
JClass HiGrid
Programmer’s Guide

Version 6.3 ■

for Java 2 (JDK 1.3.1 and higher)

The Unique RAD Outline-grid
for Hierarchical Dynamic Data

TM

8001 Irvine Center Drive
Irvine, CA 92618
949-754-8000
www.quest.com

April 2004 RefNo: PRGDE-JCHGD/630-04/2004

© Copyright Quest Software, Inc. 2004. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used or copied
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording
for any purpose other than the purchaser's personal use without the written permission of Quest Software,
Inc.

Warranty

The information contained in this document is subject to change without notice. Quest Software makes no
warranty of any kind with respect to this information. QUEST SOFTWARE SPECIFICALLY
DISCLAIMS THE IMPLIED WARRANTY OF THE MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Quest Software shall not be liable for any direct, indirect, incidental,
consequential, or other damage alleged in connection with the furnishing or use of this information.

Trademarks

JClass, JClass Chart, JClass Chart 3D, JClass DataSource, JClass Elements, JClass Field, JClass HiGrid,
JClass JarMaster, JClass LiveTable, JClass PageLayout, JClass ServerChart, JClass ServerReport,
JClass DesktopViews, and JClass ServerViews are trademarks of Quest Software, Inc. Other trademarks and
registered trademarks used in this guide are property of their respective owners.

World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com
e-mail: info@quest.com
U.S. and Canada: 949.754.8000

Please refer to our Web site for regional and international office information.

This product includes software developed by the Apache Software Foundation http://www.apache.org/.

The JPEG Encoder and its associated classes are Copyright © 1998, James R. Weeks and BioElectroMech.
This product is based in part on the work of the Independent JPEG Group.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, all
files included with the source code, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

http://www.quest.com
http://www.apache.org/

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This product includes software developed by the JDOM Project (http://www.jdom.org/). Copyright © 2000-
2002 Brett McLaughlin & Jason Hunter, all rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions,
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions, and the disclaimer that follows these conditions in the documentation and/or other
materials provided with the distribution.

3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
license@jdom.org.

4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in
their name, without prior written permission from the JDOM Project Management
(pm@jdom.org).

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

http://www.jdom.org/
mailto:license@jdom.org
mailto:pm@jdom.org

Table of Contents

Preface . 1
Introducing JClass HiGrid 1
Assumptions . 3
Typographical Conventions in this Manual 4
Overview of the Manual . 4
API Reference . 5
Licensing . 5
Related Documents . 5
About Quest . 6
Contacting Quest Software 6
Customer Support . 6
Product Feedback and Announcements 7

Part I: Using JClass HiGrid

1 JClass HiGrid Overview .11
1.1 Introduction . 11
1.2 JClass HiGrid’s Major Classes and Interfaces 18
1.3 Operations on Cells 22
1.4 The Data Model for JClass HiGrid 33
1.5 Internationalization 37

2 Properties of JClass HiGrid. .39
2.1 Introduction . 39
2.2 Programming JClass HiGrid 39
2.3 Cell Formats and Cell Styles 40
2.4 Data Rows and Summary Lines 46
2.5 JClass HiGrid Listeners and Events 55
2.6 JClass DataSource Events and Listeners 59
2.7 Printing a Grid . 70

3 JClass HiGrid Beans .73
3.1 JClass HiGrid JavaBeans 73
3.2 Properties of JCHiGrid Bean 75
i

3.3 Using the Customizer 78
3.4 Overview of the Customizer’s Functions 79
3.5 The Serialization Tab 81
3.6 Specifying the Data Sources 83
3.7 Joining Tables . 85
3.8 The Driver Table Panel 86
3.9 Driver Limitations 86
3.10 Setting Properties on the Format Tab 87
3.11 Setting a Column’s Edit Status Properties 96
3.12 The JCHiGridExternalDS Bean 97

4 Displaying and Editing Cells . 99
4.1 Overview . 99
4.2 Default Cell Rendering and Editing 100
4.3 Rendering Cells 101
4.4 Editing Cells . 108
4.5 The JCCellInfo Interface 117

5 JClass DataSource Overview . 119
5.1 Introduction . 119
5.2 The Two Ways of Managing Data Binding in JClass DataSource 120
5.3 Using JClass DataSource with Visual Components 120
5.4 JClass DataSource and the JClass Data Bound Components . . 121
5.5 The Data Model’s Highlights 123
5.6 The Meta Data Model 124
5.7 Setting the Data Model 129
5.8 JClass DataSource’s Main Classes and Interfaces 139
5.9 Examples . 141
5.10 Binding the data to the source via JDBC 143
5.11 The Data “Control” Components 144
5.12 Custom Implementations 145
5.13 Use of Customizers to Specify the Connection to the JDBC . . 147
5.14 Classes and Methods of JClass DataSource 147

6 The Data Model . 151
6.1 Introduction . 151
6.2 Accessing a Database 152
6.3 Specifying Tables and Fields at Each Level 155
6.4 Setting the Commit Policy 156
ii Contents

6.5 Methods for Traversing the Data 157
6.6 The Result Set . 159
6.7 Virtual Columns 161
6.8 Handling Data Integrity Violations 163

7 JClass DataSource Beans. 165
7.1 Introduction . 165
7.2 Installing JClass DataSource’s JAR files 166
7.3 The Data Bean . 167
7.4 The Tree Data Bean 178
7.5 The Data Navigator and Data Bound Components 183
7.6 Custom Implementations 184

8 DataSource’s Data Bound Components. 185
8.1 Introduction . 185
8.2 The Types of Data Bound Components 185
8.3 The Navigator and its Functions 187
8.4 Data Binding the Other Components 193

9 Sample Programs . 195
9.1 The Sample Database 195
9.2 The DemoData Program 196
9.3 Base Example . 202
9.4 BaseButton Example 204
9.5 Cell Validation Example 204
9.6 Row Validation Example 205
9.7 Exception Message Example 207
9.8 Popup Menu Example 207

Part II: Reference Appendices

 A Bean Properties Reference. 211
A.1 HiGridBean . 211
A.2 HiGridBeanComponent 212
A.3 HiGridBeanCustomizer 213
A.4 DataBean . 213
A.5 DataBeanComponent 214
A.6 DataBeanCustomizer 215
Contents iii

A.7 TreeDataBean . 215
A.8 TreeDataBeanComponent 216
A.9 TreeDataBeanCustomizer 217
A.10 DSdbJNavigator 217
A.11 DSdbJTextField 220
A.12 DSdbJImage . 223
A.13 DSdbJCheckbox 224
A.14 DSdbJList . 227
A.15 DSdbJTextArea 230
A.16 DSdbJLabel . 233

 B Distributing Applets and Applications 237
B.1 Using JarMaster to Customize the Deployment Archive . . . 237

 C Colors and Fonts . 239
C.1 Colorname Values 239
C.2 RGB Color Values 239
C.3 Fonts . 244

Index . 245
iv Contents

Preface
Introducing JClass HiGrid ■ Assumptions ■ Typographical Conventions in this Manual

Overview of the Manual ■ API Reference ■ Licensing ■ Related Documents ■ About Quest

Contacting Quest Software ■ Customer Support ■ Product Feedback and Announcements

Introducing JClass HiGrid
Database applications that require an expandable grid to display the graphic
representation of master-detail relationships have a new Java tool: JClass HiGrid. Its
collapsible grid is an excellent tool for allowing top-down exploration and navigation to
detail levels of arbitrary depth. A versatile data binding tool, called JClass DataSource, is
the engine that drives all data retrieval for the grid. You can use it for more generalized
data binding tasks spanning the whole set of JClass products. In addition,
JClass DataSource provides a set of data bound AWT and Swing components.

Because its design is based on the Model-View-Controller (MVC) paradigm,
JClass HiGrid is conceptually straightforward, being both the view and the controller,
while JClass DataSource functions as the model. Ultimately, a grid is a collection of cells.
JClass HiGrid’s cell classes extend the capabilities in com.klg.jclass.cell to support
rendering, editing, and some elementary validating operations. As far as cells are
concerned, JClass DataSource remains the model, while a cell renderer is the view and a
cell editor is the controller. This design decouples the way that a cell is edited from the
way that it is displayed, allowing such flexible scenarios as having a cell containing a
Boolean quantity display it as an icon, while its editor may employ a checkbox, a String
value, or combo box with true/false choices. Extended editors are available for more
specialized items. For instance, a date field is edited with a drop-down calendar.

JClass DesktopViews makes the full range of data bound components available, where
JClass DataSource is used as the data binding layer for tables, charts, and fields requiring
specialized validation. It may be used with any database for which a JDBC (Java
Database Connectivity) driver exists or, through a JDBC-ODBC bridge, for which an
ODBC driver exists. Its primary purpose is to bind to databases that have JDBC drivers,
but it can also be used with non-database sources such as text files, or it can act as a
supplier of information extracted from an “in-memory database” whose values are
created dynamically at run-time. If used within an Integrated Development Environment
(IDE), JClass HiGrid’s Bean makes it particularly easy to bind to a data source, issue SQL
statements, and retrieve and display the resulting data tables.

JClass DataSource manages circumstances in which the underlying structure of the data
design is a tree. Because Java does not define a Tree data structure, a completely general
tree model is defined within JClass DataSource itself1.

1. The TreeModel interface is used for this purpose. The more specific interface is DataModel, which encapsulates two
types of trees, the MetaDataTree and the DataModelTree. Each of these has its own interface.
1

Feature Overview
JClass HiGrid and JClass DataSource are JavaBeans that facilitate the presentation of data
extracted from a database or elsewhere in a hierarchical, or master-detail, form. Their
full-featured customizers can be used in IDEs to quickly develop a data retrieval
application. JClass HiGrid’s custom property editor exhibits a highly interactive interface
that allows end-users to perform all the common data operations without extensive
coding. Moreover, for those whose application may demand more in-depth
programming, the products’ APIs contain a number of helper methods designed to make
common tasks easy to accomplish.

You can set the properties of JClass HiGrid components to determine how your data
entry elements will look and behave. You can:

■ Modify the number and arrangement of hierarchical levels. Customizers allow you to
add or remove tables, fields, and joins as your project matures and your needs
change.

■ Include columns whose contents are computed from existing fields and, if necessary,
other generated fields.

■ Include header and footer columns which can contain aggregate information. For
instance, a footer column may display the total amount of a number of purchase
orders where each row in a table has a field containing the individual amount for that
order.

■ Present fields that contain various database and non-database types, including
pictures.

■ Use JClass Field components in cells to validate data entry operations.

JClass HiGrid also provides several methods which:

■ Simplify connecting to a database, and allow you to build database applications more
quickly using JDBC-ODBC bridge drivers or native-protocol all-Java drivers.

■ Support transaction management.

■ Permit you to control the appearance of the graphical user interface components as
well as controlling the type of operation the end-user is permitted to perform on the
records.

Other highlights of JClass HiGrid:

■ JClass HiGrid is easy to configure (subclassable) or replicate.

■ Events in JClass HiGrid derive from HiGridEvent, a base class for about a dozen
specific grid events. The delegation event model means that you need only listen for
the events in which you are interested.

■ Listeners for these events all have Adapter classes that you can subclass.

■ Many interfaces have Default versions.
2 Preface

■ Formatting blocks of cells in the grid has been simplified by introducing
CellStyles classes. There are Default...CellStyle classes for all five types of
rows in JClass HiGrid.

■ The header row can be made to temporarily replace the row above the pointer,
ensuring that a copy of the header row is always visible even when scrolling a large
table.

■ Rows can be copied and pasted.

■ Scrollbars can be placed on either edge of the grid, right or left, top or bottom.

■ A “cursor tracking” mechanism makes it possible to change the pointer’s icon
depending on its location.

■ The edit status column, which is used to mark edited rows, is an optional item.

■ Java 2-style printing is supported.

■ There is a dispose() method to ensure unused grids don’t remain in memory.

JClass HiGrid may be used in conjunction with Quest’s JClass Field, JClass LiveTable,
and JClass Chart. These products permit data binding as well as providing you with
additional Java components that complement or replace their equivalent AWT and Swing
components.

All JClass HiGrid components are written entirely in Java; so as long as the Java
implementation for a particular platform works, JClass HiGrid will work.

You can freely distribute Java applets and applications containing JClass components
according to the terms of the License Agreement that appears at install time.

Assumptions

This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming and
Java programming concepts such as classes, methods, and packages before proceeding
with this manual. See Related Documents later in this section of the manual for additional
sources of Java-related information.
Preface 3

Typographical Conventions in this Manual

Overview of the Manual

For general instructions on installing JClass products, including JClass HiGrid, please
see the JClass DesktopViews Installation Guide. It provides help with common
configuration problems, including setting your CLASSPATH, establishing a database
connection for running JClass HiGrid’s examples, and IDE setup.

Part I — Using JClass HiGrid — describes how to use the JClass HiGrid programming
components.

Chapter 1, JClass HiGrid Overview, presents an overview of JClass HiGrid’s general
structure and use.

Chapter 2, Properties of JClass HiGrid, provides additional information on using
JClass HiGrid.

Chapter 3, JClass HiGrid Beans, discusses JClass HiGrid’s Bean properties and shows
how to use the custom property editor.

Chapter 4, Displaying and Editing Cells, discusses cell renderers and editors and
presents an indication of how to write your own renderers and editors.

Chapter 5, JClass DataSource Overview, introduces the data access mechanism for
JClass HiGrid.

Chapter 6, The Data Model, describes how a connection to a database is established.

Typewriter Font ■ Java language source code and examples of file contents.
■ JClass HiGrid and Java classes, objects, methods, properties,

constants, and events.
■ HTML documents, tags, and attributes.
■ Commands that you enter on the screen.

Italic Text ■ Pathnames, filenames, URLs, programs, and method
parameters.

■ New terms as they are introduced, and to emphasize important
words.

■ Figure and table titles.
■ The names of other documents referenced in this manual, such

as Java in a Nutshell.

Bold ■ Keyboard key names and menu references.
4 Preface

../getstarted/index.html

Chapter 7, JClass DataSource Beans, discusses JClass DataSource’s Bean properties
and shows how to use the custom property editor.

Chapter 8, DataSource’s Data Bound Components, presents the suite of data bound
components that accompany the product.

Chapter 9, Sample Programs, illustrates some selected techniques that are useful in
programming the grid.

Part II — Reference Appendices — contains detailed technical reference information.

Appendix A, Bean Properties Reference, contains tables listing the property names,
return types, and default values for JClass HiGrid’s JavaBeans.

Appendix B, Distributing Applets and Applications, illustrates how to use
JClass JarMaster to help you combine only those JClass JARs that you really need for
deploying your application.

Appendix C, Colors and Fonts, lists the common color names and their values. You
may find this list useful when you are deciding which colors to use for various
elements in your grid.

API Reference

The API reference documentation (Javadoc) is installed automatically when you install
JClass HiGrid and is found in the JCLASS_HOME/docs/api/ directory.

Licensing
In order to use JClass HiGrid, you need a valid license. Complete details about licensing
are outlined in the JClass DesktopViews Installation Guide, which is automatically installed
when you install JClass HiGrid.

Related Documents

The following is a sample of useful references to Java and JavaBeans programming:

■ “Java Platform Documentation” at http://java.sun.com/docs/index.html and the “Java
Tutorial” at http://www.java.sun.com/docs/books/tutorial/index.html from Sun
Microsystems

■ For an introduction to creating enhanced user interfaces, see “Creating a GUI with
JFC/Swing” at http://java.sun.com/docs/books/tutorial/uiswing/index.html

■ Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc. See the O’Reilly Java
Resource Center at http://java.oreilly.com.
Preface 5

http://java.sun.com/docs/index.html
http://java.sun.com/docs/programmer.html
../api/index.html
../getstarted/index.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.oreilly.com

■ Resources for using Java Beans are at http://www.java.sun.com/beans/resources.html

These documents are not required to develop applications using JClass HiGrid, but they
can provide useful background information on various aspects of the Java programming
language.

About Quest
Quest Software, Inc. (NASDAQ: QSFT) is a leading provider of application management
solutions. Quest provides customers with Application Confidencesm by delivering
reliable software products to develop, deploy, manage and maintain enterprise
applications without expensive downtime or business interruption. Targeting high
availability, monitoring, database management and Microsoft infrastructure
management, Quest products increase the performance and uptime of business-critical
applications and enable IT professionals to achieve more with fewer resources.
Headquartered in Irvine, Calif., Quest Software has offices around the globe and more
than 18,000 global customers, including 75% of the Fortune 500. For more information on
Quest Software, visit www.quest.com.

Contacting Quest Software

Please refer to our Web site for regional and international office information.

Customer Support
Quest Software’s world-class support team is dedicated to ensuring successful product
installation and use for all Quest Software solutions.

E-mail sales@quest.com

Address

Quest Software, Inc.
World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
USA

Web site www.quest.com

Phone 949.754.8000 (United States and Canada)

SupportLink www.quest.com/support

E-mail support@quest.com
6 Preface

http://www.quest.com
mailto:sales@quest.com
http://www.quest.com
http://www.quest.com/support
http://java.sun.com/beans/resources.html
mailto:support@quest.com

You can use SupportLink to do the following:

■ Create, update, or view support requests

■ Search the knowledge base, a searchable collection of information including program
samples and problem/resolution documents

■ Access FAQs

■ Download patches

■ Access product documentation, API reference, and demos and examples

Please note that many of the initial questions you may have will concern basic installation
or configuration issues. Consult this product’s readme file and the JClass DesktopViews
Installation Guide (available in HTML and PDF formats) for help with these types of
problems.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying the
following information will help us serve you better:

■ Your name, email address, telephone number, company name, and country

■ The product name, version and serial number

■ The JDK (and IDE, if applicable) that you are using

■ The type and version of the operating system you are using

■ Your development environment and its version

■ A full description of the problem, including any error messages and the steps required
to duplicate it

Product Feedback and Announcements
We are interested in hearing about how you use JClass HiGrid, any problems you
encounter, or any additional features you would find helpful. The majority of
enhancements to JClass products are the result of customer requests.

JClass Direct Technical Support

JClass Support Email support@quest.com

Telephone 949-754-8000

Fax 949-754-8999

European Customers
Contact Information

Telephone: +31 (0)20 510-6700
Fax: +31 (0)20 470-0326
Preface 7

../api/index.html
../../readme.html
../getstarted/index.html
../getstarted/index.html
mailto:support@quest.com

Please send your comments to:
Quest Software
8001 Irvine Center Drive
Irvine, CA 92618

Telephone: 949-754-8000
Fax: 949-754-8999
8 Preface

Part
I

Using
JClass HiGrid

1
JClass HiGrid Overview

Introduction ■ JClass HiGrid’s Major Classes and Interfaces ■ Operations on Cells

The Data Model for JClass HiGrid ■ Internationalization

1.1 Introduction

JClass HiGrid provides your users with an intuitive structured visual representation of
information retrieved from one or more databases. While a form with data bound fields is
a one-record-at-a-time approach, JClass HiGrid lets you present your users with a
hierarchically organized grid. The visibility of sub-levels is under the user’s control, but it
can be under programmatic control as well. Your design can include many sub-levels,
resulting in an efficient concentration of information for tasks that require users to have
many levels of detail available. Since you choose the detail records to be made available
at every level, your design can be quite flexible and it can encompass many differing data
retrieval needs. Not only can your users view the information, they can update it, add and
delete rows—whatever you choose to permit.

Transaction processing is supported. If your application demands that some operations
must be treated as a logical unit of work, the data source part of JClass HiGrid can (with
your assistance, of course) execute the sequence as one atomic operation. If any one of
the internal units fails to commit, all updates are rolled back and the database is left in its
original state. Note that this is not an automatic recovery mechanism using log files, such
as would be triggered by some type of system failure.

JClass HiGrid works with JDK 1.3.1 or later. It can contain hierarchical levels of
information whose sub-tables the end-user can choose to show or hide dynamically at run
time. The HiGrid can be contained in a resizable window, so the user has control over the
size of the main level, and whether or not an individual detail level is showing.

1.1.1 The Relationship between JClass HiGrid and JClass DataSource

We’ll take the simplest possible master-detail scenario to illustrate the way that the two
products cooperate to present information extracted from a data source. We assume the
existence of a database that contains a table called Orders. It contains the most frequently
needed information about all the outstanding orders placed by every customer. Another
table, called OrderDetails, contains additional information about these orders.
11

The entity-relationship diagram for this situation is shown below.

Figure 1 Entity-relationship diagram for a simple master-detail relationship.

In a master-detail scenario, one or more records of detailed information are displayed for
each master record. In our example, the master records comes from the Orders table,
while the detail records comes from the OrderDetails table. The database designer has
already determined what type of information each of the tables contains, so you simply
extract the pieces that you need in your application.

Meta Data
At this stage, you are working with the database’s meta data. The meta data contains
descriptive information about the tables, including the names of the data fields within
each table and the SQL data types of each field. Each node in the entity-relationship
diagram stores the MetaData of a given table in a simple tree-like structure called the
MetaDataTree. The diagram shows that an OrderDetails sub-table will be created for each
row of the Orders table, in order to show more detailed information about the specified
order.

SQL Query
The exact contents of both the Orders and OrderDetails tables as displayed are determined
by the SQL query used to retrieve the rows. A simple SQL query names the data fields of
interest for a given table. A more complex SQL query adds a “WHERE” clause to restrict
the number of records returned by the database. The SQL statement needed to construct
an OrderDetails sub-table requires a WHERE clause that is able to select only the subset of
records from the OrderDetails table within the database that is related to the master Orders
record. This selection process is called a database “join.” The join is usually accomplished
by matching common fields within each table to each other. In this example, a field called
OrderID will be used to construct an OrderDetails sub-table by selecting rows from the
database’s OrderDetails table where its OrderID field is the same as the OrderID field in the
master Orders record.

At startup, the grid by default displays a single table called the root DataTable. The root
DataTable is created by executing the SQL query associated with the MetaData node at
the root of the MetaDataTree. In our example, the root DataTable will display the
contents of the Orders table as the master records. Detail records, in the form of
OrderDetails DataTables are exposed at run time by clicking on an expander icon, also
called a folder icon, used for that purpose. As the user clicks on more expander icons, more
DataTables are created. Thus, at run time, another tree-like structure called the
DataTableTree is constructed, and it is composed of DataTables.
12 Part I ■ Using JClass HiGrid

While there is a 1:1 relationship between Orders and OrderDetails in the meta data
diagram, there is a 1:N relationship between the Orders DataTable and the OrderDetails
DataTables associated with each row of the parent Orders. This occurs because any single
order may consist of a number of items, each being described by an OrderDetails record.
Both the grid and its underlying data source must be able to deal with structures of this
type, and the more general type where the master-detail relationship forms an N-way
tree.

Result Sets
Once the structure has been defined, and the SQL query has been formulated, the
database can return data, called result sets, for the root-level table and for every one of the
sub-tables. The queries that return sub-table result sets are performed as needed, when
the grid needs to display them. It is the DataTable’s job to store the result sets for later
retrieval.

Visual Aspects of the Grid
Now that you can retrieve data in a hierarchical fashion, you may wish to control the
visual aspects of the fields within the grid. For instance, you may want to adjust the size,
color, or other visual property of the data fields. The following list illustrates those items
that present information about the state of the grid and those that are under a user’s
control.
Chapter 1 ■ JClass HiGrid Overview 13

These are:

Clip Indicators These small icons are present when the size of a cell is too small to
display all of the text in it.

Column Moving The initial position of a column is the same as the order in which
they are mentioned in the database SELECT statement. End users
can rearrange the order to suit themselves by dragging a column
to a new position on the row.

Column Resizing Columns may be resized by dragging on the right-hand border.
The resizing operation affects all columns of the same type.
If you place a grid in an Applet, or flush in a frame, the right-hand
column lies very close to the frame’s border. This might make it
difficult for end-users to position the mouse pointer on the
column’s resizing border. The setExtraWidth() method in HiGrid
lets you set more space between the rightmost column’s border
and the frame’s border.

Dynamic Headers The header row disappears off the top of the viewing area when
an end-user scrolls down a large table. A method in HiGrid, called
setHeaderTipVisible(), lets you control the visibility of a special
“tool tip” that exactly replicates the header row and places it in the
row above the mouse pointer.

Edit Status
Column

The Edit Status Column presents a visual indication that marks the
current row, and a pencil icon marks rows that end users have
changed by editing one or more cells.

You can control whether the edit status column appears. See the API
documentation for EditStatusCellFormat.setShowing().

EditStatus is now a potentially replaceable public class. So is
NodeRenderer, the class that draws the cell. To replace it, you need
to extend JCImageCellRenderer and implement
HiGridNodeRenderer. See Displaying and Editing Cells, in
Chapter 4 for more details on JClass HiGrid’s cell renderers.

Folder Icons These icons present visual clues about the hierarchy of the data.

Indenting
Subtables

Levels are indented by a fixed amount, if at all. Indentation is
turned on or off using the setLevelIndent() method in HiGrid.

Popup Menu A configurable popup menu gives end users access to frequently
used commands. Popup commands are exposed, allowing you to
invoke menu commands from your code.

Row-based copy
and paste

Row-based copy and paste operations are available.
14 Part I ■ Using JClass HiGrid

Figure 2 Active elements on HiGrid’s graphical user interface.

Row Resizing Rows are resized by dragging on the horizontal boundaries of any
Edit Status cell. The resizing operation affects all the rows in the
corresponding table, not just the one that was dragged.

Sort Indicators These indicators appear when an end user clicks on a column
header. Since bidirectional sorting is implemented, the icon shows
whether the sort is in ascending or descending order.
Chapter 1 ■ JClass HiGrid Overview 15

Information about how a given DataTable is to be rendered is stored within a
FormatNode. For each field in a MetaData node, there exists a corresponding field within a
FormatNode that describes all visual aspects of that data field. FormatNodes are created at
design-time and are stored within a FormatTree. There is one FormatNode stored in the
FormatTree for each MetaData node, so the FormatTree bears a 1:1 relationship to the
MetaDataTree on a node-by-node basis.

A RowTree is created to visually depict the contents of the DataTableTree at run-time. It is
able to selectively display the contents of the entire DataTableTree. However, the
RowTree is a logical superset of the DataTableTree because it contains rows that are not
retrieved from the data source. These are the header, footer, before details, and after
details rows which provide places for such things as column headings and summary
information. The RowTree contains only the essential amount of information needed to
reference the data in the DataTableTree and the formatting information in the
FormatTree. It uses this information to manage the display of the grid.

Cells
The rows of the RowTree are comprised of cells. This is the basic unit of information in the
grid. The source of a cell’s value is a database field. Thus, within the context of this
manual, the words field, cell, and column are used almost interchangeably1.
JClass DataSource maintains the values for all these cells within DataTables — the grid
does not maintain separate copies. Thus, for any row, the DataTableTree contains the
actual data while the formatting information is drawn from the corresponding node in the
FormatTree.

Besides specifying simple visual information such as color and font, each FormatNode also
defines objects to display and edit a given cell. Each cell is drawn by an object called a
Cell Renderer and edited by an object called a Cell Editor. This allows tremendous
flexibility in terms of displaying and modifying data, since the modification of a cell’s
value is not tied to its display. For ease of use, a Cell Renderer and Cell Editor are
automatically chosen for each field based on the cell’s data type (although these choices
can be overridden).

1.1.2 JClass HiGrid and the Model-View-Controller Paradigm
The design of JClass HiGrid conforms to the Model View Controller (MVC) paradigm, a
technique for managing graphical user interfaces. MVC is a popular object oriented
pattern that separates the application object (Model) from the way it is represented to the
user (View), and from the way in which the user controls it (Controller). In the case of the
JClass data binding products, the separation between the model and the view is achieved
by providing two distinct packages. The data model is contained in JClass DataSource
(the jclass.datasource package), and functions as the Model, and JClass HiGrid (the
com.klg.jclass.higrid package) comprises the View and the Controller. Further

1. Field is used to emphasize the origin of the data (in a database field), cell is used when the emphasis is on the display, and
column is used when referring to the group of cells in a DataTable that have the same field name.
16 Part I ■ Using JClass HiGrid

separation of function is achieved by having a separate Controller class within
JClass HiGrid to manage user interactions.

The Controller class is subclassable and replaceable.

The Model part of MVC keeps all the information about the organization and the state of
the data. It also implements all the operations that can be used to manipulate the data. It
has no responsibility for displaying the data, nor for the GUI actions that are used to
manipulate the data. The Model’s methods know how to access and modify data; the
View methods manage the display of that data. The View object communicates with the
Model. It uses the query methods of the Model to obtain data from the underlying
database and then displays the information.

Because the View is separate from the Model, multiple views, even different kinds of
views, can all draw their data from the same model. This makes it possible to have a form
containing JClass Field components, a JClass LiveTable, and a JClass Chart all presenting
data from a connection managed by JClass DataSource. Selecting a different cell in any
one of the views and modifying its contents there causes all the corresponding cells in the
other views to update themselves, thereby maintaining a consistent view of the data
everywhere.

In the MVC paradigm, the Model is the object that manipulates the data. The View code
relies on a public interface to the data. It does not need to know anything about
implementation details. When the data model changes due to an update, it fires an event
that is passed on to the View so that the information on the screen can be updated. The
View has no memory, except for the layout structure. It refers to the data source
whenever it needs to redisplay the data in cells.

The Controller object receives mouse events and keyboard inputs and translates them
into commands for the model or the view. For example, a mouse click on a cell selects it
and launches its editor, or a mouse click on the folder (expander) icon exposes dependent
rows in a hierarchical grid. In some situations the Controller may interact directly with
the View without needing to communicate with the Model. For example, the view may
consist of a group of rows. Upon receiving a mouse-click on an editable cell in one of
these rows, the Controller can request that the View should indicate that the selected cell
is being edited, and launch the appropriate editor. The exchange of a cell renderer for a
cell editor does not require that the data be updated in the Model. After a successful edit,
the Model is informed to update the data source.

HiGrid’s View and its Controller work together, but the Controller is also responsible for
communicating data access operations back to the data source.

1.1.3 Types of Data Sources Supported

The grid may be bound to any of the common sources of data. Naturally, a JDBC data
source is supported, as is any source that can be accessed through a JDBC-ODBC bridge.
Unbound data can be presented as well, although you are responsible for adding the
necessary code. In-memory data arrays or vectors, where the data has been generated as
Chapter 1 ■ JClass HiGrid Overview 17

the program runs, may be used as the data source. The example called VectorData.java
sketches one approach that can be taken.

1.2 JClass HiGrid’s Major Classes and Interfaces
The diagrams in this and the following two sections show a simplified inheritance
hierarchy for the three major groups in the HiGrid family. The inheritance chain is not
followed back to the ultimate ancestor; instead, the hierarchy within the packages is
shown.

Among the many classes in the JClass HiGrid package, the main one is the HiGrid object
itself. It delegates to another class, normally the DefaultDataModelListener class, in the
JClass DataSource package, which is for objects that are interested in receiving
DataModelEvents. The DataModelEvent, through the parameter it passes, describes
changes to the data source. Interested listeners can then query this data source to reflect
the changes in their display. HiGrid implements three other interfaces,
ComponentListener, and JCValidateListener. The first two are recognizable as standard
18 Part I ■ Using JClass HiGrid

java.awt.event and java.awt interfaces respectively, and JCValidateListener, part of
the com.klg.jclass.cell package, is for receiving value change events from a cell editor.

Figure 3 Major classes and interfaces for HiGrid.

GridArea passes mouse and keyboard events to the Controller class where they are
handled. This class also positions the cell editors.

Class CellFormat implements the JCCellInfo interface, which lists the methods that must
be defined to return information about the cell. CellFormat renders a given cell by
implementing these methods. RowFormat sets the height of the row, its indent and grid
style, and sets up the formats for the row.

GridScrollbar manages the interaction with the actual scrollbar. The position of the
vertical scrollbar can be on either side of the grid, and the position of the horizontal
Chapter 1 ■ JClass HiGrid Overview 19

scrollbar can be at the top or the bottom of the grid. See HiGrid’s API for
setHorizontalScrollbarConstraints() and setVerticalScrollbarConstraints().

RowTree is based on Tree, which implements TreeModel, a generic interface for a Tree
hierarchy. This tree interface is used for organizing the meta data and the actual data for
the HiGrid.

For more information on the JClass HiGrid API, see the entries under
com.klg.jclass.higrid in the Javadoc API for this product.

1.2.1 A Closer Look at JClass HiGrid

JClass HiGrid consists of one single GUI Component, with sub-tables rendered as
necessary. The grid is bound to a database, although this is not strictly necessary, because
the grid can be used in unbound mode. Either way, the grid is bound to some source of
data. The grid is able to present any hierarchically organized (tree-like) data design.
Normally, there will be a parent table (or joined parent tables) and one or more
subsidiary tables. These subsidiary tables can themselves contain subsidiary tables, and so
on. You can code your design or you can use JClass HiGrid’s complete design-time
customizer. See the discussion in JClass HiGrid Beans, in Chapter 3, for details on how to
create a hierarchical data design using this design aid, the HiGridBeanCustomizer.

Figure 4 The general appearance of a grid, showing folder icon and edit status columns. A row tip appears
while there is a mouse-down event on the scrollbar thumb.

The grid itself is the visual component for displaying the data model. It is expandable and
collapsible through user interaction. The user can choose to expose dependent rows, and,
if these rows also contain dependent rows, they too can be exposed. Changes to cells are
effected by clicking on a cell to activate its editor. The changes are committed according
to three selectable commit policies, ranging from manual to two types of deferred
commit. Transaction processing is supported as a special case of the commit policy.
20 Part I ■ Using JClass HiGrid

The appearance of a level in the structure can be individually specified. The Customizer
can be employed to specify the appearance of a level.

One scrollbar controls the view of the top-level data. One way that end-users locate a row
is by scrolling. They click on the scrollbar thumb and a “row tip” appears. The row tip’s
label is customizable, but by default it displays the contents of the first data column for the
row that it is on. Note that there are two columns to the left of the first data column. The
first is where the Folder Icons reside and the column to its right, containing initially blank
squares, is the Edit Status column. The Folder Icons column shows the grid hierarchy in
outline form, while the Edit Status column uses icons to indicate the various ways that a
row may have been edited. The various icons are shown in the grid symbols table under
Grid Symbols. Scrollbars are not available for sub-tables.

The grid area of the HiGrid is always double buffered. The result is faster updates and
flicker-free operation.

1.2.2 Resizing the Grid

Since JClass HiGrid is subclassed from java.awt.Component, the grid’s overall
proportions are resized like any other window.

Users may resize any column horizontally by placing the mouse pointer at its right hand
boundary where it becomes a double-ended arrow, then dragging to the new size.
Resizing a column or row affects all columns/rows for that level of the table. Individual
cells are selected by clicking on them, or by traversing to them using the arrow keys
(unless the cell is in edit mode, in which case the right and left arrow keys position the I-
beam in the field). Resize vertically by placing the mouse pointer at the bottom of one of
the Edit Status column cells, then holding the left mouse button down and dragging to the
new height. You can resize the width of a column no matter what row you are currently
on. Drag the cell’s left border to resize all cells in that column. By default, vertical resizing
is invoked only on cells in the Edit Status Column, but there is a property that allows you
to set vertical resizing on any cell if you wish. Once selected, a cell’s contents may be
modified, assuming that the proper update policy is in effect. Since cells may contain
different data types, different cell editors will be invoked to effect the edits.

Jump scrolling is used in the vertical direction. A row is either visible or it is not; there are
no half measures except for the last row, and only if the height of the view rectangle is
incommensurable with an integral number of rows. On the other hand, horizontal
scrolling by dragging the scrollbar is on a pixel-by-pixel basis, resulting in smoother
scrolling in that direction. (Clicking on the scrollbar arrows results in jump scrolling by a
few pixels at a time.)

1.2.3 The ActionInitiator Interface

JClass HiGrid uses the ActionInitiator interface as a way of interpreting user input.
There is a default mapping between user actions (keystrokes and mouse clicks) and
JClass HiGrid responses. Since not all user input is meaningful to JClass HiGrid, some
Chapter 1 ■ JClass HiGrid Overview 21

user input is ignored, while other input is associated with a specific command, such as
navigating to some specific cell. This section gives an overview of the mechanism used to
manage the mapping, starting with the ActionInitiator interface, whose job is to
determine whether a match has been found between the AWTEvent resulting from a
keystroke or mouse click and a defined mapping currently in effect for the grid.

Figure 5 Classes and Interfaces relating to navigation through the grid.

The two classes that implement ActionInitiator are KeyActionInitiator and
MouseActionInitiator. The two classes allow for distinguishing between keyboard
actions and mouse actions. They have their own implementations of isMatch(), which
determines whether a user input corresponds to one of the actions meaningful to the grid.
Action handling code is contained in the Controller, which defines a list of default
mappings using the constants found in HiGridAction that the grid uses to allow
navigation through the grid. By default, keystrokes are interpreted as navigation
commands, whereas a left-clicking on a cell launches the cell’s editor, or right-clicking on
a cell whose editor is inactive invokes a popup menu that contains database commands as
well as navigation and print commands.

The various actions possible in JClass HiGrid are discussed in the following sections.

1.3 Operations on Cells
Once a cell is highlighted by left-clicking, an editor appropriate for the cell’s data type is
displayed. In this manual, it is referred to as the current cell.

There are the usual cell editors for String and numeric types, and a number of custom
editors are employed as well, such as calendar popups for editing dates, and editors that
perform data validation functions.
22 Part I ■ Using JClass HiGrid

If you are a user of JClass LiveTable, it is useful for you to know that the cell editors for
JClass HiGrid work in the same manner. They are single instance embeddable
components.

Because only one editor at a time is allowed, there is no problem in basing the cell
renderer on the data type. There are cell renderers for each different column in a table.
Also, programmers can write their own cell renderers if they need to accommodate novel
data types. See Displaying and Editing Cells, in Chapter 4, for details.

In a Microsoft Windows environment, the end-user modifies the cell’s data with the help
of an edit popup menu which is accessed by right-clicking on any cell while it is in edit
mode.

The EditPopupMenu class defines a large number of enums for the possible items that can
be chosen to appear in the edit popup menu. You can choose to place any of these in a
customized version of the edit popup menu. A new set of popup menu items presents
frames that contain instructions on using the mouse and keyboard shortcuts in
JClass HiGrid.

Figure 6 The Edit Popup menu in Windows.

All the standard editing operations are available on the popup.

1.3.1 Cursor Tracking
A new method, called setTrackCursor, allows you to set a Boolean flag that controls
whether you wish to be informed about the position of the cursor. You can then change
the default cursor under program control.

1.3.2 Cell Traversal Via the Popup Menu
JClass HiGrid has its own popup menu, quite distinct from the edit popup menu in
Windows. Right-clicking on any cell except the one with an active editor activates this
HiGrid-specific object. The Popup Menu commands for moving from one cell to another
are described in this section and shown in Figure 18, Section 2.5.6. Some of the Popup
Menu items contain sub-choices, in which case they are shown in brackets following the
main item.

■ Move To Grid Record (First, Previous, Next, Last)

Choosing First causes the first cell of the first row to be highlighted. Choosing Previous
causes the first cell of the previous row to be highlighted. The action depends on
Chapter 1 ■ JClass HiGrid Overview 23

which sub-tables are open because the previous visible row will be chosen no matter
what its level is. The same policy applies to Move To Next. Choosing Last causes the
first cell on the last open row to be highlighted no matter what its level is. Thus, these
operations potentially move the highlighted cell between levels in the master-detail
hierarchy.

■ Move To Table Record (First, Previous, Next, Last)

This group maintains the selection within the same level (the same data table), but in
all other respects functions similarly to Move To Grid Record.

■ Move To Parent

Focus moves to the leftmost cell in the parent row from the one on which the
command was issued.

■ Collapse Parent

Collapse the table containing the highlighted cell. Other sub-tables at the same level
as this one but belonging to different parents are not affected.

Edit Operation

■ A highlighted cell may be edited unless you have flagged the column as read-only.
When the cell has focus it is in edit mode, and right-clicking on the cell in a Windows
environment produces a different popup with the usual edit options: Undo, Cut, Copy,
Paste, Delete, and Select All.

Operations on Rows
The defined operations for rows are (bracketed items are the sub-choices):

■ Insert (A list of names of tables—the names that are available in the current data
source)

Inserts a new row in the chosen table.

■ Delete (Current or Selected)

Marks the current or selected rows for deletion. When the rows are actually deleted
depends on the commit policy.

■ Cancel (Current, Selected, or All)

Cancels the edits on the current row, on all selected rows, or all edits that have been
done after the last commit.

■ Update (Current, Selected, or All)

Updates the edits on the current row, on all selected rows, or all edits that have been
done after the last commit.

■ Requery (Record, Record and Details, Selected, Selected and Details, or All)
24 Part I ■ Using JClass HiGrid

Requeries the database. A requery can be done on an individual record, a record and
its dependent tables, selected records with or without their dependent tables, or the
whole database can be requeried. All modifications to the grid since the last commit
will be lost.

■ Select (Current, All In Same Level, All In Same Table, All)

Causes the referenced cells to be selected.

■ Row height sizing operation

All rows of the same type must have the same height. Point the mouse at the lower
border of the rectangle at the left of the first cell on any row (the Edit Status column).
The mouse pointer turns into a double-tipped arrow. Click and drag to resize the
height of all related rows to whatever height you selected for the row you are on.

1.3.3 Operations on Columns
■ Resizing columns horizontally

Resize the width of a column by placing the mouse pointer on the right hand border
of the column header. The mouse pointer turns into a double-tipped arrow. Click and
drag to resize the width. All the cells in the chosen column will be resized, even those
that are underneath and separated by sub-table rows.

■ Resizing columns vertically

A column’s height may not be resized individually. Only the row height is adjustable,
as described in the previous section.

■ Sorting a column

Left-clicking on a column header at any level causes the rows at this level to be sorted
in ascending order if the data type for the column is numeric, date, or String. A
subsequent left-click reverses the sort order. A sorting indicator is displayed in the
header column indicating whether the sort is ascending or descending.

■ Truncated fields

If the size of the cell is too small horizontally to display all the data, a small arrow icon
appears on its right hand side if the text in the cell is right-justified, indicating that the
cell should be resized to make its complete contents visible. Similarly, if the cell’s
height is too small the arrows appear at the top and bottom of the cell. The position of
the arrows depends on which text justification policy (right, center, left) is in effect.

1.3.4 Displaying Images in Cells

Because all standard data types, including byte arrays, are supported, it is possible to
display images in cells. In addition, it is possible to display a scaled image in a cell. See
Displaying and Editing Cells, in Chapter 4, for details.
Chapter 1 ■ JClass HiGrid Overview 25

1.3.5 Cell Borders

All cells have a border around them. You can choose custom borders for cells, with
variable styles and widths. There are ten different border styles to choose from, including
a “no border” option.

JClass HiGrid’s CellFormat class contains the methods that let you choose among the
various styles of cell borders.

1.3.6 Keyboard Shortcuts for Grid Navigation

The HiGridAction class lets you define a mapping from a user event to an action
performed on JClass HiGrid. For example, HiGridAction can be used to map Control +
Left Click to a selection event.

These keystrokes control cell traversal:

■ Alt+Page Up, Alt+Page Down — Scroll horizontally (Alt+Page Up = left) if the
width of the grid is larger than the width of its window.

■ Ctrl+Home, Ctrl+End — Move to the first or last cell in the table. If the last row of
the main table has been expanded to show sub-tables, move to the last cell of the last
visible sub-table.

■ Ctrl+Number Pad Plus(+), Ctrl+Number Pad Minus (-) — Expand the current
row to make the detail levels visible, or hide the detail levels by collapsing them.

■ Enter — If pressed after an edit, the current row is marked as changed if the cell’s
value did indeed change.

■ Esc (Escape key) — Cancel the current edit and return to the value the cell had before
editing began, that is, return to the last updated value.

■ Home, End — Move to the beginning or end of a row.

■ Page Up, Page Down — Move to the corresponding cell on the previous or next
page. A page is defined as the number of rows that are visible in a window, and thus it
is dependent on the window height. If some rows have been expanded to show sub-
tables, the Page Up and Page Down commands will show the rows of these sub-tables
and ensure that none are bypassed.

■ Tab, Shift+Tab — Move forward or backward one cell. Wraps from one row to the
next.

1.3.7 Mouse Actions

HiGrid supports most of the standard mouse actions. The following list describes mouse
actions in the Windows environment.

■ Left-Click on a cell — Selects that cell for editing. If the cell contains a graphic, show
its full size.
26 Part I ■ Using JClass HiGrid

■ Left-Click on an expander button (if there is one, it is the small square containing a +
sign at the extreme left of a row) — Expands the table by making sub-tables associated
with that row visible. If the sub-rows are visible, the button contains a - sign. Clicking
on it collapses the table by hiding the sub-rows.

■ Right-Click on a selected cell (Windows only) — When the button is released, shows
a popup menu containing the editing choices Undo, Cut, Copy, Paste, Delete, and
Select All.

■ Right-Click anywhere else — Shows a popup menu containing the following choices.
(The bracketed items are the sub-choices for each choice.)

■ Insert (List of Table Names) — Inserts a new row at the level specified by the table
name.

■ Delete (Current or Selected) — Deletes the current or selected row(s).

■ Cancel (Current, Selected, All) — Cancels uncommitted changes to the specified row
or rows.

■ Requery (Record, Record and Details, Selected, Selected and Details, All) — Refreshes the
grid’s values by requerying the database.

■ Update (Current, Selected, All) — Commits changes (deletes/inserts/updates).

■ Select (Current, All In Same Level, All In Same Table, All) — Selects rows in the grid.

■ Print (As Displayed..., As Expanded...) — Prints the exposed levels or all the levels.

■ Print Preview (As Displayed..., As Expanded...) — Invokes the printer driver window.
After selecting a printer, show a print preview on the screen rather than actually
printing.

■ Move To Grid Record (First, Previous, Next, Last) — If First (or Last) is chosen, focus
is transferred to the leftmost cell of the first (or last) cell in the grid. A row in a
collapsed table cannot be a target of a Last operation; instead, the last row of the
last open table is the target. If Previous (or Next) is selected, the motion will, if
possible, preserve the column that initially holds the current cell.

■ Move To Table Record (First, Previous, Next, Last) — Similar to the above, except
that motion is restricted to the table that initially holds the current cell.

■ Move To Parent — Moves to the leftmost cell of the parent row for the table
containing what was initially the current cell.

■ Collapse Parent — Hides the level containing the current cell. The new current
cell is the leftmost one of the parent row.

■ Ctrl+Left-Click — Selects the row. Multiple rows may be selected by repeating the
operation on rows that need not be adjacent.

■ Shift+Left-Click — After choosing Select, Current from the popup menu or
selecting a row with Ctrl+Left-Click, this action selects all intervening rows between
and including the first chosen and the one on which the shift-click occurred. The
action can be used to select a parent and all its children, so long as these tables have
been expanded.
Chapter 1 ■ JClass HiGrid Overview 27

1.3.8 Grid Symbols

1.3.9 Bookmarks

The data source needs a mechanism for keeping track of all open rows. This is
accomplished by assigning a row identifier, called a bookmark, to every row. Using this
scheme, each cell is uniquely identified by its bookmark and by a column identifier which
names the column within that row. The assignment of a bookmark to a row is dynamic
because rows themselves are dynamic. A row’s bookmark may change as a result of
requery operations. In fact, selecting the Requery, All option from the popup menu
replaces all bookmarks with new ones. Other requery operations cause the replacement
of the bookmarks of the affected rows.

Graphic Meaning

Current Row Icon Icon Column:
This is the selected row.

Row Edited Icon Icon Column:
This row has been edited.

Marked for Deletion

Icon

Icon Column:
This row has been marked for deletion.

Expand Icon Folder Column:
The expander button indicates that there
are sub-tables associated with this row.
Note: Other icons are available. See
Section 1.3.16, Folder Icon Styles.

Collapse Icon Folder Column:
The appearance of the expander button
when the row has actually been expanded

Truncated String Icon Anywhere on a cell’s edge:
This icon appears near the border of a cell
when its size is too small to hold all the
data.

Sort Icons Header Column:
One of these icons appears after a left-click
to indicate that the column has been
sorted.
28 Part I ■ Using JClass HiGrid

1.3.10 A Note on Public Methods in HiGrid

There are a number of public methods in HiGrid that are not intended for use by the
application programmer. They must be public so that they can be used by Bean editors
and the like. As a general rule of thumb, consult the API documentation.

1.3.11 Editing Cells

Once a cell is highlighted, an editor appropriate for the cell’s data type is instantiated.
There are the usual cell editors for String and numeric types, and you can employ a
number of custom editors, such as calendar popups for editing dates and editors that
perform data validation functions.

1.3.12 Changing the Grid’s Appearance

You can customize the grid’s appearance by changing fonts, border styles, and colors. You
can select from a set of predefined folder icons — the symbols that indicate whether a level
is expanded — or you can design your own, and you can change the color and thickness of
the connecting lines. These changes can be made programmatically, or they can be done
in an IDE using the HiGridBeanCustomizer, which includes functionality for setting these
properties one level at a time.

1.3.13 Adding Headers and Footers

Another way of customizing your grid’s appearance is by adding header, footer, and
detail rows. These rows can contain items that are not drawn directly from the data
source yet are related to it, such as text fields that introduce summary columns, and
computed results that the database itself does not supply.

1.3.14 Displaying More of the Grid

Imagine an idealized monitor so large that it is capable of accommodating a window of
any size. It is useful to define the “visible” grid as that which would be seen in a virtual
monitor’s window spacious enough to hold all of its open tables. Any real monitor’s
window containing a grid can be thought of as one through which you can view a portion
of the virtual screen that holds the entire grid. The concept of a visible grid is essential for
understanding how the aggregate classes work. This topic is discussed in a later section.
Also, the visible grid determines how much data must be retrieved from the data source.
The grid requires all the data necessary to display the visible grid, not the collapsed
layers. Thus, if the root-level table contains ten thousand rows, the data for all those rows
must be retrieved because the root level is always visible.

The implication for displaying more of the grid is that simply resizing the view area
causes the grid to be repainted with cached data. On the other hand, exposing sub-tables
requires that a query be sent to the database, which is potentially more time-consuming.
Chapter 1 ■ JClass HiGrid Overview 29

1.3.15 The HiGrid Class

This central class in the package defines the overall look of the data grid. It sets up various
parameters and controls such things as whether pop-up menus, row selection, and sorting
are allowed. It sets colors, border sizes and styles, indents, spacing, and initializes print
parameters. It manages the look of the GUI as levels are opened and closed, and as edits
are made on cells, rows, or a group of rows. Instantiate this class to create a visible grid.
Its signature is

public class HiGrid extends JComponent
implements java.awt.event.ComponentListener,

JCValidateListener

Because it is a subclass of javax.swing.JComponent, it inherits properties from the
Container and Component classes as well. Naturally, it responds to window resizing and
closing events. Among the methods contained in HiGrid are the following:

■ levelIndent — a Boolean that controls whether a sub-table is left-indented.

■ width, height — the width and height of the entire component.

■ verticalScrollbar, horizontalScrollbar — in GridScrollbar, gets the scrollbars for
the grid.

■ selectedObjects — an array of references to RowNodes for the currently selected rows.

■ gridArea— the double buffer for the grid area.

■ rowSelectionMode — you may wish to prevent certain rows from being selected.
Possible values are ROW_SELECT_ANY (the default), ROW_SELECT_IN_SAME_LEVEL, and
ROW_SELECT_IN_SAME_TABLE.

■ dataModel — sets the data source for the given level, which may be an instance of
HiGridData or TreeData.

■ allowRowSelection — sets whether or not row selection is allowed.

■ drawingConnections — indicates whether or not the connector lines that join rows of
sub-tables to their parents are to be drawn.

■ borderSize — sets the size of the border to be drawn around a cell.

■ formatTree — a format tree sets the visual characteristics for each level.

1.3.16 Folder Icon Styles

HiGrid has seven predefined folder icon styles. These are:

■ FolderIconStyle.FOLDER_ICON_STYLE_SHORTCUT

■ FolderIconStyle.FOLDER_ICON_STYLE_FOLDER

■ FolderIconStyle.FOLDER_ICON_STYLE_TRIANGLE

■ FolderIconStyle.FOLDER_ICON_STYLE_SMALL_LINE_3D

■ FolderIconStyle.FOLDER_ICON_STYLE_MEDIUM_LINE_3D
30 Part I ■ Using JClass HiGrid

■ FolderIconStyle.FOLDER_ICON_STYLE_LARGE_LINE_3D

■ FolderIconStyle.FOLDER_ICON_STYLE_TURNER

The icons are shown in Figure 7.

Figure 7 The seven pre-defined image icon choices.

You specify the folder icon style through the call:

HiGrid.setFolderIconStyleIndex(style);

where style is one of the aforementioned constants. You have the option of using your
own icons. In this case, you use the setFolderIcon method:

public void setFolderIcon(Image icon, int type)

where you supply an icon and a type.

1.3.17 The Aggregate Classes

These classes are designed as a convenient way to calculate the information that is often
required in summary records. The main class, called AggregateAll, implements the
Aggregate interface. It contains methods common to all the different types of calculations
that the “Aggregate” specialty subclasses define. The SummaryColumn class, through its
parameters identifier (sets the column identifier), columnType (one of
COLUMN_TYPE_UNKNOWN, COLUMN_TYPE_LABEL, COLUMN_TYPE_DATASOURCE,
COLUMN_TYPE_AGGREGATE, COLUMN_TYPE_UNBOUND), and aggregateType (one of
Chapter 1 ■ JClass HiGrid Overview 31

AGGREGATE_TYPE_NONE, AGGREGATE_TYPE_COUNT, AGGREGATE_TYPE_SUM,
AGGREGATE_TYPE_AVERAGE, AGGREGATE_TYPE_MIN, AGGREGATE_TYPE_MAX,
AGGREGATE_TYPE_FIRST, AGGREGATE_TYPE_LAST), sets up the column object for the
summary record types. The individual Aggregate classes compute results. For instance,
AggregateAverage computes the average value of a given column.

These classes are not used directly. Instead, you set up the meta data for footer rows as a
list (Vector) of summary columns using the columnType enums (class constants). Here are
some examples:

Setup:
MetaDataModel orderDetailMetaData = null;

RowFormat orderDetailFooterFormat = null;
SummaryMetaData orderDetailFooterMetaData = null;
RowFormat orderDetailBeforeDetailsFormat = null;
SummaryMetaData orderDetailBeforeDetailsMetaData = null;

TreeIterator ti = node.getIterator();
if (ti.hasMoreElements()) {

node = (FormatNode) ti.get();
node.setDefaultSortData(new SortData("prod_id",

SortGrid.DESCENDING));
orderDetailMetaData = (MetaDataModel)

node.getRecordFormat().getMetaData();
orderDetailFooterFormat = (RowFormat) node.getFooterFormat();
orderDetailFooterMetaData = (SummaryMetaData)

orderDetailFooterFormat.getMetaData();
orderDetailBeforeDetailsFormat = (RowFormat)

node.getBeforeDetailsFormat();
orderDetailBeforeDetailsMetaData = (SummaryMetaData)

orderDetailBeforeDetailsFormat.getMetaData();
}

Label:

SummaryColumn column = new SummaryColumn("Total Quantity: ");
orderDetailFooterMetaData.appendColumn(column);

Aggregate:

SummaryColumn column = new SummaryColumn(orderDetailMetaData,
"LineTotal",
SummaryColumn.COLUMN_TYPE_AGGREGATE,
SummaryColumn.AGGREGATE_TYPE_SUM);

orderDetailFooterMetaData.appendColumn(column);

Data Source:

SummaryColumn column = new SummaryColumn(orderDetailMetaData,
"ProductID",
SummaryColumn.COLUMN_TYPE_DATASOURCE);

orderDetailBeforeDetailsMetaData.appendColumn(column);
32 Part I ■ Using JClass HiGrid

1.3.18 Virtual Columns

A Virtual Column performs an analogous aggregation operation by using row data to
produce a derived value. In the case of a virtual column, mathematical operations are
defined on the cells of a row, such as applying a sales tax calculation to a cell containing
the purchase price of an item. The computed total price with the sales tax added on is
displayed in a newly defined cell. When all rows of the table are taken into account, these
cells form a column that we are calling a virtual column. The virtual column may be
computed from the values of two or more cells in the row. In turn, its value may be
aggregated by the methods described in this section to produce a footer detail.

Note: Please see Virtual Columns, in Chapter 6, for an extended discussion of the use of
virtual columns.

1.4 The Data Model for JClass HiGrid
JClass HiGrid is capable of displaying hierarchical data structures because its underlying
data model is also capable of maintaining actual data tables that imitate the structure of a
hierarchical design. The relationship that one table bears to another is called meta data to
distinguish it from the actual data that the grid displays. To be specific, we present a
design for a sales order system shown diagrammatically in Figure 8. The root data table is
extracted from a database table called Orders. Each row consists of the fields OrderID,
CustomerID, EmployeeID, OrderDate, PurchaseOrderNumber, and RequiredDate. Sales orders
are more fully described in two separate sub-tables, Customers and OrderDetails. The
Customers table is linked to its parent by matching the CustomerID fields in each. The field
OrderID in the OrderDetails table is the same as OrderID in the Orders table so a join on
these two fields properly associates an Orders row with OrderDetails. Additional
Chapter 1 ■ JClass HiGrid Overview 33

information about an OrderDetails row is obtained by a detail row called Products-Categories
consisting of product information and the category this product falls into.

Figure 8 The meta data design of a sales order tracking system.

This structure can be captured in the data model and displayed using JClass HiGrid. The
programming example based on this model is called DemoData, in
jclass.datasource.examples.
34 Part I ■ Using JClass HiGrid

Running the program produces output similar to this:

Figure 9 JClass HiGrid retrieves and displays the root table called Orders.

Clicking on any one of the folder icons marked “+” exposes the related tree-structured
data. This example has three levels in its meta data. The second sub-level is accessed in
the same way as the first, by clicking on the “+” expander button at the left hand side of
the row.
Chapter 1 ■ JClass HiGrid Overview 35

When these levels are opened, the grid looks like this:

Figure 10 The expanded view of the sales orders tracking system with all levels of the first two rows opened.

The example shows that JClass HiGrid gives your application the ability to present a
multi-layered view of the tables in your corporate databases. Compared to a design based
on forms, the hierarchical grid allows you to present considerable data in a relatively
small space, while also providing the organization that makes it easy for end-users to
navigate to detail levels.
36 Part I ■ Using JClass HiGrid

1.4.1 A Closer Look at the Data Model

There are two main areas in the design of the data model, the design-time meta data and
the run-time data tables. Of these, the most apparent to the end-user is the data table
mechanism that stores the data for subsequent display by a grid component, like
JClass HiGrid, or on a form using data bound components like those provided by
JClass Chart, JClass Field, JClass LiveTable, or JClass DataSource. Since JClass HiGrid
defines a mechanism for describing data relationships in a hierarchical way, a parallel
structure is needed to describe the way that various tables relate to each other. This is
accomplished by using Swing’s interface called TreeNode which describes the nodes of a
TreeModel, a generic interface for a Tree hierarchy. This tree interface is used for
organizing the meta data and the actual data for the JClass HiGrid. (Note: TreeModel
contains TreeNodeModel, and Tree is a container for tree nodes.) The
DataSourceTreeNode class, combined with the MetaDataModel interface, helps to define
abstract class BaseMetaData, and then the concrete class MetaData. It is only this last one
that is source data format dependent. This forms the meta data definition mechanism.

On the data side, we also subclass from DataSourceTreeNode, but the DataTableModel
interface is used to define BaseDataTable. DataTableModel is the interface for data
storage for the JClass HiGrid data model. The data model will request data from
instances of BaseDataTable and will manipulate that data through the DataTableModel
interface. That is, rows can then be added, deleted or updated through this DataTable.
BaseDataTable is a default implementation of the methods and properties common to
various implementations of the DataTableModel. This class must be extended to
concretely implement those methods not implemented in it. The class that accomplishes
this is in the DataTable category, and is one of a number of specially constructed classes
specifically tailored to the source data format. A copy of the data returned in a JDBC
result table will be copied into one of these result tables so the data can be cached. Rows
can then be added, deleted or updated through this DataTable.

1.5 Internationalization
Internationalization is the process of making software that is ready for adaptation to
various languages and regions without engineering changes. JClass products have been
internationalized.

Localization is the process of making internationalized software run appropriately in a
particular environment. All Strings used by JClass that need to be localized (that is,
Strings that will be seen by a typical user) have been internationalized and are ready for
localization. Thus, while localization stubs are in place for JClass, this step must be
implemented by the developer of the localized software. These Strings are in resource
bundles in every package that requires them. Therefore, the developer of the localized
software who has purchased source code should augment all .java files within the
/resources/ directory with the .java file specific for the relevant region; for example, for
France, LocaleInfo.java becomes LocaleInfo_fr.java, and needs to contain the translated
French versions of the Strings in the source LocaleInfo.java file. (Usually the file is called
Chapter 1 ■ JClass HiGrid Overview 37

LocaleInfo.java, but can also have another name, such as LocaleBeanInfo.java or
BeanLocaleInfo.java.)

Essentially, developers of the localized software create their own resource bundles for
their own locale. Developers should check every package for a /resources/ directory; if one
is found, then the .java files in it will need to be localized.

For more information on internationalization, go to:
http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html.
38 Part I ■ Using JClass HiGrid

http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html

2
Properties of JClass HiGrid

Introduction ■ Programming JClass HiGrid ■ Cell Formats and Cell Styles

Data Rows and Summary Lines ■ JClass HiGrid Listeners and Events

JClass DataSource Events and Listeners ■ Printing a Grid

2.1 Introduction

The various tables that comprise a database are unstructured in the sense that any one of
them can be chosen for display through some sort of data “control.” Moreover, what is or
is not a dependent table, and which fields are of interest, usually depends on some
particular user’s information needs. This structural design is up to you. Once it is
completed and the table dependencies and relevant fields are established, you use
JClass HiGrid to connect to the data source and display the results.

All of the database model-related code is contained within JClass DataSource, which is
included with JClass HiGrid. You can use HiGrid’s customizer, described in the next
chapter, to get an IDE to assist you in producing the code to connect to a database, then
define the tables, fields, and joins that define the hierarchical structure and its contents.
This chapter takes more of a programming-related standpoint. If you are interested in a
pictorial run-through of the steps necessary to connect to a database, define meta data
levels, and format both data and summary rows, read JClass HiGrid Beans, in Chapter 3,
first.

2.2 Programming JClass HiGrid

You set JClass HiGrid’s properties programmatically by referring to its API. The next
chapter shows how properties are set using a customizer. This design-time tool is a
convenient way of setting the properties because a builder tool assists you in creating the
underlying code.

The basic steps required to create a grid are:

1. Connect to a database.

2. Define the meta data levels by specifying the table hierarchy and the names of the rel-
evant fields in each table.
39

3. Set the format of the grid.

4. Handle events if you need to inspect and perhaps prohibit certain end-user actions.

This chapter is devoted primarily to issues relating to the appearance of the grid and the
outline of the event handling mechanism. An example of how to specify a database
connection without the aid of the customizer is given next, and in The DemoData
Program, in Chapter 9. Refer to JClass DataSource Overview, in Chapter 5, for details on
specifying the meta data and formulating SQL queries.

2.2.1 Disposing a Grid

Your application may make use of multiple instances of JClass HiGrid objects. Keeping
references to grid objects once they are no longer needed is, in effect, a memory leak. You
can recover memory by deleting all references to unused grids. Use the dispose()
method in HiGrid for this purpose.

2.2.2 Associating the Grid to a Data Source using JDBC or JDBC-ODBC Drivers

The section on Loading and Registering a Driver in the JClass DesktopViews Installation
Guide showed how to register a Type 1 driver. It is possible to get an uninitialized
connection object using jclass.datasource.jdbc.DataTableConnection’s zero-
parameter constructor, but it is much more common to supply the driver, URL, login
name and password, and the database name when calling the constructor to instantiate a
connection. An example of loading a Type 4 driver follows.

c = new DataTableConnection(
"com.sybase.jdbc.SybDriver", // driver
"jdbc:sybase:Tds:localhost:1498",// url
"dba",// user
"sql",// password
"JClassDemoSQLAnywhere");// database

The String containing the data source name has the form of a URL:

 jdbc:sybase:Tds:localhost:1498

The subprotocol and subname vary from one supplier to another, depending on whose is
used. The JDBC DriverManager uses the subprotocol as part of its choice of driver. Other
common names for the subprotocol are “Oracle” and “odbc”. The location of the driver
itself must be specified by giving its path, which in this case is:

 com.sybase.jdbc.SybDriver

2.3 Cell Formats and Cell Styles

A cell consists of a border area and a drawing area. Typically, the drawing area contains
textual information retrieved from a field in a database, but cells in header and footer
rows, before detail and after detail rows, and even summary columns appended to record
40 Part I ■ Using JClass HiGrid

../getstarted/index.html
../getstarted/index.html

rows usually contain information computed from the contents of a number of fields. All
these have diverse formatting requirements. JClass HiGrid provides a suite of cell editors
and renderers suitable for most purposes.

All cells that contain information extracted from a database have a data type
corresponding to that in the source. Other Java data types are included so that cells can
contain a wide selection of data types. The supported values in JClass HiGrid are
MetaDataModel.TYPE_BIG_DECIMAL, TYPE_BYTE, TYPE_BYTE_ARRAY, TYPE_DOUBLE,
TYPE_FLOAT, TYPE_INTEGER, TYPE_LONG, TYPE_OBJECT, TYPE_SHORT, TYPE_SQL_DATE,
TYPE_SQL_TIME, TYPE_SQL_TIMESTAMP, TYPE_STRING, and TYPE_UTIL_DATE.

Normally, all cells have the same insets and border style, chosen from a predefined set.
Possible border styles are jclass.higrid.Border.NONE, ETCHED_IN, ETCHED_OUT, IN, OUT,
PLAIN, FRAME_IN, FRAME_OUT, CONTROL_IN, and CONTROL_OUT. There are two sets of insets
defined for a cell. Conceptually, border insets define the placement of the border within a
cell no matter what border style is chosen. Margin insets define the writable area within
the border, usually chosen so that text will not seem to crowd against the border. Inset
objects comprise four independently settable parameters for the number of pixels to
reserve as unused space within the top, left, bottom, and right edges of the enclosing
rectangle. The four parameters are normally chosen to be equal because a centered
writable area generally has the best appearance.

Figure 11 Border insets and margin insets.

Note: The class constants that describe border styles are named for the way the cell
appears within its border. For instance, Border.ETCHED_IN is the constant for the case
where the cell appears etched in with respect to the border.

JClass HiGrid provides three parameters to position contents horizontally within the cell,
com.klg.jclass.cell.JCCellInfo.LEFT, CENTER, and RIGHT. To position a cell’s contents
vertically, use com.klg.jclass.cell.JCCellInfo.TOP, CENTER, or BOTTOM.

Cell editors need to decide how large they should be in relation to the size of the cell they
are editing. Normally, a cell’s editor will adjust itself to the display size of the cell, but this
is not always possible, so HiGrid defines three possibilities: EDIT_SIZE_TO_CELL, which
fits the cell editor to the cell size, EDIT_ENSURE_MINIMUM_SIZE, which uses the cell editor's
minimum size (the default), and EDIT_ENSURE_PREFERRED_SIZE, which uses the cell
Chapter 2 ■ Properties of JClass HiGrid 41

editor's preferred size. These policies can be independently applied to the cell’s height
and width attributes.

You can provide an indication that a cell is too small to completely display its contents.
The small marker arrows are called clip hints. In Figure 12, if the arrow at the far right is
showing, it indicates that the width of the cell is too small, and the double arrows indicate
that the cell’s height is too small. Whether or not these arrows appear is under your
control. The possible values for clip hints are SHOW_NONE, SHOW_HORIZONTAL,
SHOW_VERTICAL, and SHOW_ALL. These constants are defined in
com.klg.jclass.cell.JCCellInfo. The position of the clip hint icons depends on which
CellInfo positioning parameter is in effect.

Figure 12 The icons that indicate that a cell’s contents have been truncated.

There’s much more to cells, including cell editors and renderers. See Displaying and
Editing Cells, in Chapter 4, for more information.

2.3.1 Properties of JClass HiGrid’s CellFormat Class

The table shows the property names in the CellFormat class for which get and set
methods exist. The property’s return type and default value are listed as well.

HiGrid CellFormat
Get/Set Method
Name

Return Type Default Value Description

allowWidthSizing Boolean True If false, the cell’s
width cannot be
resized.

background java.awt.Color 255,255,255 The background
color.

borderInsets java.awt.Insets [2,2,2,2] The border insets.

borderStyle int Border.ETCHED_I
N

The border style—
choices are listed in
this section.

cellEditor java.lang.Class (null) Retrieves or sets
the cell editor for
the current cell.
42 Part I ■ Using JClass HiGrid

cellRenderer java.lang.Class (null) Retrieves or sets
the cell renderer for
the current cell.

clipHints int CellInfo.SHOW_ALL How the renderer
should draw an
indication that the
entire contents of
the cell cannot be
rendered within the
given area.

dataType java.lang.Class class
java.lang.Object

The cell’s data
type.

drawingArea java.awt.Rectangle dynamic Read-only – the
drawing area for
the cell being
displayed or edited,
already adjusted for
BorderSize and
MarginSize – read-
only.

editHeightPolicy int EDIT_ENSURE_
MINIMUM_SIZE

Instruct the cell
editor which size
policy to use – see
the explanation in
this section.

editWidthPolicy int EDIT_SIZE_TO_CELL Instruct the cell
editor which size
policy to use – see
the explanation in
this section.

editable Boolean True Whether input is
currently allowed
in the cell.

enabled Boolean True Read-only, and
always enabled.
Needed to
implement the
CellInfo interface.

HiGrid CellFormat
Get/Set Method
Name

Return Type Default Value Description
Chapter 2 ■ Properties of JClass HiGrid 43

font java.awt.Font dynamic The cell’s font.

fontMetrics java.awt.
FontMetrics

dynamic The cell’s font
metrics.

foreground java.awt.Color 0,0,0 The cell’s
foreground color.

height int dynamic The cell’s height.

horizontal
Alignment

int CellInfo.LEFT The horizontal
positioning of the
cell’s contents.

marginInsets java.awt.Insets [2,2,2,2] The insets for the
information area
within the cell –
inside the border
and its insets.

name java.lang.String (null) The name of the
cell.

otherAllowWidth
Sizing

Boolean True Sets whether width
sizing is currently
allowed for the
other
header/record pair.

parent jclass.higrid.
RowFormat

(null) The row format of
the parent row.

preferredTotalAr
ea

java.awt.Rectangle [x=0,y=0,width=8,
height=8]

Read-only – the
preferred area for
the cell being
displayed or edited.

selectAll Boolean True Whether the editor
should select all the
cell’s contents
before editing.

selected
Background

java.awt.Color 0,0,0 The background
color when the
cell’s contents are
selected.

HiGrid CellFormat
Get/Set Method
Name

Return Type Default Value Description
44 Part I ■ Using JClass HiGrid

If you wish to apply a new cell style to a group of cells, use the CellStyle class. It does
not contain any dependency on the data in the cell, making it easy to copy a style to other
cells. To apply your own styles to the different types of rows in JClass HiGrid, subclass
DefaultHeaderCellStyle, DefaultFooterCellStyle, DefaultBeforeDetailsCellStyle,
DefaultAfterDetailsCellStyle, and DefaultRecordCellStyle.

2.3.2 Setting Border Styles

From the table you see that cell border styles are set using setBorderStyle. Border styles,
like the numerous other cell properties, are applied to individual cells. There is a
convenience method in the RowFormat class, again called setBorderStyle, that lets you
set the border style for the chosen row type, including its edit status cell. If you wish to set
the border style globally for all rows, including records, headers, footers, and so on, you
can follow the procedure outlined in FormatNodeExample.java. This example program in
jclass.higrid.examples shows how to recursively walk the grid’s format tree to set
border styles. The example program’s setBorderStyle method calls CellFormat’s
setBorderStyle method, but it could call any other method that changes cell properties,
making global changes to them.

selected
Foreground

java.awt.Color 255,255,255 The foreground
color when the
cell’s contents are
selected.

text java.lang.String (null) The text label of
this object.

totalArea java.awt.Rectangle dynamic Read-only – the
total area for the
cell being displayed
or edited.

type int MetaDataModel.
TYPE_OBJECT

The Java data type
used to map a
JDBC data type.

verticalAlignmen
t

int JCCellInfo.
CENTER

The vertical
positioning of the
cell’s contents.

width int 0 The width of the
cell. Note that
setWidth is a
protected method.

HiGrid CellFormat
Get/Set Method
Name

Return Type Default Value Description
Chapter 2 ■ Properties of JClass HiGrid 45

If you are using an IDE, you can use the customizer to set border styles for row types. See
Setting General Column Properties, in Chapter 3.

2.4 Data Rows and Summary Lines

Besides presenting rows of data retrieved from database records, you can organize the
tables into groups that both label and summarize what they contain. Four types of rows
are available for this purpose. A table is usually introduced by a header row that by default
contains the database record names for its columns. A footer row is often used to
summarize the data in one or more columns, for instance by totaling the cost of all the
individual entries in a cost_price column. Two other row types, before details and after details,
are available. They provide another level where you can place summary data.

Figure 13 Appearance of the grid before and after the addition of summary data.

The remaining type of row is the data row: the one containing fields extracted from tables
in the underlying data source. This section describes the formats that you can apply to
these rows and shows, via code snippets, how you can add summary lines to your grid.

2.4.1 Row Formats

Row formats help you to display your hierarchically structured data design in a visually
appealing way. Sub-tables are indented with respect to their parents, but they may be
color coded and formatted to make them stand out, or to emphasize their relationship
with their parent.

Rows begin with a default height, but may be changed if height sizing is allowed. The row
width is simply the sum of the widths of all the cells in that row. The cell width depends
46 Part I ■ Using JClass HiGrid

on its contents. Re-sizing may be permitted. A row of a sub-table is indented by a default
amount, but the indentation may be changed by the application.

2.4.2 Header and Footer Formats

Header and footer formats are described by classes HeaderFormat, FooterFormat and
FooterMetaData. You have the choice of making headers repeat or not. The default is to
show the header only once, at the top of the first group of rows. This means that if a
header is applied to the rows of the root table and some of that table’s children are
exposed, there will be a header at the top of the root table but no header will be present
when the root rows begin again following the child rows. On the other hand, if
setRepeatHeader is true, each group of the rows at the level for which this property is set
has an identical copy of the header row introducing it. There can be only one footer row
for a root-level table. If a footer is added to a sub-table, there is a footer row associated
with each of these tables. Footer rows are made visible by calling setShowing(true) on
the RowFormat object for the node in question.

The width of a header cell is determined by its associated cell in the data row, but the
height, border style, and font attributes can be specified independently.

Footer rows are created on a per-table basis. At any given level, you cannot arrange for
some rows to have footers and others not. Since footer rows may contain computed data,
their meta data description is common to all of them but the contents of their cells will in
general be different.

2.4.3 Adding Custom Headers and Footers

You can include headers and footers for each node in the meta data structure. The code
examples in Section 2.4.5, Adding Summary Lines, show how a footer can be placed
under each of the group of rows that comprise the second child of the root table. The
overall design is shown in Figure 8 in JClass HiGrid Overview, in Chapter 1.

Column headers may be set using setColumnLabel() method. This allows you to supply
your own custom labels rather than relying on the database table name for that column.

2.4.4 Before Detail and After Detail Formats

Before Detail and After Detail rows are rows of one level that encompass all the children
of the next level. This distinguishes them from headers and footers, which always
surround a single table rather than a group of tables. The top level cannot have before
and after detail entries because it there is no parent with which they may be associated.

2.4.5 Adding Summary Lines

The points to consider when you are thinking of adding summary information to the
tables and sub-tables in your grid are:
Chapter 2 ■ Properties of JClass HiGrid 47

■ Ensure that the information will be visible – this step is important because summary
rows are not visible by default.

■ Decide what information each summary cell will contain and how the information
should be ordered.

■ Create the group of column objects dictated by your design. Typically, the design will
include paired columns: a column containing a label introducing a column containing
computed summary information.

■ Create the summary column.

After you have decided what information you wish to generate and have chosen a layout,
you begin your program by organizing the various objects that you need. First, obtain the
format-tree root object of your grid.

 ...
 // Assume a HiGrid called "grid" has been instantiated
 // and get the root of its format tree
 ...
 FormatTree formatTree = grid.getFormatTree();
 FormatNode node = (FormatNode) formatTree.getRoot();

Next, get the meta data model for the root level, the row format object for its footer row,
and the summary meta data for the footer.

 MetaDataModel ordersMetaData =
(MetaDataModel) node.getRecordFormat().getMetaData();

 RowFormat ordersFooterFormat = (RowFormat) node.getFooterFormat();
 SummaryMetaData ordersFooterMetaData =

(SummaryMetaData) ordersFooterFormat.getMetaData();

Declare more variables that will be needed.

 MetaDataModel orderDetailMetaData = null;
 RowFormat orderDetailFooterFormat = null;
 SummaryMetaData orderDetailFooterMetaData = null;
 RowFormat orderDetailBeforeDetailsFormat = null;
 SummaryMetaData orderDetailBeforeDetailsMetaData = null;

Navigate to the node at which you want to place a footer.

 TreeIterator ti = node.getIterator();
 if (ti.hasMoreElements()) {

node = (FormatNode) ti.nextElement(); // first child: Customers
node = (FormatNode) ti.nextElement(); // second child, OrderDetails
orderDetailMetaData =

(MetaDataModel) node.getRecordFormat().getMetaData();
orderDetailFooterFormat = (RowFormat) node.getFooterFormat();
orderDetailFooterMetaData =

(SummaryMetaData) orderDetailFooterFormat.getMetaData();
orderDetailBeforeDetailsFormat =

(RowFormat) node.getBeforeDetailsFormat();
orderDetailBeforeDetailsMetaData =

(SummaryMetaData) orderDetailBeforeDetailsFormat.getMetaData();
 }
48 Part I ■ Using JClass HiGrid

Set up a footer for the root level.

 SummaryColumn column = null;

 column = new SummaryColumn("Number of sales orders:");
 ordersFooterMetaData.appendColumn(column);

"OrderID",
SummaryColumn.COLUMN_TYPE_AGGREGATE,
SummaryColumn.AGGREGATE_TYPE_COUNT);

 ordersFooterMetaData.appendColumn(column);

 formatTree.setSummaryFormat(ordersFooterFormat,
ordersFooterMetaData);

 ordersFooterFormat.setVisible(true);

Set up a footer for the second child of the root node.

 column = new SummaryColumn("Order Total: ");
 orderDetailFooterMetaData.appendColumn(column);
 column = new SummaryColumn(orderDetailMetaData,

"LineTotal",
SummaryColumn.COLUMN_TYPE_AGGREGATE,
SummaryColumn.AGGREGATE_TYPE_SUM);

orderDetailFooterMetaData.appendColumn(column);

Compute the sum you wish to display.

 column = new SummaryColumn("Tax Total: ");
 orderDetailFooterMetaData.appendColumn(column);
 column = new SummaryColumn(orderDetailMetaData,

"SalesTax",
SummaryColumn.COLUMN_TYPE_AGGREGATE,
SummaryColumn.AGGREGATE_TYPE_SUM);

orderDetailFooterMetaData.appendColumn(column);

Set the summary format and make sure the row will be visible.

 formatTree.setSummaryFormat(orderDetailFooterFormat,
orderDetailFooterMetaData);

 orderDetailFooterFormat.setVisible(true);

Set up the Before Details for the same node.

 column = new SummaryColumn("ProductID");
 orderDetailBeforeDetailsMetaData.appendColumn(column);
 column = new SummaryColumn(orderDetailMetaData,

"ProductID",
SummaryColumn.COLUMN_TYPE_DATASOURCE);

 orderDetailBeforeDetailsMetaData.appendColumn(column);

Set the summary format and make sure the row will be visible.

 formatTree.setSummaryFormat(orderDetailBeforeDetailsFormat,
orderDetailBeforeDetailsMetaData);

 orderDetailBeforeDetailsFormat.setVisible(true);
Chapter 2 ■ Properties of JClass HiGrid 49

Regenerate the run-time grid. This refreshes all the information needed to display the
grid. If you are adding summary columns dynamically to an already existing grid, the
run-time grid needs to be refreshed by the following command:

 grid.resetRuntimeGrid();

The result is shown in Figure 14. The root-level footer contains two cells, the first being a
label, and the other an aggregate that counts the number of sales orders. The footer for
the second level contains two aggregates, one for the total dollar value of sales orders and
the second for the total tax.

Also shown is a Before Detail row for the second node of the first sub-level. Note that even
though its association is with the first sub-level, it makes its appearance just before the
third level headers. Before Detail and After Detail rows are not visible until the sub-level to
the one with which they are associated is opened.

Figure 14 Adding a footer to the root level and summary data to a sub-table.

In short, the sequence is: get the meta data for the summary row, define a new column
cell based on the type of data it is to contain, append the cell, set the summary format,
ensure that it is visible, then reset the runtime tree.

2.4.6 Computed Summary Information

The easiest way to compute summary information is to override the calculate method of
the Aggregate class, just as do all the aggregate classes with predefined operations, such
as AggregateMax. Since you need to have an implementation of the Aggregate interface,
you provide a new subclass that extends AggregateAll, and override the calculate
method there.

public void calculate(RowNode rowNode) {
if (isSameMetaID(rowNode)) {

Object quantity = getRowNodeResultData(rowNode, "Quantity");
50 Part I ■ Using JClass HiGrid

Object unitPrice = getRowNodeResultData(rowNode, "UnitPrice");
if (quantity != null && unitPrice != null) {

double amount = getDoubleValue(quantity) *
getDoubleValue(unitPrice);

addValue((Object) new Double(amount));
}

}
}

The way that this code is reached is to name the class in which it resides. Assume that the
name of the class is OrderDetailTotalAmount. Your calling method would issue a
command like

column = new SummaryColumn(orderDetailMetaData,
"jclass.higrid.examples.OrderDetailTotalAmount",
SummaryColumn.COLUMN_TYPE_UNBOUND,
SummaryColumn.AGGREGATE_TYPE_NONE,
MetaDataModel.TYPE_DOUBLE);

Note the second parameter. Where there would be a columnID name if one of the
predefined aggregate types were going to be used, there is a path name to the class that
performs the special calculation. As always, the CLASSPATH variable is used to provide
the first part of the path. The other parameters are chosen to be consistent with unbound
data and the data type of the result of the calculation.

2.4.7 Managing the Visibility of Rows

By default, a new grid shows only the root level. If you wish to expand other levels, use
openFolder. For instance, if you wish to open the first level on the first row, use:

grid.getRowTree().openFolder(grid.getCurrentRowNode());

If you want to open a row further down the hierarchy, you first need to navigate to that
level. The row tree contains the row organization for the grid. It is analogous to the data
table tree in JClass DataSource.

2.4.8 Moving Between Rows

The grid has a concept of a current row and various methods are available to move the
current row pointer. All of these ultimately rely on the existence in the data model of a
bookmark. The way that the data model keeps track of its records is described in The Data
Model, in Chapter 6. In brief, there is a unique bookmark for every row. There is one
cursor per table. The cursor is used to decide where the current row in the table should
be. Also, an index is used to number the rows of a data table. At all times, one row of the
grid is deemed to be the current row.

In general, moving to another row presumes that you already know its bookmark.

The DataModel interface’s method moveToRow is used to tell this data model which row
should be marked as current. Depending on the commit policy, moving the internal
cursor may automatically commit changes to the originating data source.
Chapter 2 ■ Properties of JClass HiGrid 51

The com.klg.jclass.datasource.DataTableModel interface declares methods absolute,
next, previous, first, and last, which manipulate bookmarks and cursors. These are
implemented in com.klg.jclass.datasource.BaseDataTable,
com.klg.jclass.datasource.beans.JCData, and
com.klg.jclass.datasource.util.NavigatorDataBinding. As the selected row moves
around in a table, the cursor’s value changes, but this is independent of the bookmark
values.

There are menu choices in the edit popup menu corresponding to these motions. The
following table lists the possibilities. See The Popup menu in its long form. (Figure 16).
The choices are arranged in a two-tiered form near the bottom of the popup. The short
form of the edit popup menu does not contain the choices that allow you to move
between rows.

Row Status
Rows either reflect the contents of the database records from which they are derived, or
they contain changes made by the end-user. A row that is consistent with the database
record displays a plain rectangle in its edit status cell. If a row has been inserted, or some
cell in an existing row has been modified, the edit status icon changes to a pencil,
indicating an edit has occurred. A deleted row’s edit status icon shows an X.

The constants that return the status of the current row, are DataTableModel.INSERTED,
DataTableModel.UPDATED, DataTableModel.DELETED, and DataTableModel.COMMITTED.

Edit Popup Menu Choice

MoveToGridRecord

MoveToGridRecordFirst

MoveToGridRecordLast

MoveToGridRecordNext

MoveToGridRecordPrevious

MoveToTableRecord

MoveToTableRecordFirst

MoveToTableRecordLast

MoveToTableRecordNext

MoveToTableRecordPrevious

MoveToParent
52 Part I ■ Using JClass HiGrid

2.4.9 Adding a Message Dialog

When a user interaction produces a predictable but unacceptable result, or just one that
you want to present some information about, you can show a message dialog window.
The MessageDialog class in com.klg.jclass.util is designed for this purpose.

MessageDialog dialog = new MessageDialog(myFrame, "Window Title",
"Your message goes here");

A MessageDialog is always modal.

2.4.10 Using the Edit Popup Menu
JClass HiGrid’s popup menu collects a number of useful functions and organizes them for
convenient access. It comes in a short and a long version, or you can customize it by
building your own version.

Figure 15 The Popup menu in its short form.

Figure 16 The Popup menu in its long form.

The methods for customizing the popup menu are found in the EditPopupMenu class.
Assuming you have a EditPopupMenu object, perhaps by using the getEditPopupMenu
method, you can choose either the short or the long versions. Use this command for the
short version:

setDefaultMenuList(EditPoupuMenu.DEFAULT_SHORT_POPUPMENU_LIST)

Or use this one for the long version:

setDefaultMenuList(EditPoupuMenu.DEFAULT_LONG_POPUPMENU_LIST)
Chapter 2 ■ Properties of JClass HiGrid 53

Programmatic access to the Edit Popup is available through the HiGrid methods shown in
the following table.

HiGrid Method Class Constants for Option Selection

cancelRows CANCEL_ROWS_ALL
CANCEL_ROWS_CURRENT
CANCEL_ROWS_SELECTED

deleteRows DELETE_ROWS_SELECTED
DELETE_ROWS_CURRENT

moveToRow MOVE_TO_ROW_HIGRID_FIRST
MOVE_TO_ROW_HIGRID_PREVIOUS
MOVE_TO_ROW_HIGRID_NEXT
MOVE_TO_ROW_HIGRID_LAST
MOVE_TO_ROW_TABLE_FIRST
MOVE_TO_ROW_TABLE_PREVIOUS
MOVE_TO_ROW_TABLE_NEXT
MOVE_TO_ROW_TABLE_LAST
MOVE_TO_ROW_PARENT

print PRINT_AS_EXPANDED
PRINT_AS_DISPLAYED

print preview PRINT_AS_EXPANDED
PRINT_AS_DISPLAYED

requeryRows REQUERY_ROWS_SELECTED
REQUERY_ROWS_SELECTED_AND_DETAILS
REQUERY_ROWS_RECORD_AND_DETAILS
REQUERY_ROWS_RECORD

selectRows SELECT_ROWS_ALL
SELECT_ROWS_ALL_IN_SAME_TABLE
SELECT_ROWS_ALL_IN_SAME_LEVEL
SELECT_ROWS_CURRENT

updateRows UPDATE_ROWS_ALL
UPDATE_ROWS_SELECTED
UPDATE_ROWS_CURRENT
54 Part I ■ Using JClass HiGrid

2.4.11 A Cell’s Data Type

A cell’s data type can contain any Java data type. Additionally, a cell may contain an
image. The MetaDataModel interface defines the Java data types that are used to map
JDBC data types, which in turn mirror SQL-92 data types.

2.4.12 Sorting Columns

Columns are sorted by clicking on their headers. Repeated clicking on the column header
alternates the sort order between ascending and descending. The sort algorithm checks
the column’s data type. The sort is lexicographic for String-based data and numeric for
integer, float, and double data. Dates are sorted by first converting them to numbers.

2.5 JClass HiGrid Listeners and Events

JClass HiGrid responds to events fired from different sources, of which mouse and
keyboard actions form one class. HiGrid’s controller interprets mouse and keyboard
actions to decide on a course of action. For instance, a right click on a cell area brings up
a popup menu. JCCellEditorEvents are a closely related class. Cell editors inform all
listeners when they are finished a particular operation by posting a JCCellEditorEvent. It
contains the event that originated the operation in the cell. This event (typically a key
event) is interpreted by the container. The data model fires events that cause HiGrid to

Class Constant SQL Type Java Type

TYPE_BYTE TINYINT byte

TYPE_BYTE_ARRAY VARBINARY or LONGVARBINARY byte[]

TYPE_DOUBLE DOUBLE double

TYPE_FLOAT REAL float

TYPE_INTEGER INTEGER int

TYPE_LONG BIGINT long

TYPE_OBJECT Object

TYPE_SHORT SMALLINT short

TYPE_SQL_DATE DATE java.sql.Date

TYPE_SQL_TIME TIME java.sql.Time

TYPE_SQL_TIMESTAMP TIMESTAMP java.sql.Timestamp

TYPE_STRING VARCHAR or LONGVARCHAR String

TYPE_UTIL_DATE java.util.Date
Chapter 2 ■ Properties of JClass HiGrid 55

redisplay its data based on the changing state of the database. Finally, HiGrid itself is a
source of events. The pertinent classes are java.awt.event.ItemEvent,
com.klg.jclass.cell.JCCellEditorEvent(extends java.util.EventObject),
com.klg.jclass.datasource.DataModelEvent, and
com.klg.jclass.higrid.HiGridEvent.

JClass HiGrid no longer relies on JClass DataSource’s DataModelEvent. Instead, it defines
a JDK 1.1-style delegation event model to dispatch events to interested listeners. The base
class for most of these events is HiGridEvent.

Those classes interested in specific events must register themselves as listeners.

There are adapter classes for all the event classes. These classes are abstract, allowing you
to override just the cases you need.

Event Method Description

HiGridColumnSelection
Event

The event that occurs when a column is selected.
Constant: SELECT_COLUMN.
Method in HiGridColumnSelectionListener:
selectColumn()

HiGridErrorEvent Process an event that occurs when HiGrid is running.
Constant: none.
Method in HiGridErrorListener:
processError()

HiGridEvent The base class for HiGrid events.

HiGridExpansionEvent Cases are BEFORE_EXPAND_ROW, BEFORE_COLLAPSE_ROW,
AFTER_EXPAND_ROW, and AFTER_COLLAPSE_ROW.
The event can be canceled.
Methods in HiGridExpansionListener:
beforeExpandRow()
beforeCollapseRow()
afterExpandRow()
afterCollapseRow()

HiGridFormatNodeEvent Cases are BEFORE_CREATE_FORMAT_NODE_
CONTENTS, and AFTER_CREATE_FORMAT_NODE_
CONTENTS.
Methods in HiGridFormatNodeListener:
beforeCreateFormatNode

Contents()
afterCreateFormatNode

Contents()
56 Part I ■ Using JClass HiGrid

HiGridMoveCellEvent Cases are BEFORE_MOVE_COLUMN and AFTER_MOVE_COLUMN.
Note that it is possible to cancel an end-user’s attempt to
move a column by catching the BEFORE_MOVE_COLUMN
event.
Methods in HiGridMoveCellListener:
beforeMoveColumn()
afterMoveColumn()

HiGridPrintEvent Cases are PRINT_HEADER and PRINT_FOOTER, PRINT_END.
Methods in HiGridPrintListener:
printPageHeader()
printPageFooter()
printEnd()

HiGridRepaintEvent The single case is BEFORE_REPAINT_ROW.
Method in HiGridRepaintListener:
beforeRepaintRow()

HiGridResizeCellEvent Cases are BEFORE_RESIZE_ROW, BEFORE_RESIZE_COLUMN,
AFTER_RESIZE_ROW, and AFTER_RESIZE_COLUMN.
The event can be canceled.
Method in HiGridResizeListener:
beforeResizeRow()
beforeResizeColumn()
afterResizeRow()
afterResizeColumn()

HiGridRowSelectionEve
nt

Cases are BEFORE_SELECT_ROW and AFTER_SELECT_ROW.
Note that by intercepting a BEFORE_SELECT_ROW event, row
selection becomes a cancelable event.
Methods in HiGridRowSelectionListener:
beforeSelectRow()
afterSelectRow()

HiGridSortTableEvent Cases are BEFORE_SORT_TABLE and AFTER_SORT_TABLE.
Methods in HiGridSortTableListener:
beforeSortTable()
afterSortTable()

HiGridTraverseEvent The single case is AFTER_TRAVERSE.
Method in HiGridTraverseListener:
afterTraverse()

Event Method Description
Chapter 2 ■ Properties of JClass HiGrid 57

In the foregoing table, the listener method’s parameter is the associated event object, for
example, beforeResizeRow(HiGridResizeCellEvent event).

2.5.1 Moving Columns

Using the JClass HiGrid model and its event mechanism is exemplified by the task of
moving a column of cells. An end user may use the mouse to drag a column header from
one position to another. The index labeling the column’s position changes. The first two
methods of the example simply print out the initial and final column indices. The code in
getColumnIndex() gets the column name and the Vector of data formats for the row,
then searches the data formats for the cell with the given name, thus determining the new
column index.

class ViewEventsHiGridMoveCellListener extends HiGridMoveCellAdapter {

public void beforeMoveColumn(HiGridMoveCellEvent e) {

System.out.println("Before move column index = "+
getColumnIndex(e));

}
public void afterMoveColumn(HiGridMoveCellEvent e) {

System.out.println("After move column index = "+
getColumnIndex(e));

}
public int getColumnIndex(HiGridMoveCellEvent e) {

// get the name of the column that we are interested in
String name = e.getColumn();
// get the vector of cells for this row
Vector dataFormats =

e.getRowNode().getRowFormat().getDataFormats();
// look for a CellFormat with the given name
for (int i = 0; i < dataFormats.size(); i++) {

HiGridUpdateEvent Cases are AFTER_RESET_FORMAT_DATA,
AFTER_RESET_HIGRID_DATA, and AFTER_CREATE_ROW.
Methods in HiGridUpdateListener:
afterCreateRow()
afterResetFormatData()
afterResetHiGridData()

HiGridValidateEvent Cases are VALUE_CHANGED_BEGIN, VALUE_CHANGED_END, and
STATE_IS_INVALID.
Methods in HiGridValidateListener:
valueChangedBegin(), valueChangedEnd(),
stateIsInvalid()

beans.JCHiGridEvent
(for the JCHiGrid
JavaBean)

No constants are defined in this class.
Method in JCHiGridEventListener:
JCHiGridValueChanged()

Event Method Description
58 Part I ■ Using JClass HiGrid

CellFormat cellFormat = (CellFormat) dataFormats.elementAt(i);
if (cellFormat.getName().equals(name)) {

// found it!
return i;

}
}
// not found
return -1;

}
}

2.6 JClass DataSource Events and Listeners

JClass HiGrid relies on the event handling mechanism of JClass DataSource for
everything related to data model events. These occur when the data being displayed by
the grid is edited and committed by user action, or because one or more of the database
fields currently being displayed was changed by another agent. In either case, the grid
must be synchronized with the database, and data model changes must be propagated to
the grid.

The following diagram depicts the classes and interfaces that JClass DataSource uses to
manage changes to its data model. There are two listener interfaces,
ReadOnlyBindingListener and its extension, DataModelListener, but only one event
class, DataModelEvent. ReadOnlyBindingListener is for the read-only events in
DataModelEvent, and DataModelListener extends it, adding methods for listeners that
will make changes to the data model.

The ReadOnlyBindingModel interface provides a single-level, two-dimensional view of a
set of data. It groups all non-update methods and handles read-only events. This interface
exists only to provide a logical separation between read-only and non-read-only methods
and event handling. Update methods are declared by BindingModel.
Chapter 2 ■ Properties of JClass HiGrid 59

Figure 17 Classes and interfaces related to event handling in JClass DataSource.

JClass DataSource’s DataModelEvent describes changes to the data source. An interested
listener can query this data source to reflect the changes in its display. DataModelEvent
defines these methods:

Event Method Description

cancelProposedAction Cancels the proposed action. This method can be used if the
action is cancelable. You may want to test that isCancelable
is true before calling cancelProposedAction.

 getAncestorBookmarks Returns a list of the bookmarks which comprise the path from
the root to the event node.

 getBookmark Returns the bookmark of the changed row.

 getCancelled Sees if the proposed action was cancelled by the listener.

 getColumn Returns a String indicating which column changed.
60 Part I ■ Using JClass HiGrid

Events are characterized by the class constants given in the following table. Listeners can
distinguish various cases within the event structure by examining these constants and
taking the appropriate action. Some of these constants are for rare situations, or for
internal use. These are the minimum to which a listener should respond:

 AFTER_CHANGE_OF_ROW_DATA
 AFTER_INSERT_ROW
 AFTER_DELETE_ROW
 AFTER_RESET
 AFTER_REQUERY_ROW_AND_DETAILS
 AFTER_MOVE_TO_CURRENT_ROW

See the DataModelEvent API and the following table for the full list of event constants.

2.6.1 The Class Constants Defined in DataModelEvent

Applications that simply need to display a grid find that all event handling is done
transparently. Events do need to be caught and handled by applications that need to
inspect and possibly deny some of the actions that end-users may take. The “BEFORE”
events shown in the table below can be used to let your application inspect changes made
by the end-user and perform its own validation before passing them back to the data
source.

getCommand Gets the command which indicates what action should be
taken.

getRowIndex Returns the row index of the changed row.

getOriginator Returns the DataModelListener which initiated this event.
Allows a listener to determine if it was also the originator of
the event.

getTable Returns the DataTableModel related to this event.

isCancelable Returns true if this event can be cancelled.

Event Method Description
Chapter 2 ■ Properties of JClass HiGrid 61

The data model’s events are distinguished by the group of class constants listed here:

DataModel Event Class Constants and
Corresponding Listener Method Description

AFTER_CHANGE_OF_ROW_DATA

ReadOnlyBindingListener method:
afterChangeOfRowData()

A row has changed, re-read all its cells and its
status to reflect the new values. If this event is
the result of a cell edit, call
DataModelEvent.getColumn() to get the name
of the column which changed. If getColumn()
returns “ ”, re-read the entire row.
Called when one of the following is true:

■ a row is deleted and getShowDeletedRows()
== true

■ a cell was edited
■ row edits are cancelled and getRowStatus

== UPDATED

■ row edits are cancelled and getRowStatus
== DELETED and getShowDeletedRows ==
true

■ row is committed and getRowStatus ==
UPDATED or INSERTED

■ row is requeried and getRowStatus !=
INSERTED

AFTER_DELETE_ROW

ReadOnlyBindingListener method:
afterDeleteRow()

Removes the row from the display. A row has
been physically deleted and needs to be
removed from the display or has been logically
deleted but the showDeletedRows property has
been set to false. Called when

■ a row has been logically deleted and
getShowDeletedRows == false

■ row changes have been cancelled and
getRowStatus == INSERTED

■ a row is committed,
getRowStatus == DELETED, and
getShowDeletedRows == true

■ a row has been requeried and getRowStatus
== INSERTED

AFTER_INSERT_ROW

ReadOnlyBindingListener method:
afterInsertRow()

A new row has been added to the datasource.
Listeners need to display the row. Rows are
always added to the end of DataTableModels.
62 Part I ■ Using JClass HiGrid

../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterChangeOfRowData(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterDeleteRow(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterInsertRow(com.klg.jclass.datasource.DataModelEvent)

AFTER_MOVE_TO_CURRENT_ROW

ReadOnlyBindingListener method:
afterMoveToCurrentRow()

The global cursor has moved to a new row.
Listeners should position their cursor on the
indicated row. In a master-detail relationship,
child levels should refresh themselves to reflect
data sets which correspond to the new parent
row by calling
DataModel.getCurrentDataTable() or, for field
controls, DataModel.getCurrentDataItem().

AFTER_REQUIRY_ROW_AND_DETAILS

ReadOnlyBindingListener method:
afterRequeryRowAndDetails()

Re-reads the indicated row and refreshes all
open children under this row.

AFTER_REQUERY_TABLE

ReadOnlyBindingListener method:
afterRequeryTable()

Re-reads this table and refreshes all open
children in the table.

AFTER_RESET

ReadOnlyBindingListener method:
afterReset()

Listeners must close all expanded views and
reset/re-read the root node. The previous
pointer to the root node is no longer valid. Call
DataModel.getDataTableTree().getRoot()
for the new root table. Called when the
datasource has been reset.

See DataModel.requeryAll().

BEFORE_CANCEL_ALL
BEFORE_CANCEL_ROW_CHANGES
BEFORE_EDIT_CELL
BEFORE_COMMIT_ALL
BEFORE_COMMIT_ROW
BEFORE_COMMIT_CONDITIONAL
BEFORE_MOVE_TO_CURRENT_ROW
BEFORE_REQUERY
BEFORE_RESET
BEFORE_DELETE_ROW
BEFORE_INSERT_ROW

These “BEFORE_” events can be ignored.
They are simply to allow applications to cancel
the event.

DataModel Event Class Constants and
Corresponding Listener Method Description
Chapter 2 ■ Properties of JClass HiGrid 63

../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterMoveToCurrentRow(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModel.html#getCurrentDataTable(com.klg.jclass.datasource.DataModelListener, com.klg.jclass.datasource.MetaDataModel)
../api/com/klg/jclass/datasource/DataModel.html#getCurrentDataItem(com.klg.jclass.datasource.DataModelListener, com.klg.jclass.datasource.MetaDataModel, java.lang.String)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterRequeryRowAndDetails(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterRequeryTable(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#afterReset(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModel.html#requeryAll(com.klg.jclass.datasource.DataModelListener)

BEFORE_CANCEL_ALL

DataModelListener method:
beforeCancelAll()

Event fired before all changes are cancelled.
Can be cancelled. AFTER_INSERT_ROW and
AFTER_CHANGE_OF_ROW_DATA events can follow
this event.

See DataModel.cancelAll().

BEFORE_CANCEL_ROW_CHANGES

DataModelListener method:
beforeCancelRowChanges()

Event fired before all edits to a row are undone.
Can be cancelled. An AFTER_DELETE_ROW or
AFTER_CHANGE_OR_ROW_DATA event will follow.

See DataTableModel.
cancelRowChanges().

BEFORE_COMMIT_ALL

DataModelListener method:
beforeCommitAll()

Event fired before all changes are committed.
Can be cancelled. All modified, deleted and
inserted rows at all levels are about to be
committed. BEFORE_DELETE_ROW and
AFTER_CHANGE_OF_ROW_DATA events will follow
depending on the operations performed on the
modified rows being saved. Results from a call
to DataModel.updateAll().

See DataModel.updateAll().

BEFORE_COMMIT_CONDITIONAL

DataModelListener method:
beforeCommitConditional()

Called when the root-level bookmark for a
subtree changes. When this happens, those
nodes in the previous subtree which are not
COMMIT_MANUALLY are committed. Can be
cancelled. If cancelled the cursor moves but the
changes are automatically committed.

BEFORE_COMMIT_ROW

beforeCommitRow()

Called before single row is committed to data
source. Can be cancelled, in which case the row
edits are not written to the datasource and the
rows status remains modified.
AFTER_DELETE_ROW or
AFTER_CHANGE_OF_ROW_DATA events will follow
depending on the status of the row to be
committed.

See DataTableModel.commitRow().

DataModel Event Class Constants and
Corresponding Listener Method Description
64 Part I ■ Using JClass HiGrid

../api/com/klg/jclass/datasource/DataModelListener.html#beforeCancelAll(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeCancelRowChanges(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataTableModel.html#cancelRowChanges(com.klg.jclass.datasource.DataModelListener, long)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeCommitAll(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModel.html#updateAll(com.klg.jclass.datasource.DataModelListener)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeCommitConditional(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeCommitRow(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataTableModel.html#commitRow(com.klg.jclass.datasource.DataModelListener, long)

BEFORE_DELETE_ROW

DataModelListener method:
beforeDeleteRow()

Event fired before a row is [logically] deleted.
Can be cancelled. If not cancelled, this event
will be followed by an AFTER_ROW_DELETE or a
ROW_STATUS_CHANGED message if the commit
policy is COMMIT_MANUALLY or
COMMIT_LEAVING_ANCESTOR.

See DataTableModel.deleteRow(),
MetaDataModel.getCommitPolicy().

BEFORE_DELETE_TABLE

DataModelListener method:
beforeDeleteTable()

The indicated Data Table will be deleted and
flushed from the cache. Can be cancelled.

BEFORE_EDIT_CELL

DataModelListener method:
beforeEditCell()

Event fired before a cell is edited. Can be
cancelled.

See DataTableModel.updateCell().

BEFORE_INSERT_ROW

DataModelListener method:
beforeInsertRow()

Event fired before a row is inserted. Can be
cancelled. If not cancelled, this event will be
followed by an AFTER_INSERT_ROW event.

See DataTableModel.addRow().

BEFORE_MOVE_TO_CURRENT_ROW

DataModelListener method:
beforeMoveToCurrentRow()

The global cursor will move to a new row. Can
be cancelled.

BEFORE_REQUERY

DataModelListener method:
beforeRequery()

Event fired when either
DataTableModel.requeryRow
AndDetails() or
DataTableModel.requeryRow() is called. If not
cancelled, this event will be followed by an,
AFTER_REQUERY_ROW_AND_DETAILS event, an
AFTER_ROW_DELETE event in the case
getRowStatus() == INSERTED, or a
ROW_STATUS_CHANGED event in the case
getRowStatus() == UPDATED or COMMITTED.
See DataTableModel.requeryRow(),
DataTableModel.requeryRowAnd
Details().

DataModel Event Class Constants and
Corresponding Listener Method Description
Chapter 2 ■ Properties of JClass HiGrid 65

../api/com/klg/jclass/datasource/DataModelListener.html#beforeDeleteRow(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataTableModel.html#deleteRow(com.klg.jclass.datasource.DataModelListener, long)
../api/com/klg/jclass/datasource/MetaDataModel.html#getCommitPolicy()
../api/com/klg/jclass/datasource/DataModelListener.html#beforeDeleteTable(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeEditCell(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataTableModel.html#updateCell(com.klg.jclass.datasource.DataModelListener, long, java.lang.String, java.lang.Object)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeInsertRow(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataTableModel.html#addRow(com.klg.jclass.datasource.DataModelListener)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeMoveToCurrentRow(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModelListener.html#beforeRequery(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataTableModel.html#requeryRow(com.klg.jclass.datasource.DataModelListener, long)
../api/com/klg/jclass/datasource/DataTableModel.html#requeryRowAndDetails(com.klg.jclass.datasource.DataModelListener, long)
../api/com/klg/jclass/datasource/DataTableModel.html#requeryRowAndDetails(com.klg.jclass.datasource.DataModelListener, long)

The grid’s events extend java.util.EventObject and are defined in subclasses of
HiGridEvent. They are categorized by the group of class constants listed next.

BEFORE_RESET

DataModelListener method:
beforeReset()

Event fired before entire grid is reset. Can be
cancelled. If not cancelled this event will be
followed by an AFTER_RESET event. This event
will result from a call to
DataModel.requeryAll().

BEGIN_EVENTS

ReadOnlyBindingListener method:
beginEvents()

Notification that multiple events are coming.
Multiple events will be nested between
BEGIN_EVENTS and END_EVENTS events. Allows
listeners to treat the events as a batch to, for
example, reduce repaints.

END_EVENTS

ReadOnlyBindingListener method:
endEvents()

Notification that multiple events are complete.
Multiple events will be nested between
BEGIN_EVENTS and END_EVENTS events. Allows
listeners to treat the events as a batch, to, for
example, reduce repaints. Called when
DataModel.updateAll() is called.

ORIGINATOR_NAVIGATE_ROW The current row has been deleted and the
originator of the deletion should now reposition
the global cursor to a new, valid row.

HiGridEvent Subclass Constant Description

AFTER_COLLAPSE_ROW In HiGridExpansionEvent, the row node has
been collapsed.

AFTER_CREATE_FORMAT_NODE_CONTENTS In HiGridFormatNodeEvent, a new Format
Node's contents has been created.

AFTER_CREATE_ROW In HiGridUpdateEvent, the new row node
has been created.

AFTER_EXPAND_ROW In HiGridExpansionEvent, the row node has
been expanded.

AFTER_MOVE_COLUMN In HiGridMoveCellEvent, the column has
been moved.

AFTER_RESET_FORMAT_DATA In HiGridUpdateEvent, the format data has
been reset.

DataModel Event Class Constants and
Corresponding Listener Method Description
66 Part I ■ Using JClass HiGrid

../api/com/klg/jclass/datasource/DataModelListener.html#beforeReset(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/DataModel.html#requeryAll(com.klg.jclass.datasource.DataModelListener)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#beginEvents(com.klg.jclass.datasource.DataModelEvent)
../api/com/klg/jclass/datasource/ReadOnlyBindingListener.html#endEvents(com.klg.jclass.datasource.DataModelEvent)

AFTER_RESET_HIGRID_DATA In HiGridUpdateEvent, the grid data has
been reset.

AFTER_RESIZE_COLUMN In HiGridResizeCellEvent, the column has
been resized.

AFTER_RESIZE_ROW In HiGridResizeCellEvent, the row has
been resized.

AFTER_SELECT_ROW In HiGridRowSelectionEvent, the row node
has been selected or de-selected.

AFTER_SORT_TABLE In HiGridSortTableEvent, the table has
been sorted.

AFTER_TRAVERSE In HiGridTraverseEvent, the current cell
has been moved to a new row or column.

BEFORE_COLLAPSE_ROW In HiGridExpansionEvent, the row node is
being collapsed. A listener to this event can
cancel the action.

BEFORE_CREATE_FORMAT_NODE_CONTENT
S

In HiGridFormatNodeEvent, a new Format
Node's contents is about to be created.

BEFORE_EXPAND_ROW In HiGridExpansionEvent, the row node is
being expanded. A listener to this event can
cancel the action.

BEFORE_MOVE_COLUMN In HiGridMoveCellEvent, the column is
being moved.

BEFORE_REPAINT_ROW In HiGridRepaintEvent, a row node is being
repainted.

BEFORE_RESIZE_COLUMN In HiGridResizeCellEvent, the column is
being resized.

BEFORE_RESIZE_ROW In HiGridResizeCellEvent, the row is being
resized.

BEFORE_SELECT_ROW In HiGridRowSelectionEvent, the row node
is being selected or de-selected.

BEFORE_SORT_TABLE In HiGridSortTableEvent, the table is being
sorted.

ERROR In HiGridErrorEvent, an error has been
caught.

HiGridEvent Subclass Constant Description
Chapter 2 ■ Properties of JClass HiGrid 67

Use the methods in the following table to glean information about the type of event that
was generated. Since JClass HiGrid receives events from the data source as well, method
isDataModelEvent permits you to find out whether the event comes from HiGrid itself or
is simply being passed on. Use method isCancelable() to confirm that your application
can actually intervene in the processing of the event. Most “BEFORE” events are
cancellable.

2.6.2 Print Events
A HiGridPrintEvent is issued for each page when printing is in progress so that you can
add custom headers and footers, and possibly do some post-processing when the print job
finishes. The relevant constants are HiGridPrintEvent.PRINT_END, PRINT_FOOTER, and
PRINT_HEADER.

2.6.3 Validating Events
HiGridValidateEvent’s three constants are STATE_IS_INVALID, VALUE_CHANGED_BEGIN,
and VALUE_CHANGED_END. JClass HiGrid’s style of validation uses these methods to fire the
events: fireValueChangedBegin, fireValueChangedEnd, fireStateIsInvalid, and
fireValidateEvents. The method fireValidateEvents is in the support class
(jclass.cell.ValidateSupport), since it is called by all JClass editors. Use
HiGridValidateEvent.getValidateEvent to see which event subclass is involved.

2.6.4 Data Model Events

JClass HiGrid encapsulates data model events so that it can inspect all events before
passing them on.

STATE_IS_INVALID A HiGridValidateEvent.

VALUE_CHANGED_BEGIN A HiGridValidateEvent.

VALUE_CHANGED_END A HiGridValidateEvent.

HiGridEvent Method Description

getEventType() Retrieves the type of this event.

getException() Retrieves the exception value of this event.

getRowNode() Retrieves the RowNode associated with this event.

isCancelable() Returns true if this event can be cancelled.

isDataModelEvent() Determines if the event is actually a data model event.

HiGridEvent Subclass Constant Description
68 Part I ■ Using JClass HiGrid

2.6.5 Mouse and Keyboard Events

The controller implements the following keystroke combinations:

Keystroke Action

Enter Completes the edit. The cell remains selected. If the cell is
selected but no editor is active, the keystroke is ignored.

Esc (Escape) Cancels the edit and replaces the contents of the cell with the
original.

Up Arrow Key With a cell in column n selected, moves up to column n in the
next visible row. If the row contains fewer than n columns,
moves to the last column in the row.

Down Arrow Key Same as UP, but in the other direction

Left Arrow Key Moves to the next cell on the left—does not wrap to the next
row upon reaching the beginning of the current row.

Right Arrow Key Moves to the next cell on the right—does not wrap to the
previous row upon reaching the end of the current row.

Page Up Replaces the current screen with the one that is conceptually
just above it without overlapping. If there are too few rows in
the new screen, begins at row one and shows a full screen.

Page Down Replaces the current screen with the one that is conceptually
just below it without overlapping. If there are too few rows in
the new screen, ends at the last row and shows a full screen.

Alt+Page Up Replaces the current screen with the one that is conceptually
to its right, without overlaps – useful when the width of the
grid is larger than the view.

Alt+Page Down Replaces the current screen with the one that is conceptually
to its left, without overlaps – useful when the width of the grid
is larger than the view.

Home Goes to the first cell on the current row.

Ctrl+Home Goes to the first cell on the first row.

End Goes to the last cell on the current row.

Ctrl+End Goes to the last cell on the last row.

Tab Moves to the adjacent cell on the right and wraps to the first
cell on the row below when a TAB is received in the last cell
on a row.
Chapter 2 ■ Properties of JClass HiGrid 69

Mouse Actions
Besides traversing the grid by using the horizontal and vertical scrollbars, and selecting a
cell for editing with a left mouse click, a right mouse click provides two popup menus,
depending on the location of the mouse pointer when the event occurs. On a cell that is
open for editing, the standard edit popup appears. On any other location in the grid, the
JClass HiGrid edit popup menu appears.

Figure 18 JClass HiGrid’s right-click popup menu.

2.7 Printing a Grid

Printing an image of the grid is facilitated by classes PrePrintRowTreeWalk,
PrePrintWalk, PrintGrid, and PrintWalk.

The Print function is one of the choices in the popup menu that is accessed by a right-click
anywhere within JClass HiGrid’s grid area. There are two further choices, print As
Displayed and print As Expanded. The latter choice prints the entire grid while the former
prints just those rows that have been expanded. All rows of the root table are always
printed, not just those that are visible in the grid window. If a sub-level is exposed
anywhere and the PRINT_AS_EXPANDED option is chosen, all related sub-levels are printed.

Shift+Tab Moves to the adjacent cell on the left and wraps to the last cell
on the row above when a TAB is received in the first cell on a
row.

Ctrl+Numeric+ (Plus
sign on the number
pad)

Opens the sub-level for the current row – if this level is
already showing, do nothing.

Ctrl+Numeric-
(Minus sign on the
number pad)

Closes the sub-level for the current row – if this level is
already closed, do nothing.

Keystroke Action
70 Part I ■ Using JClass HiGrid

You can access a limited number print routines programmatically as well. To initiate
printing programmatically, use HiGrid’s no-argument print method. Use
setPrintFormat with either of the parameters HiGrid.PRINT_AS_DISPLAYED or
HiGrid.PRINT_AS_EXPANDED to set the type of printing desired.

2.7.1 Printing Headers and Footers

To print grid information and include a page header and a page footer, add a print
listener and process two of the three types of HiGridPrintEvent. These are
PRINT_FOOTER, and PRINT_HEADER. The other case is PRINT_END, which signals the end of
the print job. You can listen for this event if you want to do any clean-up after printing.

An example of code that might be used for a footer is included here. It is used by the print
routine to produce the default footer. Assuming you have set the page margins elsewhere,
the graphics context is used to get the clip bounds for the footer rectangle. You could
replace the variable height/2 with some other value, but you must ensure that it is within
the bounds defined by the rectangle or you won’t see anything.

/**
* Prints default footer.
*/
public void printPageFooter(HiGridPrintEvent event) {

Graphics gc = event.getGraphics();
Rectangle r = gc.getClipBounds();

Font font = grid.getFont();
if (font != null) {

gc.setFont(font);
String page = "Page " + event.getPage() +

" of " + event.getNumPages();
gc.drawString(page, 0, r.height/2);

}
}

2.7.2 Print Preview
The EditPopupMenu includes a Print Preview. It also has the As Displayed... and As
Expanded... sub-choices. Choosing one of these brings up a Print dialog, but clicking on
OK causes a print preview window to appear rather than initiating an actual print job. An
example of the Print Preview window is shown next. It contains buttons First, Previous,
Next, and Last for selecting pages, and buttons Print and Print All remove the necessity
of closing this window and then choosing Print to begin an actual print job. Use the Print
Page button to print the current page, and use Print All to print the entire grid.
Chapter 2 ■ Properties of JClass HiGrid 71

Figure 19 The Print Preview window, showing its navigation and control buttons.

2.7.3 PrintGrid and its Associated Classes

These classes are used internally by HiGrid to implement its print function. Apart from
using the methodology of the previous section to provide customized headers and footers,
or to do some clean-up at the end of a print job, no other use of these classes is
recommended.
72 Part I ■ Using JClass HiGrid

3
JClass HiGrid Beans

JClass HiGrid JavaBeans ■ Properties of JCHiGrid Bean ■ Using the Customizer

Overview of the Customizer’s Functions ■ The Serialization Tab ■ Specifying the Data Sources

Joining Tables ■ The Driver Table Panel ■ Driver Limitations ■ Setting Properties on the Format Tab

Setting a Column’s Edit Status Properties ■ The JCHiGridExternalDS Bean

3.1 JClass HiGrid JavaBeans

The main Bean for HiGrid development is JCHiGrid Bean. With it, you can bind and
configure the DataSource, and use the HiGrid portion as a viewer/editor on the data.
With JCHiGrid Bean, the DataSource and HiGrid are tightly coupled as one Bean. The
data model can be thought of as 'internal'.

The second Bean, JCHiGridExternalDS, is provided for developers who want to separate
the DataSource from HiGrid, to have a data source that is 'external' to the HiGrid
component. JCHiGridExternalDS is almost identical to JCHiGrid Bean, except that the
data source features have been disabled. With JCHiGridExternalDS you can bind with an
existing data source component, such as TreeDataBean.

This chapter covers using the JCHiGrid Bean as one of the components in your
application. With the exception of data handling, the two HiGrid Beans are the same.
Minor differences are discussed in Section 3.12, The JCHiGridExternalDS Bean.

This chapter demonstrates

■ Placing the JCHiGrid Bean on a form (we’ll use the BDK BeanBox as a generic
example) and viewing the JCHiGridCustomizer’s “general” property page.

■ Inspecting the JCHiGridCustomizer’s property sheet.

■ Launching the GridPropertiesEditor’s custom editor.

■ Configuring and saving a serialization file.

■ Giving the grid’s root table a name and defining the database connection.

■ Adding the remaining tables and specifying the queries that select the desired
columns and define the appropriate join statements.

■ Determining which cells are editable.

■ Declaring the commit policy for each level.
73

■ Using the customizer to configure the visual aspects of the grid, such as font and color.

■ Selecting which row types to include.

■ Setting properties for cells on a per-column basis.

3.1.1 Placing the JClass HiGrid Bean on a Form
After you have installed its JAR file where the IDE you are using can find it, you can
place the bean on a form. In the BeanBox, the Properties - JCHiGrid Bean window lists the
top-level properties, including the GridProperties, which is a custom property editor for
the description of the hierarchical design, the data binding, and the visual properties of
the grid.

Single-click on its Click to edit... field and a modal dialog appears, reminding you to
specify a name and location for the serialization file that will store the changes you make
to the bean’s default properties. Decide where the serialization file is to be located relative
to the class loader in your distributed application. Type this path along with the name of
the serialization file in the Resource Name field.

Figure 20 JClass HiGrid Bean’s opening dialog.

Uncheck Show Tips At Start if you do not want this screen to reappear each time you place
a new JClass HiGrid Bean component on the workspace, but be aware that if you change
your directory, your IDE will not find the saved properties file and you will see this
74 Part I ■ Using JClass HiGrid

screen again. This does not happen in the BeanBox because the startup directory never
changes.

3.1.2 Using the HiGrid Bean in an IDE
JClass HiGrid is designed to be used in an IDE. Use HiGrid’s powerful customizer to set
up the database connection, build a query in a point-and-click fashion, and bind the
retrieved data to the grid for display. The upcoming sections demonstrate the use of the
customizer. Please refer to your IDE’s documentation or the JClass DesktopViews
Installation Guide for more information on integrating JClass HiGrid with an IDE.

3.2 Properties of JCHiGrid Bean
After you have placed the JCHiGrid Bean component on your form (which may be the
BeanBox or one of the supported IDEs), you can inspect the main property sheet. It
contains property editors for a number of global properties that either apply to the grid as
a whole or are included at the top level as a convenient place for inspecting and possibly
modifying their default values.
Chapter 3 ■ JClass HiGrid Beans 75

../getstarted/index.html
../getstarted/index.html

The following figure lists these properties and their default values.

Figure 21 JCHiGrid’s top-level properties and their default values.

The following table lists the properties and their descriptions. This is not the full list of
properties. Nestled in the middle of the table is the property called GridProperties
which contains an extensive custom editor. You use this customizer to specify the data
source connection, define the meta data model, and set many more visual properties of
76 Part I ■ Using JClass HiGrid

individual levels. You also use the customizer to manage the appearance of non-database-
record rows, such as headers and footers.

You launch the customizer with a single click on the GridProperties’ Click to edit field, as
shown in the next figure.

Figure 22 Click on “Click to edit...” to start the Component Editor.

Note: A single click (mouse-down, mouse-up at the same place) is all that is required to
bring up the customizer.

Property Description

about A String that identifies the product.

allowPopupMenu Shows the edit popup menu if true.

allowRowSelection If false, prevents rows from being selected.

allowSorting If false, disables the sort capability.

background The background color for the entire grid.

batched Sets this mode if you want to prevent multiple updates to the
graphical component. This command is usually issued
programmatically, turning it on before performing large
updates, then turning it back off.

beepOnInvalid If true, causes a beep to sound when, during cell editing at
run time, a validator decides that the input is invalid.

connectionsVisible If true, shows the connecting lines between rows.

editStatusWidth Sets the width of the edit status column.

editorHidden Hides the editor’s rectangle

editable If false, the whole grid is read-only.

folderIcon Chooses among various folder icon styles.

font Any of the Java fonts may be selected

foreground The foreground color for the entire grid.
Chapter 3 ■ JClass HiGrid Beans 77

3.3 Using the Customizer

The customizer provides a way of guiding you through the rather large number of options
you have in setting up your grid. Use this JClass HiGrid JavaBean design-time element to
specify the database connection and to set most of the visual properties of the grid. At run
time, end-users modify the appearance of the grid in ways that were described in the
previous chapter, like clicking and dragging, or using the edit popup menu.

You launch the customizer/custom editor as shown in Figure 22.

gridProperties This property invokes the customizer that lets you specify the
database connection and define the meta data, along with
setting many more visual properties. It is discussed in the next
section.

horizontalScrollbarD
isplay

Three options: as needed, always, or never.

levelIndent The amount of indent in pixels to apply to sub-levels.

name The name.

nodeWidth The node width in pixels for all levels.

printFoldersAnd
Connections

If true, prints the folder icons and connection lines as well as
the rows.

printFormat There are two choices: as displayed or expand all levels and
print.

rowHeightResizingAll If true, then the user is allowed to resize a row anywhere on
the row. If false, the row can be resized only in the
EditStatus column.

rowSelectionMode Determines if the specified selection mode allows the
operation to continue. You may want to restrict a group of
selections to the same table or at the same level.

rowTipVisible If true, shows the row tip.

sortIconsVisible Shows the sort icon when someone clicks on a column
header, causing a sort operation.

version This software’s version number.

verticalScrollbar
Display

Three options: as needed, always, or never.

Property Description
78 Part I ■ Using JClass HiGrid

3.4 Overview of the Customizer’s Functions

If you are using an IDE, you use the custom editor to configure the properties of the grid.
With it, you can add or remove columns containing unbound data. (Header columns are
a special case. They cannot be removed, but they can be made invisible.) You cannot
delete bound columns because they are defined by the meta data, and can only be
modified by changing it. You can specify Before Details and After Details formats,
except at the root level. You may decide to change the meta data design while still in the
development phase of your application. If this is the case, you can use the Retrieve
Columns button to retrieve the new column information and continue using the
customizer. The Clear Format button is used to start formatting all over again.

The customizer displays the class names for the cell renderer and cell editor objects that it
will use automatically for the selected column. The choice is based on the column’s data
type, and is determined by the underlying database data type for that field. If you decide
to define your own cell editor, you will have to enter its class name manually.

The custom editor’s main areas are: a panel containing a Data tab and a Format tab. The
data tab contains three main areas: Data Source Type, Data Access, and JDBC.
Chapter 3 ■ JClass HiGrid Beans 79

The tab structure is shown in the diagram. The contents of each panel is described in
detail in the subsequent sections.

Figure 23 The GridProperties Custom Editor’s tabbed dialogs.
80 Part I ■ Using JClass HiGrid

3.5 The Serialization Tab
You begin the process by choosing a name and location for your serialization file, then
clicking on the Add button in the meta data outliner on the left hand side of the
Component Editor’s main page.

Figure 24 The GridPropertiesEditor’s opening page.

1. Click the Serialization tab.

2. Click Save As....

3. A file dialog appears. A default filename is supplied, which you can change if you
wish. Click Save.

4. Now the Add button is enabled. Click Add and give the root level data table a name.
Chapter 3 ■ JClass HiGrid Beans 81

Important: You need to name the root level of the data source’s meta- data, or
choose the default name, before you can make a database connection.

Figure 25 The Add button is at the lower left of the grid properties editor.

5. Click OK. The root table will have the name you give it, but you can change it at any
time. This can be useful, since you may want to use an exact name from the database
to which you are about to connect. You can revise the label for the data table after the
connection is made and the table names are available by clicking the Description...
button. We have chosen the name Orders for the data table. The name appears next to
a folder icon in the left-hand panel, as shown in Figure 26. The connection tab is sim-
ilar to the JCData and the JCTreeData that will be discussed later on. It is shown be-
low.

Figure 26 JClass HiGrid’s connection panel.
82 Part I ■ Using JClass HiGrid

The Connection panel is described both in the JClass DesktopViews Installation Guide and
in the Data Bean chapter1. You supply the server name, the driver, and you give any
additional information that may be necessary, such as a login name and password. If, as
part of database connection URL, a host address and port number are required, they are
specified as well.

3.6 Specifying the Data Sources

Up to this point we have not specified which of the database’s tables are to be used. This
is accomplished in the SQL Statement panel. A single level can comprise more than one
table, but in this example we will use only the Orders table. You place a table in the top
part of the SQL Statement panel either by clicking on the Add Table button or by right-
clicking on the top panel itself. Clicking on Add Table brings up a Table Chooser dialog
containing all the names, and the Orders table is chosen.

If you right-click on the top panel a popup menu appears:

Figure 27 The popup menu resulting from a right click on the upper SQL Statement panel.

Click on Add > Table to choose the table name, then click the Close button on the Table
Chooser. You’ll see the table has been added to the panel, but one further step is required
to make the addition permanent. This step is done after formulating the SQL statement.

Figure 28 The Table Chooser dialog resulting from clicking Add Table.

1. In the IDE-specific cases, not as much customization can take place because the connection is not checked at design
time, so table and column names are not made available to the customizer. Thus, the customizer cannot be used to
format the grid.
Chapter 3 ■ JClass HiGrid Beans 83

../getstarted/index.html

The bottom panel, also called SQL Statement, is the text area that holds the actual SQL
query. The next figure shows the table and a SQL statement. The customizer knows
which table to select, but it does not make any assumptions about what columns of the
table you want to display. This you do by pointing to a column name in the table to select
it, then clicking on Add Selected Column(s). At this point you have a valid SQL
statement and you can pass this to the data model by pressing the Set/Modify button.

Now we’ll add a detail level, called OrderDetails, using the same connection to the
database as its parent.

Figure 29 Setting the root-level data table.

3.6.1 Summary of the SQL Statement Page Buttons

Meta data design panel
Add — Adds a new entry to the design. The new entry appears as a child of the
highlighted level.

Delete — Deletes the highlighted entry. All children of the highlighted node are deleted
as well.

Clear — Clears the design. All levels are cleared and all formats are reset.
84 Part I ■ Using JClass HiGrid

Description — Brings up an edit window containing the name assigned to the level.

SQL Statement Panel
Add Table... — Launches the Table Chooser window, containing a list of available database
tables.

Add Selected Column(s) — After a table has been added to the SQL Statement panel,
multiple fields can be chosen by dragging or control-clicking on them. Clicking on Add
Selected Column(s) adds the columns name(s) to the SELECT clause of the SQL
Statement. The same thing can be accomplished by double-clicking on a field name.

Add Join... — Invokes the Join dialog, whose buttons are Add, Modify, Delete, Auto
Join, and OK. It simplifies construction of a WHERE clause when a level contains two or
more tables

Join To Parent — Invokes the Join To Parent... dialog, whose buttons are Add, Modify,
Delete, Auto Join, and OK. It simplifies construction of a WHERE clause joining
parent-child tables.

Set — Sets the parameters that have been chosen for the current level.

Clear — Clears all settings for the current level.

Expert Mode — Only the SQL Statement text area is active. The customizer makes no
attempt to parse or modify the query.

3.7 Joining Tables

A join matches common fields in two tables so that meaningful associations are formed.
In the example shown, the Orders table has an orderID field that matches the one in
OrderDetails. The result of forming a join on these fields is an association of an order with
further detailed information about that order. Without the join, all OrderID rows would be
listed in the sub-table that follows every Orders row and no useful information is
conveyed.

There are three ways of specifying the join. You can type the comparison part of the
WHERE clause that will specify the join directly into the edit box, you can choose the
dependent table and the join column names from the drop down lists, or you can select
the Auto Join feature. The parent table’s field must be one of the selected fields for you to
Chapter 3 ■ JClass HiGrid Beans 85

be able to specify it in the join but the associated field in the dependent table need not be
visible.

Figure 30 Joining the dependent table to its parent.

3.8 The Driver Table Panel

A level can be populated by more than one table. If it is, your application should specify
which one is the primary table, that is, the one that will be used by the database to drive
requeries. Use the Driver Table dialog shown in Figure 31 for this purpose.

3.9 Driver Limitations

Some JDBC drivers do not return a list of table names, therefore, they do not return a
table’s primary key. For these drivers, you must specify the primary key and those
columns that are to be used when performing a requery. The Join To Parent dialog that has
just been discussed does not permit you to choose the parent table. Instead, the edit field
is disabled and is marked “<PARENT QUERY>”, making it impossible to specify which
parent table to use there. The Driver Table panel lets you specify the table to be used as the
parent in the Join To Parent dialog. Here’s the procedure:

1. Select the folder that you deem to be the driver table.

2. Select the Driver Table tab.

3. In the Table combo box, select the one you want to choose as the master table.

4. This table’s primary key is shown in the text area.
86 Part I ■ Using JClass HiGrid

As you would expect, the Add and Delete buttons are not active.

Figure 31 The Driver Table panel, resulting from selecting the Driver Table tab.

3.10 Setting Properties on the Format Tab

There are several actions that can be performed from the Format tab. The most important
procedures are explained, including choosing row types, setting level properties, and
setting column properties.

3.10.1 Choosing Row Types

Using the customizer makes it easy to choose which row types you want to include at any
level.

1. Click on a level in the “Folder Tree” (the left hand panel in the JCHiGrid Bean Com-
ponent Editor showing the meta data design) to select it.
Chapter 3 ■ JClass HiGrid Beans 87

2. Choose the Format tab, then the Sections tab.

3. Choose which of the four optional row types you want included.

You can also perform the following actions from this tab:

■ Use the Connections Foreground Color panel to set the color of the connections lines in
the Folder Icons column.

■ Use the Default Sort Data panel to choose the column on which to sort, and the policy:
either Ascending, Descending, or None (no attempt is made to sort the column).

■ Click on Current Level > Retrieve Fields after you have modified the data design (the
meta data) to refresh the list of column names in the currently selected level that
appears under the Record row tab. Note that you will have to fill in the Record,
Header, and so on, information again after using Retrieve Fields.

■ Choose Current Level > Clear Format if you want to completely redo the data design
(the meta data) at the current level and to refresh the list of table names that appears
under the row tabs. Note that you will have to fill in the Record, Header, and so on,
information again after using Clear Format.

■ All Levels > Retrieve Fields is used after you have modified the data design (the meta
data) to refresh the list of table names in the currently selected level that appear under
the Record row tab. Note that you will have to fill in the Record, Header, and so on,
information again after using Retrieve Fields.

■ All Levels > Clear Format is used if you want to completely redo the data design (the
meta data) at the current level. Note that you will have to fill in the Record, Header,
and so on, information again after using Clear Format.
88 Part I ■ Using JClass HiGrid

■ A refresh mechanism propagates changes made at design-time to the grid so that it
can update the view.

Figure 32 Choosing the types of rows to include.

3.10.2 Setting Level Properties

When you first attempt to choose the Format tab, you may see this error dialog:

Figure 33 An error dialog that might appear on your first attempt to choose the Format tab.
Chapter 3 ■ JClass HiGrid Beans 89

If you encountered this error, you will have to clear all formats, start again, and reformat
all levels.

Figure 34 The General Level properties window where you can clear all formats.

Use this panel to set the properties of all rows of the selected type. The three panels
contain these choices:

Border

■ Border Style — Choose one from the drop-down list.

■ Border Insets — Edit this text field to change their default values. As a general rule,
an object appears well positioned in a cell when all border insets have the same value.

Background and Foreground Colors, and Fonts

■ Foreground Color — Use the drop-down list to choose one of the standard colors
defined in Java’s Color class, or type in three comma separated RGB (red, green,
blue) values in the lower text field.
90 Part I ■ Using JClass HiGrid

■ Background Color — Use the drop-down list to choose one of the standard colors
defined in Java’s Color class, or type in three comma separated RGB (red, green,
blue) values in the lower text field.

■ Font —Use the font chooser bar to select any font on your system.

Height

■ Height — The height of the row in pixels.

■ Allow Height Sizing — Ensure that this box is checked if you want to allow the end-
user to adjust the height of this type of row. Note that allowing rows at one level to be
resized is independent of the resizing policy at any other level.

3.10.3 Setting General Column Properties

There are four tabs for setting the numerous properties associated with cells. We’ll discuss
the ones that are settable on the General tab first. The properties relate to the general
layout of the cell, that is, its size and the alignment of data within it.

Follow these steps to set the general cell properties for a single column.

1. Click on the Cell > General tab after having defined the grid’s meta data.

2. Choose one of the meta data levels by clicking on it.

3. The text area to the left of the tab lists all the fields for this level. Choose the one
whose properties you wish to set.
Chapter 3 ■ JClass HiGrid Beans 91

4. Edit any of the parameters that require it.

Figure 35 Cell properties that are settable using the General tab.

The General Tab

■ Showing — If disabled, the column will not appear on the screen. One example of its
usefulness is to hide a key field. If you need to join two tables based on a key, it must
be mentioned in the SELECT clause for that table, which means it must be one of the
fields retrieved from the database. Such a field is usually of no value to an end-user
and should be hidden from view.

■ Text — For headers, footers, before details, and after details rows, the column label.

■ Width — The width of the column. Setting the width of any one cell sets the width for
that column. Note that the height cannot be set at design time.

■ Allow Width Sizing — If enabled, the column width may be resized at run time.

■ Horizontal Alignment — Choices are Top, Center, Bottom

■ Vertical Alignment — Choices are Left, Center, Right
92 Part I ■ Using JClass HiGrid

■ Margin Insets — The insets for the cells in a column.

■ Border Style — See the section on Cell Formats and Cell Styles, in Chapter 2, for a
list.

■ Border Insets — See Border insets and margin insets., in Chapter 2.

■ Clip Hints — Choices are Show None, Show Horizontal, Show Vertical, and
Show All.

Setting a Column’s Font Properties

Figure 36 The Font tab where you can control the font’s appearance.

■ Font — The font for the column. The drop-down list contains the standard Java fonts.

■ Font Style — Choices are plain, bold, and italic.

■ Font Size — Font sizes up to 48 points are selectable.
Chapter 3 ■ JClass HiGrid Beans 93

Setting a Column’s Color Properties

Figure 37 The Color tab, where you can set a column’s color properties.

You can use the two types of color selectors to choose from Java’s standard set of colors or
you can specify RGB (red—green—blue) color values as a triplet of numbers between 0
and 255.

Color

■ Foreground Color — The foreground color for the column.

■ Background Color — The background color for the column.

■ Selected Foreground Color — (Record rows only) The color to use when a cell has
focus.

■ Selected Background Color — (Record rows only) The color to use when a cell has
focus.
94 Part I ■ Using JClass HiGrid

A table of color values has been included in the Appendix to help you choose color
values. See Appendix C, Colors and Fonts, for more information.

Setting a Column’s Edit Properties

Figure 38 The Cell – Edit tab, where you can set a column’s edit properties.

Editing

■ Value Type — The data type for the column; it depends on the data type that the
database defines for the column in question. Standard JDBC data types are allowed.

■ Editable — The column may be specified as read-only by un-checking this checkbox.

■ Select All — If true, the cell editor causes the entire field to be selected. Any
keystroke replaces the entire field with that key. If false, the edit cursor is placed at the
end of the field.

■ Edit Width Policy — A cell editor’s size is not necessarily the size of the cell itself.
The options are SIZE_TO_CELL (the cell editor is fitted within the borders of the cell),
ENSURE_MINIMUM_SIZE (the cell editor is sized to some predefined minimum size), and
Chapter 3 ■ JClass HiGrid Beans 95

ENSURE_PREFERRED_SIZE (the cell editor has a size that is appropriate for its type. For
instance, if the cell contains a date and the editor is a calendar popup type, its
preferred size is big enough to show all the days of the month.)

■ Edit Height Policy — Options are the same as for Edit Width.

■ Renderer — The cell renderer for the column’s data type. Cell renderers are defined
for all common database data types. You can define your own cell renderer if you
wish. You would type its path name in the lower text field.

■ Editor — The cell editor for the column’s data type. Cell editors are defined for all
common database data types. You can define your own cell editor if you wish. You
would type its pathname in the lower text field. See Displaying and Editing Cells, in
Chapter 4, for details.

3.11 Setting a Column’s Edit Status Properties

All row types have an Edit Status cell so that the grid appears properly aligned, although
only record rows use them to show whether edits have been made. If you change a row’s
appearance, and you want a consistent look, you need to match the edit status cell to the
other changes. The properties that may need changing are:

■ Background Color — The background color of the Edit Status cell.

■ Border Style — Ten choices. For more information, please see Cell Formats and Cell
Styles, in Chapter 2.
96 Part I ■ Using JClass HiGrid

■ Border Insets — The Edit Status cell’s border insets. For more information, please see
Cell Formats and Cell Styles, in Chapter 2.

Figure 39 The Edit Status tab, where you can set a column’s edit status properties.

3.12 The JCHiGridExternalDS Bean

With most features of the JCHiGridExternalDS Bean, the JCHiGrid Bean reference
applies. However, there are some differences between the two Beans.
JCHiGridExternalDS behaves more like other data bound components, such as
JClass LiveTable, in that it does not manage the DataSource. It can access and modify
data from different levels of the data hierarchy, but it cannot alter the DataSource
structure or set-up. You will have to use a DataSource Bean, such as TreeDataBean, to set
up your data source first.

In the JCHiGridExternalDS customizer you will notice that the Data tab, Add, Delete,
Clear, and Description buttons have been ‘grayed-out’. This means that you can’t create
SQL queries, or adjust the structure of the data model.
Chapter 3 ■ JClass HiGrid Beans 97

Instead of defining a DataSource, as in JCHiGrid Bean, you select a DataSource in the
external datasource field, which has an editor that comes up when you click the ... button:

Figure 40 The External DataSource Field. Click the ... button to bring up the editor.

Figure 41 The DataBinding Editor, which allows you to select an external data source.

Select a data source from the list. Your data will display in JCHiGridExternalDS and you
can configure the view on the data as you would with JCHiGrid Bean.

For information on configuring the DataSource and the data hierarchy, see
JClass DataSource Beans, in Chapter 7.
98 Part I ■ Using JClass HiGrid

4
Displaying and Editing Cells

Overview ■ Default Cell Rendering and Editing

Rendering Cells ■ Editing Cells ■ The JCCellInfo Interface

4.1 Overview
JClass HiGrid offers a flexible way to display and edit any type of data contained in its
cells. The following sections explain the techniques for displaying and editing cells in
your programs.

In order to display a cell, JClass HiGrid has to know what type of data renderer is
associated with the cell so it knows how to paint that data into the cell area. Similarly, in
order for users to edit the cell values, HiGrid has to know what editor to return for that
data type.

These operations are performed using the classes in the JClass cell package, which is
structured as follows:

JClass Cell Package Contents

com.klg.jclass.cell Contains editor/renderer interfaces and support classes,
including these interfaces:

JCCellEditor: Used to define an editor.

JCCellRenderer: The common and basic interface for
renderers.

JCComponentCellRenderer: Allows the creation of
renderers that are based on JComponent.

JCLightCellRenderer: Allows the creation of renderers
based on direct drawing.

com.klg.jclass.cell.
editors

Contains editors for common data types.
Please see Section 4.4.1, Default Cell Editors, for details.

com.klg.jclass.cell.
renderers

Contains renderers for common data types.
Please see Section 4.3.1, JClass Cell Renderers, for details.
99

This JClass cell package is generic; renderers and editors written for JClass HiGrid will
work with other JClass products. In addition, JClass Field components can work as
renderers and editors within HiGrid, allowing very lightweight operation.

JClass HiGrid has been designed to identify the type of data being retrieved from the data
source and to provide the appropriate cell renderer and cell editor for that data type.
Often, however, you will want to control the way data in a particular area of the grid is
rendered, or assign a specific type of editor for that data. An example of this is rendering
String data in multiple lines and using javax.swing.JTextArea as the editor, rather than
rendering and editing single-line Strings.

The following sections describe the techniques for rendering and editing cells by
beginning with the easiest default methods, followed by detailed explanations for setting
specific renderers and editors, mapping renderers and editors to a particular data type,
and creating your own renderers and editors.

4.2 Default Cell Rendering and Editing

Basic Editors and Renderers

When the grid draws itself, it accesses the data source and attempts to paint the contents
of each cell. In doing so, it:

1. Looks for a renderer and editor for that data in its list of default editors and renderers.

2. Assigns a renderer and an editor to each cell type. You can override this default map-
ping if you wish.

The following table lists the cell renderers and editors for common data types included
with JClass HiGrid, which are found in the com.klg.jclass.cell.renderers and
com.klg.jclass.cell.editors packages, respectively. When going through the above
steps, JClass HiGrid uses these default mappings.

com.klg.jclass.cell.
validate

Contains data validation interfaces and support classes.

Data Type Renderer Editor

Big Decimal JCStringCellRenderer JCBigDecimalCellEditor

Boolean JCCheckboxCellRenderer JCCheckboxEditor

Byte JCStringCellRenderer JCByteCellEditor

JClass Cell Package Contents
100 Part I ■ Using JClass HiGrid

Although these editors and renderers are included with JClass HiGrid, you might find
that you need more control over the way data is displayed and edited than simply relying
on these defaults. The following sections explain cell rendering and cell editing in detail.

4.3 Rendering Cells

Cell rendering is simply the way in which data is drawn into a cell. JClass HiGrid
includes renderers that you can use in your grid. Additionally, two rendering models,
JCLightCellRenderer and JCComponentCellRenderer, are provided if you want to create
your own renderer. Each model caters to different rendering needs.

More information about included renderers are found in the next section, and
information about the two rendering models on which you can base customized
renderers is found in Section 4.3.3, Creating your own Cell Renderers.

4.3.1 JClass Cell Renderers

As shown in the table above, JClass HiGrid maps standard data types to specific
renderers when the program does not specify a renderer for that data type. This means

Byte Array (for
Images)

JCRawImageCellRenderer JCImageCellEditor

Double JCStringCellRenderer JCDoubleCellEditor

Float JCStringCellRenderer JCFloatCellEditor

Integer JCStringCellRenderer JCIntegerCellEditor

Long JCStringCellRenderer JCLongCellEditor

Object JCStringCellRenderer JCStringCellEditor

Short JCStringCellRenderer JCShortCellEditor

SQL Date JCStringCellRenderer JCSqlDateCellEditor

SQL Time JCStringCellRenderer JCSqlTimeCellEditor

SQL Timestamp JCStringCellRenderer JCSqlTimestampCellEditor

String JCStringCellRenderer JCStringCellEditor

Util Date JCStringCellRenderer JCDateCellEditor

Data Type Renderer Editor
Chapter 4 ■ Displaying and Editing Cells 101

that most grids are easily rendered without any special coding. The renderers are
internally assigned.

The default mappings and these special renderer classes should provide rendering for
most data types. Few programmers work under ideal conditions, however, and you may
need to extend the capability of these renderers. JClass HiGrid includes ways for you to
customize cell rendering, as described in Section 4.3.3, Creating your own Cell
Renderers.

4.3.2 Mapping a Data Type to a Cell Renderer

Because there are many different data types within a row, JClass HiGrid creates a mapping
between data types and cell renderers. The mapping takes a data type and associates it
with a cell renderer; whenever the container encounters that type of data, it uses the

Name Data Type Description

JCCheckBoxCellRenderer Boolean Defines a JCComponentCellRenderer
object that paints Boolean objects in a
grid cell using Swing’s JCheckBox.

JCComboBoxCellRenderer integer Defines a JCComponentCellRenderer
that paints integer objects in a grid
using Swing’s JComboBox.

JCImageCellRenderer image Defines a JCLightCellRenderer object
that paints Image objects in a grid cell.

JCLabelCellRenderer String Defines a JCLabelCellRenderer object
that uses Swing’s JLabel to render cell
contents

JCRawImageCellRenderer image Defines a JCLightCellRenderer object
that paints unconverted Image objects
in a grid cell (extends
JCScaledImageCellRenderer)

JCScaledImageCellRenderer image Defines a JCLightCellRenderer object
that paints scaled Image objects in a
grid cell.

JCStringCellRenderer String, Boolean,
double, float,
integer, object.

Defines a JCLightCellRenderer object
that can draw Strings.

JCWordWrapCellRenderer String Defines word-wrapping logic for multi-
line display of Strings in cells.
102 Part I ■ Using JClass HiGrid

mapped JCCellRenderer. This mapping is performed automatically for standard JDBC
data types.

Mapping a JCCellRenderer object to a data type takes the following construction, where
cellType is the cell renderer and thisCell is the current cell:

 thisCell.CellFormat.setCellRendererName(String cellType);

Normally, you would use these mappings in a construction that would test for the
presence of the renderer you specify, and throw an exception if the class was not found.

It is possible to use a new feature of the com.klg.jclass.cell package, called the
EditorRendererRegistry, to associate a data type with an editor and a renderer. Imagine
a case where you have a column of Boolean quantities. You wish to allow your users to
edit a cell by typing a zero or a one, but you wish to display the result in a checkbox. The
following code associates the desired editor and renderer with the underlying data type:

EditorRendererRegistry.getCentralRegistry().addClass(
 "java.lang.Integer",
 null,
 "com.klg.jclass.cell.editors.JCIntegerCellEditor",
 "com.klg.jclass.cell.renderers.JCCheckBoxCellRenderer");

JClass HiGrid will now use these editors/renderers for integer types.

Note however that a mapping via the central registry is global, in the sense that it will be
used by all the JClass components in your application that use editors and renderers.

See the JCLASS_HOME/examples/higrid/data example for changing editors and renderers
on a per-column basis. To see how to override the default associations between data types
and editors/renderers, see EditorRendererExample in the
JCLASS_HOME/examples/higrid/visual directory.

4.3.3 Creating your own Cell Renderers

Naturally, the renderer classes provided with JClass HiGrid will not meet every
programmer’s specific needs. However, they can be convenient as bases for creating your
own renderer objects by subclassing the original classes. If you want to create your own
renderer classes, you can build your own renderer from scratch. Both techniques are
discussed below.

Subclassing the Default Renderers
A simple way to create your own renderer objects is to subclass one of the renderers
provided with JClass HiGrid. For example, CurrencyRenderer.java is an example of
Chapter 4 ■ Displaying and Editing Cells 103

subclassing from the JCStringCellRenderer in the com.klg.jclass.cell.renderers
package:

import com.klg.jclass.cell.renderers.JCStringCellRenderer;
import com.klg.jclass.cell.JCCellInfo;

import java.awt.Graphics;

public class CurrencyRenderer extends JCStringCellRenderer {

public void draw(Graphics gc, JCCellInfo cellInfo,
 Object o, boolean selected) {

if (o instanceof Double) {
double d = ((Double)o).doubleValue();
o = formatLabel(d, 2);

}
super.draw(gc, cellInfo, o, selected);

}

Creating a Drawing-based Cell Renderer with JCLightCellRenderer
One way JClass HiGrid lets you write your own cell renderer is with
JCLightCellRenderer. This model is used for drawing directly into a cell, which is ideal
for custom painting and rendering text.

To create a drawing-based renderer object of your own, you must implement
com.klg.jclass.cell.JCLightCellRenderer:

public interface JCLightCellRenderer {
public void draw(Graphics gc, JCCellInfo cellInfo, Object o, boolean

selected);
public Dimension getPreferredSize(Graphics gc, JCCellInfo cellInfo,

Object o);
}

The JCLightCellRenderer interface requires that you create two methods:

■ A draw() method, which is passed a JCCellInfo object (see Section 4.5, The
JCCellInfo Interface, for more details) containing information from the container
about the cell, a java.awt.Graphics object, and the object to be rendered. The
Graphics object is positioned at the origin of the cell (0,0), but is not clipped.

■ A getPreferredSize() method, which is used to allow the renderer to influence the
container’s layout. The container may not honor the renderer’s request, depending
on a number of factors.
104 Part I ■ Using JClass HiGrid

The following code, TriangleCellRenderer.java, draws a triangle into the cell area:

import java.awt.Polygon;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Rectangle;
import com.klg.jclass.cell.JCCellInfo;
import com.klg.jclass.cell.JCLightCellRenderer;

public class TriangleCellRenderer implements JCLightCellRenderer {

public void draw(Graphics gc, JCCellInfo cellInfo,
Object o, boolean selected) {

Polygon p = makePolygon(o);
gc.setColor(selected ? cellInfo.getSelectedForeground()

:cellInfo.getForeground());
gc.fillPolygon(p);

}

public Dimension getPreferredSize(Graphics gc, JCCellInfo cellInfo, Object
o) {

// Make a polygon from the object
Polygon p = makePolygon(o);
// Return no size if no polygon was created
if (p == null) {

return new Dimension(0,0);
}
// Bounds of the polygon determine size
Rectangle r = p.getBoundingBox();
return new Dimension(r.x+r.width,r.y+r.height);

}

private Polygon makePolygon(Object o) {
if (o == null) return null;
if (o instanceof Number) {

return makePolygon(((Number)o).intValue());
}
else if (o instanceof Polygon) {

return (Polygon)o;
}
return null;

}

public Polygon makePolygon(int s) {
Polygon p = new Polygon();
p.addPoint(0,0);
p.addPoint(0,s);
p.addPoint(s,0);
return p;

}
}

The above program creates a triangle renderer object that can handle both Integer and
Polygon objects.
Chapter 4 ■ Displaying and Editing Cells 105

As required by JCCellRenderer, the program contains a draw() method in the lines:

public void draw(Graphics gc, JCCellInfocellInfo, Object o boolean
selected) {

Polygon p = makePolygon(o);
gc.getColor(selected ? cellInfo.getSelectedForeground():

cellInfo.getForeground());
gc.fillPolygon(p);
}

The draw() method renders the object o by making it into a polygon and drawing the
polygon using the gc provided. The grid, as the container, automatically translates and
clips the gc, draws in the background of the cell, and sets the foreground color.

The parameter cellInfo can be used to retrieve other cell property information through
the JCCellInfo interface (see Section 4.5, The JCCellInfo Interface).

The second required method, getPreferredSize(), is provided in the lines:

public Dimension getPreferredSize(Grahpics gc, JCCellInfo cellInfo,
Object o) {

Polygon p = makePolygon(o);
if (p == null) {

return new Dimension(0,0);
}
Rectangle r = p.getBoundingBox();
return new Dimension(r.x+r.width,r.y+r.height);
}

Here, the object is used to create a polygon (using a local method called makePolygon()).
If it doesn’t create a polygon from the object, the object is deemed to have no size (0,0)
and will not be displayed by the renderer. If a polygon was created from the object, the
polygon’s bounds determine the size of the rectangle in the drawing area of the cell. The
size returned is only a suggestion; control of the cell size can be overridden by the grid
container.

Creating a Component-based Cell Renderer with JCComponentCellRenderer
While JCLightCellRenderer is useful for drawing directly into cells (i.e. text rendering
and custom cell painting), it is a cumbersome model to use if you want to draw a
component as part of an editor/renderer pair. For example, if you wanted to use a
dropdown list in a grid cell, creating a renderer based on JCLightCellRenderer forces
you to write the code that draws the arrow button. Obviously, it is more desirable to use
the actual code for the component itself, for which is exactly what
JCComponentCellRenderer is best suited.

Component-based cell renderers use an existing lightweight component for rendering the
contents of a cell. As such, the JCComponentCellRenderer interface can be used to create
a component-based cell renderer:

public interface JCComponentCellRenderer extends JCCellRenderer {
public Component getRendererComponent(JCCellInfo cellInfo, Object o,

boolean selected);
}

106 Part I ■ Using JClass HiGrid

The getRendererComponent returns the component that is to be used to render the cell. It
is the responsibility of the implementor to use the information provided by
getRendererComponent to set up the component for rendering:

■ cellInfo contains information from the container about the cell (see Section 4.5, The
JCCellInfo Interface for more details).

■ o is the object to be rendered.

■ selected is a Boolean indicating whether the cell is selected. Many implementors use
this information to modify the component appearance.

As an example, consider JCLabelCellRenderer.java from com.klg.jclass.cell.renderers,
which uses a Swing JLabel for rendering String data.

import com.klg.jclass.cell.JCComponentCellRenderer;
import com.klg.jclass.cell.JCCellInfo;
import javax.swing.JLabel;
import javax.swing.JComponent;

public class JCLabelCellRenderer extends JLabel
implements JCComponentCellRenderer {

public JCLabelCellRenderer() {
super();

}

public JComponent getRendererComponent(JCCellInfo cellInfo,
Object o,boolean selected) {

if (o != null) {
if (o instanceof String) {

setText((String)o);
}
else {

setText(o.toString());
}

}
else {

setText("");
}
setBackground(cellInfo.getBackground());
setForeground(cellInfo.getForeground());
return this;
}
}

In this example, note that JCLabelCellRenderer extends JLabel, which makes it easier
for the renderer to control the label’s appearance.

In getRendererComponent(), object o is converted to a String and used to set the Text
property of the label. Then, the font, foreground color, and background color are
extracted from the cellInfo. Finally, the JLabel instance is passed back to the container.

JCComponentCellRenderer is a very powerful rendering model. While it is not as flexible
as JCLightCellRenderer, it allows the reuse of code by using a lightweight component as
Chapter 4 ■ Displaying and Editing Cells 107

a rubberstamp for painting in a cell. Any existing lightweight container can be used to
render data inside of a cell — even other JClass components.

4.4 Editing Cells

While rendering cells is fairly straightforward, handling interactive cell editing is
considerably more complex. Cell editing involves coordinating the user-interactions that
begin and end the edit with cell data validation and connections to the data source. In
JClass, cell editing is handled using the JCCellEditor interface.

A typical cell edit works through the following process:

■ The container listens for events that come from the editor by implementing
JCCellEditorListener.

■ When a user initiates a cell edit with either a mouse click or a key press, the container
calls JCCellEditor.initialize() and passes a JCCellInfo object with information
about the cell, and the object (data) that will be edited.

■ The JCCellEditor displays the data and changes it according to user input.

■ If the user traverses out of the cell, then the container calls the stopCellEditing()
method, which asks the JCCellEditor to validate the edit. If the edit is not valid (that
is, stopCellEditing() returns false) the container then retrieves the original cell
value from the data source. If the edit is valid, then the container calls
getCellEditorValue() on the editor to retrieve the new value of the cell and send it
to the data source.

■ If the user types a key that the editor interprets as “done” (for example, Enter), the
editor will inform the grid that the edit is complete by sending an editingStopped
event to the grid. Typical editors will validate the user’s changes before sending the
event.

■ If the user types a key that the editor interprets as “cancel” (for example, Esc), the
editor will instruct the grid to cancel the edit by sending an editingCanceled event.

Because cell editing has been designed to be flexible, you can have as little or as much
control over the editing process as you want. The following sections explain cell editing in
further detail.

4.4.1 Default Cell Editors

The following editors are provided in the com.klg.jclass.cell.editors package:

Editor Description

BaseCellEditor Provides a base editing component for other editors.
108 Part I ■ Using JClass HiGrid

While these classes provide editing capability for most data types, many real-world
situations require greater control over cell editing, editing components, and their
relationships to specific data types. The following sections explore how you can more
minutely control the cell editing mechanism in your programs.

JCBigDecimalCellEditor An editor using a simple text field for BigDecimal
objects.

JCBooleanCellEditor Provides a simple text editing component that allows
the user to set the Boolean value as either 'true', 'false',
't' or 'f'.

JCByteCellEditor An editor using a simple text field for Byte objects.

JCCheckBoxCellEditor An editor for Boolean data that automatically changes
the checked state.

JCComboBoxEditor An editor using a simple Swing JComboBox for editing
an enum.

JCDateCellEditor An editor using a simple text field for Date objects

JCDoubleCellEditor An editor using a simple text field for Double objects.

JCFloatCellEditor An editor using a simple text field for Float objects.

JCImageCellEditor An editor using a simple text field for Image objects.

JCIntegerCellEditor An editor using a simple text field for Integer objects.

JCLongCellEditor An editor using a simple text field for Long objects.

JCMultilineCellEditor A simple text editing component for multiline data.

JCShortCellEditor An editor using a simple text field for Short objects.

JCSqlDateCellEditor An editor using a simple text field for SQL Date
objects.

JCSqlTimeCellEditor An editor using a simple text field for SQL Time
objects.

JCSqlTimestampCellEditor An editor using a simple text field for SQL Timestamp
objects.

JCStringCellEdtitor Provides a simple text editing component.

JCWordWrapCellEditor Provides a simple text editing component that wraps
text.

Editor Description
Chapter 4 ■ Displaying and Editing Cells 109

4.4.2 Mapping a Data Type to a Cell Editor

It is likely that your grid is designed in such a way that there are many different data types
within a row. In this case HiGrid creates a mapping between data types and cell editors.
The mapping takes a data type and associates it with a cell editor; whenever the container
encounters that type of data, it uses the mapped JCCellEditor.

Mapping a JCCellEditor object to a data type takes the following construction, where
cellType is the cell editor and thisCell is the current cell:

 thisCell.CellFormat.setCellEditorName(String cellType);

Normally, you would use these mappings in a construction that would test for the
presence of the editor you specify, and throw an exception if the class was not found.

4.4.3 Creating Your Own Cell Editors

To create a cell editor object, you must implement the com.klg.cell.JCCellEditor
interface. The following code comprises the JCCellEditor interface:

public interface JCCellEditor extends JCCellEditorEventSource,
serializable{

public void initialize(AWTEvent ev, JCCellInfo info, Object o);
public Component getComponent();
public Object getCellEditorValue();
public boolean stopCellEditing();
public boolean isModified();
public void cancelCellEditing();
public JCKeyModifier[] getReservedKeys();
}

Consider each of the methods in JCCellEditor:

Method and Description

public void initialize(AWTEvent ev, JCCellInfo info, Object o);

The table calls initialize() before the edit starts to let the editor know what kind of
event started the edit, using java.awt.AWTEventObject. The size of the cell comes from
the JCCellInfo interface (detailed below). The initialize() method also provides the
data object (Object o).

public Component getComponent();

Returns the AWT component that does the editing. The component should be
lightweight.

public Object getCellEditorValue();

Returns the value contained in the editor. This method is called by the table when the
edit is complete. The value will be sent to the data source.
110 Part I ■ Using JClass HiGrid

Because the JCCellEditor interface extends JCCellEditorEventSource, the following
two methods are required to manage JCCellEditor event listeners:

In addition to implementing the methods of JCCellEditor, an editor is responsible for
monitoring events and sending editingStopped and editingCanceled events to the grid.
This functionality is further explained in Section 4.4.3, Creating Your Own Cell Editors.

Subclassing the Default Editors
One easy way to create your own editor is to subclass one of the editors provided in the
com.klg.jclass.cell.editors package. The following code creates a simple editor that
extends the JCStringCellEditor class. The MoneyCellEditor class formats the data as
money (two digits to the right of the decimal point) instead of a raw String; but
JCStringCellEditor does most of the work.

public boolean stopCellEditing();

When this method is called by the table, the editor can refuse to commit invalid values by
returning false. This tells the container that the edit is not valid.

public boolean isModified();

The container uses this method to check whether the data has changed. This can save
unnecessary access to the data source when the data has not actually changed.

public void cancelCellEditing();

Called by the table to stop editing and restore the cell’s original contents.

public JCKeyModifier[] getReservedKeys();

Retrieves the keys the editor would like to reserve for itself. In order to avoid the
container overriding key processing in the editor, the editor can pass back a list of keys it
wishes to reserve. The container can refuse the editor’s request to reserve keys. Most
editors can simply return null for this method.

Method and Description

public abstract void addCellEditorListener(JCCellEditorListener l);

Adds a listener to the list that's notified when the editor starts, stops, or cancels editing.

public abstract void removeCellEditorListener(JCCellEditorListener l);

Removes the listener.

Method and Description
Chapter 4 ■ Displaying and Editing Cells 111

The initialize() method in MoneyCellEditor takes the object passed in and creates a
Money value for it. The getCellEditorValue() method will pass the Money value back
to the container.

import java.awt.Dimension;
import com.klg.jclass.cell.editors.JCStringCellEditor;
import com.klg.jclass.cell.JCCellInfo;
import java.awt.AWTEvent;

public class MoneyCellEditor extends JCStringCellEditor {

Money initial = null;

public void initialize(AWTEvent ev, JCCellInfo info, Object o) {
if (o instanceof Money) {

Money data = (Money)o;
initial = new Money(data.dollars, data.cents);

}
super.initialize(ev, info, initial.dollars+"."+initial.cents);

}

public Object getCellEditorValue() {
int d, c;
String text = getText().trim();
Money new_data = new Money(initial.dollars, initial.cents);

try {
// one of these will probably throw an exception if
// the number format is wrong
d = Integer.parseInt(text.substring(0,text.indexOf('.')));
c = Integer.parseInt(text.substring(text.indexOf('.')+1));

new_data.setDollars(d);
// this will throw an exception if there's an invalid
// number of cents
new_data.setCents(c);

}
catch(Exception e) {

return null;
}

return new_data;
}

public boolean isModified() {
if (initial == null) return false;
Money nv = (Money)getCellEditorValue();
if (nv == null) return false;
return (initial.dollars != nv.dollars || initial.cents != nv.cents);

}
}

Starting with one of the cell editors provided with the com.klg.cell.editors package
can save you a lot of work coding entire editors on your own.
112 Part I ■ Using JClass HiGrid

Writing Your Own Editors
Of course, you may not want to subclass any of the editors provided with the
com.klg.jclass.cell.editors package. The following code fragment is from an editor
that was written without subclassing an existing editor. By implementing the
JCCellEditor interface, we have written an editor that will edit triangles. The editor
handles both Integer and Polygon data types. It initializes the editor with the object to be
edited, either a Number or a Polygon:

....

public void initialize(AWTEvent ev, CellInfo info, Object o) {
 if (o instanceof Polygon) {
 orig_poly = (Polygon)o;
 }
 else if (o instanceof Number) {
 // Create polygon from the number
 int s = ((Number)o).intValue();
 orig_poly = new Polygon();
 orig_poly.addPoint(0,0);
 orig_poly.addPoint(0,s);
 orig_poly.addPoint(s,0);
 }

 new_poly = null;

 margin = info.getMarginSize();
}

The editor also needs to retrieve the AWT component that will be associated with it. In
this case the editor is an a javax.swing.JComponent object.

....
public Component getComponent() {
 return this;
}

The isModified() method checks to see if the editor has changed the data, and
getCellEditorValue() which returns the new Polygon created.

....
public boolean isModified() {
 return new_poly != null;
}

public Object getCellEditorValue() {
 return new_poly;
}

The JCCellEditor interface defines the stopCellEditing() method, which stops and
commits the editing operation. In the case of this example, there isn’t any validation
taking place, so the stopCellEditing() method will be unconditionally obeyed. The
Chapter 4 ■ Displaying and Editing Cells 113

TriangleCellEditor also defines a cancelCellEditing() method, which resets the new
Polygon.

....
public boolean stopCellEditing() {
 return true;
}

public void cancelCellEditing() {
 new_poly = null;
 return;
}

The editor contains a local method for retrieving a non-null polygon for drawing:

....
private Polygon getDrawPoly() {
 if (new_poly == null)
 return orig_poly;
 return new_poly;
}

The editor also has to determine the minimum size for the cell.

....
public Dimension minimumSize() {
 Rectangle r = getDrawPoly().getBoundingBox();
 return new Dimension(r.width+r.x,r.height+r.y);
}

114 Part I ■ Using JClass HiGrid

Finally, the editor needs to know how to paint the current polygon into the cell:

....
public void paintComponent(Graphics gc) {

// No L&F, so paint your own background.
if (isOpaque()) {

if (!gc.getColor().equals(getBackground())) {
gc.setColor(getBackground());

}
Rectangle r = getBounds();
gc.fillRect(0, 0, r.width, r.height);

}

int x, y;

Polygon local_poly = getDrawPoly();
gc.setColor(cellInfo.getForeground());
gc.translate(margin.left, margin.top);
gc.fillPolygon(local_poly);

for(int i = 0; i < local_poly.npoints; i++) {
x = local_poly.xpoints[i];
y = local_poly.ypoints[i];
gc.drawOval(x-2,y-2,4,4);

}

gc.translate(-margin.left, -margin.top);
}

Much of the rest of the editor handles mouse events to drag the triangle points, or to
move the whole triangle inside the cell. See the example file for this code.

Finally, the editor contains event listener methods that add and remove listeners from the
listener list. These listeners are notified when the editor starts, stops, or cancels an edit.

JCCellEditorSupport support = new JCCellEditorSupport();
....
public void addCellEditorListener(CellEditorListener l) {
 support.addCellEditorListener(l);
}

public void removeCellEditorListener(CellEditorListener l) {
 support.removeCellEditorListener(l);
}

Note that an instance of com.klg.jclass.cell.JCCellEditorSupport is used to manage
the listener list. The JCCellEditorSupport class is a useful convenience class for editors
that want to send events to JClass HiGrid programs.

The TriangleCellEditor is an example of a fairly complex implementation of the
JCCellEditor interface. It contains all of the core methods of the interface, and extends
the capabilities for an interesting type of data. You can use this example to help you to
write your own JCCellEditor classes that handle any type of data you care to display and
edit.
Chapter 4 ■ Displaying and Editing Cells 115

Handling Editor Events
The com.klg.jclass.cell package contains several event and listener classes that enable
cell editors and their containers to inform each other of changes to the cell contents, and
allow you to control validation of the cell’s edited contents.

The simplest way to handle JCCellEditor events is to use the JCCellEditorSupport
convenience class. JCCellEditorSupport makes it easy for cell editors to implement
standard editor event handling by registering event listeners and providing easy methods
for sending events.

JCCellEditorSupport methods include:

For example, consider the TriangleCellEditor. The changes made are not actually sent
to the data source until the user clicks on another cell. It is more useful to have the editor
send an editingStopped event when the mouse button is released:

public void mouseReleased(MouseEvent e) {
 support.fireStopEditing(new JCCellEditorEvent(e));
}

For more complete control, however, you will have to use the other event handling
classes provided in the com.klg.jclass.cell package:

Editor Key Control
Sometimes, you may want your cell editor to be able to accept keystrokes that have
already been reserved for a specific purpose in the container (a Tab key in HiGrid, for

Method Description

addCellEditorListener() Adds a new JCCellEditorListener to the listener list.

removeCellEditorListener() Removes a JCCellEditorListener from the list.

fireStopEditing() Sends an editingStopped event to all listeners.

fireCancelEditing() Sends an editingCanceled event to all listeners.

Method Description

JCCellEditorEvent Sent when the JCCellEditor finishes an operation.
The JCCellEditorEvent contains the event that
originated the operation in the editor.

JCCellEditorListener The container registers a JCCellEditorListener to
let the JCCellEditor inform it when editing has
stopped or been canceled.

JCCellEditorEventSource This class defines the add and remove methods for
an object that posts JCCellEditorEvents.
116 Part I ■ Using JClass HiGrid

example). To do this, you need to use the JCKeyModifier class to reserve a key/modifier
combination:

JCKeyModifier(int key, int modifier, boolean canInitializeEdit);

Using this class, you can reserve a key for a particular modifier or for all modifiers. To
reserve Ctrl-Tab and Shift-Tab you would specify two JCKeyModifier objects with
standard KeyEvent modifiers; for example, KeyEvent.ALT_MASK.

If you want to reserve all Tab keys for the editor, you can use either of the following:

■ new JCKeyModifier(KeyEvent.VK_TAB, KeyModifier.ALL);

■ new JCKeyModifier(KeyEvent.VK_TAB);

Note that the container can still choose to ignore reserved keys.

4.5 The JCCellInfo Interface

You can see that JCComponentCellRenderer, JCLightCellRenderer and JCCellEditor
use the JCCellInfo interface to get information about the cell. The JCCellInfo interface
provides information about how the container wants to show the cell. The renderer and
editor determine whether or not to honor the container’s request.

The JCCellInfo interface gives the renderer and editor access to cell formatting
information from the cells of the grid, including:

■ foreground color

■ background color

■ selected foreground color

■ selected background color

■ font

■ font metrics

■ horizontal and vertical alignment

This information is fairly generic. The com.klg.jclass.higrid package also contains an
object called CellFormat, which extends CellStyle and implements JCCellInfo to
include more detailed information from the grid.
Chapter 4 ■ Displaying and Editing Cells 117

Figure 42 The relationship of border sides, margins, and drawing
area provided by JCCellInfo.

The following code comprises the com.klg.jclass.cell.JCCellInfo interface:

import java.awt.Color;
import java.awt.Rectangle;
import java.awt.Font;
import java.awt.Insets;
import javax.swing.SwingConstants;

public interface JCCellInfo {
public Color getBackground();
public Color getForeground();
public Color getSelectedBackground();
public Color getSelectedForeground();
public Font getFont();
public int getHorizontalAlignment();
public int getVerticalAlignment();
public Insets getMarginInsets();
public Insets getBorderInsets();
public int getBorderStyle();
public Rectangle getDrawingArea();
public boolean isEditable();
public boolean isEnabled();
public boolean getSelectAll();
public int getClipHints();
public Class getDataType();
118 Part I ■ Using JClass HiGrid

5
JClass DataSource Overview

Introduction ■ The Two Ways of Managing Data Binding in JClass DataSource

Using JClass DataSource with Visual Components ■ JClass DataSource and the JClass Data Bound Components

The Data Model’s Highlights ■ The Meta Data Model ■ Setting the Data Model

JClass DataSource’s Main Classes and Interfaces ■ Examples ■ Binding the data to the source via JDBC

The Data “Control” Components ■ Custom Implementations

Use of Customizers to Specify the Connection to the JDBC ■ Classes and Methods of JClass DataSource

5.1 Introduction

JClass HiGrid is a visual component that includes a mechanism for accessing data. The
classes and methods that retrieve, organize, and store data items form a separate package
called JClass DataSource. You can use it with or without JClass HiGrid to interface both
to databases and to unbound data sources. With it, you can connect to any type of data
source that has a JDBC driver. Its functionality also includes the ability to connect to
databases that has JDBC-ODBC driver support, and even to array data produced by
another application. The application may be retrieving information from any source, or
producing the data itself. You can structure your design to provide top-level information
and as many sub-levels as you deem necessary. You can provide your own visual
component, or you can use JClass HiGrid as an easy and functional way of providing
end-users with a tool that they can use to display, navigate through, and modify retrieved
data. Because you have structured the data hierarchically, end-users are able to expand or
collapse their view of the sub-levels. You can use JClass DataSource to maintain multiple
views of the data. For instance, you might provide your users with a HiGrid to make it
easy for them to scroll through many records quickly and at the same time provide them
with a form containing data bound components that replicate the fields in the active row
of the grid. You control whether edits can be made both in the form and in the grid.

JClass DataSource provides data binding capabilities for JClass Chart, JClass Field, and
JClass LiveTable, as well as for JClass HiGrid itself, thereby multiplying your options for
an elegantly designed form.
119

5.2 The Two Ways of Managing Data Binding in JClass DataSource

The core of JClass DataSource is its ability to manage hierarchical data through its data
model. The data binding mechanism is built on top of the data model. It contains
convenience classes that can be used to do single-level binding of objects, such as a text
field to a particular column in a database table. This organization makes it easy for you to
bind display components built with JClass Chart, JClass LiveTable, and JClass Field, or
other similar components, to a particular database field without having to take account of
JClass DataSource’s mechanism for handling hierarchical data structures.

This simplified approach to data binding begins with the ReadOnlyBindingModel
interface. It provides a single-level, two-dimensional view of a data set. It groups all non-
update methods and handles read-only events. This interface exists only to provide a
logical separation between read-only and non-read-only methods and event handling. It
is extended to an interface named BindingModel, which extends ReadOnlyBindingModel
and provides update methods. Operations can be performed on the row currently in
focus (for example, by using getCurrentRowStatus()), or by specifying a row index (for
example, getRowStatus(rowIndex)).

Abstract class ReadOnlyBinding extends BindingModel and provides a base for concrete
subclasses. Public class Binding extends ReadOnlyBinding and provides update methods.
Operations can be performed on the row currently in focus. Public class JDBCBinding is
used to bind to JDBC databases.

Thus, programmers who need to bind a non-grid component to a database need to
understand Binding and its related classes and interfaces. They need not delve into the
intricacies of the DataModel and MetaDataModel interfaces.

For comparison, there are two ways of accomplishing data binding:

■ Using the Data Model:
DataModel dm = new TreeData();
MetaDataModel mdm = newMetaDataModel(dm, "select * from orders", c)
table.setDataBinding(dm, mdm, column);

■ Using Binding:
DataModel dm = new TreeData();
MetaDataModel mdm = newMetaDataModel(dm, "select * from orders", c)
table.setDataBinding(mdm.getBinding);

5.3 Using JClass DataSource with Visual Components

You can use JClass DataSource with other JClass products and with IDEs that supply data
bound visual components. Naturally, the recommended GUI is JClass HiGrid, a versatile
and customizable grid built specifically to work side by side with JClass DataSource. You
can use JClass LiveTable to bind different tables to a hierarchically-structured data source
that you have designed and then built using this product. Or you can connect the data
bound components of JClass Field and have a form that displays database records
120 Part I ■ Using JClass HiGrid

wherein the end user may make edits. Because JClass Field validates its input based on
your specifications, your application is even more functional without you doing all the
programming that implementing validation makes necessary. You can use JClass Chart to
present values extracted from a database in a visually appealing way, again with
customizable features so your application has your own personal flavor.

If you want to use an IDE’s visual component, you can still simplify the job of connecting
to the database and organizing its tables to meet your application’s individual needs.

5.4 JClass DataSource and the JClass Data Bound Components

JClass DataSource is designed to be used for general-purpose data binding needs. In an
IDE, all that is required to supply your form with data bound components is to place a
JCData or JCTreeData and use their customizers to configure their properties, which
include connecting to a database and, in the case of JCTreeData, defining the master-
detail relationships between parent and dependent data tables.

JClass components are data-aware. You use their customizers to register with the data
source defined with the aid of JCData or JCTreeData. Custom property editors turn this
operation into a sequence of choices — no writing of code is required.

5.4.1 Define the Structure for the Data

For this introduction to JClass DataSource, we’ll start with the case where all the needed
information is stored in a single database. After a connection to the database is
established, the next thing to do is to specify the “root” table. We are assuming that a
number of sub-tables are also going to be defined. These sub-tables may, in turn, have
sub-tables. Thus, the data is being modeled as a tree structure, and the highest level table
is the root of this tree.

This description of the data is called meta data. The MetaData class, based on a
MetaDataModel, is used to capture this hierarchical design. This MetaData class connects
to a data source through the JDBC or an IDE-specific data-binding mechanism. There is
an instance of MetaData for each level in the tree, and each instance of MetaData has a
particular query associated with it. MetaData will execute that query and cache the results.
When used in the context of JClass HiGrid, multiple result sets will be cached. These
result sets will be based on the same query but with different parameters. When used in
JClass HiGrid, this object will be a node in the meta tree describing the relationships
between SQL queries.

The root table is treated specially. It is distinguished from dependent tables by having its
own constructor. The root table retrieves its data when it is instantiated. Dependent tables
can wait until they are accessed before they make calls to the database.
Chapter 5 ■ JClass DataSource Overview 121

5.4.2 JClass DataSource’s Organization

You define the abstract relationship between data tables as a tree. This is the meta data
structure, and after it has been designed, you query the database to fill data tables with
result sets. The abstract model defines the structure and the specific data items are
retrieved using a dynamic bookmark mechanism that is imposed on the result set data
tables. At the base level of the class hierarchy, the MetaData class describes a node in the
MetaTree structure and the DataTable class holds the actual data for that node. There are
different implementations of MetaData for differing data access technologies, therefore
there will be a different MetaData defined for the JDBC API and for various IDE-specific
data binding solutions. Similarly, there will be different DataTable classes depending on
the basic data access methodology.

MetaData and DataTable are concrete subclasses of the abstract classes BaseMetaData and
BaseDataTable. The latter is an abstract implementation of the methods and properties
common to various implementations of the DataTable model. This class must be
extended to concretely implement those methods that it does not, which are all of the
methods in the data table abstraction layer. Both these classes are derived from TreeNode,
which contains a collection of methods for managing tree-structured objects.

The MetaDataModel interface defines the methods that BaseMetaData and its derived
classes must implement. This is the interface for the objects that hold the meta data for
DataTables. There is one MetaDataModel for the root data table, and there can be zero,
one, or more DataTable objects associated with one meta data object for all subsequent
nodes in the meta data model. Thus it is more efficient to store this meta data only once.
In terms of JClass HiGrid, meta data objects are the nodes of the meta tree. The meta tree,
through instances of the MetaData classes, describes the hierarchical relations between the
meta data nodes. DataTableModel is the interface for data storage for the JClass HiGrid
data model. It requests data from instances of this table and manipulates that data through
this interface. That is, rows can be added, deleted, or updated through this DataTable. To
allow sorting of rows and columns, all operations access cell data using unique identifiers
for rows and columns.

The DataModel interface is the data interface for the JClass DataSource. An
implementation of this interface will be passed to JClass HiGrid. All data for the data
source is maintained and manipulated in this data model through its sub-interfaces. This
data model requires the implementation of two tree models, one for describing the
relationships of the hierarchical data (MetaDataModel) and one for the actual data
(DataTable). TreeData is an implementation of DataModel for trees and listener functions.
Important methods are requeryAll, updateAll, add/removeDataModelListener, and
enableDataModelEvents. This last method is useful when you are making many changes
to the data without having listeners repaint after each individual change. This is a
different procedure than using DataModelEvent BEGIN_EVENTS and END_EVENTS, where
events are still sent but the listener receiving BEGIN_EVENTS knows it may choose to
disregard the events until it receives END_EVENTS.
122 Part I ■ Using JClass HiGrid

The DataModel has one “global” cursor. Commit policies rely on the position of this
cursor. This cursor, which is closely related to the bookmark structure, can point
anywhere in the data that has been retrieved by JClass DataSource and placed in its data
tables. It is found using getCurrentGlobalBookmark. Additionally, each DataTableModel
has its own “current bookmark” or cursor. This cursor is retrieved using
getCurrentBookmark. If another table is referenced, likely via the getTable method,
another completely independent row cursor can be found, again using
getCurrentBookmark, that can be used to pore over the table using methods such as
first, last, next, previous, beforeFirst, and afterLast.

5.5 The Data Model’s Highlights

The Data Model performs these major functions:

■ Connects to a database.

■ Defines the structure for the data that is to be retrieved and displayed.

■ Specifies the tables and fields to be accessed at each level.

■ Sets the commit policy to be used when updating the database.

■ Stores result sets from queries.

■ Informs the database about pending deletes, updates, and insertions.

■ Instructs the database to commit changes at the correct time.

5.5.1 Making a Database Connection with the Help of the JDBC-ODBC Bridge

The Data Bean and The Tree Data Bean components use a JDBC, Java’s specification for
using data sources, although other data sources, such as ODBC, can be used with the help
of a JDBC-ODBC bridge. Both Beans may have multiple connections, and these may be
via different database drivers.

If your development system is running on a Windows NT (Windows 95/98/2000)
platform, install the needed database drivers.

1. On Windows NT/95/98: choose Start > Settings > Control Panel > ODBC (32-bit
ODBC for Windows 95/98)to launch the ODBC data source administrator. On Win-
dows 2000: choose Start > Settings > Control Panel > Administrative Tools >
Data Sources (ODBC) to launch the ODBC data source administrator.

2. Click on the User DSN tab and observe the User Data Sources list.

3. If the data source you need is not already there, click on the Add button.

4. Select the driver for your data source from the list in the Create New Data Source win-
dow.

5. Use the Configure button to supply extra information specific to the database engine
you will be using.
Chapter 5 ■ JClass DataSource Overview 123

Other environments define different methods for making the low-level connection to a
database. Consult the system documentation for your environment for its recommended
connection method.

5.6 The Meta Data Model
Consider a master-detail design such as that shown in Figure 43. You can create a class
that captures this model programmatically, or you can describe it using the JCTreeData’s
customizer in an IDE.

Figure 43 A meta data tree containing meta data objects at its nodes.
124 Part I ■ Using JClass HiGrid

Both the HTML and PDF on-line versions of this manual are color-coded to distinguish
which objects implement the interfaces mentioned in the Legend. The structure of the
meta data tree (green) can be defined after first creating the meta data objects:

//"this" is a class extended from TreeData
// Set up the root level: Orders

 BaseMetaData orders = new BaseMetaData(this);
// The rest of the meta data is defined the same way

BaseMetaData customers = new BaseMetaData(this);
BaseMetaData orderDetails = new BaseMetaData(this);
BaseMetaData products = new BaseMetaData(this);

The hierarchical relationships among these meta data objects are defined using the
append method:

 // now add the meta data objects to the tree to
 // provide the hierarchy. Orders is the root. OrderDetails
 // and Customers are siblings at the next level
 // and Products is a child of OrderDetails.
 getMetaDataTree().setRoot((TreeNode) orders);
 orders.append(Customers);
 orders.append(OrderDetails);
 //Since Products depends on OrderDetails:
 orderDetails.append(products)

To sum up, the append method places the meta data objects in their proper positions in
the meta data tree. The same thing can be accomplished without coding if you use the
JCTreeData customizer in an IDE.

5.6.1 Keeping Track of Rows
Now that the meta data has been defined the model can be given over to a grid such as
JClass HiGrid, which will manage the display. Behind the scenes, the JClass DataSource
has retrieved and cached a number of rows of each table. This number may be zero for
any sub-table that has not yet been opened, but all the rows of the root table that match
the query are cached. JClass DataSource needs to keep track of these rows, and to
accomplish this in an efficient manner more than one strategy is employed. The most
important parameter that labels a row is called the bookmark. This long integer is
guaranteed to uniquely label a row at any given time, but it is not guaranteed to be
invariant. A row’s bookmark most probably will change over time as a result of insert and
delete operations on other rows. Other operations may cause a reassignment of
bookmarks to existing rows. Thus, if you store a row’s bookmark, you must ensure that
you do not perform any of the operations that may change the bookmark in the interim
before you use it again and expect that it refers to the same row. In fact, after bookmarks
have been reassigned, an old bookmark may not refer to any row.

While bookmarks are sufficient to label a row, efficient operation requires other ways of
labeling them. A quantity called the row index is used to label each row of a given table
sequentially, starting at zero. Obviously, these numbers are not unique as soon as there is
more than one table in your application, but they do serve to help you to easily loop
through the rows of a given table.
Chapter 5 ■ JClass DataSource Overview 125

A global cursor keeps track of the cell containing the editor. This cell is selected and has
focus. There is at all times one and only one active editor. Because data bound
components can be attached to any meta data level, a mechanism is required to allow that
component to decide what data it should display depending on where the global cursor is
positioned. A construct called the current path assists in this regard. As you follow this
discussion, please refer to Figure 44.

Figure 44 How rows are indexed.
126 Part I ■ Using JClass HiGrid

Our example has the global cursor positioned on the row whose bookmark is 15 in the
table we have called Order Details 2. This name serves to identify a table in the diagram
but it is not a name that would appear anywhere in the Java code. It indicates that it was
the second Order Details table created, perhaps as a result of a user clicking on row 3 of
the root table, Orders, in a grid. Assume further that you have bound a text field
component to one of the columns in the Products meta data. What information, if any,
should the field display? In this case the choice is rather obvious: the text field should
display the information contained in the chosen column of Products 6 rather than leaving
the field blank simply because the user has not yet opened this level using the grid. In a
less obvious case, what should be done if the Products 6 table contains more than one
row? In this case, the current path points to the first row of the table, and to the first row
of all dependent tables if they exist. Because of the possibility of using data bound
components, a current path must include branches such as the connection to Customers
2. Again, because an application could have added a data bound component to the
Customers level, JClass DataSource must be able to tell which particular piece of
information to use when the field itself is not selected. Again in our example, there is only
one customer per order so the choice of which row to use does not arise. In general, when
there are a number of possibilities, the one with row index 0 is chosen.

What happens when an application containing a data bound component at the Products
level starts? From the point of view of the component, and taking a column in table
Products as our example, the sequence is as follows. The component requests data.
Products has no data in it as yet, so it asks Order Details to supply a reference. Since
Order Details has no data, it asks Orders for a reference. Orders responds with its current
row, which by default is the row whose index is 0. Order Details can now populate itself,
and passes its default row index, again 0, for the table corresponding to row 0 of Orders,
to Products. Products populates the referenced data table and the component receives its
data. In this way a forward referencing policy is established and components always
contain values, even at start up.

If the global cursor is somewhere down the hierarchy, back references are easy: just
follow the tree back to its root. In the case where there are two tables at a level and the
cursor is in one of them, the row whose index is 0 of the other table is deemed to be on
the current path, so any component bound to that table would choose its value (or values)
from the index 0 row.

The next figure (Figure 45) shows some of the common ways of using bookmarks to
navigate around the hierarchy. The color coding in this figure is the same as that in Figure
Chapter 5 ■ JClass DataSource Overview 127

43. Some of the methods return references to tables, others return bookmarks and row
indexes.

Figure 45 Using bookmarks and row indexes.

If you have noticed that there are some capitalized names in the above examples in
places where lower case method names are expected, it is because these capitalized
names are used to indicate the class of object that is being talked about, not instances of
that class. You must have an instance of the class to produce legal Java code.

The createTable method in class com.klg.jclass.datasource.BaseDataTable creates
and returns the DataTable, which corresponds to the specified row in the parent for the
indicated child MetaData object.
128 Part I ■ Using JClass HiGrid

Methods getAncestors, getParentBookmark, getAncestorBookmark, getRowIdentifier,
getRowIndex, getRows, and getMetaData all return numeric data, except for the last
which returns a reference to its own table.

The getMetaDataTree method returns a reference to the root of the MetaData tree.

5.7 Setting the Data Model

The data model may be set programmatically or through a customizer. Both methods are
described here.

Setting Up an Unbound Data Model Programmatically
The DataModel, MetaDataModel, and DataTableModel interfaces define the structure that
needs to be established no matter what kind of data source will eventually be used. Base
classes TreeData, BaseMetaData, and BaseDataTable are available for use as
implementations of these interfaces. The process of creating data tables begins with a
DataModel, possibly by instantiating or subclassing the TreeData class. Normally, the data
tables in JClass DataSource are derived from corresponding tables in a database, but that
need not be the sole source. They can be created dynamically, as exemplified by the
example program called VectorData. This programmatic source data is used as an
alternate in case there is a problem in connecting to the sample database.

It serves to illustrate the origination of a data source. The VectorData class itself extends
TreeData, so it functions as the data model:

public class VectorData extends TreeData

Array variables within this class are used to define the columns and their associated data
types for the tables that are about to be created. After a data model is available, the next
step is to create the meta data objects for the various levels that tables will occupy. The
“bare” meta data objects are instantiated through a call to BaseMetaData’s constructor,
giving the data model as a parameter. An example is the following line of code:

BaseMetaData Orders = new BaseMetaData(this);

The meta data objects must be structured by specifying their hierarchy. The example
specifies a root table called Orders with two children called OrderDetails and Customer.
Capturing this hierarchy reduces to adding the meta data objects to a tree. Since the
getMetaDataTree method in TreeData is an implementation of the one named in
DataModel, and returns a TreeModel, it can be used to set the Orders table as the root of
the tree:

getMetaDataTree().setRoot((TreeNode) Orders);

The children are placed by appending them to the root:

Orders.append(OrderDetails);
Orders.append(Customers);
Chapter 5 ■ JClass DataSource Overview 129

The tables’ relationships to one another have been set, but the tables themselves have no
definition as yet, let alone any content. Since column names and data types are available
in arrays called orders_columns[][] and details_columns[][], they are used to set up
the columnnar structure of the tables as follows:

// set up columns for the Orders table
for (int i = 0; i < orders_columns.length; i++) {
BaseColumn column = new BaseColumn();
column.setColumnName(orders_columns[i][0]);
column.setMetaColumnTypeFromSqlType(getType(orders_columns[i][1]));
column.setColumnType(getType(orders_columns[i][1]));
Orders.addColumn(column);

A similar block of code sets up the columnar structure of the OrderDetails table. Note that
columns can be derived from BaseColumn, which is an implementation of the
ColumnModel interface.

At this point the actual data table can be created using the constructor for a
BaseDataTable and passing a MetaDataModel as a parameter. Since VectorDataTable is
subclassed from BaseDataTable, and Orders is a BaseMetaData object and therefore
implements the MetaDataModel interface, the following code creates the root level of the
data tree:

VectorDataTable root = new VectorDataTable(Orders);
getDataTableTree().setRoot((TreeNodeModel) root);

The values in the cells of a row are computed. The example merely fills them with
random data by declaring an array called row and generating data for each cell, that is, for
each element of the array. BaseDataTable has a method called addInternalRow(Object
row) that does the job:

root.addInternalRow(row);

The two sub-tables are instantiated by a call to the other form of BaseDataTable’s
constructor.

public VectorDataTable(MetaDataModel metaData, long parentRow) {
super(metaData, parentRow);

}

In the example program, the tables are instantiated within a custom version of
createTable. This method is part of the DataTableModel interface and is defined in
BaseDataTable. It is overridden in the example’s VectorDataTable class so that it can
populate tables from array data generated within the program rather than by querying a
database. To see how an unbound data table can be generated, check
example.datasource.vector.VectorDataTable.java in the examples directory.

5.7.1 Query Basics

JClass DataSource has not been designed to create databases or their tables (for instance,
by adding new columns to the database itself), although, technically, it is possible to do
so. It is assumed that you have an existing database and you want to provide a
130 Part I ■ Using JClass HiGrid

hierarchical graphical interface for its tables and fields, perhaps adding summary columns
of your own design. The contents of a database are examined and modified through the
use of SQL’s Data Manipulation Language (DML), whose basic statements are SELECT,
INSERT, UPDATE, and DELETE. JClass DataSource parses an SQL statement into its
clauses but it does not attempt to validate the clause itself. Instead, it passes the clauses on
to the underlying database which will determine whether it can process the statement or
not.

For instance, in the query:

String query = " select *";
query += " from sales_order a. fin_code b";
query += "where a.fin_code_id = b.code";
query += "order by a.id asc";

the where and order by clauses will be passed on to the database without any check on
their contents.

You can use Prepared Statements. The interfaces java.sql.PreparedStatement and
java.sql.Connection are used for this purpose. Consult the java.sql API for further
information. You can use the question mark parameter (?) as a placeholder for joins. The
question mark is a placeholder for the field that will be supplied when the statements are
executed. An example of the use of the question mark placeholder is as follows:

order_detail.setStatement{"select * from sales_order_items where id = ?");

Here, a matching id field in the parent table is used in the comparison.

5.7.2 Specify the Tables and Fields to be Accessed at Each Level

If you are using the JDBC but not using an IDE, you must create instances of the
MetaData class for each level programmatically, specifying both the table and the SQL
query to be used. One form of the constructor is required to instantiate the root table. The
database query is passed as one of its arguments. All other levels are instantiated using a
form that names the instance of the HiGrid (or other GUI) being used, the table name,
and the database connection object. The query String is passed separately, using a
method called setStatement.

Other parameters can be set, such as descriptive statements for the table captions, header
and footers, columns containing aggregate data, and so on.

5.7.3 Set the Commit Policy to be Used when Updating the Database

You have control over when changes should be committed: you can choose a commit
policy that ranges from allowing the end-user to decide when to commit the changes,
waiting until the selected row changes (waiting until the selected group changes), or giving
your application control over when to commit the changes.
Chapter 5 ■ JClass DataSource Overview 131

5.7.4 Store Result Sets from Queries

Database queries may result in a varying amount of data; anything from the entire table
on which the query was based to a null result in the case where the database returned
nothing at all that matched the query. If these results are to be displayed in a grid, the
result set must be stored. The result sets for each query that you define at each level are
stored separately.

5.7.5 The Data Bean

Use JClass DataSource’s JCData when you want to present a single level of data to the
end-user. In effect, this JavaBean functions as a table whose rows are retrieved from the
chosen database and whose columns are the fields that you select from the table (or
tables, if two or more are joined).

What follows is an example of using the Data Bean in the BeanBox. We’ll show all the
steps in setting up the database access, and all the way through to connecting to a
JClass HiGrid to display the query’s result set.

1. Once you have installed your JAR file in its proper location, which in the case of the
BeanBox is your bdk/jars directory, you should see the JavaBeans called JCData, JC-
TreeData, and the Swing-based data bound components DSdbJComboBox, and so on,
as well as DSdbJNavigator, JClass DataSource’s data navigator.

Figure 46 The Bean Development Kit’s ToolBox, containing HiGrid’s Beans.

2. Click on JCData and move the mouse pointer to the BeanBox, where it turns into a
crosshair. Click once more and the outline of the data JavaBean appears. The data
JavaBean has a property sheet like the one shown next.

Figure 47 JClass HiGrid’s JCData’s property sheet.
132 Part I ■ Using JClass HiGrid

3. Click on the area to the right of the label nodeProperties to access its main custom edi-
tor. A modal dialog appears, reminding you about ensuring that the serialization file
which is about to be created is on your CLASSPATH.

Figure 48 A reminder about creating a serialization file.

4. On the Node Properties Editor, click Open if you have previously-saved serialization
file that you want to use; otherwise, click Save As. Type a filename in file dialog, or
accept the default name and click Save.

5. Click the NodePropertiesEditor’s Data Model tab.

6. There are two nested tabbed dialog panels. The JDBC tab is selected, causing the
Connection tab panel to be visible. The reason for this choice is that it is assumed
that the first thing you want to do is to specify the database connection. The other tabs
are Data Source Type, Data Access, Virtual Columns and IDE. They will be dis-
cussed shortly.

There are text fields for the server name, host or IP address, TCP/IP port, and
Driver, along with a group of fields that may be required to log on to a database that
Chapter 5 ■ JClass DataSource Overview 133

requires a user name and a password. You fill in as many of these as are required for
your particular situation.

Figure 49 Fill in these fields to connect to your chosen database.
134 Part I ■ Using JClass HiGrid

For reference, the other tabs permit you to specify the driver table and the type of
data access that will be allowed.

Figure 50 The Data Access tab, where you can set a commit policy and an edit policy.

7. The Data Access tab allows you to set a commit policy and an edit policy. Three
checkboxes control editing permissions: Insert Allowed, Update Allowed, and De-
lete Allowed. You can choose one of three commit policies:
COMMIT_LEAVING_RECORD, COMMIT_LEAVING_ANCESTOR, or COMMIT_MANUALLY.

8. Return to the JDBC tab and click on the SQL Statement tab. This exposes the tab
containing two scroll panes, shown in Figure 51. The top scroll pane is for placing the
smaller scroll panes that represent the tables from your database. The first step in
Chapter 5 ■ JClass DataSource Overview 135

choosing a table is to right-click on the top scroll pane, or click on the button labeled
Add Table. Click Add in the popup menu that appears.

Figure 51 The NodeProperties Editor’s SQL Statement tab.

The database is accessed and a list of its tables is retrieved.

Figure 52 The popup menu for adding tables.
136 Part I ■ Using JClass HiGrid

9. A new dialog will appear, allowing you to select a table from the list of retrieved data-
base tables. Choose a table and click Add.

Figure 53 The Table Chooser dialog.

You can choose more than one table if you wish. The result will be a grouping of the
two tables, but as yet no columns or joins have been specified. For this operation to be
meaningful, it is likely that you will have to first choose the tables whose data you will
be accessing, then specify the names of the common fields in each table.

Each data table scroll pane has a label that identifies it. The scroll area contains the
list of fields for that table. You build the query by selecting a field in this list and
choosing Add Selected Columns. This action causes the field name to be added to
the select statement in the SQL Statement scroll pane.

The query in the SQL Statement pane contains an editable text frame. You can refine
the query by adding any clause that the database language supports.

A sample, containing two tables, is shown in Figure 54.

10. Click the Set button to store the query. If you omit this step and close the SQL
Statement tab, all the settings you made will be cleared.

Important: Realize that the SQL Statement panel has helped you build a query simply
by making the appropriate choices in the customizer, although you can type query
Chapter 5 ■ JClass DataSource Overview 137

statements into the text area of the SQL statement panel. Your IDE takes it from there
and builds the necessary code.

Figure 54 The SQL Statement panel.

The setup of the JCData is complete. What remains is to connect this JavaBean to a
visual component so that the result set can be displayed. We’ll carry on with this
example by actually displaying the result of our query.

11. Select JCHiGrid in the ToolBox and place an instance on the BeanBox.

12. Resize it so that it is big enough to hold most of the cells in five or six rows.

13. In the BeanBox, highlight the JCData and choose Edit > Events > dataModel >
dataModelCreated. A line in the form of a rubber band extends from the JCData
component to the tip of the mouse pointer.
138 Part I ■ Using JClass HiGrid

14. Move the tip of the mouse pointer anywhere along the edge of the HiGridBean com-
ponent, click and again choose dataModelCreated from the popup menu that ap-
pears.

15. Your grid fills with the retrieved data, as shown in Figure 55.

Figure 55 A database table as it appears in the BeanBox.

5.8 JClass DataSource’s Main Classes and Interfaces

A TreeModel interface defines the methods that implement a generic interface for a tree
hierarchy. The tree interface is used for organizing the meta data and the actual data for
the JClass DataSource.

The DataModel is the data interface for the JClass DataSource. An implementation of this
interface will be passed to the data source. All data for the DataSource is maintained and
manipulated in this data model through its sub-interfaces. This data model requires the
implementation of two tree models: one for describing the relationships of the
hierarchical data (MetaDataModel) and one for the actual data (DataTableModel).

The TreeNodeModel is the interface for nodes of the TreeModel.

BaseDataTable provides a default implementation of DataTableModel and
DataTableAbstractionLayer interfaces. Instances of this class provide basic storage,
retrieval, and manipulation operations on data rows. This class can be used without
extending it. In this case you must create and populate rows manually. For example,

 BaseDataTable root = new BaseDataTable(rootMetaData);
 data_tree.setRoot((TreeNode) root);
 int row1 = root.addRow();
 root.updateCell(row1, column1, value1);
 root.updateCell(row1, column2, value2); // etc. ...
Chapter 5 ■ JClass DataSource Overview 139

Extensions of this class, for example the JClass DataSource JDBC implementation,
automatically create/populate data tables based on data returned from datasource
queries. In the case of IDE-specific implementations, they extend this class and override
the data storage and retrieval mechanisms. Users wishing to extend this class should look
at overriding some or all of the methods defined in the DataTableAbstractionLayer
interface. These are the methods most likely to need overriding. Each instance of this
class has its own cursor which can be navigated independently of the DataModel's global
cursor. Only the global cursor (controlled by DataModel.moveToRow) causes commits to
occur when the current row is changed. The navigation methods here do not cause the
global cursor to change, only this table's private cursor.

Figure 56 Major classes and interfaces for the Data Model .
140 Part I ■ Using JClass HiGrid

Commit Policy
Updating a database is a two step process. First, a cell or group of cells is edited, then the
edits are confirmed by committing them to the database.

COMMIT_MANUALLY — Requires a click on the pencil icon (or the X icon), or you
can select any of Update All, Update Current, Update Selected from the pop-up menu.

COMMIT_LEAVING_RECORD — Commits changes to a row as soon as the cursor
moves to a different bookmark.

COMMIT_LEAVING_ANCESTOR — Does not commit until a sub-tree is accessed
which has a different parent-level bookmark than the previous one (see
DataTableModel.getMasterRow()). By convention, setting the root-level MetaData object
to COMMIT_LEAVING_ANCESTOR is equivalent to setting it to COMMIT_MANUALLY.

5.9 Examples

Row Nodes

It often helps in simplifying your code if you assign names to rows. Method
setDescription assigns any name you choose to a row node. This name can then be
retrieved with getDescription. Since getDescription requires an object of type
MetaDataModel, a possible invocation would be:

String x = rowNode.getDataTableModel().getMetaData().getDescription();

You can find the row node associated with an event as follows:

ValidateEvent event = e.getValidateEvent();
RowNode rowNode = e.getRowNode();

getRowNode returns the row node of the row on which the event occurred.

5.9.1 Useful Classes and Methods as Demonstrated by Code Snippets

The following sections demonstrate some common tasks by using code snippets.

For most applications, you will need to perform the following steps:

■ Connect to a database

■ Set commit policies

■ Specify joins on tables using single or multiple keys

■ Refresh data structures after the data has been modified (including the insertion of a
new row or deletion of a row)

■ Inspect bookmarks and column identifiers

■ Sort data
Chapter 5 ■ JClass DataSource Overview 141

■ Programmatically move through the retrieved-record data structure and possibly
calculate totals or other summary information

■ Cancel some or all of a group of pending changes

■ Inspect column identifiers

■ Recover from operations that attempt to violate database integrity.

General

Connecting to a Database via a JDBC-ODBC Bridge and Setting the Top-level Query

Use the DataTableConnection constructor to instantiate a new connection, then use the
root form of the MetaData constructor to set the top-level query.

DataTableConnection c = new DataTableConnection(
"sun.jdbc.odbc.Jdbc0dbcDriver", // driver
"jdbc:odbc:GridDemo", // url
"Admin", // user
"", // password
null); // database

String query_string = "SELECT * FROM myTable";
MetaData root_meta_data = MetaData(data_model,c, query_string);

Joining Tables
Joining tables involves creating a new node that names its parent using the second form of
the MetaData constructor, building a query statement, and setting it on the node, then
issuing the join command or commands. Here, two joins are indicated.

private MetaData createDetailChild(InsertData link, MetaData par,
DataTableConnection c)

{
try
{

// Link the customer table to the SalesOrder table
MetaData node = new MetaData(link, par,c);
node.setStatement("SELECT * FROM OrderDetail WHERE order_id

= ? AND store_id = ?");
node.joinOnParentColumn("id","order_id");
node.joinOnParentColumn("store_id","store_id");
node.open();
node.setColumnTableRelations("OrderDetail", new String[]

{"*"});

return node;
}
catch (DataModelException e)
{

ExceptionDump.dump("Creating OrderDetail Child Table", e);
System.exit(0);

}
return null;

}

142 Part I ■ Using JClass HiGrid

Refreshing Tables
This example shows how you might construct a method that refreshes a table. The data
types of the variables can be inferred from the casts.

public void refreshStructure()
{

this.meta_tree = (TreeModel) this.data_model.getMetaDataTree();
this.meta_data_model = (MetaDataModel) this.meta_tree.getRoot();
this.data_tree = (TreeModel) this.data_model.getDataTableTree();
this.data_table_model = (DataTableModel) this.data_tree.getRoot();

}

Setting Permissions

This example shows how to set modification permissions programmatically.

public void setPermissions(String table,boolean ia,boolean da,
boolean ua)

{
this.meta_data_model.setInsertAllowed(table,ia);
this.meta_data_model.setDeleteAllowed(table,da);
this.meta_data_model.setUpdateAllowed(table,ua);

 }

5.10 Binding the data to the source via JDBC

In order to bind the data, you must first connect a database using the DataSource
customizer. This is described in Making a Connection to a Database, in Chapter 7.

Accomplishing the same thing programmatically involves these steps:

1. Create an instance of a DataModel which will be passed to the connection method, so
the class in which the connection parameters and the query are formed becomes the
first parameter in the call to MetaData.

2. Next, form a DataTableConnection object, and a query String.

3. Once the connection is made, and the query is passed to the database, use the root
constructor MetaData(DataModel, DataTableConnection, String).

4. If sub-tables are required, they are constructed using MetaData(DataModel, MetaDa-
ta, DataTableConnection). In this form of the constructor, the MetaData object re-
fers to the parent table.

Note: The query String must satisfy the database language requirements. Generally
speaking, SQL-92 should be used.

5.10.1 Getting Table Names

Some databases have trouble sorting out the proper association when two or more tables
are used at the same grid level. In these cases, ColumnModel method getTableName fails to
Chapter 5 ■ JClass DataSource Overview 143

return the necessary information about column names. In this case, you must supply the
proper join or update statement yourself. A helper method named
setColumnTableRelations is available.

The setColumnTableRelations method explicitly sets the relationships between tables
and columns. If introspection fails to determine the association between tables and their
columns (when there is more than one table to a level), or you wish to override the
associations, say to exclude a column in the update statement, use this method. This
method must be called for each table. For example, if SalesOrder and Store are joined in
a one-to-one relationship for a level, these would be the necessary calls. In this example
the MetaData object is called Orders.

Orders.setColumnTableRelations("SalesOrder", new String[]
{"id","store_id","cust_id","ship_via","purchase_order_number",
"order_date","order_total"});

Orders.setColumnTableRelations("Store", new String[]
{"store_store_id","address","phone_number","name"});

For a single table on a level the call would be,

Customer.setColumnTableRelations("Customer", new String[] {"*"});

Note: The “*” means all columns are from the Customer table.

5.10.2 Ambiguous Column Names

The JClass data model requires that if a column or field in one table has the same name as
that in another table, the two must be capable of being meaningfully joined. That is, the
two names must refer to the same logical property of some entity. Since you cannot
always control the various field names in database tables, there is an alias mechanism that
allows you to rename dissimilar fields that happen to have the same name. Assume that a
SalesOrder table has an id field, and a table named Store also has a field called id. These
keys respectively refer to a sales order reference number and the identification number
for a store. If you wish to form a query in which both tables are mentioned, and the id
field of both is to be selected, you provide an alias for one of the fields in the query
statement. Its syntax goes like this:

SELECT SalesOrder.id, ... other SalesOrder field names ... , Store.id AS store_alias_id, ... other
Store fields

Now that Store.id has an alias, it is used in place of the actual table name and causes no
problem. Just remember the rule: you can’t have identical column names if they mean
different things.

5.11 The Data “Control” Components
The Data Navigator Bean. This GUI component comes in two flavors, DSdbNavigator
for AWT and DSdbJNavigator for swing. They allow you to navigate through the
144 Part I ■ Using JClass HiGrid

database records. Both have the same behavior, which is described in The Navigator and
its Functions, in Chapter 8.

Figure 57 The Data Navigator.

5.12 Custom Implementations

5.12.1 Unbound Data

There may be times when you need to compute results that cannot be obtained through
SQL queries. Typically these situations arise when the results depend on a computation
that involves more than one column, or if it requires a function that is not supported by
one of the Aggregate classes. It has become customary to refer to this type of generated
data as “unbound data,” and we will use the term this way. You can provide added
functionality to your application with this flexible technique by adding a separate class
that manages the required callbacks. An example follows.

Imagine that the requirement is for a column containing a calculation that requires extra
verification logic, or some other calculation not covered by the existing aggregate types.
You can extend AggregateAll and override its calculate method to provide the custom
calculation.

See SummaryUnboundDataExample for the complete listing. It shows how to locate the node
containing the fields you want to work with and add a new summary column containing
the derived quantity. An outline of the procedure is given next.

In your main class, append a new summary column to the node’s footer:

SummaryColumn column = new SummaryColumn("Order Total Less Tax: ");
orderDetailFooterMetaData.appendColumn(column);

Provide parameters in the summary column’s constructor like these when you want
unbound data:

column = new SummaryColumn(orderDetailMetaData,
"jclass.higrid.examples.OrderDetailTotalAmount",

SummaryColumn.COLUMN_TYPE_UNBOUND,
SummaryColumn.AGGREGATE_TYPE_NONE,
MetaDataModel.TYPE_DOUBLE);

orderDetailFooterMetaData.appendColumn(column);
orderDetailFooterFormat.setShowing(true);

The second parameter names the class that defines the new calculation, which is
presented next. Note that its constructor calls the base class to provide the required
Chapter 5 ■ JClass DataSource Overview 145

initialization. OrderDetailTotalAmount provides the logic for calculations on each row
and AggregateAll sums them to a group total.

package jclass.higrid.examples;

import jclass.higrid.AggregateAll;
import jclass.higrid.RowNode;

/**
* Calculates the order detail total amount.
*/
public class OrderDetailTotalAmount extends AggregateAll {

public OrderDetailTotalAmount() {
super();

}

/**
* Perform the aggregation.
*
* @param rowNode The row node.
*/
public void calculate(RowNode rowNode) {

if (isSameMetaID(rowNode)) {
Object quantity = getRowNodeResultData(rowNode, "Quantity");
Object unitPrice = getRowNodeResultData(rowNode, "UnitPrice");
if (quantity != null && unitPrice != null) {

double amount = getDoubleValue(quantity) *
getDoubleValue(unitPrice);

addValue((Object) new Double(amount));
}

}
}

}

5.12.2 Batching HiGrid Updates

You can control the frequency at which updates occur. Normally, you want the grid to be
repainted immediately after a change is made or a property is set. To make several
changes to a grid before causing a repaint, set the setBatched property of HiGrid object
to true. Property changes do not cause a repaint until a setBatched(false) command is
issued.

Thus, when initializing an object, or performing a number of property changes at one
time, you can begin and end the section as follows:

 grid = new HiGrid();
 grid.setBatched(true);
 grid.setDataModel(new MyDataSource());
 grid.setBatched(false);

Setting a new data model may cause the grid to request numerous repaints, but these are
prevented by sandwiching the command between the two setBatched commands.
146 Part I ■ Using JClass HiGrid

5.13 Use of Customizers to Specify the Connection to the JDBC

If you have previously made a connection to your chosen database and have saved the
information in a serialization file, then all you have to do is launch the customizer and
specify the serialization file to reload. The following two figures show the dialogs for the
single data level (in JCData) and for the hierarchical JCTreeData. In either case, you type
in the filename or use the Load... button to choose it in a file dialog.

5.14 Classes and Methods of JClass DataSource

The following sections describe many of the classes and methods that application
programmers find useful.

5.14.1 MetaDataModel

Use the constants in the following table when you want to map a JDBC data type to a
Java type. These are the types that are returned. These constants are defined in
com.klg.jclass.datasource.MetaDataModel.

Java data types used to map JDBC data types

TYPE_BOOLEAN

TYPE_SQL_DATE

TYPE_DOUBLE

TYPE_FLOAT

TYPE_INTEGER

TYPE_STRING

TYPE_BIG_DECIMA

TYPE_LONG

TYPE_SQL_TIME

TYPE_SQL_TIMESTAMP

TYPE_OBJECT

TYPE_BYTE

TYPE_SHORT

TYPE_BYTE_ARRAY

TYPE_UTIL_DATE
Chapter 5 ■ JClass DataSource Overview 147

5.14.2 Data Model

This is the data interface for the JClass DataSource. An implementation of this interface
will be passed to the class using the data source. All data for the data source is maintained
and manipulated in this data model through its sub-interfaces. This data model requires
the implementation of two tree models, one for describing the relationships of the
hierarchical data (MetaDataModel) and one for the actual data (DataTableModel).

BaseDataTable is an abstract implementation of the methods and properties common to
various implementations of the DataTableModel. This class must be extended to
concretely implement those methods not implemented here, which are all of the methods
in the DataTableAbstractionLayer.

The object that actually holds the data retrieved from the database is DataTable. Its
implementation is specific to the type of data binding that different sources provide, so its
implementation is different in each of the supported IDEs. The following discussion
assumes a direct connection to JDBC rather than via an IDE.

DataTable contains a copy of the data returned in a JDBC result table, which will be
copied into one of these result tables so the data can be cached. Rows can then be added,
deleted or updated through this DataTable. All operations can access data through
row/column idxToBookmarkMap rather than indexes. This facilitates sorting of rows
and/or columns.

public class DataTable extends BaseDataTable

Methods:

Method Description

buildDeleteStatement(String, Vector,
DataTableRow)

Builds the delete statement for a table.

buildInsertStatement(String, Vector,
Vector)

Default method for building insert
statement.

buildUpdateStatement(String, Vector,
int)

Default method for building update
statement.

buildWhereClause(Vector, Vector) Builds a WHERE clause for
update/delete statements.

cloneRow(int) Returns a copy of this row.

columnModified(int, String) Returns true if a column value has been
modified.

commit() Actually commits this row to the server.

createNewRow() Creates a new row, called by addRow().
148 Part I ■ Using JClass HiGrid

createTable(int, TreeNode) Creates and returns the DataTable which
corresponds to the specified row of this
parent for the indicated child MetaData
object.

getCell(int, String) Returns a value for a given row/column
idxToBookmarkMap.

getCombinedKeys(String) Returns a Vector of column names which
are the join columns and the primary keys
for the driver table.

getOriginalRow(int) Given a bookmark, returns the original
row as it was before any changes where
made.

getRowFromServer(String, String,
int)

Sends the query to the server, fetches and
returns the row.

originalCellWasNull(int, Vector,
Vector)

Returns true if the original cell value is
null.

refreshRow(int) Re-reads a row from the originating data
source.

requeryLevel() Repopulates this DataTable by re-reading
rows from the originating data source.

restoreRow(int) Restores a row's original values.

saveRow(int) Saves row changes to originating data
source.

setParameter(int, Object) Sets parameters in the requery.

setValueAt(int, String, Object) Changes the value of an existing cell.

tablesColumnsModified(int, Vector) Returns true if at least one of this table's
columns been modified.

Method Description
Chapter 5 ■ JClass DataSource Overview 149

150 Part I ■ Using JClass HiGrid

6
The Data Model

Introduction ■ Accessing a Database ■ Specifying Tables and Fields at Each Level

Setting the Commit Policy ■ The Result Set ■ Virtual Columns ■ Handling Data Integrity Violations

6.1 Introduction

Creating an application with JClass DataSource normally involves these steps:

1. Establishing a database connection.

2. Creating the root meta data table.

3. Defining the meta data for sub-tables.

4. Setting properties, such as the commit policy.

5. Optionally adding generated fields in what are called “virtual columns”.

6. Connecting display objects, like JClass HiGrid.

This chapter illustrates some of the methods that accomplish the above mentioned steps
programmatically.

JClass DataSource is structured around two TreeModels, a meta data tree and a data table
tree. The classes that make up the meta data model cooperate to define methods for
describing the way that you want your data structured. You define the abstract
relationship between data tables as a tree. This is the meta data structure, and after it has
been designed, you query the database to fill data tables with result sets. The abstract
model defines the structure for the specific data items that are to be retrieved and indexed
using a dynamic bookmark mechanism. At the base level of the class hierarchy, class
MetaData describes a node in the MetaTree structure and class DataTable holds the actual
data for that node. There are different implementations of MetaData for differing data
access technologies, therefore there will be a different MetaData defined for the JDBC and
for various IDEs. Similarly, there will be different DataTable classes depending on the
basic data access methodology.

MetaData and DataTable are concrete subclasses of the classes BaseMetaData and
BaseDataTable. The latter is an implementation of the methods and properties common
to various implementations of the DataTable model. This class must be extended to
concretely implement those methods that it does not, which are all of the methods in the
151

data table abstraction layer. Both of these classes are derived from TreeNode, which
contains a collection of methods for managing tree-structured objects.

Interface MetaDataModel defines the methods that BaseMetaData and its derived classes
must implement. This is the interface for the objects that hold the meta data for
DataTables. There is one MetaDataModel for the root data table, and there can be zero,
one, or more DataTable objects associated with one meta data object for all subsequent
nodes in the meta data model. Thus it is more efficient to store this meta data only once,
rather than repeating it as a part of every data table. In JClass DataSource, meta data
objects are the nodes of the meta tree. The meta tree, through instances of the MetaData
classes, describes the hierarchical relations between the meta data nodes. DataTableModel
is the interface for data storage for the JClass HiGrid data model. It requests data from
instances of this table and manipulates that data through this interface. That is, rows can
be added, deleted or updated through this DataTable. To allow sorting of rows and
columns, all operations access cell data using unique identifiers for rows and columns,
rather than their indexes.

The DataModel has one “global” cursor. Commit policies rely on the position of this
cursor. This cursor, which is closely related to the bookmark structure, can point
anywhere in the “opened” data.

Additionally, each DataTableModel has its own “current bookmark.” This cursor is used
by the getTable method to point to a definite row in the named table. If another table is
referenced, a new, likely different, bookmark is used as the current row cursor.

6.2 Accessing a Database
Because this product is desiged primarily to populate its data tables from SQL queries, it
provides various ways to make the necessary connection to the database or databases that
source the data.

6.2.1 Specifying the Database Connection
If you are working on a Windows platform, and wish to test your application using
ODBC, register your database as shown in the section on “Setting Up the Data Source” in
the JClass DesktopViews Installation Guide. Other platforms have similar mechanisms for
registering the database with an appropriate driver — consult their documentation for
details.

JClass DataSource provides a programmatic mechanism for making a database
connection and one based on customizers for those using IDEs. As long as you are using
the JDBC API, you may use the JARs that accompany this product in your development
environment. If you are using a supported IDE, you may optionally use the IDE-specific
data binding solution in the customizer.
152 Part I ■ Using JClass HiGrid

../getstarted/index.html

6.2.2 Accessing a Database Via JDBC Type 1 Driver
The JDBC-ODBC bridge is part of the JDK. ODBC drivers are commonly available for
many databases. Some ODBC binary code is required on each client machine, which
means that the bridge and the driver are written in native code. For security reasons, Web
browsers may not use the ODBC driver, and therefore Applets must use another
approach.

The JDBC-ODBC bridge lets you use the wide range of existing ODBC drivers.
Unfortunately, this is not a pure Java solution, and as such may impose an unacceptable
limitation. Use of a Type 4 driver, described next, is highly recommended.

6.2.3 Accessing a Database Via JDBC Type 4 Driver
The JavaSoft Web page http://java.sun.com/products/jdbc/driverdesc.html has this to say about
Type 4 drivers: “A native-protocol fully Java technology-enabled driver converts JDBC
calls into the network protocol used by DBMSs directly. This allows a direct call from the
client machine to the DBMS server and is a practical solution for Intranet access. Since
many of these protocols are proprietary the database vendors themselves will be the
primary source for this style of driver. Several database vendors have these in progress.”
As these become available, Web browsers can use this approach to allow applets access to
databases.

// A sybase jConnect connection
DataTableConnection connection=
new DataTableConnection(

"com.sybase.jdbc.SybDriver", // driver
"jdbc:sybase:Tds:localhost:1498", // url
"dba", // user
"sql", // password
"HiGridDemoSQLAnywhere"); // database

} catch (Exception e) {
System.out.println(
"Data connection attempt failed to initialize " + e.toString());

}

Note: The connection object handles all four types of JDBC drivers, only the parameters
names are different as one changes from one driver to another.

6.2.4 The JDBC-ODBC Bridge and Middleware products
You have seen that you can establish a database connection through code similar to this
snippet.

try {
// create the connection object which will be shared
DataTableConnection connection= new DataTableConnection(

"sun.jdbc.odbc.JdbcOdbcDriver", // driver
"jdbc:odbc:HiGridDemo", // url
"Admin", // user
"", // password
null); // database

} catch (Exception e) {
Chapter 6 ■ The Data Model 153

http://java.sun.com/products/jdbc/driverdesc.html

System.out.println(
"Data connection attempt failed to initialize " + e.toString());
}

There are many JDBC-ODBC bridge products, including one from JavaSoft. The JDBC-
ODBC Bridge driver (package sun.jdbc.odbc) is included in JDK 1.2.

6.2.5 Instantiating the Data Model

The root level of the model is created by code similar to the following. Here, all the fields
from a table named “Orders” have been chosen.

 // Create the Orders MetaData for the root table
 MetaData Orders = new MetaData(this, connection,
 " select * from Orders order by OrderID asc");
 Orders.setDescription("Orders");

The root-level MetaData constructor is passed parameters naming the TreeData object,
the JDBC connection, and the SQL query. The meta data for sub-level tables is
instantiated through a command similar to the one shown directly below.

 // Create the Customer MetaData
 MetaData Customers = new MetaData(this, Orders, connection);

This constructor takes as parameters a TreeData object, the name of the parent meta data
object, and the connection object.

If you wish to present fields from more than one table at the same level in the hierarchy,
you use the same constructor and the same syntax. The difference only appears when you
build the query statement. The next section creates an OrderDetails level that is joined to
the Orders table but obtains data from two database tables, here having the anonymous
names a and b.

 // Create the Products MetaData
 MetaData Products = new MetaData(this, OrderDetails, connection);
 String query = "select a.ProductID, a.ProductDescription,

a.ProductName,";
 query += " a.CategoryID, a.UnitPrice, a.Picture, ";
 query += " b.CategoryName";
 query += " from Products a, Categories b";
 query += " where a.ProductID = ?";
 query += " and a.CategoryID = b.CategoryID";

In the previous code snippet, the two tables are joined to the parent table using the
ProductID key. That a join with the parent is taking place is recognizable by the use of the
? parameter that substitutes a particular single ProductID value in the parent table to
match against ProductID values in table a. The two sub-tables themselves are joined on
the CategoryID key. The next section discusses SQL queries in more detail.

6.2.6 Specifying the SQL Query

JClass HiGrid’s customizer permits the point-and-click construction of SELECT
statements as one of the essential operations along with naming a database and its tables,
154 Part I ■ Using JClass HiGrid

and constructing the grid’s meta data. Similarly, JClass DataSource’s Beans have custom
editors that facilitate building a query. These customizers and custom editors have text
panels that permit you to edit the query.

If you do edit the SQL query statement, your more elaborate statement is passed on to
the database with only the most rudimentary validation having been done, Therefore,
please realize that you must take extra care when testing your code, especially with
commands that potentially modify the host database.

6.3 Specifying Tables and Fields at Each Level

Specifying the tables and fields that comprise each level of the hierarchical structure of
the grid is really more of a design issue that depends on your particular application rather
than any requirement imposed by the data model. Once you have created your design,
specify the top level’s tables and fields with the command:

 MetaData Orders = new MetaData(this, connection,
" select * from Orders order by OrderID asc");

This is the constructor for the root level, and is distinguished by the fact that the
constructor actually passes a query to the database. For dependent tables, use this form of
the constructor:

 MetaData Territory = new MetaData(this, Customers, connection);

As before this is a DataModel (or TreeData) object and connection is a Connection
object, while Customers is the name of the parent level. The query is set up using the
method setStatement:

 String select = "SELECT TerritoryID, TerritoryName from Territories
WHERE TerritoryID = ?";

 Territory.setStatement(t);

Further setup is done with the commands:

 Territory.joinOnParentColumn("TerritoryID","TerritoryID");
 Territory.open();

Methods joinOnParentColumn and open cooperate to return the meta data for the query.
The data itself is retrieved when some operation that opens sub-levels is performed.

There is a recurring pattern used to describe and construct the data binding at each level.
The commands are:

■ Create the level. A root level requires one form of the MetaData constructor; all others
make use of a second form.

■ Define the SQL query for the level as a Java String.
Chapter 6 ■ The Data Model 155

■ Provide a descriptive word for the level and pass it to the MetaData object via
setDescription. It’s a good idea to ensure that you don’t duplicate any of these
descriptive words. If you do, you can’t be sure which instance the getDescription
method will return.

■ Use joinOnParentColumn to name the join fields. This will be checked at run time (or
in a custom editor if you are using an IDE or a customizer) against the WHERE
clause of the query to confirm that they match.

■ Use MetaData’s open method to load the ResultSetMetaData for the level. The
retrieval of actual data is deferred until there is a need to display it.

6.4 Setting the Commit Policy

There are three commit policies defined in MetaDataModel:

By default, edits to a row are committed upon leaving it (the record).

Note that you can find the commit policy currently in effect by calling getCommitPolicy,
and you can cause all pending updates to be written to the database using updateAll.
These methods are in classes MetaDataModel and DataModel respectively.

Also note that commitAll should not be used to update the database even though it is
declared public. Use updateAll instead.

 // override the default commit policy COMMIT_LEAVING_ANCESTOR
 Orders.setCommitPolicy(MetaDataModel.COMMIT_LEAVING_RECORD);
 OrderDetails.setCommitPolicy(

Commit Policy Description

COMMIT_LEAVING_RECORD Modifications to a row will be written to the originating
data source when the cursor moves to any other row.

COMMIT_LEAVING_ANCESTOR Changes will be written to the originating data source
when the cursor moves to a row which does not have
the same parent as the current row.

COMMIT_MANUALLY Any row changes will simply change the status of those
rows (see DataTableModel.getRowStatus()). You must
then call DataTableModel.commitRow(bookmark) or
DataModel.updateAll() to make the changes
permanent, or call
DataTableModel.cancelRowChanges(bookmark) or
DataModel.cancellAll() to undo the changes.
If you are using JClass HiGrid, the end-user can click
on the Edit Status column icon to commit edits, or use
the popup menu to commit or cancel edits.
156 Part I ■ Using JClass HiGrid

 MetaDataModel.COMMIT_LEAVING_ANCESTOR);
 Customers.setCommitPolicy(
 MetaDataModel.COMMIT_LEAVING_ANCESTOR);
 Products.setCommitPolicy(MetaDataModel.COMMIT_MANUALLY);
 Territory.setCommitPolicy(
 MetaDataModel.COMMIT_LEAVING_ANCESTOR);

6.5 Methods for Traversing the Data

Interface TreeNodeModel specifies the methods that the nodes of a TreeModel must
implement. TreeModel itself is an interface for the whole tree, including the root, while
TreeNodeModel refers only to the nodes of a generic tree structure. Both these interfaces
are used for meta data objects and for actual data tables. TreeModel includes many of the
methods of TreeNodeModel merely as a convenience.

Method Description

append Adds a TreeNodeModel to the node upon which the
method is invoked. The argument node is added as a
child of this node.

getChildren Returns the Vector that contains the child nodes of the
node upon which the method is invoked.

getData Returns the Object associated with a TreeNodeModel.

getFirstChild The TreeNode of the first child node for the current data
model.

getIterator Given a starting node, a tree iterator is used to follow
the links to the node’s descendents.

getLastChild Follows the link to the last child table for the current
TreeNodeModel; that is, the last table of the group of
tables at the meta data level directly beneath the object
upon which the method is invoked.

getNextChild Follows the link to the next child table for the current
TreeNodeModel.

getNextSibling Follows the link to the next sibling table for the current
TreeNodeModel; that is, the next table of the group of
tables at the same meta data level as the object upon
which the method is invoked.

getParent Returns the parent, as a TreeNodeModel, of the object
upon which the method is invoked.
Chapter 6 ■ The Data Model 157

TreeNodeModel defines:

getPreviousChild Follows the link to the last child table for the current
TreeNodeModel; that is, the last table of the group of
tables at the meta data level directly beneath the object
upon which the method is invoked.

getPreviousSibling Follows the link to the last child table for the current
TreeNodeModel; that is, the last table of the group of
tables at the meta data level directly beneath the object
upon which the method is invoked.

hasChildren Use this Boolean method to find out if the object upon
which the method is invoked has children.

insert Inserts a TreeNodeModel as a child of the object upon
which this method is invoked.

isChildOf(TreeNode), Use this boolean method to determine if the object
upon which the method is invoked is a child of the
TreeNodeModel parameter.

remove Removes the specified TreeNodeModel from this node's
array of children.

removeChildren Removes the children of the object upon which the
method is invoked.

Method Description

append Adds a TreeNode to this node.

getChildren Returns the Vector that contains the child nodes of this node.

getFirstChild Returns the first child of this node.

getIterator Returns an iterator to traverse this node's children.

getLastChild Returns the last child of this node.

getNextChild Returns the child of this node which follows the node parameter.

getParent Returns the parent node of this node.

getPreviousChild Returns the child of this node which precedes the node
parameter.

hasChildren Returns a Boolean: true if this node has children.

insert Inserts a TreeNode as a child node of this node.

Method Description
158 Part I ■ Using JClass HiGrid

TreeIteratorModel defines:

6.6 The Result Set

6.6.1 Performing Updates and Adding Rows Programmatically

Performing Updates
JClass DataSource implements all the standard Requery, Insert, Update, and Delete
operations. The requery methods are DataModel requeryAll, DataTableModel
requeryRow, and DataTableModel (and SummaryMetaData) requeryRowAndDetails.

After a user has modified a cell, call updateCell(rowNumber, columnName, value) to
inform the data source of the change. This method will then fire a DataTableEvent to
inform listeners about this change. getRowStatus will report this row as UPDATED.

Cancelling pending updates to the database is accomplished via the cancel methods
called cancelAll (DataModel) and cancelAllRowChanges (BaseDataTable). See the API
for cancelCellEditing in com.klg.jclass.cell.JCCellEditor and its overridden
methods in com.klg.jclass.cell.editors for methods which cancel edits to cells.

remove Removes a child node from the Tree.

removeChildren Removes all children of this node.

Method Description

advance Moves to the next element in this iterator's list.

advance Moves ahead a specified number of elements in this iterator's list.

atBegin Returns Boolean: true if iterator is positioned at the beginning of
list, false otherwise.

atEnd Returns Boolean: true if iterator is positioned at the end of list,
false otherwise.

clone Returns a copy of the current node.

get Returns the current node.

hasMoreElements Returns Boolean: true if this node has more children, false
otherwise.

nextElement Returns the next child of this node.

Method Description
Chapter 6 ■ The Data Model 159

Requerying the Database
requeryAll requeries the root-level of the database — all rows. Not only do the
bookmarks get reset, the sub-tables need to be set up from scratch after a requeryAll.

Adding a Row
The addRow method adds a row and returns a bookmark to the row.

6.6.2 Accessing Rows and Columns

Rows and columns may be accessed in various ways, depending on what information is
currently available.

6.6.3 Column Properties

Most of these properties are derived from the JDBC class ResultSetMetaData in
java.sql. They are declared in the ColumnModel interface.

Method Description

BaseMetaData.getColumnCount The number of columns in the result set.

MetaDataModel.getColumnIdentifier Returns a String that uniquely identifies the
column. Used to access data rather than a
column index which can change when the
columns are sorted.

DataModelEvent.getColumn Returns a String indicating which column
changed, or “ ” in the case where the
column is not applicable.

MetaDataModel.getCurrentBookmark
DataTableModel.getCurrentBookmark

Moves global cursor to a row, say by first,
and return the bookmark.

DataTableModel.getRowIdentifier(i) The index i is the row order within the
result set. The method returns the
bookmark for that row.

Property Description

getCatalogName Returns the catalog name for the table containing this field.

getDisplayWidth Returns the width in pixels of the column.

getColumnName The column’s name.

getPrecision The number of decimal digits.

getSchemaName The name of the schema for the table containing this
column.
160 Part I ■ Using JClass HiGrid

6.7 Virtual Columns

You can add columns whose contents are not retrieved from the data source. The class
BaseVirtualColumn allows you to add columns which are derived from other columns on
the row, including other virtual columns, by performing defined operations on one or
more other columns in the row to arrive at a computed value.

Virtual columns are based on VirtualColumnModel, an interface with one method:
Object getResultData(DataTableModel, bookmark). This allows access to all the other
cells in the row.

A base implementation of VirtualColumnModel called BaseVirtualColumn is provided. It
handles the obvious operations you might want to perform on one or more cells in a row:
SUM, AVERAGE, MIN, MAX, PRODUCT, QUOTIENT1. Whether a column is real or virtual, it is
transparent to listeners (like HiGrid). They simply call getResultData(bookmark) as
before. The DataTable will check the column type. If it is real the normal method is used.
If virtual, the VirtualColumnModel.getResultData(DataTableModel, bookmark)

getTableName The name of the table containing this column.

getColumnType The Java type of the column.

isAutoIncrement When a new row containing this column is created, its
contents are assigned a sequence number. Some databases
permit it to be overridden.

isCaseSensitive Is upper case to be distinguished from lowercase?

isCurrency Is the data a currency value?

isDefinitelyWritable Is the field writable?

isNullable Is null an allowable value?

isReadOnly Is the column write protected?

isSearchable Can this column’s contents be used in a WHERE clause?

isSigned Is the object signed?

isWritable Is the field writable?

1. You can define your own operation by defining a new constant and subclassing BaseVirtualColumn’s getResultData
method.

Property Description
Chapter 6 ■ The Data Model 161

method will be called. There can be zero, one, or more virtual columns for a row. Virtual
columns will be added by calling a method on the MetaDataModel. For example,

String name = "LineTotal";
int type = MetaDataModel.TYPE_BIG_DECIMAL;
int operation = VirtualColumnModel.PRODUCT;
Orders.addVirtualColumn(new BaseVirtualColumn(name, type,

operation, new String[] = {"col1","col2"});

UserDefinedVirtualColumn v = new UserDefinedVirtualColumn(....);
v.setSomeProperty(..);
Orders.addVirtualColumn(v);

Columns are added to the end of the list of existing columns. VirtualColumns cannot be
removed.

Computation Order when using Virtual Columns
The implementation of virtual columns requires that the columns referenced by the
virtual column must lie to the left of the summary column containing the result. This is
usually not a problem because totals and other such summary data are normally placed to
the right of the source columns. However, the rule admits of some flexibility because it is
the order in which items are added to the meta data structure that determines the left-
right relationship referred to above, but the visual layout may be different.

The following code snippet demonstrates the procedure.

// Create the OrderDetails MetaData
// Three virtual columns are used:
//
// TotalLessTax (Quantity * UnitPrice),
// SalesTax (TotalLessTax * TaxRate) and
// LineTotal (TotalLessTax + SalesTax).
//
// Thus, when Quantity and/or UnitPrice is changed, these derived
// values reflect the changes immediately.
// Note 1: TaxRate is not a real column either,
// it is a constant returned by the sql statement.
// Note 2: Virtual columns can themselves be used to derive other
// virtual columns. They are evaluated from left to right.
MetaData OrderDetails = new MetaData(this, Orders, c);
OrderDetails.setDescription("OrderDetails");
String detail_query = "select OrderDetailID, OrderID, ProductID, ";
detail_query += " DateSold, Quantity, UnitPrice, ";
detail_query += " '0.15' AS TaxRate ";
detail_query += " from OrderDetails where OrderID = ?";
OrderDetails.setStatement(detail_query);
OrderDetails.joinOnParentColumn("OrderID","OrderID");
OrderDetails.open();
BaseVirtualColumn TotalLessTax = new BaseVirtualColumn(

"TotalLessTax",
java.sql.Types.FLOAT,
BaseVirtualColumn.PRODUCT,
new String[] {"Quantity",

"UnitPrice"});
162 Part I ■ Using JClass HiGrid

BaseVirtualColumn SalesTax = new BaseVirtualColumn(
"SalesTax",
java.sql.Types.FLOAT,
BaseVirtualColumn.PRODUCT,
new String[] {"TotalLessTax",

"TaxRate"});
BaseVirtualColumn LineTotal = new BaseVirtualColumn(

"LineTotal",
java.sql.Types.FLOAT,
BaseVirtualColumn.SUM,
new String[] {"TotalLessTax",

"SalesTax"});
OrderDetails.addColumn(TotalLessTax);
OrderDetails.addColumn(SalesTax);
OrderDetails.addColumn(LineTotal);

The BaseVirtualColumn constructor is given a column label, the column’s data type, the
arithmetic operation (one of the supported types), and an array of column names on
which the operation is to be applied.

6.7.1 Excluding Columns from Update Operations

Because the setColumnTableRelations method explicitly sets the relationships between
tables and columns, it can be used to exclude a column from update operations. This is
useful in the case of a column containing bitmapped graphics. The database may think
that some pixels have changed in the displayed data and the cell should be updated even
though the picture has not been edited at all. In cases like this, you can list only those
columns that really should be updated, and save the cost of updating a read-only column.

// override the table-column associations for the Products table
// to exclude the Picture column so it is not included as part of
// the update. Precision problems cause the server to think it's
// changed.
Products.setColumnTableRelations("Products",

new String[] {"ProductID","ProductDescription",
"ProductName","CategoryID","UnitPrice"});

Now the column containing the pictures will not be updated.

6.8 Handling Data Integrity Violations

6.8.1 Exceptions

Many files, including the JCData, NodeProperties, JCTreeData, DataTableModel,
TreeData, and VirtualColumnModel throw exceptions to alert the environment that
actions need to be taken as a result of changes, both planned and unplanned, that have
happened as data is retrieved, manipulated and stored to the underlying database.

Since many of these exceptions are specific to the way that data is handled internally, and
because extra information is often needed about the details of the exception, a special
Chapter 6 ■ The Data Model 163

class extending java.lang.Exception called DataModelException is available to supply
the extra necessary information.

DataModelException adds information about the context of the exception. From it you
can determine the bookmark, the column identifier (columnID), the action that caused the
exception, the DataTableModel related to the exception, and the exception itself. There
are overridden toString and getMessage methods that allow you access to the
exceptions in readable form.

The following code snippet is just one example of the numerous situations where you
might wish to catch a DataModelException object. Here, a new MetaData object is being
created. If the table names are incorrect, or there is a problem accessing the database, the
catch block will inform you of the problem.

try
{

String query = new String("");
query = query + "SELECT * FROM OrderDetail ";
query = query +

"ORDER BY order_id,store_id,prod_id,qty_ordered ASC";
MetaData node = new MetaData(link, connection, query);

node.setColumnTableRelations("OrderDetail", new String[] {"*"});
return node;

}
catch (DataModelException e)
{

ExceptionProcess(); //Print diagnostic and exit
System.exit(0);

}

164 Part I ■ Using JClass HiGrid

7
JClass DataSource Beans

Introduction ■ Installing JClass DataSource’s JAR files ■ The Data Bean ■ The Tree Data Bean

The Data Navigator and Data Bound Components ■ Custom Implementations

7.1 Introduction

JClass DataSource includes nine JavaBeans. Their custom editors simplify the task of
making a connection to a database, specifying the master-detail relationships, and binding
data-aware components to any level. For designs of the hierarchical or master-detail type,
JCTreeData is the one to use.

Use JCData to bind to one or more database tables at a single level.

Use DSdbNavigator (or DSdbJNavigator for Swing) as a way of signalling a change to a
data pointer. A DSdbNavigator can be associated with any level in the hierarchical design
that you have defined using a JCTreeData. Its buttons are used primarily to request
movement to another row in the level to which it is bound, but it has many more
capabilities. These are discussed in the following chapter.

The six data bound components DSdbCheckbox1, DSdbImage, DSdbLabel, DSdbList,
DSdbTextArea, and DSdbTextField are used to display information in a column or a field
at the level to which they are bound. Other components which are also bound to the
same source of data, such as DSdbNavigator or JClass HiGrid, are used to move from one
row to another, causing the data bound components to update their displays with the new
information. DSdbCheckbox, DSdbTextArea, and DSdbTextField are editable components.
Changes in their contents are propagated back to the database under the commit policy
currently in effect.

DSdbList displays a column in the table defined by the current row pointer. It also
functions as a navigator. Clicking on one of the items in the list sends a request that the
current row pointer be updated. The items in DSdbList are not editable.

This chapter describes JCData and JCTreeData. The navigator and data bound
components are described in the following chapter.

1. Swing components are designated DSdbJCheckbox, and so on.
165

The JClass DataSource Beans connect to database drivers. If you are using Windows and
you have ODBC drivers installed (perhaps as a result of installing your database software),
you can set up an ODBC data source and use the JDBC-ODBC bridge. If you haven’t done
it before, here are the details on setting up a user data source.

1. Double-click on ODBC in the Control Panel. If it isn’t already on top, click on the User
DSN tab. A list (possibly empty) of User Data Sources is visible.

2. Click Add... and a setup dialog window appears.

3. Type in a Data Source Name and a Description. These names may be anything you
choose. The Data Source Name field is what will be displayed in the Name field of the
ODBC window when the setup is complete.

4. In the Database button group, click on Select... A file dialog appears, allowing you to
type in the full pathname of your chosen database, or navigate to it.

5. If you need to set a Login Name and Password for your database, click the Advanced...
button.

6. Click OK on the ODBC Data Source Administrator window to complete the setup.

If the name you chose was HiGridDB, the URL for your data source is:

jdbc:odbc:HiGridDB

To load the JDBC-ODBC bridge, you use a driver whose name is:

sun.jdbc.odbc.JdbcOdbcDriver

7.2 Installing JClass DataSource’s JAR files
Before getting into the details of the DataSource’s JavaBeans, it is important to be able to
add these objects to a builder tool. The example chosen is SunSoft’s BeanBox. Begin by
ensuring that you have installed your JAR files in the proper directory for your
development environment. In the case of the BeanBox, this would normally be /bdk/jars.
If you prefer to keep your JAR files in another directory, you will have to load them by
choosing File > LoadJar... A file dialog appears, permitting you to specify your JAR’s
directory.

Figure 58 Choosing LoadJar... from the BeanBox’s File menu.

The ToolBox displays the Beans contained in the JAR file once they are loaded. Note that
these same files are contained in JClass HiGrid, so if you place a HiGrid Bean in the same
166 Part I ■ Using JClass HiGrid

environment, you may see a duplicate list of DataSource Beans. It’s a good idea to use
only one of the DataSource or HiGrid JARs at a time because of their tendency to
interact.

Figure 59 JClass DataSource’s Beans, displayed in the ToolBox.

At this point you are ready to add these components to the BeanBox and begin setting
them up.

7.3 The Data Bean

Use JCData to bind one or more tables at a single level. This Bean is non-hierarchical and
is suitable for any application where the data is to be presented all within a non-
expandable grid. The fields in the grid may be chosen from more than one database
table.

7.3.1 Setting a Data Bean’s Properties and Saving Them to a Serialization File

The first step in using this Bean is to add it to your IDE. It is important that you use the
JAR corresponding to the data source connection mechanism you intend to use. Use
jcdatasource.jar if you are going to use a connection based on JDBC. If you intend to
use an IDE-specific connection, install the JAR whose name includes the initials matching
the IDE.
Chapter 7 ■ JClass DataSource Beans 167

We’ll use the ToolBox to illustrate the general method. After placing JCData in the
BeanBox, a window opens reminding you to name and save the serialization file.

Figure 60 The Data Bean tip window: a reminder to save the serialization file.

For more information on saving the serialization file, see Section 7.3.3, Saving a
Serialization File.

7.3.2 The Data Bean Editor
Observe the Property Sheet which opens when JCData is placed on the BeanBox. The data
Bean’s Properties sheet is shown in Figure 61.

Figure 61 The BeanBox’s Properties sheet, showing the properties of the Data Bean.

The middle line has a property called nodeProperties, whose pseudo-value is Click to
edit.... Clicking on this item brings up a custom editor, the JCData Bean Component
Editor.

The JCData Bean Component Editor contains an array of tabbed dialogs that permit you
to set a large number of properties. These are discussed in the following sections.
168 Part I ■ Using JClass HiGrid

7.3.3 Saving a Serialization File
The JCData NodePropertiesEditor initially shows its Serialization tab. Choose a name
for the serialization file or use the Save As... button to create the file.

Figure 62 The Serialization tab of the NodePropertiesEditor.

Once a serialization file has been saved, the property editor updates it as you make
changes to any of the properties in the data Bean. When subsequent design changes are
made, begin by loading the serialization file. This can save time because it stores all the
settings that have already been made.

7.3.4 Making a Connection to a Database

Follow these steps to directly connect to a JDBC driver supported database, or to use an
IDE-specific data binding mechanism.

1. Click the Data Model tab, exposing another level of tabbed choices.

2. Fill in the fields in the Connection pane.

3. Type the URL and the driver name in the property editor. Leave the other fields
blank unless you are connecting to a database or middleware server over a network.
Chapter 7 ■ JClass DataSource Beans 169

4. Click on Connect. There is a message area just below the Connect button that in-
forms you whether the connection attempt was successful or whether it failed and you
are in for a troubleshooting exercise.

Figure 63 The Connection page of the data Bean’s custom property editor.

Note that you can set the Design-time Maximum Number of Rows to limit the amount of data
that the database must furnish at design-time. This saves time and memory if the query
normally returns a large amount of data that is quite unnecessary at design-time.

Using a non-JDBC-ODBC driver
In the case of drivers that require a host address and a TCP/IP port specification, the
database name must be given separately, rather than associating it with an alias as is the
case with an ODBC setup. Use the following example as a guide when configuring this
170 Part I ■ Using JClass HiGrid

type of database connection. In the example, the name of the host is gonzo. (The driver is
a FastForward type 4 driver for Sybase Sql Server.)

Figure 64 A database connection that requires every field to be filled in.

7.3.5 Choosing Tables

This section applies if you are using the JDBC connection. After a connection is
established, the SQL Statement tab is accessible, as shown in Figure 66.

1. Click on the SQL Statement tab. There are two scrollable panes. The table selector
area is the space reserved for the table or tables that you are going to refer to in the
chosen database. After being chosen, the table appears as a scrollable pane containing
a list of all its fields. The SQL Statement area is directly below the table selector area.

2. Click on Add Table... or right-click in the table selector area and a Table Chooser pop-
up menu appears. Select the database table you want and click the Add button in the
Table Chooser window. Notice that a FROM clause naming the table appears in the
SQL Statement area.

3. Use the customizer to generate SQL statements from mouse actions. See the next sec-
tion for details.

4. To choose more than one table, repeat the process for selecting tables. Click Add for
each.
Chapter 7 ■ JClass DataSource Beans 171

7.3.6 Choosing a Query

The customizer gives you two ways to form a query. You can type the query directly in
the SQL Statement area, or you can use the mouse. See Figure 66 to see how a table and
its associated query appear in the customizer.

Simple queries for selecting which fields of the table to display are usually accomplished
automatically using mouse actions on the SQL Statement tab. Choose the fields by
double-clicking on them, or by clicking on the Add Selected Column(s) button. You’ll
notice that the text for the query appears in the SQL Statement text area as you use the
mouse to choose fields. For more elaborate queries, directly type it in the SQL Statement
text area. Whatever text appears in this area is used as the SQL statement for retrieving
the data from its source.

7.3.7 Joining Two Tables: Driver Table

If your application needs to present information that is stored in more than one table, you
can perform a database join on the tables. One simple way is to use the Auto Join feature.

1. Click on Add Join in the SQL Statement group of panels. A Join window appears.

Figure 65 The Join window, where you can perform a database join.

2. Select the “Primary” table and the “Foreign” table from drop-down lists.

3. Click Auto Join. The customizer looks for a foreign key in the “Foreign” table that
matches the primary key in the “Primary” table. If it finds a match it places a
WHERE clause fragment in the text area of the Join window.

4. Click OK and observe that the complete SQL statement, including the WHERE
clause, appears in the SQL Statement panel.
172 Part I ■ Using JClass HiGrid

5. Save your SQL statement by clicking on the Set/Modify button. Your window will
look something like that in the next figure.

Figure 66 The SQL Statement page, showing a completed query.

Click Done to close the window. The serialization file has captured all the changes so
long as the Set button was clicked to save any changes made to the tables, such as which
fields are selected and how tables are joined.

7.3.8 The Driver Table Tab

One of the possible operations on data tables, once they have been retrieved from the
database, is the requery of a single row. If a row is formed from the fields of more than
one table, the Driver Table is the one whose primary key can be used to drive this type of
requery. This is best illustrated with an example.
Chapter 7 ■ JClass DataSource Beans 173

For the requery to succeed, there needs to be some way of uniquely specifying the row
when it contains data from two tables. A specific case, drawn from a sample database, is a
join of the Customers table with the Salespeople table. The query that returns the desired
result set is:

SELECT Customers.CustomerID AS "CustomerID",
Customers.CompanyName AS "CompanyName",
Salespeople.SalepersonID AS "SalepersonID",
Salespeople.Name AS "Name"

FROM DBA.Salespeople AS Salespeople,
DBA.Customers AS Customers

WHERE Customers.SalespersonID = Salespeople.SalepersonID

For the requery of a single row to work correctly, we must know that the most restrictive
of the two tables is Customers, in the sense that the result set contains rows that have
unique CustomerID values. On the other hand, there may be duplicate or repeated values
for SalespersonID, so the way to uniquely specify a row is to refine the original query by
adding to the WHERE clause the value for the row’s CustomerID field.

The Driver Table panel lets you specify which table, and which key, to use when
JClass DataSource needs to requery a single row.

1. Click on the Driver Table tab.

2. Choose a table from the Table drop-down list.

3. Choose the key from the Column Name drop-down list.
174 Part I ■ Using JClass HiGrid

If no driver table is chosen, JClass DataSource uses the first table named in the FROM
clause whenever it needs to requery a single row.

Figure 67 The Driver Table tab.

7.3.9 The Data Access Tab

Use this panel to set the overall commit policy and the access rights.

The Commit Policy group has these options:

■ The Commit Policy itself has these choices: COMMIT_LEAVING_RECORD and
COMMIT_MANUALLY. See the discussion on commit polices in Commit Policy, in Chapter
5, and MetaDataModel.setCommitPolicy in the API.

■ The Show Deleted Rows checkbox is unused.

The Table Access group simplifies the task of setting access permissions for all three types of
SQL update operations. The permissions are set on a per-table basis.

1. Choose a table from the Table drop-down list.
Chapter 7 ■ JClass DataSource Beans 175

../api/com/klg/jclass/datasource/MetaDataModel.html#setCommitPolicy(int)

2. Use the Insert Allowed, Update Allowed, and Delete Allowed checkboxes to set access per-
missions for the table.

3. Click Add to record the settings in the Table Access text area and apply the permissions
you have set.

4. Choose another table, set permissions using the checkboxes, and click Add.

5. To edit any of the settings you have made, select a table, adjust the access permissions
and click Modify.

Figure 68 The Data Access tab.

7.3.10 The Virtual Columns Tab
JClass DataSource supports the use of computed fields as well as fields retrieved from a
database. Use the Virtual Columns panel to define a computed field that occupies the same
position in every row of the chosen table. Use this tab to define additional columns that
176 Part I ■ Using JClass HiGrid

perform one of the supported types of aggregation: Average, Count, First, Last, Max, Min,
and Sum.

Figure 69 The Virtual Columns tab.

To define a virtual column:

1. Decide on a name for your virtual column and type it in the Column Name text area.

2. Select the data type from the Column Type drop-down list.

3. Select the type of aggregation from the Operation drop-down list.

4. Use the drop-down list in the Related Columns area to choose the fields upon which the
aggregation will be based. Click Add to place the column in the text area.

5. Click Set/Modify to complete the operation.
Chapter 7 ■ JClass DataSource Beans 177

The example shown in Figure 69 adds a virtual column called TotalCost which is the sum
of database fields SalesTax and UnitPrice. The result is shown in the next figure.

Figure 70 An example of a virtual column whose aggregate type is SUM.

Note that all the fields used by a Virtual Column to generate a value must lie to its left.

7.3.11 Displaying the Result Set

JCData is ready to execute your query. The result can be displayed using a HiGridBean or
a LiveTable Bean. The following steps show how to connect a HiGridBean to a JCData in
the BeanBox.

1. Place a HiGrid JavaBean on the BeanBox. Select the JCData and choose Edit >
Events > dataModel > dataModelCreated.

2. Join the BeanBox’s rubber band to the HiGrid Bean. Select dataModelChanged from
the popup menu. If you don’t see this choice it probably means you have selected
some other object besides the HiGrid - you have to select its outline, and since the
outline isn’t visible while you are trying to find it, the operation reduces to a challenge
in precise pointing. An event is fired, and the grid is updated. After resizing, you
should see the result set from your query displayed in the HiGrid.

7.4 The Tree Data Bean

A JCTreeData Bean is capable of displaying master-detail relationships in indented
tabular form. Its customizer uses the full power of JClass DataSource while making it easy
to transfer your hierarchical design to Java code.

Placing a JCTree data JavaBean on a form is the same as using a JCData Bean. As in the
discussion for the JCData Bean, you begin by clicking on the filename at the right of the
treeDataBeanComponent label on the JCTreeData Bean’s property sheet.

This invokes the Tree Properties Editor, the custom editor for this component. The
Serialization tab is the same as in the case of the JCData Bean Properties Editor, but the left
178 Part I ■ Using JClass HiGrid

hand panel has a different appearance. The outliner for the hierarchical design occupies
this area. See Figure 71.

Figure 71 Before a table is added, you are asked to supply a descriptive name.

The database connection is accomplished just as it is in the case of the JCData Bean
component. The way that tables are installed is different because you are able to use this
Bean to design a hierarchical data model.

Important: To add the parent table to the form, click the Add button at the lower left of
the outliner panel. A warning dialog like that shown in Figure 72 appears reminding you
Chapter 7 ■ JClass DataSource Beans 179

to save a serialization file. Type in the name of your root data table (in place of the name
Node0) in the upper left-hand portion of the text pane.

Figure 72 Name the root data table after clicking the Add button in Figure 71.

You have the beginnings of your data design, as shown in Figure 73.

Figure 73 The Connection tab for the Tree Data Bean component.

At this point the SQL Statement tab becomes active. Click on it and add the OrderDetails
table to your form with the aid of the Table Chooser menu. Tables may be chosen by
double-clicking on an item, or by highlighting the item and clicking the Add button.
180 Part I ■ Using JClass HiGrid

Use the Table Chooser dialog to review a list of all available tables. You can choose
more than one table at the parent level, but one of these should be selected as the Driver
Table. See Section 7.3.8, The Driver Table Tab, for the step-by-step process.

Figure 74 The Table Chooser window.

The completed form is shown in Figure 76. A hierarchical data design has been defined
and is now ready for connection to an object that can display the results. As in the case
with JCData, a JCHiGrid Bean is used to display the data.

7.4.1 The Driver Table Tab

If there is more than one table at a given level, a DriverTable should be declared. This is
accomplished with the Driver Table tab as shown in the next figure.
Chapter 7 ■ JClass DataSource Beans 181

The driver table is the one that the database uses to drive the query. If a driver table is not
specified in this dialog the database will choose one, but it is not easy to tell which of the
candidate tables it will be.

Figure 75 The Driver Table tab.
182 Part I ■ Using JClass HiGrid

Here is a completed SQL Statement panel for a sub-table called OrderDetails.

Figure 76 Adding a detail-level table and selecting a query statement.

The Tree Data Bean may be attached to any component capable of displaying a
hierarchical grid, such as JClass HiGrid. It is possible to attach data bound components to
any level in the hierarchy.

7.5 The Data Navigator and Data Bound Components

JClass DataSource has several beans, including a data navigator and a group of data
bound components. The data navigator can be bound to any level in a master-detail
hierarchy. Through its row-positioning mechanism, it fires events that notify the other
data bound controls that they need to update themselves with the data from the new row.

The navigator and the data bound controls are discussed in detail in DataSource’s Data
Bound Components, in Chapter 8.
Chapter 7 ■ JClass DataSource Beans 183

7.6 Custom Implementations

7.6.1 Using the DataSource Bean in an IDE

JClass DataSource is designed to be used in an IDE. Use the DataSource Beans’ powerful
customizers to set up the database connection, build a query in a point-and-click fashion,
and bind the retrieved data to a grid, or other data bound component for display. The
upcoming sections demonstrate the use of such a customizer. The next section shows how
to add the JAR file to a specific IDE so that you can begin using the JClass DataSource’s
JavaBeans.

7.6.2 Data Binding in Borland JBuilder

If you intend to use Borland JBuilder’s own method of forming a database connection,
follow these steps before adding JClass DataSource components to your form:

1. After beginning your applet or application, click on the Data Express tab in the Com-
ponent Palette, select the component labeled borland.sql.dataset.Database and add it to
your form.

2. A connection window appears. Choose the URL for your database connection or type
it in the Connection URL text field. Also supply information for the Username, Password,
and Driver class text fields.

3. Place a borland.sql.dataset.QueryDataSet on the form. A query window appears. Choose
the database connection object from the Database drop-down list and type the query
in the SQL Statement text area.

4. Now add a JClass data Bean to the form. On the IDE tab, choose Borland JBuilder
and type the name of the queryDataSet object in the Data Source Name text field.

The JClass data Bean is now ready for use within the Borland JBuilder data binding
scheme.
184 Part I ■ Using JClass HiGrid

8
DataSource’s Data Bound Components

Introduction ■ The Types of Data Bound Components

The Navigator and its Functions ■ Data Binding the Other Components

8.1 Introduction

JClass DataSource and JClass HiGrid work as a team to provide a flexible data binding
solution for those applications that need to present hierarchically organized data in an
integrated package. JClass DataSource by itself is able provide your application with a
number of SWING-like components grouped on a form and bound to a hierarchical
source of data. It contains a versatile set of components that can be bound to any source
of data that JClass DataSource can access, and it provides the navigation tool for choosing
any of the records in the data set to which it is bound. The same data binding mechanism
is available for use in JClass Chart, JClass Field, and JClass LiveTable as long as all
products have matching version numbers.

8.2 The Types of Data Bound Components

JClass DataSource contains SWING-type components. If you are using the
JClass DesktopViews product suite, you are able to bind JClass Chart, JClass Field, and
JClass LiveTable objects in addition to the set of components included in
JClass DataSource.

The “standard” components and their associated data bound component names are given
in the table.

Swing Types

JCheckBox DSdbJCheckBox String, Numeric

DSdbJImage java.awt.Image

JLabel DSdbJLabel String, Numeric

JList DSdbJList String, Numeric

DSdbJNavigator void
185

Editable components are: DSdbJTextField, DSdbJTextArea, DSdbJCheckBox. The non-
editable components are DSdbJLabel, DSdbJList, DSdbJImage, and DSdbNavigator.

The Navigator is derived from either SWING Panel classes, and it is included in the table
because it functions much the same way as the other components.

JClass DataSource’s API makes it possible for you to bind SWING, or even components
of your own making, to a data source. The next sections illustrate how this is done.

Binding a Component to a Meta Data-Level
Each component Bean has a setDataBinding property to simplify the task of specifying
the data connection. This method is called automatically by the component’s property
editor in an IDE environment. The next section discusses the programmatic method.

Binding the Component Programmatically
Programmatically, data binding is accomplished by calling the setDataBinding
constructor in one of two ways. The “standard” method is to provide handles to the
DataModel and the MetaDataModel themselves. A second way of representing the
MetaDataModel is by a “path” of MetaDataModel descriptions separated by “|” (for
example, Orders|Customers).

Binding the navigator component to a data source requires only references to a
DataModel and a MetaDataModel. For example:

DSdbNavigator nav = new DSdbNavigator();
nav.setDataBinding(dataModel, metaDataModel);

To bind a component that displays a single database field, such as a text field, requires a
column name as a third parameter in the call to the setDataBinding method:

DSdbTextField dbCustomerID = new DSdbTextField();
dbCustomerID.setDataBinding(dataModel, metaDataModel, "CustomerID");

Binding the Component through an IDE
There are more choices when you effect data binding using an IDE. The recommended
way is to use JClass DataSource’s JCData or JCTreeData and JDBC to specify the
connection to the data source. Alternatively, you provide the instance of the DataModel
and path, just as in the case of programmatic data binding. Finally, you can provide a
single String containing the name of the DataModel, separated by a colon, from the path
to the chosen MetaDataModel. For example:

setDataBinding("DataModel0:Orders|OrderDetails").

JTextArea DSdbJTextArea String, Numeric

JTextField DSdbJTextField String, Numeric

Swing Types
186 Part I ■ Using JClass HiGrid

Using the JClass DataSource Data Bound Components
The data bound components have been made especially easy to use in an IDE by
providing a customizer that communicates with any JCData or JCTreeData that has
already been created and connected to a source of data. Use this customizer to select the
DataModel and MetaDataLevel. Once these have been selected, a list of column names is
presented. Once a name has been selected, the data bound component is ready for use.

If you decide to use the programmatic API, the data bound component’s constructor
takes three parameters whether it binds to the entire column, in the case of DSdbList, or
to a single cell for all the rest. Taking DSdbTextField as an example, its constructor is:

public DSdbTextField(DataModel dataModel,
MetaDataModel metaDataModel,
String column_name)

There is also a parameterless constructor that requires data binding to be set using
setDataBinding, which takes the same three parameters. Use this form of the constructor
when you need to instantiate the component first and set the data binding later.

8.3 The Navigator and its Functions

8.3.1 Introduction

DSdbNavigator is a visual component that fires events to JClass DataSource, requesting a
move to another row in the table to which it is bound. In addition to buttons for
movement to the first, last, next, and previous rows, it is able to request the insertion of a
new row or the deletion of the row to which it is currently pointing.

It is bound to a data source by giving its constructor references to the DataModel and a
particular MetaDataModel in the hierarchy. Thus, it can be bound to any level in the
master-detail structure.

Swing Support
Since data bound components have been defined in JClass DataSource for SWING, a
navigator exists for this environment. The Swing navigator is based on JComponent and is
called DSdbJNavigator.

The navigators are in the same packages as the other JClass DataSource data bound
components. The Swing navigator is called
com.klg.jclass.datasource.swing.DSdbJNavigator.

8.3.2 The Navigator Binds to any MetaData Level

The navigator binds to any MetaData level, just like the other DataSource data bound
components. It uses com.klg.jclass.datasource.TreeData to bind to a particular node
in the hierarchical data source. The property is called DataBinding, just like all the other
Chapter 8 ■ DataSource’s Data Bound Components 187

data bound components in JClass Chart, JClass Field, JClass LiveTable, and
JClass DataSource.

A DSdbNavigator constructor is parameterless; therefore, the newly instantiated
component is not initially bound to a data source. Binding occurs in various ways,
depending on whether the IDE or programmatic approach is taken.

Binding the Navigator Programmatically
Programmatically, data binding is accomplished by calling the setDataBinding
constructor in one of two ways. The “standard” method is to provide handles to the
DataModel and the MetaDataModel themselves. A second way of representing the
MetaDataModel is by a “path” of MetaDataModel descriptions separated by “|” (for
example, Orders|Customers).

Binding the Navigator through an IDE
There are more choices when you effect data binding using an IDE. The recommended
way is to use JClass DataSource’s JCData or JCTreeData and JDBC to specify the
connection to the data source. Alternatively, you provide the instance of the DataModel
and path, just as in the case of programmatic data binding. Finally, you can provide a
single String containing the name of the DataModel, separated by a colon (:), from the
path to the chosen MetaDataModel. An example is
setDataBinding("DataModel0:Orders|OrderDetails").

8.3.3 DSdbNavigator’s Functions
The JClass DSdbNavigator component displays the current row of the data table to which
it is bound. Four of its buttons, First, Previous, Next, and Last, signal the data source to
adjust its current row pointer. The Insert button requests the insertion of a new row and
the Delete button requests the deletion of the current row from the data source. The
Command button pops up a sub-menu of additional choices. The layout of the navigator’s
buttons is shown below:

Figure 77 The DSdbNavigator component.

The central Status field displays the description for the meta data level, the current
record number, and the total number of records in the data table to which it is bound.
The navigator's buttons are described below, beginning at the right and preceding in
order to the left:

Command Description

First Moves to the first row in the current DataTable.
188 Part I ■ Using JClass HiGrid

The Swing version of the navigator uses tool tips to show what each of the buttons does.
The tool tip’s text is derived from the text in the table above.

The Command menu pops up a sub-menu that allows operations on a table similar to
those allowed by HiGrid. A list of Command menu commands is shown after the figure
that illustrates it:

Figure 78 DSdbNavigator, showing the Command menu.

Previous Moves to the previous row in the current DataTable. If already at the start,
no move occurs.

Delete Deletes the current record.

Command Pops up a menu of commands that can be executed. The menu is similar
to the one in JClass HiGrid that pops up by right-clicking on one of the
grid’s rows.

Status Displays the name given to the meta data level to which it is bound, the
Data Table record number, and total number of records in that Data Table.

Next Moves to the next row in the current DataTable. If already at the end, no
move occurs

Last Moves to the last row in the current DataTable

Insert Adds a new record in the current table at the end of the table.

 Command Description

 Insert Record Adds a new record in the current table. Same as the add
button in the navigator.

 Delete Record Removes the current record in the current table.

Command Description
Chapter 8 ■ DataSource’s Data Bound Components 189

8.3.4 Exploring DSdbNavigator’s Bean Properties

Binding a navigator to a data source in an IDE is accomplished through the use of its data
binding editor. The editor is aware of the data sources that you have pre-configured, so
it’s important to add a JCData or a JCTreeData to your form before you use the
navigator’s data binding editor.

Here are the steps to bind a navigator to a data source:

1. Place a JCData or a JCTreeData on your form.

2. Use the Data Bean’s customizer to specify the connection to the database.

3. Place a DSdbNavigator (or a DSdbJNavigator) on your form. Its display area (called
the status area) indicates that it is not bound to a data source.

4. Click Select a Data Source to launch its data binding editor.

5. A diagram of the meta data structure appears. If necessary, expand the diagram to
show all the nodes. Click on a node to select it. Press Done to bind the navigator to
the chosen level.

 Cancel Record Cancels the current edit.

Cancel All Cancels all edits made.

 Requery Record and
Details

Requeries the table from the database.

 Requery All Updates the current row in the database.

Save Record Saves changes made to the current record.

Save All Updates all changes made.

 Go To Pops up a dialog that allows specification of a new row
number.

 Command Description
190 Part I ■ Using JClass HiGrid

6. Check that the navigator confirms that it is bound to a data source by reporting the
meta data level to which it is bound in its display area.

When a DSdbNavigator is placed in the BeanBox or an IDE, you’ll see the properties
listed in Figure 79.

Figure 79 The properties of DSdbNavigator.

Each region has the following properties:

Note that all of the buttons must have the same color, but the color of the status area can
be set independently of the button color. Set the background and foreground colors for
the buttons using setButtonBackground and setButtonForeground. The color is applied
to all the buttons as a group. Set the colors for the status area using setStatusBackground
and setStatusForeground.

Each button has its own get and set methods for reading and controlling its visibility. For
example, use setCommandVisible(false) to hide the Command button.

Property Description

 Visible Determines whether the region is shown.

 Foreground Foreground color.

 Background Background color.
Chapter 8 ■ DataSource’s Data Bound Components 191

The property names for controlling visibility are based on the region names as shown
below:

The following figure shows the data binding editor window which appears as a result of
clicking on Select a Data Source... in the properties list.

It shows an example of an expanded view of the data model that was created to
accompany the steps in the data binding procedure given above. The navigator was
bound to the Order Details level by clicking on its name, then clicking Done.

Figure 80 DSdbNavigator’s data binding editor.

 Button or Status Area Visible Get/Set Method

First FirstVisible

Previous PreviousVisible

Delete DeleteVisible

Status StatusVisible

Command CommandVisible

Next NextVisible

Last LastVisible

Insert InsertVisible
192 Part I ■ Using JClass HiGrid

8.4 Data Binding the Other Components

A component that binds to a single database field requires a column name in addition to
the data model and meta data level. In an IDE, the binding is done following the same
steps as is the case for DSdbNavigator. The next figure shows a cutout of a DSdbTextField,
its exposed properties, and its ColumnDataBindingEditor.

The text field is bound to a column called Territory Name, which is part of the meta data
level called Territories. All the database field names (that is, the column names) appear in
the editor. The name appears highlighted after it has been chosen with a mouse click.

Figure 81 A DSdbTextField, its Properties, and its ColumnDataBindingEditor.
Chapter 8 ■ DataSource’s Data Bound Components 193

194 Part I ■ Using JClass HiGrid

9
Sample Programs

The Sample Database ■ The DemoData Program ■ Base Example ■ BaseButton Example

Cell Validation Example ■ Row Validation Example

Exception Message Example ■ Popup Menu Example

9.1 The Sample Database
The sample database that is included with JClass DataSource has the structure shown in
Figure 92. This diagram shows the table names, column (field) names, and data types.
Many-one relationships are shown by terminating the dotted lines connecting two tables
with a black circle at the “many” end of the relationship. The key fields are shown at the
top of each table and the foreign keys are designated by placing the tag “(FK)” after the
data type.
195

Figure 82 Entity-Relationship diagram for the sample database.

9.2 The DemoData Program

We’ll begin with an example of using a class called DemoData, used to retrieve data from a
database, and then show how a HiGrid is used to display selected columns from the
database.

The class performs these functions:

1. Establishes the connection to the demo database

2. Constructs the meta data levels and defines the queries that are used to populate the
levels

3. Adds some virtual columns to the ones based on database fields

4. Sets the commit policies for all levels
196 Part I ■ Using JClass HiGrid

What follows is a line-by-line breakdown of the code. Lines 1—20 are the standard
copyright notice that accompanies all JClass examples. They should be assumed as the
beginning lines of every other example given in this chapter. Lines 22—29 list the package
name and the libraries that DemoData imports. This package identifies itself as part of the
examples that accompany the product. Package datasource forms the data source part of
JClass HiGrid’s code. As this example shows, it is responsible for setting up the
connection to the chosen database and then passing the appropriate SQL query to the
database. Actually, the com.klg.jclass.datasource.jdbc package is where the code to
connect via JDBC resides (or to an ODBC, through a JDBC-ODBC bridge).

Lines 54—57 define the constants that are used to specify which is the desired database
connection. Line 59 states that the Microsoft Access database is currently selected.

Line 62 is the beginning of the code for the constructor. It sets up a String for the JDBC—
ODBC driver, then embeds the database connection attempt in a try block. Line 74 sets
up a new DataTableConnection. The JDBC URL structure is defined generally as
follows:

jdbc:<subprotocol>:<subname>

In this line, jdbc is the standard base, subprotocol is the particular data source type, and
subname is an additional specification that the subprotocol uses. In our example, the
subprotocol is odbc. The Driver Manager uses the subprotocol to match the proper
driver to a specific subprotocol. The subname identifies the name of the data source.

Line 74 begins the process of instantiating a new connection. Line 75 declares the driver.
In fact, lines 74—79 are a concrete instance of a constructor call whose general form is
com.klg.jclass.datasource.jdbc.DataTableConnection(String driver, String
url, String user, String password, String database). Parameter driver is a String
indicating which driver to load, url is the URL String described above, user is the String
for the user’s name, password is a String for the user’s password, if required, and
database is the String for the database name, which may be null. This class defines
various ways of connecting to databases, such as using a host name and port, or an odbc
style connection, in addition to the one used in our example. Once the connection is
established, a query sets up the structure for the data that will be retrieved.

In line 108 of our example, the top-level table of our grid is declared in a query specifying
that the database table, Orders, is to be used. We wish to include, as sub-tables,
information contained in tables Customers, Territories, OrderDetails and Products—Categories.
The last-mentioned is a detail level consisting of a join of two tables.

Line 108 shows that the MetaData class holds the structure of the query. Two constructors
are used. First, the “root” constructor is called to set up and execute the query to
bootstrap root levels of the DataModel and the MetaDataModel. This constructor executes
the query and sets the resulting DataTable as the root of the DataTableTree. Call this
constructor first, then call the MetaData(DataModel dataModel, DataTableConnection
ds_connection, MetaData parent) constructor to build the meta data tree hierarchy.
Next, the second form of the constructor is called to add master-detail relationships. All of
this is accomplished in lines 113—125.
Chapter 9 ■ Sample Programs 197

Note that the class’ constructor does all the work, and a try block encloses all of the code.
If the class can’t be instantiated, the exception will print an error message on the monitor.

Once an instance of this class is successfully created, we have established a connection to
the named database and the query will return a result set.

Joins are accomplished programmatically by code such as is seen in lines 116 and 124.
They may be specified by using Bean customizers if you are using an IDE.

Lines 127 and following show how to attach virtual columns to a grid. These use the
BaseVirtualColumn class as illustrated in line 151, 156, and 160. The type of aggregation
to be done is specified using BaseVirtualColumn constants, as shown in lines 154, 158,
and 162.

Finally, commit policies for each level are set, beginning at line 188. All three commit
policies are illustrated.

1 /**
2 * Copyright (c) 2002, QUEST SOFTWARE. All Rights Reserved.
3 * http://www.quest.com
4 *
5 * This file is provided for demonstration and educational uses only.
6 * Permission to use, copy, modify and distribute this file for
7 * any purpose and without fee is hereby granted, provided that the
8 * above copyright notice and this permission notice appear in all
9 * copies, and that the name of Quest not be used in
10 * advertising or publicity pertaining to this material without the
11 * specific, prior written permission of an authorized representative
12 * of Quest.
13 *
14 * QUEST SOFTWARE MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE
15 * SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING
16 * BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. QUEST
18 * SOFTWARE WILL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY USERS AS A
19 * RESULT OF USING MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS
20 * DERIVATIVES.
21 */
22 package examples.datasource.jdbc;
23
24 import com.klg.jclass.datasource.BaseVirtualColumn;
25 import com.klg.jclass.datasource.MetaDataModel;
26
27 import com.klg.jclass.datasource.TreeData;
28 import com.klg.jclass.datasource.jdbc.DataTableConnection;
29 import com.klg.JClass DataSource.jdbc.MetaData;
30
31 /**
32 * This is an implementation of the JClass DataSource DataModel which
33 * relies on the our own JDBC wrappers (rather than IDE-specific data
34 * binding).
35 *
36 * It models a database for a fictitious bicycle company. The same
37 * schema has been implemented using an MS Access database
198 Part I ■ Using JClass HiGrid

38 * and a SQLAnywhere database (demo.mdb and demo.db respectively).
39 * They contain the same table structures and data.
40 *
41 * The default is to use the jdbc-odbc bridge to connect to the Access
42 * implementation of the data base. You can change which data base is
43 * accessed by changing the dataBase variable to either SA or SYB below.
44 *
45 * This is the tree hierarchy for the data:
46 * Orders
47 * Customers
48 * Territory
49 * OrderDetails
50 * Products-Categories
51 *
52 */
53 public class DemoData extends TreeData {
54
55 public static final int MS = 1;
56 public static final int SA = 2;
57 public static final int SYB = 3;
58 //Change the definition of database to any of the above constants.
59 int dataBase = MS;
60 DataTableConnection c;
61
62 public DemoData() {
63 String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
64 if (System.getProperty("java.vendor").indexOf("Microsoft") !=

-1) {
65 // use the driver that Microsoft Internet Explorer wants
66 driver = "com.ms.jdbc.odbc.JdbcOdbcDriver";
67 }
68 try {
69 switch (dataBase) {
70 case MS:
71 // This connection uses the jdbc-odbc bridge to
72 // connect to the Access implementation of the
73 // data base.
74 c = new DataTableConnection(
75 driver, // driver
76 "jdbc:odbc:JClassDemo", // url
77 "Admin", // user
78 "", // password
79 null); // database
80 break;
81
82 // This connection uses the jdbc-odbc bridge to connect
83 // to the SQLAnywhere implementation of the data base.
84 case SA:
85 c = new DataTableConnection(
86 "sun.jdbc.odbc.JdbcOdbcDriver", // driver
87 "jdbc:odbc:JClassDemoSQLAnywhere",// url
88 "dba", // user
89 "sql", // password
90 null); // database
91 break;
92
Chapter 9 ■ Sample Programs 199

93 // This connection uses Sybase's jConnect type 4
94 // driver to connect to the SQLAnywhere implementation
95 // of the data base.
96 case SYB:
97 c = new DataTableConnection(
98 "com.sybase.jdbc.SybDriver", // driver
99 "jdbc:sybase:Tds:localhost:1498", // url
100 "dba", // user
101 "sql", // password
102 "HiGridDemoSQLAnywhere"); // database
103 break;
104 default:
105 System.out.println("No database chosen");
106 }
107
108 // Create the Orders MetaData
109 MetaData Orders = new MetaData(this, c,

" select * from Orders order by OrderID asc");
110 Orders.setDescription("Orders");
111
112 // Create the Customer MetaData
113 MetaData Customers = new MetaData(this, Orders, c);
114 Customers.setDescription("Customers");
115 Customers.setStatement(

"select * from Customers where CustomerID = ?");
116 Customers.joinOnParentColumn(

"CustomerID","CustomerID");
117 Customers.open();
118
119 // Create the Territory MetaData
120 MetaData Territory = new MetaData(this, Customers, c);
121 Territory.setDescription("Territory");
122 String t = "select TerritoryID,

TerritoryName from Territories
where TerritoryID = ?";

123 Territory.setStatement(t);
124 Territory.joinOnParentColumn("TerritoryID","TerritoryID");
125 Territory.open();
126
127 // Create the OrderDetails MetaData
128 // Three virtual columns are used:
129 //
130 // TotalLessTax (Quantity * UnitPrice)
131 // SalesTax (TotalLessTax * TaxRate) and
132 // LineTotal (TotalLessTax + SalesTax).
133 //
134 // Thus, when Quantity and/or UnitPrice is changed, these

derived
135 // values reflect the changes immediately.
136 // Note 1: TaxRate is not a real column either, it is a
137 // constant returned by the sql statement.
138 // Note 2: Virtual columns can themselves be used to derive

other
139 // virtual columns. They are evaluated from left to right.
140 MetaData OrderDetails = new MetaData(this, Orders, c);
141 OrderDetails.setDescription("OrderDetails");
200 Part I ■ Using JClass HiGrid

142 String detail_query =
"select OrderDetailID, OrderID, ProductID, ";

143 detail_query += " DateSold, Quantity, UnitPrice, ";
144 detail_query += " '0.15' AS TaxRate ";
145 detail_query += " from OrderDetails where OrderID = ?";
146 OrderDetails.setStatement(detail_query);
147 OrderDetails.joinOnParentColumn("OrderID","OrderID");
148 OrderDetails.open();
149
150 //Extend the row with some calculated values.
151 BaseVirtualColumn TotalLessTax = new BaseVirtualColumn(
152 "TotalLessTax",
153 java.sql.Types.FLOAT,
154 BaseVirtualColumn.PRODUCT,
155 new String[] {"Quantity", "UnitPrice"});
156 BaseVirtualColumn SalesTax = new BaseVirtualColumn(
157 "SalesTax",java.sql.Types.FLOAT,
158 BaseVirtualColumn.PRODUCT,
159 new String[] {"TotalLessTax", "TaxRate"});
160 BaseVirtualColumn LineTotal = new BaseVirtualColumn(
161 "LineTotal",java.sql.Types.FLOAT,
162 BaseVirtualColumn.SUM,
163 new String[] {"TotalLessTax", "SalesTax"});
164
165 OrderDetails.addColumn(TotalLessTax);
166 OrderDetails.addColumn(SalesTax);
167 OrderDetails.addColumn(LineTotal);
168
169 // Create the Products MetaData
170 MetaData Products = new MetaData(this, OrderDetails, c);
171 Products.setDescription("Products");
172 String query = "select a.ProductID,

a.ProductDescription,a.ProductName,";
173 query += " a.CategoryID, a.UnitPrice, a.Picture, ";
174 query += " b.CategoryName";
175 query += " from Products a, Categories b";
176 query += " where a.ProductID = ?";
177 query += " and a.CategoryID = b.CategoryID";
178 Products.setStatement(query);
179 Products.joinOnParentColumn("ProductID","ProductID");
180 Products.open();
181
182 // Override the table-column associations for the Products

 table
183 // to exclude the Picture column so it is not included as

 part of
184 // the update. Precision problems cause the server to think

it's
185 // changed.
186 Products.setColumnTableRelations("Products",

new String[] {"ProductID",
"ProductDescription",
"ProductName",
"CategoryID",
"UnitPrice"});

187
Chapter 9 ■ Sample Programs 201

188 // Override the default commit policy
COMMIT_LEAVING_ANCESTOR

189 Orders.setCommitPolicy(
MetaDataModel.COMMIT_LEAVING_RECORD);

190 OrderDetails.setCommitPolicy(
MetaDataModel.COMMIT_LEAVING_ANCESTOR);

191 Customers.setCommitPolicy(
MetaDataModel.COMMIT_LEAVING_ANCESTOR);

192 Products.setCommitPolicy(MetaDataModel.COMMIT_MANUALLY);
193 Territory.setCommitPolicy(

MetaDataModel.COMMIT_LEAVING_ANCESTOR);
194
195 } catch (Exception e) {
196 System.out.println(

"DemoData failed to initialize " + e.toString());
197 }
198}
199
200}

9.3 Base Example

The DemoData database connection is used for many of the examples that illustrate the use
of JClass HiGrid. The first example is called BaseExample. It shows a basic grid and sets
up a general framework of displaying messages above the grid to describe the particular
operation currently being demonstrated in the example. It is worthwhile to describe the
structure of the messaging framework, since it is reused in other examples.

BaseExample performs the following tasks:

1. Sets up panels in a JCExitFrame.

2. Defines methods for setting a title and a prompt.

3. Defines a method called countChars() that is used to count the number of new lines
in the passed-in prompt. The method is used in the many examples that are sub-
classed from BaseExample.

4. Instantiates a grid and sets the data model with a meta data structure defined by De-
moData.

5. Uses HiGridFormatNodeListener to randomly color all cells.

Messages have a title, a prompt, and a message area that contains text found in the
variable standardText. The size of the message area is determined with the help of a
method called countChars. After defining the Strings for the title, prompt, and standard
text, setPrompt is called. It uses countChars to determine if the text area should be
reduced from its maximum size, then displays the text.
202 Part I ■ Using JClass HiGrid

Pre-JClass 4.0 technique for traversing the format tree:
Methods setRandomRowBackgroundColor set the colors of the different types of rows in
the grid, but more generally, illustrate how the grid’s FormatTree is accessed and used to
navigate from the root on down. Note the use of the TreeIterator class, which acts as a
specialized Enumeration type to allow traversal of the format tree.

void setRandomRowBackgroundColor(boolean recordFormat) {
FormatTree formatTree = grid.getFormatTree();

FormatNode node = (FormatNode) formatTree.getRoot();
setRandomRowBackgroundColor(recordFormat, node);

}

void setRandomRowBackgroundColor(boolean recordFormat, FormatNode node) {
if (node == null) {

return;
}
Color randomColor = new Color(lightColor(), lightColor(),

lightColor());
if (recordFormat) {

setRowBackgroundColor(node.getRecordFormat(), randomColor);
}
else {

setRowBackgroundColor(node.getFooterFormat(), randomColor);
setRowBackgroundColor(node.getBeforeDetailsFormat(),

randomColor);
setRowBackgroundColor(node.getAfterDetailsFormat(),

randomColor);
}
TreeIterator ti = node.getIterator();
while (ti.hasMoreElements()) {

node = (FormatNode)ti.get();
setRandomRowBackgroundColor(recordFormat, node);
ti.nextElement();

}
}

The call to lightColor returns a random value that is used to specify the RGB color
value of the row.

Simpler JClass 6.0 and higher technique:
HiGrid's event delegation model lets you catch the creation of each format node as it is
about to happen so that you can change the default plaf color to one that is randomly
chosen.

class BaseExampleHiGridFormatNodeListener extends
HiGridFormatNodeAdapter {
public void beforeCreateFormatNodeContents(

HiGridFormatNodeEvent event) {
CellStyleModel cellStyle = grid.getRecordCellStyle();
Color randomColor = new Color(lightColor(),

lightColor(), lightColor());
cellStyle.setBackground(randomColor);

}

Chapter 9 ■ Sample Programs 203

Turning off repainting
Whenever a grid is first loaded, it’s a good idea to turn off repainting. Therefore, a
common code idiom is:

grid.setBatched(true);
if (applet == null) {
grid.setDataModel(new jclass.datasource.examples.jdbc.DemoData());
if (grid.getDataModel() == null) {

grid.setDataModel(
new jclass.datasource.examples.vector.VectorData());

}
}
else {

grid.setDataModel(
new jclass.datasource.examples.vector.VectorData());

}
setRandomRowBackgroundColor(true);

grid.setBatched(false);

The operations that could cause repaint flickers are bracketed by setBatched(true) ...
setBatched(false).

9.4 BaseButton Example

This example merely adds a button to the bottom of the BaseExample’s frame. It extends
BaseExample and its button responds to actionPerformed events.

public class BaseButtonExample extends BaseExample
implements ActionListener {

The button is used in subsequent examples to initiate changes to the grid.

9.5 Cell Validation Example

The interface for doing cell-level validation is illustrated here.

public class CellValidationExample extends BaseExample implements
HiGridValidateListener

Because this class implements the HiGridListener interface, it must define methods
stateIsInvalid, valueChangedBegin, and valueChangedEnd. The class also uses the
validation capabilities of jclass.cell to fire a stateIsInvalid message if the validation
criteria are not met. If the change meets the validation criteria, a message on the standard
output reports the changed information. If not, the application refuses to change the
current row until valid data is placed in the cell being edited.

Here is how valueChangedBegin validates the cell’s contents:

/*
* HiGridValidateListener implementation
*/
204 Part I ■ Using JClass HiGrid

/**
* Invoked just before the data source value of the field is updated.
*/
public void valueChangedBegin(HiGridValidateEvent e) {

JCValidateEvent event = e.getValidateEvent();
RowNode rowNode = e.getRowNode();
// find out the user-defined name for this level
//(assume it is unique)
String levelName = rowNode.getDataTableModel().

getMetaData().getDescription();
String oldValue = getStringValue(event.getOldValue());
String newValue = getStringValue(event.getValue());
// reject any changes where the new entry is empty
if (newValue.length() == 0) {

event.setValid(false);
return;

}
// only do validation for top-level PurchaseOrderNumber column
if (levelName.compareTo("Orders") == 0 &&

e.getColumn().compareTo("PurchaseOrderNumber") == 0) {
// reject any changes where the first character changes
boolean valid = (oldValue.length() > 0) &&

(newValue.length() > 0) &&
(oldValue.charAt(0) == newValue.charAt(0));

event.setValid(valid);
}

}

Method setValid determines whether stateIsInvalid will be fired or not.

9.6 Row Validation Example

There are times when you must simultaneously validate more than a single cell. There
may be additional dependencies between the cells in a row that must be checked before
committing changes to the database. The current example is based on the premise that an
item cannot be delivered before it is ordered.

package examples.higrid.validation;

import java.awt.*;
import java.awt.event.*;
import java.util.Date;

import javax.swing.*;
import com.klg.jclass.datasource.*;
import com.klg.jclass.higrid.*;
import com.klg.jclass.util.swing.JCMessageHelper;
import com.klg.jclass.util.swing.JCExitFrame;

import examples.higrid.BaseExample;

/**
* Do row level validation in HiGrid.
Chapter 9 ■ Sample Programs 205

*/
public class RowValidationExample extends BaseExample {

public RowValidationExample() {
super();
grid.getDataModel().addDataModelListener(

new RowValidateDataModelListener());
setTitle("Row Validation");
setPrompt(usage);

}

private Frame myFrame;

public void setFrame(Frame f) {
myFrame = f;

}

static String usage = "This example shows how to do row level
validation.\n" +

"It will reject changes where the RequiredDate comes before
the OrderDate.";

void validateRow(DataModelEvent event, RowNode rowNode) {
// find out the user-defined name for this level (assume it is
// unique)
DataTableModel model = rowNode.getDataTableModel();
String levelName = model.getMetaData().getDescription();
// only do validation for top-level columns
if (levelName.compareTo("Orders") == 0) {

long bookmark = rowNode.getBookmark();
// ensure that RequiredDate is after OrderDate
try {

Date orderDate = (Date)model.getResultData(bookmark,
 "OrderDate");

Date requiredDate = (Date)model.getResultData(bookmark,
 "RequiredDate");

if (orderDate.after(requiredDate)) {
event.cancelProposedAction();
JCMessageHelper.showError("Row Validation",

"OrderDate must come before
 RequiredDate");

}
}
catch (Exception e) {
}

}
}

class RowValidateDataModelListener extends DataModelAdapter {
public void beforeMoveToCurrentRow(DataModelEvent e) {

validateRow(e, grid.getCurrentRowNode());
}

public void beforeCommitRow(DataModelEvent e) {
validateRow(e, grid.getRowTree().findRecordRowNode(null,

e.getBookmark()));
}

206 Part I ■ Using JClass HiGrid

}

public static void main(String args[]) throws InterruptedException {
JCExitFrame f = new JCExitFrame("Row Validation Example");
 RowValidationExample app = new RowValidationExample();
app.setFrame(f);
f.getContentPane().add(app);
f.pack();
f.show();
javax.swing.FocusManager.getCurrentManager().focusNextComponent(

app.getGrid());
}

}

9.7 Exception Message Example

The examples.higrid.exception.ExceptionMessageExample.java lists all the HiGrid
and DataSource event constants defined in com.klg.jclass.higrid.HiGridEvent and
com.klg.jclass.datasource.DataModelEvent. It presents two ways of handling events.
By default, HiGrid presents event and exception messages in a dialog window. You can
provide your own mechanism by implementing the HiGrid listener interface and
providing code there to deal with the event. Similarly, to deal with DataModel events, you
implement the DataModelListener interface.

To use your own event handling routine, have your class implement the HiGridListener
interface and register itself as a HiGridListener:

grid.addHiGridListener(this);
grid.getErrorHandler().setShowErrorDialog(false);

Customized event handling is illustrated by displaying the type of event in the text area
using the messaging mechanism defined in Section 9.3, Base Example.

9.8 Popup Menu Example

JClass HiGrid’s popup menu can be changed, or completely replaced by one of your own
design. The example shows that the short and long forms of the popup menu can be
selected using the constants EditPopupMenu.DEFAULT_SHORT_POPUPMENU_LIST and
EditPopupMenu.DEFAULT_LONG_POPUPMENU_LIST. It goes on to show how to install
additional choices; specifically, an “about” choice that, when clicked, presents a message
in the applet’s text area.

To view the code, see examples.higrid.menu.PopupMenuExample.java.
Chapter 9 ■ Sample Programs 207

../../examples/higrid/exception/ExceptionMessageExample.java
../../examples/higrid/menu/PopupMenuExample.java

208 Part I ■ Using JClass HiGrid

Part
II

Reference
Appendices

Appendix A
Bean Properties Reference

HiGridBean ■ HiGridBeanComponent ■ HiGridBeanCustomizer ■ DataBean

DataBeanComponent ■ DataBeanCustomizer ■ TreeDataBean ■ TreeDataBeanComponent

TreeDataBeanCustomizer ■ DSdbJNavigator ■ DSdbJTextField ■ DSdbJImage

DSdbJCheckbox ■ DSdbJList ■ DSdbJTextArea ■ DSdbJLabel

The following is a listing of the JClass HiGrid Bean properties and their default values.
The properties are arranged alphabetically by property name. The second entry on any
given row names the data type returned by the method. Note that a small number of
properties are really read-only variables, and therefore only have a get method. These
properties are marked with a “(G)” following the property name.

A.1 HiGridBean

Property Type Default Value

about (G) java.lang.String About JClass HiGrid

allowPopupMenu Boolean True

allowRowSelection Boolean True

allowSorting Boolean True

batched Boolean False

beepOnInvalid Boolean True

connectionsVisible Boolean True

editStatusWidth int 20

editable Boolean True

folderIconStyle int FOLDER_ICON_STYLE_
SHORTCUT

hiGridBeanComponent jclass.higrid.HiGrid
BeanComponent

Click to edit.
211

A.2 HiGridBeanComponent

horizontalScrollbar
Display

int DISPLAY_AS_NEEDED

levelIndent int 25

printFoldersAnd
Connections

Boolean False

printFormat int PRINT_AS_DISPLAYED

rowSelectionMode int ROW_SELECT_ANY

rowtipVisible Boolean True

sortIconsVisible Boolean True

version java.lang.String JClass HiGrid version
number for <platform>

verticalScrollbar
Display

int DISPLAY_AS_NEEDED

Property Type Default Value

class java.lang.Class class jclass.higrid.
HiGridBeanComponent

dataSourceNames java.lang.String[] (null)

dataSources java.lang.Object[] (null)

resourceName java.lang.String (null)

root jclass.datasource.
treemodel.TreeNode

(null)

serializationFile java.lang.String jchigrid0.ser

serializationRequired Boolean False

structureOnly Boolean False

Property Type Default Value
212 Part II ■ Reference Appendices

A.3 HiGridBeanCustomizer

A.4 DataBean

Property Type Default Value

alignmentX float 0.5

alignmentY float 0.5

background java.awt.Color (null)

component (null) null

componentCount int 1

components java.awt.
Component[]

dynamic

enabled Boolean True

font java.awt.Font (null)

foreground java.awt.Color (null)

insets java.awt.Insets top=0,left=0,bottom=0,right=0

layout java.awt.Layout
Manager

java.awt.FlowLayout[hgap=5,
vgap=5, align=center]

maximumSize java.awt.Dimension width=32767,height=32767

minimumSize java.awt.Dimension width=144,height=184

name java.lang.String panel0

object java.lang.Object (null)

preferredSize java.awt.Dimension (null)

visible Boolean True

Property Type Default Value

about java.lang.String About JClass DataSource

class java.lang.Class class
jclass.datasource.DataBean

commitPolicy int COMMIT_LEAVING_RECORD

currentGlobalBookmark long -1
Appendix A ■ Bean Properties Reference 213

A.5 DataBeanComponent

currentGlobalTable jclass.datasource.
DataTableModel

(null)

dataBeanComponent jclass.datasource.
DataBeanComponent

Click to edit.

dataTableTree jclass.datasource.
treemodel.
TreeModel

dynamic

description java.lang.String Node1

eventsEnabled Boolean True

listeners java.lang.Object (null)

metaDataTree jclass.datasource.
treemodel.
TreeModel

dynamic

modelName java.lang.String DataBean1

modified Boolean False

version java.lang.String JClass HiGrid version number for
<platform>

Property Type Default Value

class java.lang.Class class jclass.higrid.
HiGridBeanComponent

dataSourceNames java.lang.String[] (null)

dataSources java.lang.Object[] (null)

resourceName java.lang.String (null)

root jclass.datasource.
treemodel.TreeNode

(null)

serializationFile java.lang.String jchigrid0.ser

serializationRequired Boolean False

structureOnly Boolean False

Property Type Default Value
214 Part II ■ Reference Appendices

A.6 DataBeanCustomizer

A.7 TreeDataBean

Property Type Default Value

alignmentX float 0.5

alignmentY float 0.5

background java.awt.Color (null)

component (null) null

componentCount int 1

components java.awt.
Component[]

dynamic

enabled Boolean True

font java.awt.Font (null)

foreground java.awt.Color (null)

insets java.awt.Insets top=0,left=0,bottom=0,right=0

layout java.awt.Layout
Manager

java.awt.FlowLayout[hgap=5,
vgap=5, align=center]

maximumSize java.awt.Dimension width=32767, height=32767

minimumSize java.awt.Dimension width=90, height=140

name java.lang.String panel0

object java.lang.Object (null)

preferredSize java.awt.Dimension (null)

visible Boolean True

Property Type Default Value

about (G) java.lang.String About JClass DataSource

class java.lang.Class class
jclass.datasource.TreeDataBean

currentGlobalBookmark long -1
Appendix A ■ Bean Properties Reference 215

A.8 TreeDataBeanComponent

currentGlobalTable jclass.datasource.
DataTableModel

(null)

dataTableTree jclass.datasource.
treemodel.
TreeModel

dynamic

eventsEnabled Boolean True

listeners java.lang.Object (null)

metaDataTree jclass.datasource.
treemodel.
TreeModel

jclass.datasource.treemodel.
Tree@1f0bc2

modelName java.lang.String TreeData0

modified Boolean (null)

treeDataBeanComponent jclass.datasource.
TreeDataBean
Component

Click to edit.

version (G) java.lang.String JClass HiGrid version number for
<platform>

Property Type Default Value

class java.lang.Class class jclass.datasource.
TreeDataBeanComponent

dataSourceNames java.lang.String[] (null)

dataSources java.lang.Object[] (null)

resourceName java.lang.String (null)

root jclass.datasource.
treemodel.TreeNode

(null)

serializationFile java.lang.String jcdbtree0.ser

serializationRequired Boolean False

structureOnly Boolean False

Property Type Default Value
216 Part II ■ Reference Appendices

A.9 TreeDataBeanCustomizer

A.10 DSdbJNavigator

Property Type Default Value

alignmentX float 0.5

alignmentY float 0.5

background java.awt.Color (null)

component (null) null

componentCount int 1

components java.awt.Component
[]

dynamic

enabled Boolean True

font java.awt.Font (null)

foreground java.awt.Color (null)

insets java.awt.Insets top=0,left=0,bottom=0,right=0

layout java.awt.Layout
Manager

java.awt.FlowLayout[hgap=5,
vgap=5, align=center]

maximumSize java.awt.Dimension width=32767,height=32767

minimumSize java.awt.Dimension width=105,height=140

name java.lang.String panel0

object java.lang.Object null

preferredSize java.awt.Dimension (null)

visible Boolean True

Property Type Default Value

UIClassID java.lang.String not a pluggable look and feel
class

accessibleContext com.sun.java.
accessibility.
AccessibleContext

dynamic

alignmentX float 0.5
Appendix A ■ Bean Properties Reference 217

alignmentY float 0.5

autoscrolls Boolean False

background java.awt.Color 204,204,204

border com.sun.java.swing.
border.Border

null

bounds java.awt.Rectangle null

buttonBackground java.awt.Color 192,192,192

buttonForeground java.awt.Color 0,0,0

commandVisible Boolean True

component (null) null

componentCount int 7

components java.awt.Component[] dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

deleteVisible Boolean True

doubleBuffered Boolean True

enabled Boolean False

firstVisible Boolean True

focusCycleRoot Boolean False

focusTraversable Boolean False

font java.awt.Font null

foreground java.awt.Color 0,0,0

graphics java.awt.Graphics null

height int 0

insertVisible Boolean True

insets java.awt.Insets 0, 0, 0, 0

lastVisible Boolean True

layout java.awt.
LayoutManager

null

Property Type Default Value
218 Part II ■ Reference Appendices

managingFocus Boolean False

maximumSize java.awt.Dimension 32767, 32767

minimumSize java.awt.Dimension width=108,height=17

name java.lang.String datanavigator0

nextFocusableComponent java.awt.Component null

nextVisible Boolean True

opaque Boolean True

optimizedDrawingEnabled Boolean True

paintingTile Boolean False

preferredSize java.awt.Dimension width=239,height=17

previousVisible Boolean True

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled Boolean True

rootPane com.sun.java.swing.
JRootPane

null

statusBackground java.awt.Color 255,255,255

statusForeground java.awt.Color 0,0,0

statusVisible Boolean True

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

validateRoot Boolean False

visible Boolean True

visibleRect java.awt.Rectangle 0, 0, 0, 0

width int 0

x int 0

y int 0

Property Type Default Value
Appendix A ■ Bean Properties Reference 219

A.11 DSdbJTextField

Property Type Default Value

UI com.sun.java.swing.
plaf.TextUI

dynamic

UIClassID java.lang.String TextFieldUI

accessibleContext com.sun.java.
accessibility.
AccessibleContext

dynamic

actionCommand java.lang.String null

actions com.sun.java.
swing.Action[]

dynamic

alignmentX float 0.5

alignmentY float 0.5

autoscrolls Boolean True

background java.awt.Color dynamic

border com.sun.java.swing.
border.Border

dynamic

bounds java.awt.Rectangle null

caret com.sun.java.swing.
text.Caret

dynamic

caretColor java.awt.Color 0,0,0

caretPosition int 0

columns int 0

component (null) null

componentCount int 0

components java.awt.Component[] dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

disabledTextColor java.awt.Color 153,153,153

document com.sun.java.swing.
text.Document

dynamic
220 Part II ■ Reference Appendices

doubleBuffered Boolean False

editable Boolean True

enabled Boolean True

focusAccelerator char

focusCycleRoot Boolean False

focusTraversable Boolean True

font java.awt.Font null

foreground java.awt.Color 0,0,0

graphics java.awt.Graphics null

height int 0

highlighter com.sun.java.swing.
text.Highlighter

dynamic

horizontalAlignment int 2

horizontalVisibility com.sun.java.swing.
BoundedRangeModel

[value=0, extent=0,
min=0, max=100,
adj=false]

insets java.awt.Insets 2, 2, 2, 2

keymap com.sun.java.swing.
text.Keymap

dynamic

layout java.awt.
LayoutManager

null

managingFocus Boolean False

margin java.awt.Insets 0, 0, 0, 0

maximumSize java.awt.Dimension width=2147483647,he
ight=19

minimumSize java.awt.Dimension width=4,height=19

name java.lang.String null

nextFocusableComponent java.awt.Component null

opaque Boolean True

optimizedDrawingEnabled Boolean True

Property Type Default Value
Appendix A ■ Bean Properties Reference 221

paintingTile Boolean False

preferredScrollable
ViewportSize

java.awt.Dimension width=4,height=19

preferredSize java.awt.Dimension width=4,height=19

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled Boolean True

rootPane com.sun.java.swing.
JRootPane

null

scrollOffset int 0

scrollableTracksViewport
Height

Boolean False

scrollableTracksViewport
Width

Boolean False

selectedText java.lang.String null

selectedTextColor java.awt.Color 0,0,0

selectionColor java.awt.Color 204,204,255

selectionEnd int 0

selectionStart int 0

text java.lang.String

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

validateRoot Boolean True

visible Boolean True

visibleRect java.awt.Rectangle java.awt.Rectangle[
x=0,y=0,width=0,
height=0]

width int 0

x int 0

y int 0

Property Type Default Value
222 Part II ■ Reference Appendices

A.12 DSdbJImage

Property Type Default Value

UIClassID java.lang.String not a pluggable look and feel
class

accessibleContext com.sun.java.
accessibility.
AccessibleContext

null

alignmentX float 0.5

alignmentY float 0.5

autoscrolls Boolean False

background java.awt.Color null

border com.sun.java.swing.
border.Border

null

bounds java.awt.Rectangle null

component (null) null

componentCount int 0

components java.awt.Component[
]

dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

doubleBuffered Boolean False

enabled Boolean True

focusCycleRoot Boolean False

focusTraversable Boolean False

font java.awt.Font null

foreground java.awt.Color null

graphics java.awt.Graphics null

height int 0

insets java.awt.Insets 0, 0, 0, 0

layout java.awt.
LayoutManager

null
Appendix A ■ Bean Properties Reference 223

A.13 DSdbJCheckbox

managingFocus Boolean False

maximumSize java.awt.Dimension width=32767,height=32767

minimumSize java.awt.Dimension 0, 0

name java.lang.String null

nextFocusableComponent java.awt.Component null

opaque Boolean False

optimizedDrawingEnabled Boolean True

paintingTile Boolean False

preferredSize java.awt.Dimension 0, 0

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled Boolean True

rootPane com.sun.java.swing.
JRootPane

null

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

validateRoot Boolean False

visible Boolean True

visibleRect java.awt.Rectangle 0, 0, 0, 0

width int 0

x int 0

y int 0

Property Type Default Value

UI com.sun.java.swing.
plaf.ButtonUI

dynamic

UIClassID java.lang.String CheckBoxUI

Property Type Default Value
224 Part II ■ Reference Appendices

accessibleContext com.sun.java.
accessibility.
AccessibleContext

dynamic

actionCommand java.lang.String

alignmentX float 0.0

alignmentY float 0.0

autoscrolls Boolean False

background java.awt.Color 204,204,204

border com.sun.java.swing.
border.Border

dynamic

borderPainted Boolean False

bounds java.awt.Rectangle null

component (null) null

componentCount int 0

components java.awt.Component[] dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

disabledIcon com.sun.java.swing.
Icon

null

disabledSelectedIcon com.sun.java.swing.Icon null

doubleBuffered Boolean False

enabled Boolean True

focusCycleRoot Boolean False

focusPainted Boolean True

focusTraversable Boolean True

font java.awt.Font null

foreground java.awt.Color 0,0,0

graphics java.awt.Graphics null

height int 0

horizontalAlignment int 2

Property Type Default Value
Appendix A ■ Bean Properties Reference 225

horizontalTextPosition int 4

icon com.sun.java.swing.
Icon

null

insets java.awt.Insets 5, 5, 5, 5

label java.lang.String

layout java.awt.Layout
Manager

dynamic

managingFocus Boolean False

margin java.awt.Insets 2, 2, 2, 2

maximumSize java.awt.Dimension width=23,height=23

minimumSize java.awt.Dimension width=23,height=23

mnemonic char null

model com.sun.java.swing.
ButtonModel

dynamic

name java.lang.String null

nextFocusableComponent java.awt.Component null

opaque Boolean False

optimizedDrawingEnabled Boolean True

paintingTile Boolean False

preferredSize java.awt.Dimension width=23,height=23

pressedIcon com.sun.java.swing.
Icon

null

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled Boolean True

rolloverEnabled Boolean False

rolloverIcon com.sun.java.swing.
Icon

null

rolloverSelectedIcon com.sun.java.swing.
Icon

null

Property Type Default Value
226 Part II ■ Reference Appendices

A.14 DSdbJList

rootPane com.sun.java.swing.
JRootPane

null

selected Boolean False

selectedIcon com.sun.java.swing.
Icon

null

selectedObjects java.lang.Object[] null

text java.lang.String

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

validateRoot Boolean False

verticalAlignment int 0

verticalTextPosition int 0

visible Boolean True

visibleRect java.awt.Rectangle x=0,y=0,width=0,height=
0

width int 0

x int 0

y int 0

Property Type Default Value

UI com.sun.java.swing.
plaf.ListUI

dynamic

UIClassID java.lang.String ListUI

accessibleContext com.sun.java.
accessibility.
AccessibleContext

dynamic

alignmentX float 0.5

alignmentY float 0.5

Property Type Default Value
Appendix A ■ Bean Properties Reference 227

anchorSelectionIndex int -1

autoscrolls Boolean True

background java.awt.Color dynamic

border com.sun.java.swing.
border.Border

null

bounds java.awt.Rectangle null

cellRenderer com.sun.java.swing.
ListCellRenderer

dynamic

component (null) null

componentCount int 1

components java.awt.Component[] dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

doubleBuffered Boolean False

enabled Boolean True

firstVisibleIndex int -1

fixedCellHeight int -1

fixedCellWidth int -1

focusCycleRoot Boolean False

focusTraversable Boolean True

font java.awt.Font null

foreground java.awt.Color 0,0,0

graphics java.awt.Graphics null

height int 0

insets java.awt.Insets 0, 0, 0, 0

lastVisibleIndex int -1

layout java.awt.Layout
Manager

null

leadSelectionIndex int -1

Property Type Default Value
228 Part II ■ Reference Appendices

listData java.util.Vector null

managingFocus Boolean False

maxSelectionIndex int -1

maximumSize java.awt.Dimension 0, 0

minSelectionIndex int -1

minimumSize java.awt.Dimension 0, 0

model com.sun.java.swing.
ListModel

dynamic

name java.lang.String null

nextFocusableComponen
t

java.awt.Component null

opaque Boolean True

optimizedDrawingEnabl
ed

Boolean True

paintingTile Boolean False

preferredScrollable
ViewportSize

java.awt.Dimension width=256, height=128

preferredSize java.awt.Dimension 0, 0

prototypeCellValue java.lang.Object null

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled Boolean True

rootPane com.sun.java.swing.
JRootPane

null

scrollableTracks
ViewportHeight

Boolean False

scrollableTracks
ViewportWidth

Boolean False

selectedIndex int -1

selectedIndices int[] [I@1f3bf5

selectedValue java.lang.Object null

Property Type Default Value
Appendix A ■ Bean Properties Reference 229

A.15 DSdbJTextArea

selectedValues java.lang.Object[] dynamic

selectionBackground java.awt.Color 204,204,255

selectionEmpty Boolean True

selectionForeground java.awt.Color 0,0,0

selectionInterval (null) null

selectionMode int 2

selectionModel com.sun.java.swing.
ListSelectionModel

dynamic

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

validateRoot Boolean False

valueIsAdjusting Boolean False

visible Boolean True

visibleRect java.awt.Rectangle 0, 0, 0, 0

visibleRowCount int 8

width int 0

x int 0

y int 0

Property Type Default Value

UI com.sun.java.swing.
plaf.TextUI

dynamic

UIClassID java.lang.String TextAreaUI

accessibleContext com.sun.java.
accessibility.
AccessibleContext

dynamic

actions com.sun.java.swing.
Action[]

dynamic

Property Type Default Value
230 Part II ■ Reference Appendices

alignmentX float 0.5

alignmentY float 0.5

autoscrolls Boolean True

background java.awt.Color 255,255,255

border com.sun.java.swing.
border.Border

dynamic

bounds java.awt.Rectangle null

caret com.sun.java.swing.
text.Caret

dynamic

caretColor java.awt.Color 0,0,0

caretPosition int 0

columns int 0

component (null) null

componentCount int 0

components java.awt.Component[] dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

disabledTextColor java.awt.Color 153,153,153

document com.sun.java.swing.
text.Document

dynamic

doubleBuffered Boolean False

editable Boolean True

enabled Boolean True

focusAccelerator char

focusCycleRoot Boolean False

focusTraversable Boolean True

font java.awt.Font null

foreground java.awt.Color 0,0,0

graphics java.awt.Graphics null

Property Type Default Value
Appendix A ■ Bean Properties Reference 231

height int 0

highlighter com.sun.java.swing.
text.Highlighter

dynamic

insets java.awt.Insets 2, 2, 2, 2

keymap com.sun.java.swing.
text.Keymap

dynamic

layout java.awt.
LayoutManager

null

lineCount int 1

lineEndOffset (null) null

lineOfOffset (null) null

lineStartOffset (null) null

lineWrap Boolean False

managingFocus Boolean True

margin java.awt.Insets 0, 0, 0, 0

maximumSize java.awt.Dimension width=15,height=19

minimumSize java.awt.Dimension width=15,height=19

name java.lang.String null

nextFocusableComponent java.awt.Component null

opaque Boolean True

optimizedDrawingEnabled Boolean True

paintingTile Boolean False

preferredScrollableViewport
Size

java.awt.Dimension width=15,height=19

preferredSize java.awt.Dimension width=15,height=19

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled Boolean True

rootPane com.sun.java.swing.
JRootPane

null

Property Type Default Value
232 Part II ■ Reference Appendices

A.16 DSdbJLabel

rows int 0

scrollableTracksViewport
Height

Boolean False

scrollableTracksViewportWidth Boolean False

selectedText java.lang.String null

selectedTextColor java.awt.Color 0,0,0

selectionColor java.awt.Color 204,204,255

selectionEnd int 0

selectionStart int 0

tabSize int 8

text java.lang.String

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

validateRoot Boolean False

visible Boolean True

visibleRect java.awt.Rectangle 0, 0, 0, 0

width int 0

wrapStyleWord Boolean False

x int 0

y int 0

Property Type Default Value

UI com.sun.java.swing.
plaf.LabelUI

dynamic

UIClassID java.lang.String LabelUI

accessibleContext com.sun.java.
accessibility.
AccessibleContext

dynamic

Property Type Default Value
Appendix A ■ Bean Properties Reference 233

alignmentX float 0.0

alignmentY float 0.5

autoscrolls Boolean False

background java.awt.Color 204,204,204

border com.sun.java.swing.
border.Border

null

bounds java.awt.Rectangle null

component (null) null

componentCount int 0

components java.awt.Component[] dynamic

dataBinding java.lang.String Select a Data Source.

debugGraphicsOptions int 0

disabledIcon com.sun.java.swing.
Icon

null

displayedMnemonic int 0

doubleBuffered Boolean False

enabled Boolean True

focusCycleRoot Boolean False

focusTraversable Boolean False

font java.awt.Font null

foreground java.awt.Color 102,102,153

graphics java.awt.Graphics null

height int 0

horizontalAlignment int 2

horizontalTextPosition int 4

icon com.sun.java.swing.
Icon

null

iconTextGap int 4

insets java.awt.Insets 0, 0, 0, 0

Property Type Default Value
234 Part II ■ Reference Appendices

labelFor java.awt.Component null

layout java.awt.Layout
Manager

null

managingFocus Boolean False

maximumSize java.awt.Dimension 0, 0

minimumSize java.awt.Dimension 0, 0

name java.lang.String null

nextFocusableComponent java.awt.Component null

opaque Boolean False

optimizedDrawingEnabled Boolean True

paintingTile Boolean False

preferredSize java.awt.Dimension 0, 0

registeredKeyStrokes com.sun.java.swing.
KeyStroke[]

dynamic

requestFocusEnabled Boolean True

rootPane com.sun.java.swing.
JRootPane

null

text java.lang.String

toolTipText java.lang.String null

topLevelAncestor java.awt.Container null

validateRoot Boolean False

verticalAlignment int 0

verticalTextPosition int 0

visible Boolean True

visibleRect java.awt.Rectangle 0, 0, 0, 0

width int 0

x int 0

y int 0

Property Type Default Value
Appendix A ■ Bean Properties Reference 235

236 Part II ■ Reference Appendices

Appendix B
Distributing Applets and Applications

Using JarMaster to Customize the Deployment Archive

B.1 Using JarMaster to Customize the Deployment Archive

The size of the archive and its related download time are important factors to consider
when deploying your applet or application.

When you create an applet or an application using third-party classes such as JClass
components, your deployment archive will contain many unused class files unless you
customize your JAR. Optimally, the deployment JAR should contain only your classes
and the third-party classes you actually use. For example, the jchigrid.jar, which you used
to develop your applet or application, contains classes and packages that are only useful
during the development process and that are not referenced by your application. These
classes include the Property Editors and BeanInfo classes. JClass JarMaster helps you
create a deployment JAR that contains only the class files required to run your
application.

JClass JarMaster is a robust utility that allows you to customize and reduce the size of the
deployment archive quickly and easily. Using JClass JarMaster you can select the classes
you know must belong in your JAR, and JarMaster will automatically search for all of the
direct and indirect dependencies (supporting classes).

When you optimize the size of the deployment JAR with JClass JarMaster, you save
yourself the time and trouble of building a JAR manually and determining the necessity
of each class or package. Your deployment JAR will take less time to load and will use less
space on your server as a direct result of excluding all of the classes that are never used by
your applet or application.

For more information about using JarMaster to create and edit JARs, please consult its
online documentation.

JClass JarMaster is included with JClass DesktopViews. For more details please refer to
Quest Software’s Web site.
237

http://www.quest.com

238 Part II ■ Reference Appendices

Appendix C
Colors and Fonts

Colorname Values ■ RGB Color Values ■ Fonts

This section provides information on common colorname values, specific RGB color
values, and fonts applicable to all Java programs. You may find it useful as a guide for
choosing colors for cells.

C.1 Colorname Values

The following lists all the colornames that can be used within Java programs. The
majority of these colors will appear the same (or similar) across different computing
platforms.

C.2 RGB Color Values

The following lists all the main RGB color values that can be used within JClass HiGrid.
RGB color values are specified as three numeric values representing the red, green, and
blue color components; these values are separated by dashes (“-”).

■ black ■ lightGray

■ blue ■ lightBlue

■ cyan ■ magenta

■ darkGray ■ orange

■ darkGrey ■ pink

■ gray ■ red

■ grey ■ white

■ green ■ yellow

■ lightGray
239

The following RGB color values describe the colors available to Unix systems. It is
recommended that you test these color values in a JClass program on a Windows or
Macintosh system before utilizing them.

The list begins with all of the variations of white, then blacks and grays, and then
describes the full color spectrum ranging from reds to violets.

Example code from an HTML file:

 <PARAM NAME=backgroundList VALUE="(4, 5 255-255-0)">

RGB Value Description

255-250-250 Snow

248-248-255 Ghost White

245-245-245 White Smoke

220-220-220 Gainsboro

255-250-240 Floral White

253-245-230 Old Lace

250-240-230 Linen

250-235-215 Antique White

255-239-213 Papaya Whip

255-235-205 Blanched Almond

255-228-196 Bisque

255-218-185 Peach Puff

255-222-173 Navajo White

255-228-181 Moccasin

255 248-220 Cornsilk

255-255-240 Ivory

255-250-205 Lemon Chiffon

255-245-238 Seashell

240-255-240 Honeydew

245-255-250 Mint Cream

240-255-255 Azure

240-248-255 Alice Blue

230-230-250 Lavender

255-240-245 Lavender Blush
240 Part II ■ Reference Appendices

255-228-225 Misty Rose

255-255-255 White

0-0-0 Black

47-79-79 Dark Slate Grey

105-105-105 Dim Gray

112- 128-144 Slate Grey

119- 136-153 Light Slate Grey

190- 190-190 Grey

211- 211-211 Light Gray

25-25-112 Midnight Blue

0-0-128 Navy Blue

100- 149 237 Cornflower Blue

72-61-139 Dark Slate Blue

106-90-205 Slate Blue

123- 104 238 Medium Slate Blue

132-112- 255 Light Slate Blue

0-0-205 Medium Blue

65-105-225 Royal Blue

0-0-255 Blue

30-144-255 Dodger Blue

0-19 -255 Deep Sky Blue

135-206-235 Sky Blue

135-206-250 Light Sky Blue

70-130-180 Steel Blue

176-196- 222 Light Steel Blue

173-216-230 Light Blue

176-224-230 Powder Blue

175-238-238 Pale Turquoise

0-206-209 Dark Turquoise

72-209-204 Medium Turquoise

64-224-208 Turquoise

0-255-255 Cyan

RGB Value Description
Appendix C ■ Colors and Fonts 241

224-255-255 Light Cyan

95-158-160 Cadet Blue

102-205-170 Medium Aquamarine

127-255-212 Aquamarine

0-100-0 Dark Green

85-107-47 Dark Olive Green

143-188-143 Dark Sea Green

46-139-87 Sea Green

60-179-113 Medium Sea Green

32-178-170 Light Sea Green

152-251-152 Pale Green

0-255-127 Spring Green

124-252- 0 Lawn Green

0-255-0 Green

127-255- 0 Chartreuse

0-250-154 Medium Spring Green

173-255-47 Green Yellow

50-205-50 Lime Green

154-205-50 Yellow Green

34-139-34 Forest Green

107-142-35 Olive Drab

189-183-107 Dark Khaki

240-230-140 Khaki

238-232-170 Pale Goldenrod

250-250-210 Light Goldenrod Yellow

255-255-224 Light Yellow

255-255-0 Yellow

255-215-0 Gold

238-221-130 Light Goldenrod

218-165-32 Goldenrod

184-134-11 Dark Goldenrod

188-143-143 Rosy Brown

RGB Value Description
242 Part II ■ Reference Appendices

205-92-92 Indian Red

139-69-19 Saddle Brown

160-82-45 Sienna

205-133-63 Peru

222-184- 135 Burlywood

245-245-220 Beige

245-222-179 Wheat

244-164-96 SandyBrown

210-180-140 Tan

210-105-30 Chocolate

178-34-34 Firebrick

165-42-42 Brown

233-150-122 Dark Salmon

250-128-114 Salmon

255-160-122 Light Salmon

255-165- 0 Orange

255-140-0 Dark Orange

255-127-80 Coral

240-128-128 Light Coral

255-99-71 Tomato

255-69-0 Orange Red

255-0-0 Red

255-105-180 Hot Pink

255-20-147 Deep Pink

255-192-203 Pink

255-182-193 Light Pink

219-112-147 Pale Violet Red

176-48-96 Maroon

199-21-133 Medium Violet Red

208-32-144 Violet Red

255-0-255 Magenta

238-130-238 Violet

RGB Value Description
Appendix C ■ Colors and Fonts 243

C.3 Fonts

There are five different font names that can be specified in any Java program. They are:

■ Courier

■ Dialog

■ DialogInput

■ Helvetica

■ TimesRoman

Note: Font names are case-sensitive.

There are also four standard font style constants that can be used. The valid Java font
style constants are:

■ bold

■ bold+italic

■ italic

■ plain

These values are strung together with dashes (“-”) when used with the VALUE attribute.
You must also specify a point size by adding it to other font elements. To display a text
using a 12-point italic Helvetica font, use the following:

Helvetica-italic-12

All three elements (font name, font style and point size) must be used to specify a
particular font display; otherwise, the default font is used instead.

Note: Font display may vary from system to system. If a font does not exist on a system,
the default font is displayed instead.

221-160-221 Plum

218-112-214 Orchid

186-85-211 Medium Orchid

153-50-204 Dark Orchid

148-0-211 Dark Violet

138-43-226 Blue Violet

160- 32-240 Purple

147-112-219 Medium Purple

216-191-216 Thistle

RGB Value Description
244 Part II ■ Reference Appendices

Index

A
Action mappings 26
ActionInitiator

interface grid navigation and control 21
actions

mouse 70
adding headers and footers 29
after detail row 46

format 47
aggregate classes 31
ambiguous column names 144
API 5
applets

distributing 237
applications

distributing 237
auto join 85, 172

B
background

level properties 90
base example

database 202
BaseButton example 204
BaseDataTable 139
batching HiGrid updates 146
BeanBox

Data Bean 132
placing the HiGrid Bean on a form 74

Beans 73
customizer 78
Data

JClass DataSource 167
data (JCData) 132
Data Navigator 144
DataSource 165, 184
DSdbCheckbox 165
DSdbLabel 165
DSdbList 165
HiGridBeanCustomizer 20
JCData 165
JCDSdbNavigator 165
JCHiGrid 73

about property 77

allowPopupMenu property 77
allowRowSelection property 77
allowSorting property 77
background property 77
batched property 77
beepOnInvalid property 77
connectionsVisible property 77
editable property 77
editorHidden property 77
editStatusWidth property 77
folderIcon property 77
font property 77
foreground property 77
gridProperties property 78
horizontalScrollbarDisplay property 78
IDE 75
levelIndent property 78
name property 78
nodeWidth property 78
placing on a form 74
printFoldersAndConnections property 78
printFormat property 78
properties 75
rowHeightResizingAll property 78
rowSelectionMode property 78
rowTipVisible property 78
sortIconsVisible property 78
version property 78
verticalScrollbarDisplay property 78

JCHiGridExternalDS 73, 97
JCTreeData 165, 178
Navigator 144
properties, reference 211
Tree Data 178

before detail row 46
format 47

binding with JClass DataSource 120
bookmark 28, 125
border

level properties 90
styles 41, 45

rows 45
borders

on cells 26
Borland JBuilder

data binding 184
245

C
Cancel 24
cancelProposedAction 60

events 60
CellFormat 19

properties 42
CellInfo interface 117
cells 16

border 26
CellEditor interface 99
CellInfo interface 117
CellRenderer interface 99
clip hints 42
data type 55
displaying 99
displaying images 25
editing 29, 99, 108

default 100
editors 41

and CellInfo interface 117
creating 110
data type 110
defined 108
getting reserved keys 111
handling editor events 116
reserving keys 111, 116
subclassing 111
writing 113

formats 40
globally change properties 45
mapping data type to renderer 102
overview 22
renderers 101

component-based, creating 106
creating 103
subclassing 103
writing 104

rendering 101
default 100

reserving keys for editors 111
selecting for editing 26
specific data types 100
styles 40
traversal 23
validation, example 204

changing cell properties
globally 45

changing the grid’s appearance 29
choosing tables in the Data Bean 171
classes

aggregate 31
AggregateAverage 32
BaseDataTable 139
CellFormat 19
DataModel 139

GridArea 19
HiGrid 30
HiGridBeanCustomizer 20
TreeModel 139

clip hints 42
SHOW_ALL 42
SHOW_HORIZONTAL 42
SHOW_NONE 42
SHOW_VERTICAL 42

clip indicators 14
collapse parent 24
colors

colorname values 239
properties, in customizer 94
RGB color value list 240
RGB values 239

columns
accessing 160
ambiguous names 144
edit status 14, 21
excluding from update operations 163
moving 14, 58
operations 25
properties 160
resizing 14
resizing horizontally 25
resizing vertically 25
setting color properties 94
setting edit properties 95
setting edit status properties 96
setting font properties 93
setting general properties 91
sorting 25, 55
truncated fields 25
virtual 33, 161

computation order 162
comments on product 7
commit policy 131, 141

COMMIT_LEAVING_ANCESTOR 141, 156
COMMIT_LEAVING_RECORD 141, 156
COMMIT_MANUALLY 141, 156
MetaDataModel 156
setting 156

components 121
binding programatically 186
binding through an IDE 186
binding to a meta data-level 186
data bound 185
JClass DataSource 187
other

data binding 193
standard 185
types of data bound 185
visual, in JClass DataSource 120

computed columns -- see virtual columns 176
connection tab 82
246 Index

constants
aggregate 31

Controller
action mappings 22
and its relation to GridArea 19
HiGrid’s manager of user interactions 17
MVC 17

copy
row-based 14

creating a cell editor 110
creating a component-based cell renderer 106
creating cell renderers 103
current bookmark 152
current cell

definition 22
current path 126
cursor

tracking 23
custom

implementations 184
customizer 78

adding data tables 83
choosing tables 171
color properties 94
driver table 86

limitations 86
primary key 86

edit properties 95
edit status properties 96
font properties 93
functions 79
joining tables 85
row types 87
setting a query 172
specify the connection to the JDBC 147

D
data 120

cell editor 100
cell renderer 100
control components 144
data bound components 183
exceptions 163
integrity violations 163
interface, data model 148
navigator 183
row 46
structure in JClass DataSource 121
traversing 157
type 41

array 17
mapping to a cell editor 110
of a cell 55
supported 17

unbound 17
unbound 129, 145

Data Bean 132
custom editor 133
data access tab 135, 175
editor

property sheet 168
editors 168
JClass DataSource 167
serialization file 167
Set button 137
setting a query 172
setting properties 167
table chooser dialog 137
using in BeanBox 132
virtual columns tab 176

data binding
component through an IDE 186
component to a meta data-level 186
JBuilder 184
JClass DataSource components 187
JDBC 143
navigator through an IDE 188
other components 193
programatically 186
specifying path names 186, 188

data bound
components 185

JClass DataSource 121
data manipulation language 131
data model 33, 148, 151

closer look 37
events 59, 68
instantiating 154
JClass DataSource 120
setting 129

Data Navigator Bean 144
data source

associating to a grid 40
specifying 83

database
accessing 152
accessing, using JDBC Type 1 driver 153
accessing, using JDBC Type 4 driver 153
commit policy 131
connection 152, 169
requerying 160
sample

base example 202
BaseButton example 204
cell validation example 204
DemoData program 196
entity-relationship diagram 195
exception message example 207
popup menu example 207
row validation example 205
Index 247

database join 12
DataBean

driver table tab 173
properties 213

DataBeanComponent
properties 214

DataBeanComponentEditor 168
DataBeanCustomizer

properties 215
DataModel 139
DataModelEvent 18

class constants 61
DataModelListener 59
DataSource Bean 184
DataTable 148
DataTableAbstractionLayer 139
default cell styles

for the rows of a grid 3, 45
Delete 24
DemoData program 196
deployment archive

customize 237
design-time maximum number of rows 170
detail rows 46
dialogs

add join 85
add table 85

dispose
a grid that is no longer needed 40

distributing applets and applications 237
DML - data manipulation language 131
drawing

cells 100
driver

non-JDBC-ODBC 170
table 86

limitations 86
primary key 86

DSdbImage 165
DSdbJCheckbox

properties 224
DSdbJImage

properties 223
DSdbJLabel

properties 233
DSdbJList

properties 227
DSdbJNavigator

properties 217
DSdbJTextArea

properties 230
DSdbJTextField

properties 220
DSdbNavigator 187

functions 188
properties 190

DSdbTextArea 165
DSdbTextField 165
dynamic headers 14

E
edit

cells 100, 108
properties, in customizer 95
size 41
status

properties, in customizer 96
edit operation

cells 24
edit popup menu 23, 53

API access 54
edit status 52

column 21
EDIT_ENSURE_MINIMUM_SIZE 41
EDIT_ENSURE_PREFERRED_SIZE 41
EDIT_SIZE_TO_CELL 41
editors

basic 100
cell 108

BaseCellEditor 108
CellInfo interface 117
events 116
JCBigDecimalCellEditor 109
JCBooleanCellEditor 109
JCByteCellEditor 109
JCCheckBoxCellEditor 109
JCComboBoxEditor 109
JCDateCellEditor 109
JCDoubleCellEditor 109
JCFloatCellEditor 109
JCImageCellEditor 109
JCIntegerCellEditor 109
JCLongCellEditor 109
JCMultilineCellEditor 109
JCShortCellEditor 109
JCSqlDateCellEditor 109
JCSqlTimeCellEditor 109
JCSqlTimestampCellEditor 109
JCStringCellEdtitor 109
JCWordWrapCellEditor 109
mapping a data type 110
reserving keys 116
subclassing 111
writing 113

Data Bean 168
EditPopupMenu 23, 53
entity-relationship diagram 12

for sample database 195
events

cell editor 116
248 Index

data model 59, 68
DataModelEvent 60
getAncestorBookmarks 60
getBookmark 60
getCancelled 60
getColumn 60
getCommand 61
getOriginator 61
getRowIndex 61
getTable 61
HiGridColumnSelectionEvent 56
HiGridErrorEvent 56
HiGridEvent 56
HiGridExpansionEvent 56
HiGridFormatNodeEvent 56
HiGridMoveCellEvent 57
HiGridPrintEvent 57
HiGridRepaintEvent 57
HiGridResizeCellEvent 57
HiGridRowSelectionEvent 57
HiGridSortTableEvent 57
HiGridTraverseEvent 57
HiGridUpdateEvent 58
HiGridValidateEvent 58
in DataSource 59
in higrid 55
isCancelable 61
mouse and keyboard 69
printing 68
validating 68

exceptions
data 163
message, example 207

expander icon
see folder icon 12

expanding table 27
expert mode 85

F
FAQs 7
feature overview 2
fields

access at each level 131
specifying 155

folder icons 12, 14, 21
constants 30
styles 30

fonts
names 244
point size 244
properties, in customizer 93
style constants 244

footer 46
adding 29

custom 47
formats 47
printing 71
row 46

foreground
level properties 90

format tab 88
setting properties 87

FormatNode 16

G
getAncestorBookmarks 60
getBookmark 60
getCancelled 60
getColumn 60
getCommand 61
getOriginator 61
getRowIndex 61
getTable 61
getTableName 143
global cursor 126, 152
grid

appearance, changing 29
associating to a data source 40
displaying more 29
disposing 40
navigation

keyboard shortcuts 26
printing 70
resizing 21
symbols 21, 28
visible 29
visual aspect 13
visual component 20

GridArea 19
relation to controller 19

GridScrollbar 19

H
header 46

adding 29
custom 47
dynamic 14
formats 47
printing 71
row 46

height
level properties 91

highlights 2
higrid

interfaces 18
major classes 18
Index 249

HiGrid customizer
SQL statement 84

HiGridAction
action constants 22
for defining Action mappings 26

HiGridBean
properties 211

HiGridBeanComponent
properties 212

HiGridBeanComponentEditor 81
HiGridBeanCustomizer

properties 213
HiGridColumnSelectionEvent 56
HiGridErrorEvent 56
HiGridEvent 56
HiGridExpansionEvent 56
HiGridFormatNodeEvent 56
HiGridMoveCellEvent 57
HiGridPrintEvent 57
HiGridRepaintEvent 57
HiGridResizeCellEvent 57
HiGridRowSelectionEvent 57
HiGridSortTableEvent 57
HiGridTraverseEvent 57
HiGridUpdateEvent 58
HiGridValidateEvent 58
horizontal scrolling 21

I
icons

clip hint 42
clip indicators 14
collapse 28
current row 28
edit status

changes 52
expand 28
expander 12
folder 12, 14, 21

constants 30
styles 30

grid symbols 21, 28
marked for deletion 28
row edited 28
sort 28
truncated string 28

IDE
binding a component 186
data binding the navigator 188
DataSource Bean 184
JARs 167
using JCHiGrid Bean 75

images
displaying in cells 25

implementations
custom 184

indenting subtables 14
indicators

of sorting direction 15
Insert 24
interfaces

DataTableAbstractionLayer 139
MetaDataModel 147
VirtualColumnModel 161

internationalization 37
Introducing JClass HiGrid 1
isCancelable 61

J
JAR 237

JClass DataSource 166
JarMaster 237

customize deployment archive 237
JavaBeans 73
JBuilder

data binding 184
JCCellInfo interface 117
JCComponentCellRenderer

creating a component-based cell renderer 106
JCHiGridExternalDS Bean 97
JClass DataSource 11

Beans 165
DSdbCheckbox 165
DSdbImage 165
DSdbLabel 165
DSdbList 165
DSdbNavigator 165
DSdbTextArea 165
DSdbTextField 165
JCData 165
JCTreeData 165

classes, main 139
data binding 187
data bound components 121
data structure 121
interfaces 139
JAR files 166
managing data binding 120
overview 119
visual components 120

JClass Field 100
JClass HiGrid

closer look 20
relationship with JClass DataSource 11

JClass JarMaster 237
customize deployment archive 237

JClass LiveTable 23
JClass technical support 6
250 Index

contacting 7
jclass.cell package 99

structure 99
JCLightCellRenderer 104
JDBC 17

associating the grid to a data source 40
binding the data to the source 143
customizers to specify the connections 147
database access, Type 1 driver 153
database access, Type 4 driver 153
JDBC-ODBC bridge 17, 153

example 142
making a database connection 123

join 12
auto join 85, 172
code example 142
joining tables 85, 142
setting a join in a Data Bean 172

jump scrolling 21

K
KeyActionInitiator

for keyboard actions 22
keyboard

events 69
inputs 17
shortcuts 26

keys
reserving for cell editors 111, 116

L
levels

setting properties 89
specifying table and fields to access 131

list of cell editors 108
listeners

in DataSource 59
in higrid 55

localization 37

M
master-detail scenario

JClass HiGrid and JClass DataSource 11
message

dialog 53
exception message example 207

MessageDialog 53
messages 202
meta data 12

binding components 186

defining its structure 121
model 119, 124
specifying 155

MetaDataModel 147, 152
commit policy 156

methods
allowRowSelection 30
borderSize 30
dataModel 30
drawingConnections 30
formatTree 30
getTableName 143
gridArea 30
levelIndent 30
moveToRow 140
public 29
resetRuntimeGrid 50
rowSelectionMode 30
selectedObjects 30
setColumnTableRelations 144
setDataBinding 186, 188
setFolderIcon 31
setFolderIconStyleIndex 31
verticalScrollbar, horizontalScrollbar 30
width, height 30

middleware products 153
modal dialog 53
model

MVC 17
model view controller 16

paradigm 16
mouse

actions 26, 70
events 17, 69

MouseActionInitiator
for mouse actions 22

move to grid record 23
move to parent 24
move to table record 24
moveToRow 140
moving

column 14
MVC - model view controller 16

N
navigator 187

bind to meta data level 187
binding programatically 188
binding through an IDE 188
data 183
DSdbNavigator 188

properties 190
swing support 187

Navigator Bean 144
Index 251

nodes
row, naming 141

non-data rows
summary rows 46

O
ODBC 17

associating the grid to a data source 40
JDBC-ODBC bridge 17, 153

example 142
making a database connection 123

operations
on columns 25
on rows 24

P
package

higrid 18
painting

turning off repainting 204
paste

row-based 14
permissions

setting 143
popup menu 14, 27

cell traversal 23
edit 53

API access 54
example 207

positioning the scrollbars 20
prepared statements 131
primary key

driver table 86
PRINT_AS_DISPLAYED 71
PRINT_AS_EXPANDED 71
PrintGrid 72

associated classes 72
printing

a grid 70
footers 71
headers 71
print events 68
print preview 71
PrintGrid 72

product feedback 7
programming 39
properties 39

beans, reference 211
cell 90
CellFormat 42

allowWidthSizing 42
background 42

borderInsets 42
borderStyle 42
cellEditor 42
cellRenderer 43
clipHints 43
dataType 43
drawingArea 43
editable 43
editHeightPolicy 43
editWidthPolicy 43
enabled 43
font 44
fontMetrics 44
foreground 44
height 44
horizontalAlignment 44
marginInsets 44
name 44
otherAllowWidthSizing 44
parent 44
preferredTotalArea 44
selectAll 44
selectedBackground 44
selectedForeground 45
text 45
totalArea 45
type 45
verticalAlignment 45
width 45

Color 239
color, in the customizer 94
column 160
column, general 91
DataBean 213
DataBeanComponent 214
DataBeanCustomizer 215
DSdbJCheckbox 224
DSdbJImage 223
DSdbJLabel 233
DSdbJList 227
DSdbJNavigator 217
DSdbJTextArea 230
DSdbJTextField 220
DSdbNavigator 190
edit status, in the customizer 96
edit, in the customizer 95
Font 244
font, in the customizer 93
format tab 87
HiGridBean 211
HiGridBeanComponent 212
HiGridBeanCustomizer 213
JCHiGrid Bean 75
level 89
TreeDataBean 215
TreeDataBeanComponent 216
252 Index

TreeDataBeanCustomizer 217
property sheet 168
public methods 29

Q
query 12

DML 131
prepared statement 131
requerying 160
setting a query in the Data Bean customizer 172
specifying 154
store result sets 132

Quest Software technical support
contacting 7

R
ReadOnlyBindingModel 59, 120
reclaiming memory 40
refreshing

grid 50
tables 143

related documents 5
renderer

basic 100
component-based, creating 106
creating 103
JCCheckBoxCellRenderer 102
JCComboBoxCellRenderer 102
JCImageCellRenderer 102
JCLabelCellRenderer 102
JClass Field 100
JCRawImageCellRenderer 102
JCScaledImageCellRenderer 102
JCStringCellRenderer 102
JCWordWrapCellRenderer 102
subclassing 103
writing 104

rendering
cells 100, 101
mapping a data type 102

repainting
turn it off 204

Requery 24
resizing

columns 14
columns horizontally 25
columns vertically 25
grid 21
rows 15

result set 132, 159
defined 13
displaying 178

RGB values 239
list 240

root table 121
rows

accessing 160
adding 160
adding programatically 159
after detail 46

format 47
before detail 46

format 47
Cancel 24
data 46
Delete 24
footer 46

custom 47
formats 47

formats 46
header 46

custom 47
format 47

height sizing operation 25
identifiers

bookmarks 28
index 125
Insert 24
keeping track 125
moving between 51
nodes

naming 141
non-data rows 46
operations 24
Requery 24
resizing 15
row-based copy and paste 14
Select 25
selecting 27
selecting all intervening rows 27
set maximum number at design-time 170
sizing 25
status 52
summary lines 47
tip 21
types

format tab 87
Update 24
validation, example 205
visibility 51

RowTree 16, 20

S
sample database

base example 202
BaseButton example 204
Index 253

cell validation example 204
DemoData program 196
entity-relationship diagram 195
exception message example 207
popup menu example 207
row validation example 205

scroll bars 21
scrolling

horizontal 21
jump 21

sections tab 88
Select 25
selecting

all intervening rows 27
cells for editing 26
rows 27

serialization 81
file

saving 169
saving Data Bean properties 167

tab 81
setColumnTableRelations 144
setExtraWidth

for column resizing 14
setHeaderTipVisible

for dynamic row headers 14
setHorizontalScrollbarConstraints

positioning the scrollbar 20
setLevelIndent

for indenting subtables 14
setPrintFormat 71
setShowing

control the visibility of the edit status column 14
setting permissions, example 143
setTrackCursor 23
shortcuts

keyboard 26
size, cell editor 41
sort indicators 15
sorting

columns 25
specifying the tables and fields to be accessed at each level

131
SQL

query 12
prepared statement 131
specifying 154
WHERE clause 12

statement 84
meta data design panel 84
page buttons 84
panel 85

WHERE 85
structure of the sample database 195
style

border 41

cells 40
subclassing

cell editors 111
cell renderers 103

subtables
indenting 14

summary
computed information 50
lines, adding 47

support 6, 7
contacting 7
FAQs 7

symbols
grid 28

T
tables

access at each level 131
choosing 171
driver table 86

limitations 86
primary key 86

expanding 27
generating data programatically 129
joining 85

example 142
names 143
refreshing, example 143
specifying 155
unbound data 129

technical support 6, 7
contacting 7
FAQs 7

transaction processing 11
traversing data 157
TreeDataBean 178

Driver table tab 181
properties 215

TreeDataBeanComponent
properties 216

TreeDataBeanCustomizer
properties 217

TreeModel 139, 157
TreeNodeModel 157
TriangleCellEditor 115
truncated fields 25
Type 1 driver

database access 153
Type 4 driver

database access 153
types

of data bound components 185
254 Index

U
unbound data 145

generating a table’s data programmatically 129
Update 24
updates 159

batching 146
user actions

default mapping 21

V
validating

events 68
view

MVC 17
violations

data integrity, handling 163
virtual columns 33, 161

computation order 162
excluding from update operations 163
set via a customizer 176

visibility
grid 29
rows 51

visual
aspects of a grid 13
components with JClass DataSource 120
gird components 20

W
WHERE clause 12, 85
writing a cell renderer 104
Index 255

256 Index

	JClass HiGrid
	Preface
	Introducing JClass HiGrid
	Assumptions
	Typographical Conventions in this Manual
	Overview of the Manual
	API Reference
	Licensing
	Related Documents
	About Quest
	Contacting Quest Software
	Customer Support
	Product Feedback and Announcements

	Using JClass HiGrid
	JClass HiGrid Overview
	1.1 Introduction
	1.2 JClass HiGrid’s Major Classes and Interfaces
	1.3 Operations on Cells
	1.4 The Data Model for JClass HiGrid
	1.5 Internationalization

	Properties of JClass HiGrid
	2.1 Introduction
	2.2 Programming JClass HiGrid
	2.3 Cell Formats and Cell Styles
	2.4 Data Rows and Summary Lines
	2.5 JClass HiGrid Listeners and Events
	2.6 JClass DataSource Events and Listeners
	2.7 Printing a Grid

	JClass HiGrid Beans
	3.1 JClass HiGrid JavaBeans
	3.2 Properties of JCHiGrid Bean
	3.3 Using the Customizer
	3.4 Overview of the Customizer’s Functions
	3.5 The Serialization Tab
	3.6 Specifying the Data Sources
	3.7 Joining Tables
	3.8 The Driver Table Panel
	3.9 Driver Limitations
	3.10 Setting Properties on the Format Tab
	3.11 Setting a Column’s Edit Status Properties
	3.12 The JCHiGridExternalDS Bean

	Displaying and Editing Cells
	4.1 Overview
	4.2 Default Cell Rendering and Editing
	4.3 Rendering Cells
	4.4 Editing Cells
	4.5 The JCCellInfo Interface

	JClass DataSource Overview
	5.1 Introduction
	5.2 The Two Ways of Managing Data Binding in JClass DataSource
	5.3 Using JClass DataSource with Visual Components
	5.4 JClass DataSource and the JClass Data Bound Components
	5.5 The Data Model’s Highlights
	5.6 The Meta Data Model
	5.7 Setting the Data Model
	5.8 JClass DataSource’s Main Classes and Interfaces
	5.9 Examples
	5.10 Binding the data to the source via JDBC
	5.11 The Data “Control” Components
	5.12 Custom Implementations
	5.13 Use of Customizers to Specify the Connection to the JDBC
	5.14 Classes and Methods of JClass DataSource

	The Data Model
	6.1 Introduction
	6.2 Accessing a Database
	6.3 Specifying Tables and Fields at Each Level
	6.4 Setting the Commit Policy
	6.5 Methods for Traversing the Data
	6.6 The Result Set
	6.7 Virtual Columns
	6.8 Handling Data Integrity Violations

	JClass DataSource Beans
	7.1 Introduction
	7.2 Installing JClass DataSource’s JAR files
	7.3 The Data Bean
	7.4 The Tree Data Bean
	7.5 The Data Navigator and Data Bound Components
	7.6 Custom Implementations

	DataSource’s Data Bound Components
	8.1 Introduction
	8.2 The Types of Data Bound Components
	8.3 The Navigator and its Functions
	8.4 Data Binding the Other Components

	Sample Programs
	9.1 The Sample Database
	9.2 The DemoData Program
	9.3 Base Example
	9.4 BaseButton Example
	9.5 Cell Validation Example
	9.6 Row Validation Example
	9.7 Exception Message Example
	9.8 Popup Menu Example

	Reference Appendices
	Bean Properties Reference
	A.1 HiGridBean
	A.2 HiGridBeanComponent
	A.3 HiGridBeanCustomizer
	A.4 DataBean
	A.5 DataBeanComponent
	A.6 DataBeanCustomizer
	A.7 TreeDataBean
	A.8 TreeDataBeanComponent
	A.9 TreeDataBeanCustomizer
	A.10 DSdbJNavigator
	A.11 DSdbJTextField
	A.12 DSdbJImage
	A.13 DSdbJCheckbox
	A.14 DSdbJList
	A.15 DSdbJTextArea
	A.16 DSdbJLabel

	Distributing Applets and Applications
	B.1 Using JarMaster to Customize the Deployment Archive

	Colors and Fonts
	C.1 Colorname Values
	C.2 RGB Color Values
	C.3 Fonts

	Index

