appendix A ■ JClass Field Property Listings 101

displayPattern Numeric String locale dependent

Method to set a pattern on the Decimal Format object used by the
validator. This display format is in effect when the field does not have
focus. See Number Format Characters. (See also editPattern.)

doubleBuffered All boolean true

Controls whether double-buffering is used when displaying and
updating the component.

editFormats Date/Time String locale dependent date/time

A list of Strings that are used in an attempt to match the user’s input to
date and time formats. (See Date Formats.) Given an incomplete String,
the calendar validator attempts to fill in the rest. If the validation fails,
the field is marked as invalid.

editPattern Numeric String Byte, Short, Integer, Long: 0
Float, Double, BigDecimal: 0.###

The display formatting pattern used when the field has focus. A
number’s format may be different while it is being edited from the
format that is used when the field loses focus. An example is allowing
the end-user to type in a leading hyphen (minus sign) to denote a
negative number in a financial application, yet showing a bracketed
number when editing is complete. (See displayPattern.)

enabled All boolean true

Inherited from awt.Component, enables or disables this component,
depending on the value of the boolean parameter.

firstValidCursor
Position (G) All integer mask dependent

This read-only variable contains the number corresponding to the first
space in a field in which a user can enter data. Its value will vary
depending on the mask set.

font All Font inherited

Specifies the font of the component.

foreground All Color inherited

Controls the foreground color of the field.

Property JCField Group Type Default
102 Part II ■ Reference Appendices

format Date/Time String locale dependent date/time

Controls the format currently being used to display the date/time
values. The format String uses these conventions:

Symbol(s) Meaning

y Year within the current century (1 or 2 digits).

yy Year within the current century (2 digits).

yyyy Year including century (4 digits).

M Numeric month of year (1 or 2 digits).

MM Numeric month of year (2 digits).

MMM Abbreviated month name.

MMMM Full month name.

EE Day of the Week (abbreviated).

EEEE Day of the Week (full name).

d Numeric day of month (1 or 2 digits).

dd Numeric day of month (2 digits).

h Hour of day (1-12) (1 or 2 digits).

hh Hour of day (1-12) (2 digits).

H Hour of day (0-23) (1 or 2 digits).

HH Hour of day (0-23) (2 digits).

m Minutes (1 or 2 digits).

mm Minutes (2 digits).

s Seconds (1 or 2 digits).

ss Seconds (2 digits).

a AM/PM representation.

z Time zone abbreviation.

zz Time zone abbreviation.

zz Time zone (full name).

D Day in year (1, 2, or 3 digits).

Property JCField Group Type Default
Appendix A ■ JClass Field Property Listings 103

DDD Day in year (3 digits).

increment Numeric,
Date/Time Number Byte, Short, Integer, Long: 1

Float, Double, BigDecimal: 1.0

Controls the amount by which to increment or decrement the field’s
value with each click on the spinner. The increment must be a non-zero
positive number.

invalidBackground All Color inherited

Controls the background color used in the visual component if the field
is invalid. By default, this value is inherited from the background color
of the component.

invalidChars String String null

Describes a String of characters which are not allowed to be used as
input in the current field. There is a associated property called
validChars. Use this one if the list of invalid characters is shorter than
the set of valid characters. (See validChars.)

invalidForeground All Color inherited

Controls the foreground color used in the visual component if the field
is invalid. By default this value is inherited from the foreground color of
the component.

invalidPolicy All integer JCField.SHOW_INVALID

The invalidPolicy governs what happens when a user enters invalid
data into a field. The possible property values are listed below with their
corresponding meanings.

JCInvalidInfo.SHOW_INVALID — Shows invalid values, using
invalidBackground and invalidForeground colors.

JCInvalidInfo.RESTORE_DEFAULT — Restores the default value. (See
defaultValue.)

JCInvalidInfo.RESTORE_PREVIOUS — Restores the value to the field’s
previous valid value.

JCInvalidInfo.CLEAR_FIELD — Clears the field if given invalid input.

IPValidators IP Address JCInteger
Validator null

Specifies the validators used for each subfield of the IP. For example:
xxx.xxx.xxx.xxx You can associate one validator for each subfield.

Property JCField Group Type Default
104 Part II ■ Reference Appendices

locale All Locale locale.getDefault()

Controls the display of time and date values according to the given
locale.

mask String,
Date/Time String null

The mask to be used to validate a String field.

Symbol Meaning

Any digit, minus sign, comma, decimal point,
or plus sign.

@ Any digit.

H Any hexadecimal digit.

U Any alphabetic character. Lower case
characters will be converted to upper case.

L Any alphabetic character. Upper case
characters will be converted to lower case.

A Any alphabetic character. No case conversion.

* Any character.

^ Any alphanumeric character, that is, any
character from the set {0-9a-zA-Z}.

\\ The next character that follows is to be treated
as a literal, even if it is one of the above
characters.

maskChars String,
Date/Time String “#@HULA*^\\”

Use this property to reassign the mask characters. The meaning assigned
to a character at a given position remains the same, but the character
used to designate that meaning changes.

Example: setMaskChars("!9HUXA*^\\") remaps the mask characters so
that an exclamation point(!) represents the extended digit, 9 represents a
digit, and X represents a lower case character. All other mask characters
remain the same. Note that you must use a mapping String that has the
same number of characters as the default mask. For the meaning of the
mask characters, see the table in the Mask Characters section.

Property JCField Group Type Default
Appendix A ■ JClass Field Property Listings 105

maskInput Date/Time boolean false

If maskInput is true, the user is required to enter characters that
conform exactly to the specified format. Some Java date formats are
ambiguous. As part of its operation, JClass Field expands any
ambiguous pattern it encounters into an internal pattern in which the
ambiguity is removed.

matchPickList All boolean true

Controls whether values must match those in the pick list of the
validator or not. The default is true, but this property is only applicable
if there are elements stored in the pick list. (See pickList.)

max Numeric Numeric type dependent

Controls the maximum possible value of the numeric object currently
being checked by the validator.

maximumSize All Dimension dynamic

The maximum size of the field.

milleniumThreshold Date/Time integer 69

Controls the interpretation of two-digit years. Any two-digit date less
than the threshold is considered to be after the year 2000 while any
value greater than or equal to the threshold is considered to be after the
year 1900. The default is 69 so that, for example, '96 is treated as 1996
and '10 is treated as 2010.

min Numeric Numeric type dependent

Controls the minimum possible value of the numeric object currently
being checked by the validator.

minimumSize All Dimension dynamic

The minimum size of the field.

name All String variable

Gives a name to the component.

numMaskMatch String integer -1

Controls the number of characters to match with the mask from left to
right. This number does not include any literals. If the value is -1, the
entire mask will be matched.

Property JCField Group Type Default
106 Part II ■ Reference Appendices

preferredSize All Dimension dynamic

The preferred size of the field.

pickList All ListModel null

A list of valid values for the field. If used in conjunction with
matchPickList set to true, it represents the only valid values for the
field. (See matchPickList)

pickListIndex (G) All Object N/A

The get method for this property returns the list of entries in the pick list
of a given field.

placeHolderChars Date/Time
String String null

Describes the place holder String, which specifies the prompt characters
to be used in place of blanks (spaces) in a masked field. If the place
holder character String is null, or if an empty character exists after the
number of characters provided, then the field uses a space character.
Note: Use the placeHolderChars property with date and time validators
only if maskInput is true and you know the exact format being used.
(The format for a date object can be ambiguous because a format like
h:mm:ss is expanded internally to hh:mm:ss.)

range (S) Numeric integer type dependent

This property allows you to set both min and max at the same time. Use
the get methods for min and max to return the values that determine the
range.

required All boolean true

Controls whether a field on a given form must have a valid value to
before the form can be submitted.

selectOnEnter All boolean false

Controls whether the value in a field is selected upon the field gaining
focus.

size All Dimension dynamic

The width and height dimensions in pixels of the component.

Property JCField Group Type Default
Appendix A ■ JClass Field Property Listings 107

spinPolicy All integer validator dependent

Controls the action of the spin-arrow buttons. The possible property
values are listed below with their corresponding meanings.

JCValidator.SPIN_FIELD — Allows spinning up and down between the
maximum and minimum values. (Default for numeric validators.)

JCValidator.SPIN_SUBFIELD — Allows context sensitive spinning if it is
allowed. (Default for date and time validators.)

JCValidator.SPIN_WRAP — Like spin field but allows continuous
spinning. A value wraps from its maximum value to its minimum when
spinning in the “up” direction, and from minimum to maximum in the
other direction. (Default for String validators.)

state (G) All integer dynamic

Describes the state of the field. The possible values of this property are
listed below with their corresponding meanings.

JCField.VALID — The field is valid.

JCField.INVALID — The field is invalid.

JCField.UNDEREDIT — The field is currently under edit and hence the
state is indeterminate

timeZone Date/Time java.util.
TimeZone locale dependent

The timeZone property controls the time value using conventions of the
given time zone.

toolTipText All String null

This property is used to store a short informative prompt describing the
field to help end-users know what type of data to enter. ToolTipText can
be used in conjunction with the utility JCPromptHelper, to associate the
prompt text for given fields with an area in the display window.

useIntlCurrency
Symbol Numeric boolean false

Controls whether a numeric field with currency set displays its value
using the international currency symbol for a given locale or using the
symbol used by convention in that locale

Property JCField Group Type Default
108 Part II ■ Reference Appendices

validChars All String null

Describes a String of characters which are allowed as input in the
current field. Use this property if the number of valid characters is less
than the number of invalid ones. (See invalidChars.)

value All Object null

This is the fundamental property of a field. It fully describes the object’s
value. A field’s value is set as a result of some valid action on the field
that changes its data and has been approved by the associated validator.

Object Type Value Type

String String

Double Double

Integer Integer

Calendar Calendar

Date Calendar

Time Calendar

valueClass (G) All java.lang.
Class N/A

This read-only variable contains the class of the value in the field.

Property JCField Group Type Default
Appendix A ■ JClass Field Property Listings 109

110 Part II ■ Reference Appendices

Appendix B
Distributing Applets and Applications on a

Web Server
Using JarMaster to Customize the Deployment Archive

B.1 Using JarMaster to Customize the Deployment Archive

The size of the archive and its related download time are important factors to consider
when deploying your applet or application.

When you create an applet or an application using third-party classes such as JClass
components, your deployment archive will contain many unused class files unless you
customize your JAR. Optimally, the deployment JAR should contain only your classes
and the third-party classes you actually use. For example, the jcfield.jar, which you used to
develop your applet or application, contains classes and packages that are only useful
during the development process and that are not referenced by your application. These
classes include the Property Editors and BeanInfo classes. JClass JarMaster helps you
create a deployment JAR that contains only the class files required to run your
application.

JClass JarMaster is a robust utility that allows you to customize and reduce the size of the
deployment archive quickly and easily. Using JClass JarMaster you can select the classes
you know must belong in your JAR, and JarMaster will automatically search for all of the
direct and indirect dependencies (supporting classes).

When you optimize the size of the deployment JAR with JClass JarMaster, you save
yourself the time and trouble of building a JAR manually and determining the necessity
of each class or package. Your deployment JAR will take less time to load and will use less
space on your server as a direct result of excluding all of the classes that are never used by
your applet or application.

For more information about using JarMaster to create and edit JARs, please consult its
online documentation.

JClass JarMaster is included with JClass DesktopViews. For more details please refer to
Quest Software’s Web site.
111

http://www.quest.com

112 Part II ■ Reference Appendices

Appendix C
Porting JClass 3.6.x Applications

Key Concept Differences ■ Code Differences ■ Property Changes

Porting Guidelines ■ Event Handling Changes

There have been significant structural changes to JClass Field beginning in its 4.x version.
These modifications allow more flexibility and control over the composition of fields.
Although the changes are noteworthy, you can easily convert any code created with 3.6.x
versions to version 4.x and higher. The following sections will describe how to upgrade
your code to JClass Field 4.5 and higher.

C.1 Key Concept Differences
In earlier versions of JClass Field, each field consisted of a visual component and a
validator together. The validator portion determined what type of data the field expected.
The names of the fields indicated their visual aspect and supported data type. For
example, a text field that contained integers and a text field that held String values were
named JCIntTextField and JCStringTextField respectively.

Now the five basic styles of visual components, which are represented by one of
JClass Field’s standard Beans: JCTextField, JCSpinField, JCComboField, JCPopupField,
and JCLabelField, are separated from the validators and the supported data types. To use
a field, you must associate it with a validator and declare an appropriate value model. The
following table lists the a few examples of the combination of components, validators,
and value models in JClass Field 4.x that are equivalent to fields in earlier versions:

Field in JClass Field
3.6.3 and earlier Equivalent Field in JClass Field 4.x

JCIntTextField JCTextField + JCIntegerValidator + IntegerValueModel

JCTimeSpinField JCSpinField + JCTimeValidator + TimeValueModel

JCStringComboField JCComboField + JCStringValidator + StringValueModel

JCCalendarPopup JCPopupField + JCDateTimeValidator +
CalendarValueModel

JCCurrencySpinField JCSpinField + JCDoubleValidator + DoubleValueModel +
isCurrency property set to true
113

You can duplicate all the fields contained in earlier versions by selecting the
corresponding field, validator, and value model. In fact, you can create even more fields
since JClass Field 4.x and higher expands the list of supported validators to include
java.lang.byte, java.lang.short, java.lang.long, java.lang.float,
java.math.BigDecimal, java.sql.date, and java.sql.timestamp, and introduces a new
GUI component, JCLabelField. This new field can be used to simulate a heading or to
display uneditable data.

C.2 Code Differences

The following table shows the differences in code between JClass Field 4.x and higher,
and previous versions for a text field containing a String value.

C.2.1 Converting Your Code

This section breaks down the above code listings and gives a line-by-line description of
the differences.

JClass Field 3.6.3 and earlier JClass Field 4.0 and higher

JCStringTextField JCTextField + JCStringValidator +
StringValueModel

1 JCStringTextField text1 = new
JCStringTextField();
2

3 text1.setMask("(@@@) @@@-
@@@@");
4 text1.setPlaceHolder

Chars("(___) ___-____");
5 text1.setValue("4165941026");

1 JCTextField text1 = new JCTextField();

2 JCStringValidator sv = new
JCStringValidator();
3 sv.setMask("(@@@)@@@-@@@@");

4 sv.setPlaceHolderChars("(___)___-____");
5 text1.setValueModel(new
StringValueModel("4165941026"));
6 text1.setValidator(sv);

Line 1 Similar for both versions; it simply creates the field, text1.

Line 2 Declares the validator, in version 4.x and higher.

Line 3 Sets the mask property for the field in earlier versions and for the validator
for version 4.x and higher.

Line 4 Sets the placeHolderChars property for the field in earlier versions and for
the validator for version 4.x and higher.
114 Part II ■ Reference Appendices

C.3 Property Changes

Since the introduction of the validator and invalidInfo objects, the properties have
been divided between these two objects and the field component, which in earlier

Line 5 Sets the initial value of the field, using the value property in earlier versions
and using the value model declaration in version 4.x and higher. Although
you do not have to set the value using the value model, the value model
declaration and association with the field is necessary.

Line 6 Associates the validator with the field in version 4.x and higher.
Appendix C ■ Porting JClass 3.6.x Applications 115

versions contained all the properties. The following table shows how the JClass Field 4.x
and higher properties are allocated.

Validator Properties Invalid Properties Field Component Properties
(same as earlier versions)

allowNull
casePolicy
continuousScroll
currency
currencyLocale
currencySymbol (G)
defaultDetail
defaultEditFormats (G)
defaultFormat (G)
defaultValue
displayList
displayPattern
editFormats
editPattern
firstValidCursorPosition (G)
format
increment
invalidChars
iPValidators
locale
mask
maskChars
maskInput
matchPickList
max
milleniumThreshold
min
numMaskMatch
parsedMask (G)
pickList
pickListIndex (G)
placeHolderChars
range (S)
spinPolicy
timeZone
useIntlCurrencySymbol
validChars

invalidPolicy
invalidBackground
invalidForeground
beepOnInvalid

about
background
doubleBuffered
editable
enabled
font
foreground
maximumSize
minimumSize
name
preferredSize
required
selectOnEnter
state (G)
toolTipText
116 Part II ■ Reference Appendices

C.4 Porting Guidelines

The following list gives a general outline of the steps you should follow to port your code
to JClass Field 4.x and higher from earlier versions.

■ Determine the field, value model, and validator that correspond to your existing field.
Create each of these objects and associate the value model and validator with the
field.

■ Separate any JClass Field properties you use into field component, validator and
invalid properties.

■ If you have any invalid properties, declare the field’s invalidInfo object and set the
properties using the new invalidInfo.

■ Set any other properties using the field component or validator objects.

C.5 Event Handling Changes

JClass Field events have also undergone significant change in version 4.x and higher.

The event listener that receives the events generated by the four editable Fields is now
called JCValueListener instead of JCFieldListener. Its methods are valueChanging()
and valueChanged() instead of valueChangedBegin(), valueChangedEnd(), and
stateIsInvalid.

Changes to any one of the Fields are handled by invoking addValueListener(). You
supply the code to implement the JCValueListener interface. To register the method see
addValueListener, removeValueListener, in Chapter 2.

The methods of the JClass Field event listeners are compared below:

Although the stateIsInvalid() method is not available in JCValueListener, you can
use a Field component’s addPropertyChangeListener() method to determine changes to
the state of a field.

JCFieldListener: Event Methods
(earlier versions)

JCValueListener: Event Methods
(JClass Field 4.x and higher)

JCFieldListener.valueChangedBegin JCValueListener.valueChanging()

JCFieldListener.valueChangedEnd JCValueListener.valueChanged().

JCFieldListener.stateIsInvalid no equivalent (see below)
Appendix C ■ Porting JClass 3.6.x Applications 117

118 Part II ■ Reference Appendices

Appendix D
Using JCField’s Autocomplete Feature

Using Autocomplete in a JCComboField ■ Autocomplete Methods ■ Autocomplete Modes

Code Examples ■ Setting and Updating the List of Autocomplete Strings ■ Porting Guidelines

D.1 Using Autocomplete in a JCComboField

The autocomplete mechanism in JCField’s JCComboField may be used to simplify
selecting items in a combo box. In addition to providing a facility for narrowing the range
of possible matches as each character is typed, and thus anticipating what choice the end
user really wants, the prefix mechanism can be used to simplify typing Web addresses,
directory paths, or other choices that begin with a common String.

Here is what you need to do to use the autocomplete facility. A code snippet is included
in each step:

1. Create or reference a combo field.
JCComboField combo = new JCComboField());

2. Create a String validator, or a validator derived from a String validator. These are the
only validators that may be used with the autocompletion mechanism: JCStringVal-
idator, JCDateValidator, JCDateTimeValidator, JCTimeValidator, JCIPAddress-
Validator:

JCStringValidator sv = new JCStringValidator();

3. Create or update the list Strings that will populate the combo field’s drop down.
String[] string_list = {string1, string2, ...};

4. Create a list model with the items.
JCListModel autoCompleteListModel = new JCListModel(string_list);

5. Set this list model on the validator.
sv.setPickList(autoCompleteListModel);

6. Set the validator on the combo box.
combo.setValidator(sv);

7. Once a validator containing the list model has been set on a chosen combo field, the
method call for invoking auto completion is:

JCComboField combo;
boolean autoComplete = true;
combo.setAutoComplete(autoComplete, autoAppend, autoSuggest,

autoRefinement, prefix_list);
119

The first four parameters are Booleans, while the last is an array of Strings. The only way
to set the modes and a prefix list is through a call to setAutoComplete(). The parameters
for setAutoComplete() are:

■ autoComplete — autocomplete is active. The combo box tries to autocomplete as the
user types. If this parameter is false, auto completion is disabled.

■ autoAppend — a candidate String appears in the text field itself. The drop down list
does not appear unless autoSuggest is also true. What the end user has already
typed appears as normal text and the rest of the autocompleted String appears in
reverse video.

■ autoSuggest — a drop down list appears as soon as the end user starts typing. All
Strings in the list model appear in the list. The selected item is updated as the user
types. The list updates itself if autoRefinement in on. If autoAppend is false there is
no candidate completed String in the text field, only the characters the end user has
typed so far.

■ autoRefinement — to use refine, suggest mode must be on. It operates on the drop
down list part of the combo box. If autoRefinement is true, the list updates itself as
the end user continues to type, eliminating choices that are no longer relevant. Also, it
adds what is currently in the text box to the list. If autoRefinement is false, the drop
down list retains all items and the first possible match is highlighted. Autorefinement
always reacts to adding or deleting a character anywhere in the String as the
autocompletion mechanism matches possibilities with what has been typed.

■ prefix_list — eliminates the need for the end user to type a common first part of the
input, such as http://www. in a URL, or C:/JClass/com/klg/class in a directory path. Set
a prefix list by calling setAutoComplete() with the array of prefix list Strings as the
last parameter. If the typed-in String matches the letters immediately following one
of the Strings in the prefix list, the item or items matched will appear in the combo
box, along with items that begin with the typed-in String. If you are using a prefix list,
set the Boolean properties autoSuggest and autoRefinement to true to avoid
behavior that might be non-intuitive to the end user. With these two properties set,
matching begins as soon as the end user begins typing. The drop down list shows the
first matched list item highlighted along with any other possible match. The drop
down list updates itself as the end user continues to type, showing only those items
that are possible completions to what has already been typed.

Example: The prefix list contains the Strings {“water”, “snow”}, and the combo box
list contains items “police,” “polish,” “waterpic,” “waterpolo.” The combo box has
autoSuggest and autoRefinement set to true. The end user begins by typing a “p” in
the text box. All the items mentioned above appear in the drop down list. The last
item is the letter “p” that has just been typed in. The end user types an “o,” so the text
box contains “po.” The drop down list updates itself to contain just the matched items
“police,” “polish,” “waterpolo,” and “po.” By the time the end user has typed “polo,”
only two list items remain, “waterpolo,” and “polo.”
120 Part II ■ Reference Appendices

D.1.1 Cursor Behavior

Placing the cursor within the String sets the insertion point for the next typed character.
The appearance of the cursor and its behavior depend on the mode autocomplete is in.
The following table lists the state of autoSuggest (S), autoRefine (R), and autoAppend
(A). The behaviors of the cursor, the text box, and the drop down list are described for
each state. Assume in each case that autoComplete is true.

S R A Behavior

Off Off Off Autocomplete is on, but there are no visual clues.

Off Off On There is no automatic invocation of the drop down list. As
the end user begins typing, the first matched item appears
in full in the text box. Since append mode is on, the
autocompleted portion of the item is highlighted. A
blinking cursor is shown at the end of the highlighted text.
If the end user types another character, it is placed
between what has already been typed and the highlighted
portion, not at the blinking cursor. The drop down list is
updated if a new match is found. If instead the end user
types the backspace key, the entire highlighted portion of
the String is removed. Further backspaces remove
individual characters. If the end user clicks on the String to
change the insertion point, the autocompleted portion of
the text remains and highlighting is turned off.

Off On Off Autocomplete is on, but there are no visual clues. This
combination should not be used.

Off On On Same as (Off, Off, On). This combination should not be
used.

On Off Off Just the end user’s typing (without autocompletion)
appears in the text box. The drop down list appears as
soon as the end user begins typing. The first matched item
is highlighted. All other items are available in the drop
down list’s scroll pane.
The cursor appears in the text box at the end of the typed-
in String. If the end user changes the insertion point and
begins typing there, the drop down list adjusts by
highlighting the new match, if there is one. If there is no
match, the list stays the same.

On Off On Cursor behavior is similar to (Off, Off, On). The full item
list appears in the drop down list with the first matched
item highlighted.
Appendix D ■ Using JCField’s Autocomplete Feature 121

Backspacing
To summarize, if autoAppend is false, backspacing deletes a character as usual. There is
no autocompletion, so the cursor is at the end of the String. If autoAppend is true, there
are effectively two cursors when a match is first found, one for inserting text and one for
deleting text. Characters are inserted just before the highlighted text. Backspaces cause
the highlighted text to be erased, after which previous typing is erased.

D.2 Autocomplete Methods
The methods listed here are of use with the autocomplete function:

On On Off Since autoAppend is inactive, cursor behavior is the same
as (On, Off, Off). Because autoRefine is on, the drop
down list is restricted to potential matches. If the end user
uses the left cursor key to move the insertion point and
inserts a character that results in a new word that also is a
partial match for some list items, the drop down list
updates itself.

On On On Cursor behavior is the same as (Off, Off, On). If a match
occurs, an autocompleted item appears in the text box.
The drop down list contains only potential matches.

Autocomplete Method Description

setAutoComplete() Controls whether the autocomplete function is on or off, and
sets its modes of operation, which are described in the next
section.

isAutoComplete() Returns true if the field has autoComplete turned on.

isAutoSuggest() Returns true if the field has autoSuggest turned on.

isAutoAppend() Returns true if the field has autoAppend turned on.

isAutoRefinement() Returns true if the field has autoRefinement turned on.

getPrefixList() Returns a String array of prefixes that need not be typed to
be matched, so long as the characters following the prefix do
match an item in the combo box’s list model.

S R A Behavior
122 Part II ■ Reference Appendices

D.3 Autocomplete Modes
The parameters in setAutoComplete() control the autocomplete modes:

The autocomplete mechanism for a JCComboField is turned on and off by a call to
setAutoComplete(). The method’s first parameter is the flag that controls whether
autocomplete is enabled or not, and the other parameters set the autocomplete modes
and the prefix list. If you do not want a prefix list, set the prefix list parameter to null.
Thus, a typical call to setAutoComplete() looks like this:

 combo.setAutoComplete(true, append, suggest, refine, prefix_list);

D.4 Code Examples

The following example shows a method that returns a JCComboField. Its parameters are
string_list, the list of items for the combo box, prefix_list, a list of ignorable
prefixes, and three Booleans for the autocomplete modes, suggest, refine, and append.

1. public JCComboField createComboField(String [] string_list,
String [] prefix_list,
boolean suggest,
boolean refine,
boolean append)

{
// Example of a JCComboField using a JCStringValidator

Autocomplete Mode Function

autoAppend The text field shows a candidate String from its
autocomplete list. Append the completion to the partial
completed text shown in reverse video

autoComplete Determines whether the auto complete mode is enabled. If
this value is false, the values of the attributes are ignored.

autoRefinement If autoSuggest is true, refine the popup list to include all
possible matches as well as the currently typed text. Note
that if AutoSuggest is false, this attribute will also be set to
false.

autoSuggest Pop up the combo box's popup as a suggestion list upon
typing a character.

prefixList Sets the prefixList. If non-null, the combo box will ignore
the given prefixes when matching items. The longest
matching prefix is always used. Note that although it is
permitted to use a prefix list without autoSuggest being
true, the resulting behavior maybe be quite non-intuitive to
the end user.
Appendix D ■ Using JCField’s Autocomplete Feature 123

2. JCComboField combo = new JCComboField();

// create the validator and set its properties
3. JCStringValidator sv = new JCStringValidator();

sv.setMatchPickList(false);
sv.setAllowNull(true);

4. JCListModel dm = new JCListModel(string_list);
5. sv.setPickList(dm);

// set the value model and validator
combo.setValueModel(new StringValueModel());

6. combo.setValidator(sv);
// No need to call this if all autocomplete mode flags are false
if (suggest || refine || append) {

7. combo.setAutoComplete(true,
append,
suggest,
refine,
prefix_list);

}
return combo;

}

D.4.1 Explaining the Code

This section further explains the code in the previous section. The line number keys
specify which line is being described.

Line 1 The method call.

Line 2 Instantiates a new JCComboField. There is no constructor for enabling the
autocomplete mechanism, so it must be configured by calling
setAutoComplete().

Line 3 Creates a JCStringValidator, through which the list items are set on the
combo field.

Line 4 Creates the data model that holds the list items.

Line 5 In a JCComboField’s design, a pick list may be derived from a data model.
The pick list is set on one of JClass Field’s validators, and the validator is
associated with the combo box.

Line 6 Associates the validator with the combo box.

Line 7 Call setAutoComplete(), specifying the modes and the prefix list.
124 Part II ■ Reference Appendices

D.5 Setting and Updating the List of Autocomplete Strings

The autocomplete candidates are the Strings that populate the combo box’s drop down
list. Among the ways of setting the list of Strings on the swing data model, these three
deserve notice.

Setting the list items:

■ from predefined Strings set in the application itself

■ as the result of a database query

■ read from a file containing the appropriate items

Once initialized, you may wish to update the list:

■ as the end user types new information

■ as information changes as the result of a database query

■ because the context of the application has changed

Updating from user input
One way of updating the data model is by adding a JCValueListener to the combo field.
When the end user commits a choice by typing the Enter key, the listener’s
valueChanging() and valueChanged() methods are invoked. In the valueChanged()
method, get the result of the user’s input with

 JCComboField combo;
 ...
 String newValue = (String) combo.getValue();

You will have to check that the entry is different from ones already in the list. If it is, the
new entry may be added to the data model at the position you deem appropriate, thereby
updating the list. Please see Event Programming, in Chapter 4 for an example of
modifying the combo box’s pick list from user input as well as the example that follows in
this section.

Updating from a database
You can connect a data-aware JCComboField component, such as DSdbComboField, to a
data source and populate the data model form an SQL query. Please see the Data
Binding, in Chapter 3, for information on data binding.

When the database is updated, the data source should fire an event to inform the combo
box so that the change may be reflected in its item list.

Populating the list from a file
The tokens representing the list elements you want may be delimited in various ways in
your source file. When reading the file, you will form the array of Strings that you pass to
a JCListModel, and you may want to use JCStringTokenizer in JClass Elements to
simplify the task.
Appendix D ■ Using JCField’s Autocomplete Feature 125

JClass Elements is available as part of the JClass DesktopViews product bundle. Visit
http://www.quest.com for more information and downloads.

Adding an Item from End User Input
If you wish to allow end users to add to the list items, you can have the combo field
respond to a value change event. Here is a suggestion.

In the class that is registered as a listener for JCValue events, implement the two required
methods, valueChanging() and valueChanged().

public void valueChanging(JCValueEvent e) {// May be empty }

public void valueChanged(JCValueEvent e) {
String newValue = ((String) combo.getValue()).trim();
boolean found = false;
int position = 0;
if(newValue != null && newValue.length() > 0){

for (int i = 0; i < dm.getSize(); i++){
if (newValue.compareTo((String)dm.getElementAt(i)) == 0) {

found = true;
} else {

if (newValue.compareToIgnoreCase(
(String)dm.getElementAt(i)) > 0) {

//place the new item in its sorted place
position = i + 1; }

}
}

}
if (!found && newValue != null && newValue.length() > 0) {

dm.add(position, (String) newValue);
combo.setPickList(dm);
combo.setSelectedIndex(position);

}
}

The event handler looks for an existing list item that is essentially the same as the one the
end user typed. If one is found, no addition is made. If the user’s input is different from
each item in the existing list, the new item is added to the data model and to the combo
field’s pick list.

Note: If autoRefinement is true, the ValueChanged event is not passed on to your class
simply by pressing the Enter key. If you wish to allow end users to update the list of
combo box items using actionPerformed() while autoRefinement is in effect, they will
have to click on the newly-typed item. Since it does not match any previous item, it will
be the only one remaining in the drop down list. This generates a ValueChanged event
that is passed to your ValueListener.
126 Part II ■ Reference Appendices

http://www.quest.com

D.6 Porting Guidelines

There should be no porting issues for your applications that employ a JClass
JCComboField, version 4.5.1 or earlier, when you update to a current release. Your code
should continue to function, and you may add autocompletion if you wish.
Appendix D ■ Using JCField’s Autocomplete Feature 127

128 Part II ■ Reference Appendices

Index

A
about property 35, 99
addFieldListener 44
allowNull property 99
API 3
append

mode in auto complete 119
appendix

G marker 35
applets

distributing using JarMaster 111
applications

distributing using Jarmaster 111
autocomplete 119

adding an item 126
cursor behavior 121
examples 123
methods 122
modes 123
populating the list from a file 125
setting 125
updating 125
updating from a database 125
updating from user input 125

B
background property 99
basics 9
BDK - see Bean Development Kit 33
Bean 53
Bean Development Kit 33

property sheet 33
beepOnInvalid property 42, 99
binding to a database 56
building a Field 53

techniques 53

C
casePolicy property 100
class

Examples 29
columnName property 59, 100

combo field 11
comments on product 6
components

creating programatically 54
customizing 55
data bound 19
Field 12
InvalidInfo object 20
JCComboField 15
JCLabelField 19
JCPopupField 17
JCSpinField 14
JCTextField 13
key properties 37
properties 47
structure 20
validator 20
value model 20
visual component 20

continuousScroll property 100
Control key 28
CTRL key 28
currency property 100
currencyLocale property 100
currencySymbol property 100
customize

component 55

D
data

query 58
data binding 56

example code 63
JBuilder 56
JClass DataSource 59
limitations 20
requirements 57
with JBuilder 57

data bound
components 19

data types
BigDecimal 11
Byte 11
Calendar 11
Date 11
129

Double 11
Float 11
GUI component support 12
handled by JClass Field 11
Integer 11
JCIPAddress 11
Long 11
Short 11
SqlDate 11
SqlTime 11
SqlTimeStamp 11
String 11
validators 21

database binding 56
dataBinding property 100

(for JClass DataSource) 62
DataProperties editor 53
dataSet property 59, 101
date formats 44

handling two-digit year values 63
Date validator

customizing a component 56
date/time validators

property summary 49
defaultDetail property 101
defaultEditFormats property 101
defaultFormats property 101
defaultValue property 22, 42, 101
demo

Form 51
differences

between JClass Field 4.0 and earlier versions 113
display pattern 21
displayList property 41, 101
displayPattern property 38, 102
doubleBuffered property 102
DSdbComboField 20, 62
DSdbFieldText 62
DSdbLabelField 20, 62
DSdbPopupField 20, 62
DSdbSpinField 20, 62
DSdbTextField 20, 62

E
edit pattern 21
editable property 43
editFormats property 38, 102
editor

DataProperties 53
editPattern property 38, 102
enabled property 102
Esc 28
Escape key 28
event programming example 93

events 27
changes from previous versions 117
definition 27
JClass Field 27
listener 28
stateIsInvalid 117
valueChanged 28, 117
valueChangedBegin 117
valueChangedEnd 117
valueChanging 28, 117

examples
autocomplete 123
event programming 93
example program 29
JCComboField

with BigDecimal validator 85
with byte validator 83
with double validator 84
with float validator 85
with IP address validator 86
with short validator 83
with String validator 81

JCLabelField
with BigDecimal validator 91
with byte validator 90
with date validator 92
with DateTime validator 91
with double validator 90
with float validator 91
with IP address validator 93
with short validator 89
with String validator 88
with time validator 92

JCPopup
with date validator 87
with DateTime validator 86

JCSpinField
with BigDecimal validator 77
with byte validator 76
with Date validator 79
with double validator 77
with float validator 78
with integer validator 75
with IP address validator 80
with long validator 75
with short validator 76
with String validator 74
with time validator 79

JCTextField
with BigDecimal validator 71
with byte validator 70
with Date validator 72
with DateTime validator 72
with double validator 70
with float validator 71
with integer validator 68
130 Index

with IP address validator 73
with long validator 69, 89
with short validator 69
with String validator 68, 88
with time validator 73

program 29
programming 32
programs 65
spin fields 74

Examples class 29
examples of label fields 88
examples of text fields 68

F
FAQs 6
feature overview 1
field integrity 21
Field, JClass

basics 9
properties 34
terminology 9

fields
text, examples 68

firstValidCursorPosition property 102
font property 102
foreground property 102
Form demo 51
format

date 44
property 103
tables 44

G
G as appendix marker 35
graphical user interface 9, 65

combo field 11
component support for data types 12
components 10
label field 11
popup field 11
spin field 10
text field 10
visual objects 10

GUI - see graphical user interface 9

I
increment 10

property 104
inheritance hierarchy

JClass Field 25

basic classes 25
classes 26
validators 27

Integrated Development Environment (IDE) 53
integrity

validator 21
internationalization 35
introduction 1

to Field’s properties 37
to fields 9

invalidBackground property 42, 104
invalidChars property 21, 104
invalidForeground property 42, 104
InvalidInfo

object 20
properties 42
property summary 50

invalidPolicy property 43, 104
IPAddress validators

properties for 47
IPValidators property 104
isCurrency property 42

J
JAR file 19
JarMaster 111
JavaBeans 53
JBdbComboField 59
JBdbLabelField 20, 59
JBdbPopupField 20, 59
JBdbSpinField 20, 59
JBdbTextField 20, 59
JBuilder

data binding 57
data binding requirements 56

JCComboField 15
example, with BigDecimal validator 85
example, with byte validator 83
example, with double validator 84
example, with float validator 85
example, with IP address validator 86
example, with short validator 83
example, with String validator 81

JCFieldListener 28, 117
JCFormUtil 51
JCInvalidInfo

object 37
validator, customizing a component 56

JCLabelField 19
example, with BigDecimal validator 91
example, with byte validator 90
example, with date validator 92
example, with DateTime validator 91
example, with double validator 90
Index 131

example, with float validator 91
example, with IP address 93
example, with short validator 89
example, with String validator 88
example, with time validator 92

JClass DataSource
data binding 59
using with JClass Field 57

JClass Field
basics 9
component properties 47
events 27
inheritance hierarchy 25
introduction 1
terminology 9

JClass technical support 5
contacting 5

JCPopup
example, with date validator 87
example, with DateTime validator 86

JCPopupField 17
JCPromptHelper 51
JCSpinField 14

example, with BigDecimal validator 77
example, with byte validator 76
example, with Date validator 79
example, with double validator 77
example, with float validator 78
example, with integer validator 75
example, with IP address 80
example, with long validator 75
example, with short validator 76
example, with String validator 74
example, with time validator 79

JCString validator
customizing a component 55

JCTextField 13
example, with BigDecimal validator 71
example, with byte validator 70
example, with Date validator 72
example, with DateTime validator 72
example, with double validator 70
example, with float validator 71
example, with integer validator 68
example, with IP address validator 73
example, with long validator 69, 89
example, with short validator 69
example, with String validator 68, 88
example, with time validator 73

JCValidator object 37
JCValueModel object 37

K
key properties of Field components 37

keystroke actions 28

L
label

examples 88
field 11

license 4
listener

addFieldListener 44
JCField 28, 117
removeFieldListener 44

locale property 105
localization 35

M
mask characters 45
mask property 21, 39, 105
maskChars property 105
maskInput property 40, 106
matchPickList property 41, 106
max property 10, 21, 43, 106
maximumSize property 106
methods

autocomplete 122
military hours 87
milleniumThreshold property 106
min property 10, 21, 43, 106
minimumSize property 106
modes

autocomplete 123
multiple validator

customizing a component 56

N
name property 106
navigation controls 59

JClass DataSource 62
number format characters 46
numeric validator

customizing a component 55
properties for 47

numMaskMatch property 39, 106

O
object

JCInvalidInfo 37
JCValidator 37
JCValueModel 37

overview
132 Index

manual 3

P
pick list 10
pickList property 41, 107
pickListIndex property 107
placeHolderChars property 40, 107
popup field 11
porting 113

guidelines 117, 127
preferredSize property 107
prefix list

mode in auto complete 119
product feedback 6
program

example 29
examples 65

properties
about 35, 99
allowNull 99
background 99
beepOnInvalid 42, 99
casePolicy 100
columnName 100
continuousScroll 100
currency 100
currencyLocale 100
currencySymbol 100
dataBinding 100
dataSet 101
defaultDetail 101
defaultEditFormats 101
defaultFormats 101
defaultValue 22, 42, 101
displayList 41, 101
displayPattern 38, 102
doubleButtered 102
editable 43
editFormats 38, 102
editing 34
editPattern 38, 102
enabled 102
fieldValue 53
firstValidCursorPosition 102
font 102
for IPAddress 47
for numeric validators 47
for String validator 48
foreground 102
format 103
increment 10, 104
invalidBackground 42, 104
invalidChars 21, 104
invalidForeground 42, 104

InvalidInfo 42, 50
invalidPolicy 43, 104
IPValidators 104
isCurrency 42
JClass Field components 47
key properties 37
locale 105
mask 21, 39, 105
maskChars 105
maskInput 40, 106
matchPickList 41, 106
max 10, 21, 43, 106
maximumSize 106
milleniumThreshold 106
min 10, 21, 43, 106
minimumSize 106
name 106
numMaskMatch 39, 106
pickList 41, 107
pickListIndex 107
placeHolderChars 40, 107
preferredSize 107
range 43, 107
required 107
selectOnEnter 107
setting programatically 53
size 107
spinPolicy 108
state 43, 108
summaries 46
summary for date/time validators 49
timeZone 108
toolTipText 108
useIntlCurrencySymbol 108
Validator 38
validChars 21, 109
validClass 109
value 37, 109
ValueModel 50

property introduction 37
property listing 99
property sheet 33

using 33

Q
query

data 58
data, JClass DataSource 61

Quest Software technical support
contacting 5
Index 133

R
range property 43, 107
refine

mode in auto complete 119
related documents 4
removeFieldListener 44
required property 107
Return key 28

S
selectOnEnter property 107
setMask 32
size property 107
spin field 10

examples 74
pick list 10

spinPolicy property 108
state property 43, 108
stateIsInvalid event 117
String validator

properties for 48
suggest

mode in auto complete 119
support 5, 6

contacting 5
FAQs 6

T
tables

format 44
technical support 5, 6

contacting 5
FAQs 6

techniques
building a Field 53

terminology 9
text field 10, 68
time validator

customizing a component 56
property summary 49

timeZone property 108
toolTipText property 108
types

data
handled by JClass Field 11

typographical conventions 2

U
useIntlCurrencySymbol property 108

V
validation process 22
validator 20

date/time, properties for 49
IPAddress, properties for 47
numeric, properties for 47
property 38, 59, 62
String, properties for 48

validators 21
data types 21
Date

customizing 56
functions 21

defaultValue property 22
display pattern 21
edit pattern 21
invalidChars property 21
mask property 21
max property 21
min property 21
validChars property 21

JCInvalidInfo
customizing 56

JCString
customizing 55

multiple
customizing 56

numeric
customizing 55

Time
customizing 56

validation process 22
validChars property 21, 109
validClass property 109
value model 20
value property 37, 109
valueChanged 28, 117
valueChangedBegin event 117
valueChangedEnd event 117
valueChanging 28, 117
ValueModel 37

properties 50
visual component 20
visual objects 10

Y
year values

handling two-digit 63
134 Index

	JClass Field
	Preface
	Introducing JClass Field
	Typographical Conventions in this Manual
	Assumptions
	Overview of the Manual
	API Reference
	Licensing
	Related Documents
	About Quest
	Contacting Quest Software
	Customer Support
	Product Feedback and Announcements

	Using JClass Field
	JClass Field Basics
	1.1 Terminology
	1.2 Overview of GUI Components and Field Data Types
	1.3 JClass Field Components and Data Types
	1.4 The Structure of a JClass Field Component
	1.5 Validators
	1.6 JClass Field Inheritance Hierarchy
	1.7 Events
	1.8 Keystroke Actions
	1.9 An Example Program
	1.10 Internationalization

	JClass Field’s Properties
	2.1 Introduction
	2.2 Field’s Key Properties
	2.3 Format Tables
	2.4 Property Summaries
	2.5 Exploring the Form Demo

	Building a Field
	3.1 Determining Which Technique to Use
	3.2 Creating a New Field Component (Using an IDE)
	3.3 Creating a New Field Component (Programmatically)
	3.4 Data Binding
	3.5 Handling Two-Digit Year Values

	Example Code for Common Fields
	4.1 Example Programs
	4.2 Examples of Text Fields
	4.3 Examples of Spin Fields
	4.4 Examples of Combo Fields
	4.5 Examples of Popup Fields
	4.6 Examples of Label Fields
	4.7 Event Programming

	Reference Appendices
	JClass Field Property Listings
	Distributing Applets and Applications on a Web Server
	B.1 Using JarMaster to Customize the Deployment Archive

	Porting JClass 3.6.x Applications
	C.1 Key Concept Differences
	C.2 Code Differences
	C.3 Property Changes
	C.4 Porting Guidelines
	C.5 Event Handling Changes

	Using JCField’s Autocomplete Feature
	D.1 Using Autocomplete in a JCComboField
	D.2 Autocomplete Methods
	D.3 Autocomplete Modes
	D.4 Code Examples
	D.5 Setting and Updating the List of Autocomplete Strings
	D.6 Porting Guidelines

	Index

