
JClass PageLayout
Programmer’s Guide

Version 6.3 ■

for Java 2 (JDK 1.3.1 and higher)

The Best Way to Add Printing and Web Publishing
to Your Java Applications

TM

8001 Irvine Center Drive
Irvine, CA 92618
949-754-8000
www.quest.com

April 2004 RefNo: PRGDE-JCPL/630-04/2004

pagelayout.book Page 1 Thursday, April 22, 2004 10:20 PM

pagelayout.book Page 2 Thursday, April 22, 2004 10:20 PM
© Copyright Quest Software, Inc. 2004. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used or copied
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording
for any purpose other than the purchaser's personal use without the written permission of Quest Software,
Inc.

Warranty

The information contained in this document is subject to change without notice. Quest Software makes no
warranty of any kind with respect to this information. QUEST SOFTWARE SPECIFICALLY
DISCLAIMS THE IMPLIED WARRANTY OF THE MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Quest Software shall not be liable for any direct, indirect, incidental,
consequential, or other damage alleged in connection with the furnishing or use of this information.

Trademarks

JClass, JClass Chart, JClass Chart 3D, JClass DataSource, JClass Elements, JClass Field, JClass HiGrid,
JClass JarMaster, JClass LiveTable, JClass PageLayout, JClass ServerChart, JClass ServerReport,
JClass DesktopViews, and JClass ServerViews are trademarks of Quest Software, Inc. Other trademarks and
registered trademarks used in this guide are property of their respective owners.

World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com
e-mail: info@quest.com
U.S. and Canada: 949.754.8000

Please refer to our Web site for regional and international office information.

This product includes software developed by the Apache Software Foundation http://www.apache.org/.

The JPEG Encoder and its associated classes are Copyright © 1998, James R. Weeks and BioElectroMech.
This product is based in part on the work of the Independent JPEG Group.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, all
files included with the source code, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

http://www.quest.com
http://www.apache.org/

pagelayout.book Page 3 Thursday, April 22, 2004 10:20 PM
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This product includes software developed by the JDOM Project (http://www.jdom.org/). Copyright © 2000-
2002 Brett McLaughlin & Jason Hunter, all rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions,
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions, and the disclaimer that follows these conditions in the documentation and/or other
materials provided with the distribution.

3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
license@jdom.org.

4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in
their name, without prior written permission from the JDOM Project Management
(pm@jdom.org).

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

http://www.jdom.org/
mailto:license@jdom.org
mailto:pm@jdom.org

pagelayout.book Page 4 Thursday, April 22, 2004 10:20 PM

pagelayout.book Page i Thursday, April 22, 2004 10:20 PM
Table of Contents
Preface . 1
Introducing JClass PageLayout 1
Assumptions . 1
Typographical Conventions in this Manual 2
Overview of the Manual . 2
Licensing . 3
Related Documents . 3
About Quest . 4
Contacting Quest Software 4
Customer Support . 4
Product Feedback and Announcements 5

Part I: Using JClass PageLayout

1 JClass PageLayout Basics . 9
1.1 Overview of JClass PageLayout 9
1.2 Basic Steps for Creating a JClass PageLayout Document 9
1.3 A Simple JClass PageLayout Program 10
1.4 JClass PageLayout Objects 11

Class Overview 11
Objects on a Page 12

1.5 Creating Flow . 13
1.6 Printing . 14

2 Creating a Document .15
2.1 Building Page Templates 15

A Sample Template 16
The Template DTD 17
Template Elements and Attributes 18

2.2 Applying Page Templates 21
Loading External XML Files 21
Loading XML Strings 22

2.3 Creating a Printer 22
2.4 Creating a Document 22
i

pagelayout.book Page ii Thursday, April 22, 2004 10:20 PM
2.5 Controlling Flow . 23
Frame Methods 23
Flow Methods . 24
A Flow Programming Example 25
Typical Content Flow Sequence 26

3 Formatting Text . 27
3.1 Working With Text Styles 27

Using Standard Styles 27
Creating and Modifying Styles 28

3.2 Working with Fonts 29
Mapping Fonts 29
Adding Font Metrics Files to JAR Files 30
Putting It Together 31
Underlining . 32
Subscripts and Superscripts 32
Euro Symbol . 33

3.3 Adding Your Own Fonts for PDF Output 34
Setting TrueType Font Properties 37

3.4 Modifying Paragraphs 38
Alignment . 38
Indents . 39
Line Spacing . 40
Paragraph Spacing 40

3.5 Inserting Tabs . 41
Adding Tabs to a Style 41
Tab Alignment 42
Tab Position . 43
Tab Fill . 43

4 Creating Tables . 45
4.1 Overview . 45
4.2 Table Structure . 45
4.3 Using JCPageTable 46
4.4 Creating a Table . 47
4.5 Adding Data to Tables 47

Creating Body Rows 47
Adding Body Rows 48
Adding Header Rows 48
ii Contents

pagelayout.book Page iii Thursday, April 22, 2004 10:20 PM
4.6 Customizing Tables 49
Table Styles . 49
Adding Borders 55
Adding Header Borders 57
Applying Background Colors 58
Adjusting the Size of a Table 58

4.7 Customizing Cells 58
Setting the Vertical Alignment 59
Defining Cell Margins 60
Customizing Cell Borders 61
Spanning Cells 62

4.8 Table Wrapping 63
4.9 Converting Tables 64

Converting JClass LiveTables 65
Converting Swing JTables 66
Converting JDBC Databases 67

5 Adding Formulas to JClass PageLayout 69
5.1 Introduction . 69
5.2 util.formulae’s Hierarchy 69
5.3 Expressions and Results 71
5.4 Math Values . 71

MathScalar . 72
MathVector . 72
MathMatrix . 73

5.5 Operations . 74
The Defined Mathematical Operations 75
Reducing Operations to Values 77

5.6 Expression Lists 78
5.7 Exceptions . 78
5.8 Using Formulas in JClass PageLayout 79

Performing a Mathematical Operation on a Range of Cells . 79

6 Refining a Document .81
6.1 Headers and Footers 81
6.2 Multiple Columns 82
6.3 Page Numbers . 83
6.4 Creating Macros 84
Contents iii

pagelayout.book Page iv Thursday, April 22, 2004 10:20 PM
6.5 Units of Measurement 87
Setting a Default Unit of Measurement 87
Converting Units of Measurement 87
Defining Points 88
Creating Margins 88

6.6 Importing Images 89
Importing EPS Images 90
Importing Swing Icons 90

6.7 Displaying Imported Components 91
Native Scaling 92

6.8 Creating Draw Styles 92
Setting Line Properties 92
Setting Fill Properties 93

6.9 Drawing Shapes . 93
Drawing Lines 94
Drawing Rectangles 94
Drawing Rounded Rectangles 95
Drawing Circles 96
Drawing Polygons 97

6.10 Render Objects . 98
Render Object Categories 98
Subclasses of the Render object 98

6.11 Listening for JClass PageLayout Events 99

7 Printing Options. 103
7.1 Introduction . 103
7.2 Printing to the System Printer 103

Using JCAWTPrinter 104
7.3 Printing to a File 104

Printing to a PostScript File 105
Printing to a PDF File 105
Printing to a PCL file 105
Printing to an HTML file 105

7.4 Printing to a Screen 106
7.5 Print Preview . 107
7.6 OutputPolicy and FlushPolicy 108

Part II:
iv Contents

pagelayout.book Page v Thursday, April 22, 2004 10:20 PM
Reference Appendices

 A JClass PageLayout Design Elements 113
A.1 Page Templates 113
A.2 Controlling Flow 116
A.3 Standard Styles . 116
A.4 Alignment . 118
A.5 Indents . 118
A.6 Tab Alignment . 119
A.7 Table Style . 120
A.8 Line Style . 124
A.9 Cell Alignment . 124

 B JClass PageLayout Commonly Used Methods 125
B.1 JCDrawStyle . 125
B.2 JCFlow . 125
B.3 JCFlowEvents . 127
B.4 JCFlowListener . 127
B.5 JCFrame . 127
B.6 JCPageTable . 128
B.7 JCPageTemplate 128
B.8 JCPrintEvent . 129
B.9 JCPrintListener . 129
B.10 JCTab . 129
B.11 JCTextStyle . 130
B.12 JCUnit.Margins 130
B.13 MathMatrix . 130
B.14 MathScalar . 131
B.15 MathValue . 131
B.16 MathVector . 131

Index . 133
Contents v

pagelayout.book Page vi Thursday, April 22, 2004 10:20 PM
vi Contents

pagelayout.book Page 1 Thursday, April 22, 2004 10:20 PM
Preface
Introducing JClass PageLayout ■ Assumptions ■ Typographical Conventions in this Manual

Overview of the Manual ■ Licensing ■ Related Documents ■ About Quest

Contacting Quest Software ■ Customer Support ■ Product Feedback and Announcements

Introducing JClass PageLayout

JClass PageLayout offers Java developers a set of methods and procedures for adding
paginated, formatted, flowed-text, and image output to Java applications.
JClass PageLayout supports Western European languages that use ISO Latin-1 fonts.

You can use JClass PageLayout to build applications that create sophisticated print output
involving columns, frames, multiple fonts and layout styles, pre-defined headers and
footers, and more.

You can freely distribute Java applets and applications containing JClass components
according to the terms of the License Agreement.

Feature Overview

JClass PageLayout creates print output from your Java application. It can send the output
to your system printer, display it in a print preview window, or format it into a PCL,
PostScript, or PDF file.

JClass PageLayout may be used in conjunction with Swing components and the rest of
Quest’s JClass product line. This means that you can build print output into any
application created with Swing and JClass. For example, if your application generates a
sales chart, you could print it on your system printer or format it as a PDF file.

Assumptions

This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming and
Java programming concepts such as classes, methods, and packages before proceeding
with this manual. See Related Documents later in this section of the manual for additional
sources of Java-related information.
1

pagelayout.book Page 2 Thursday, April 22, 2004 10:20 PM
Typographical Conventions in this Manual

Overview of the Manual

Part I — Using JClass PageLayout – describes programming with JClass PageLayout.

Chapter 1, JClass PageLayout Basics, is an introduction to writing JClass PageLayout
programs, including a sample Hello, World program, the basic steps for writing a
program, a description of the objects used in JClass PageLayout, and information on
rendering and printing text.

Chapter 2, Creating a Document, guides you through the mechanics of outputting a
print document from JClass PageLayout, including building page templates,
instantiating printer and document objects, and controlling text flow.

Chapter 3, Formatting Text, shows you how to program text layout by creating text
styles, changing fonts, modifying paragraphs, and inserting tab stops.

Chapter 4, Creating Tables, provides instructions for inserting tables, flowing data
into tables, customizing table appearance by applying borders and background
colors, wrapping tables, and converting other types of Java tables into the table type
used by JClass PageLayout.

Chapter 5, Adding Formulas to JClass PageLayout, provides information on using the
mathematical operations in com.klg.jclass.util.formulae. They extend the mathematical
capabilities of standard Java to include objects that function as variables that may be
scalars, vectors, matrices, or lists of expressions. If the targets referred to change
dynamically, the mathematical operation updates the result upon re-evaluation.

Typewriter Font ■ Java language source code and examples of file contents.
■ JClass PageLayout and Java classes, objects, methods,

properties, constants, and events.
■ HTML documents, tags, and attributes.
■ Commands that you enter on the screen.

Italic Text ■ Pathnames, filenames, URLs, programs, and method
parameters.

■ New terms as they are introduced, and to emphasize important
words.

■ Figure and table titles.
■ The names of other documents referenced in this manual, such

as Java in a Nutshell.

Bold ■ Keyboard key names and menu references.
2 Preface

pagelayout.book Page 3 Thursday, April 22, 2004 10:20 PM
Chapter 6, Refining a Document, helps you program more sophisticated documents
by adding headers and footers, splitting a page into multiple columns, inserting page
numbers, drawing geometric shapes, and importing image files.

Chapter 7, Printing Options, describes your print output options, including printing
to the system printer, printing to an HTML, PostScript, PDF, or PCL file, printing to
another screen in your application, and opening the print output in print preview
mode.

Part II — Reference Appendices – contains detailed technical reference information.

Appendix A, JClass PageLayout Design Elements, summarizes the design elements in
JClass PageLayout.

Appendix B, JClass PageLayout Commonly Used Methods, outlines the methods
used most often in JClass PageLayoutAPI Reference

The API reference documentation (Javadoc) is installed automatically when you install
JClass PageLayout and is found in the JCLASS_HOME/docs/api/ directory.

Licensing
In order to use JClass PageLayout, you need a valid license. Complete details about
licensing are outlined in the JClass DesktopViews Installation Guide, which is automatically
installed when you install JClass PageLayout.

Related Documents
The following is a sample of useful references to Java and XML programming:

■ “Java Platform Documentation” at http://java.sun.com/docs/index.html and the “Java
Tutorial” at http://java.sun.com/docs/books/tutorial/index.html from Sun Microsystems.

■ For an introduction to creating enhanced user interfaces, see “Creating a GUI with
JFC/Swing” at http://java.sun.com/docs/books/tutorial/uiswing/index.html.

■ Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc. See the O’Reilly Java
Resource Center at http://java.oreilly.com.

■ http://www.w3.org/XML/ – another W3C site; contains exhaustive information on
standards. Of particular note are the XML schema 1 (structures) and XML schema 2
(datatypes) working drafts. They make up an extension that specifies how to constrain
XML documents to particular schema. This is important if you want to represent
database data or object-oriented data as XML.

■ http://www.javasoft.com/xml/tutorial_intro.html – Sun’s XML site.

These documents are not required to develop applications using JClass PageLayout, but
they can provide useful background information on various aspects of the Java
programming language.
Preface 3

http://java.sun.com/docs/index.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.oreilly.com
../api/index.html
http://www.w3.org/XML/
http://www.javasoft.com/xml/tutorial_intro.html
../getstarted/index.html

pagelayout.book Page 4 Thursday, April 22, 2004 10:20 PM
About Quest

Quest Software, Inc. (NASDAQ: QSFT) is a leading provider of application management
solutions. Quest provides customers with Application Confidencesm by delivering
reliable software products to develop, deploy, manage and maintain enterprise
applications without expensive downtime or business interruption. Targeting high
availability, monitoring, database management and Microsoft infrastructure
management, Quest products increase the performance and uptime of business-critical
applications and enable IT professionals to achieve more with fewer resources.
Headquartered in Irvine, Calif., Quest Software has offices around the globe and more
than 18,000 global customers, including 75% of the Fortune 500. For more information on
Quest Software, visit www.quest.com.

Contacting Quest Software

Please refer to our Web site for regional and international office information.

Customer Support

Quest Software’s world-class support team is dedicated to ensuring successful product
installation and use for all Quest Software solutions.

You can use SupportLink to do the following:

■ Create, update, or view support requests

■ Search the knowledge base, a searchable collection of information including program
samples and problem/resolution documents

E-mail sales@quest.com

Address

Quest Software, Inc.
World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
USA

Web site www.quest.com

Phone 949.754.8000 (United States and Canada)

SupportLink www.quest.com/support

E-mail support@quest.com
4 Preface

http://www.quest.com
mailto:sales@quest.com
http://www.quest.com
http://www.quest.com/support
mailto:support@quest.com

pagelayout.book Page 5 Thursday, April 22, 2004 10:20 PM
■ Access FAQs

■ Download patches

■ Access product documentation, API reference, and demos and examples

Please note that many of the initial questions you may have will concern basic installation
or configuration issues. Consult this product’s readme file and the JClass DesktopViews
Installation Guide (available in HTML and PDF formats) for help with these types of
problems.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying the
following information will help us serve you better:

■ Your name, email address, telephone number, company name, and country

■ The product name, version and serial number

■ The JDK (and IDE, if applicable) that you are using

■ The type and version of the operating system you are using

■ Your development environment and its version

■ A full description of the problem, including any error messages and the steps required
to duplicate it

Product Feedback and Announcements
We are interested in hearing about how you use JClass PageLayout, any problems you
encounter, or any additional features you would find helpful. The majority of
enhancements to JClass products are the result of customer requests.

Please send your comments to:
Quest Software
8001 Irvine Center Drive
Irvine, CA 92618

JClass Direct Technical Support

JClass Support Email support@quest.com

Telephone 949-754-8000

Fax 949-754-8999

European Customers
Contact Information

Telephone: +31 (0)20 510-6700
Fax: +31 (0)20 470-0326
Preface 5

../api/index.html
../../readme.html
../getstarted/index.html
../getstarted/index.html
mailto:support@quest.com

pagelayout.book Page 6 Thursday, April 22, 2004 10:20 PM
Telephone: 949-754-8000
Fax: 949-754-8999
6 Preface

Part
I

Using JClass
PageLayout

pagelayout.book Page 7 Thursday, April 22, 2004 10:20 PM

pagelayout.book Page 8 Thursday, April 22, 2004 10:20 PM

pagelayout.book Page 9 Thursday, April 22, 2004 10:20 PM
1
JClass PageLayout Basics

Overview of JClass PageLayout ■ Basic Steps for Creating a JClass PageLayout Document

A Simple JClass PageLayout Program ■ JClass PageLayout Objects ■ Creating Flow ■ Printing

1.1 Overview of JClass PageLayout

JClass PageLayout uses a flow-markup approach for creating multipage documents to be
displayed or converted for printing. The major components of JClass PageLayout are:

■ The JCDocument object, which stores document-level attributes and the list of
completed pages (JCPage objects), and against which the JCFlow object is created.

■ The flow mechanism, which is responsible for allocating content to pages and
creating new pages as necessary.

■ The JCPrinter object, which provides an abstraction across the set of supported
output types, and whose subclasses provide the required instances of printer-specific
implementations of Graphics2D for the conversion of draw actions to page-marking
operands.

Other important top-level components are JCTextStyle (stores character- and paragraph-
level attributes controlling the text appearance), JCDrawStyle (contains attributes of
drawn geometric objects), and JCPageTable (describes general tables whose cells can
contain any JClass PageLayout drawable including JCPageTable).

1.2 Basic Steps for Creating a JClass PageLayout Document
At a minimum, you need to perform the following steps to format and flow a
JClass PageLayout document. For more information on any step, refer to the
corresponding section of this guide.

Step... See...

1. Select or create a page
template.

Building Page Templates, in Chapter 2, and line 20,
A Simple JClass PageLayout Program

2. Instantiate the printer. Creating a Printer, in Chapter 2, and line 16, A
Simple JClass PageLayout Program
9

pagelayout.book Page 10 Thursday, April 22, 2004 10:20 PM
1.3 A Simple JClass PageLayout Program
If you compile and run the following program, it generates a one-page PDF document
containing the text “Hello, World.”

Note: For information on setting up your environment, please refer to the JClass
DesktopViews Installation Guide.

 1 package examples.pagelayout;
 2
 3 import java.io.StringReader;
 4 import java.io.BufferedReader;
 5
 6 import com.klg.jclass.page.JCFlow;
 7 import com.klg.jclass.page.JCPrinter;
 8 import com.klg.jclass.page.JCDocument;
 9 import com.klg.jclass.page.adobe.pdf.JCPDFPrinter;
10
11 public class PdfPrinter {
12
13 public static void main(String[] args)
14
15 // Create a PDF printer, output to stdout
16 JCPrinter printer = new JCPDFPrinter(System.out);
17
18 // Create a document using the PDF printer for formatting,
19 // setting the page template to be a simple 8.5 x 11 Letter page
20 JCDocument document = new JCDocument(printer,

JCDocument.BLANK_8p5X11);
21
22 // Instantiate a flow object on the document
23 JCFlow flow = new JCFlow(document);
24
25 // Print some text to the document
26 flow.print("Hello, World.");
27
28 // Print the document to the PDF printer
29 document.print();
30 }
31 }

Line 16 of the program instantiates the PDF printer to which the output of this file is sent.
On line 20, we construct the document, at the same time specifying that the printer is the

3. Instantiate the document. Creating a Document, in Chapter 2, and line 20, A
Simple JClass PageLayout Program

4. Instantiate the flow. Controlling Flow, in Chapter 2, and line 23, A
Simple JClass PageLayout Program

5. Send the document to the
specified printer.

Printing Options, in Chapter 7, and line 29, A
Simple JClass PageLayout Program
10 Part I ■ Using JClass PageLayout

../getstarted/index.html
../getstarted/index.html

pagelayout.book Page 11 Thursday, April 22, 2004 10:20 PM
one created in line 16, and that the page template to use is the standard 8.5 x 11 that
comes with JClass PageLayout. We then create the flow (line 23), render the text “Hello,
World” to the flow (line 26), and send the document to the PDF printer (line 29).

1.4 JClass PageLayout Objects
JClass PageLayout uses a series of nested objects. JCDocument is the top-level object.
JCPage, JCFrame, and JCPageTable objects are created, defined, and added to the
JCDocument object. The JCFlow object controls how text and images are rendered into the
JCFrame objects. When all text has been flowed into the JCDocument object, it is passed to
a JCPrinter object which handles document output.

1.4.1 Class Overview
To use JClass PageLayout, you need to understand how its classes work together to create
a document and output it. The following table provides a brief overview of the classes
used in JClass PageLayout.

JClass PageLayout
Class Description

JCDocument The JCDocument holds the JCPage and JCFrame objects into which
you “flow” or “render” your text and images. Attributes specify
how the flow should advance through the rendering process.
Note that there can be only one JCDocument object per JCFlow;
also, the JCDocument object must be the one passed to the JCFlow
in the constructor.

JCPage JCPage methods and attributes specify how an actual page should
be laid out, what frames should exist on the page, and the frame
order of the flow. JCPage objects are based on XML templates.
Complex documents may need to define many different page
templates. For example, separate templates would be necessary to
describe a title page, a table of contents page, the first page in a
chapter, and subsequent right and left body pages.

JCFlow The JCFlow class provides methods and attributes that control
how text and images are rendered to the document. There is only
one flow in a document. To render text or images apart from the
main flow, use JCFrame methods.

JCFrame The frame is the basic unit of the flow. Frames contain all graphics
(text, shapes, and images) rendered to the document. Complex
documents may need to define many different JCFrame objects on
a page. For example, most pages require a header frame, a body
frame, and a footer frame.
Chapter 1 ■ JClass PageLayout Basics 11

pagelayout.book Page 12 Thursday, April 22, 2004 10:20 PM
1.4.2 Objects on a Page
The following illustration demonstrates the output of our Hello, World program, found in
Section 1.3, A Simple JClass PageLayout Program.

JCTextStyle &
JCDrawStyle

The style classes describe and control the appearance of text and
figures in the document. A style object’s attributes identify how
the rendered text or images should appear, for example
JCTextStyle.LINEMODE_UNDERLINE is used to underline text.

JCPageTable The JCPageTable class provides methods and attributes for
creating tables. Using the JCPageTable object’s subclasses (Row,
Column, and Cell), you can customize the table’s rows, columns,
and cells. Additional methods allow you to convert other types of
Java tables, including JClass LiveTables, Swing JTables, and JDBC
data.

JCTab JCTab works with JCTextStyle and provides methods for
modifying tab alignment, horizontal position, and appearance (tab
leader).

JCPrinter The JCPrinter class provides attributes and methods that control
how the rendered document is printed on an output device: the
number of pages to output, the number of copies, whether copies
should be collated, and so on. JCPrinter also generates a list of
Font Family and Font objects based on your printer drivers.
A JCPrinter object needs to be created before the JCDocument
object and passed to it. The JCDocument object uses the JCPrinter
object’s font information to properly render text.

formulas You can add formulas to pages and to tables by employing the
classes in com.klg.jclass.util.formulae. You build an
expression that references page variables or table cells and
performs one of a large number of mathematical operations on
them, for example, summing a range of table cells. See Adding
Formulas to JClass PageLayout, in Chapter 5, for details.

JClass PageLayout
Class Description
12 Part I ■ Using JClass PageLayout

pagelayout.book Page 13 Thursday, April 22, 2004 10:20 PM
Figure 1 Example of how objects are used to build a page.

Figure 1 displays a JCPage object, which can only exist in a JCDocument object. The
JCPage object contains the JCFrame object (body) that holds the text and the JCFlow object
that renders the text.

1.5 Creating Flow

While the objects and template define where and how the text gets rendered, methods
from the JCFrame and JCFlow classes control the flow of text from one frame to the next
and from one page to the next.

When you want to control the flow of text throughout the document, use the JCFlow class.
JCFlow manages layout from frame to frame and from page to page. When you want to
control a frame layout or render text apart from the main flow of the document, use the
JCFrame class. For more information on JCFlow and JCFrame, refer to Controlling Flow, in
Chapter 2.
Chapter 1 ■ JClass PageLayout Basics 13

pagelayout.book Page 14 Thursday, April 22, 2004 10:20 PM
1.6 Printing

JClass PageLayout prints using JCDocument.print(). The print command can be as
simple as:

doc.print();

JClass PageLayout can also print a page range. For example, to print pages 17 through 39,
use:

doc.print(17, 39)

Before you can print the document, you must have set up a printer object, as described in
Creating a Printer, in Chapter 2. The JCHTMLPrinter, JCPCLPrinter, JCPDFPrinter, and
JCPostScriptPrinter objects print directly to a file, while the JCAWTPrinter object prints
to your system printer.

When you use JCAWTPrinter, you may notice that the process of printing to your system
printer is much slower than printing to a file. The Java 2 Printing API used by
JCAWTPrinter causes large amounts of data to be sent to the system printer, resulting in
the drastic slowdown. For more information on print output options and printing
efficiency, refer to Printing Options, in Chapter 7.

Once a page is created, you can designate whether it will be held until the entire
document is finished before it is printed. This is set via the outputPolicy property; please
refer to OutputPolicy, in Chapter 7, for complete details.

As well, you can designate whether pages are to be discarded once printed. You can do
this by setting the flushPolicy property; for information, please see FlushPolicy, in
Chapter 7.

Printing Large Documents
When printing documents of any size, but especially for larger documents, better
performance is achieved by wrapping the output stream in a BufferedOutputStream:

BufferedOutputStream bos = new BufferedOutputStream(os, 2048);
JCPrinter printer = new JC<type>Printer(bos);

This may be especially important in application server or web server environments
where exceptions may be thrown if multiple writes are not buffered.

Printing Components
Components embedded into a JClass PageLayout document or encoded using the
JClass PageLayout encoder types should not be double- buffered. If such components are
double-buffered, then the components will draw to an image and the image will be drawn
to the printer/file, thus resulting in a loss of resolution.
14 Part I ■ Using JClass PageLayout

pagelayout.book Page 15 Thursday, April 22, 2004 10:20 PM
2
Creating a Document

Building Page Templates ■ Applying Page Templates ■ Creating a Printer

Creating a Document ■ Controlling Flow

In Basic Steps for Creating a JClass PageLayout Document, in Chapter 1, we outlined the
five basic steps necessary to create the simplest document. In this chapter, we build on
that foundation, giving you the specific information you need to make each of those steps.

2.1 Building Page Templates

In A Simple JClass PageLayout Program, in Chapter 1, you saw a JClass PageLayout
program that outputs a single line of text to a printed page. Before you can flow content
into a document, you need a page template that defines how the page is laid out. Page
templates specify:

■ the physical size of the page

■ the location and size of the frames that will hold text and images

■ the order text is to progress through those frames

■ the next page to generate when the existing page and/or section is full

JClass PageLayout templates are written in the Extensible Markup Language (XML). The
templates use a common Document Type Definition (DTD) that is built into the
JClass PageLayout API. The DTD defines the tags and attributes used to specify the
appearance of the page templates. It is located in com/klg/jclass/xml-dtd/JCPageTemplate.dtd.

For an introduction to XML, refer to:
http://www.javaworld.com/javaworld/jw-04-1999/jw-04-xml.html. There are many guides
that provide a more comprehensive examination of XML, such as The XML Handbook, by
Charles Goldfarb and Paul Prescod.

JClass PageLayout provides default page templates for most standard page types. For the
sake of simplicity, the Hello, World program uses a default page template, as follows:

doc = new JCDocument(printer, JCDocument.BLANK_8p5x11);
15

http://www.javaworld.com/javaworld/jw-04-1999/jw-04-xml.html

pagelayout.book Page 16 Thursday, April 22, 2004 10:20 PM
The following table lists and describes the default page templates available to you.

Unlike the introductory example in the previous chapter, most applications require more
than one type of output page. If your application requires custom output pages, the
template must provide a definition for each type of page.

2.1.1 A Sample Template

The following is an XML document you could use to define an 8.5 x 11 (US Letter) page
template that, unlike the standard template Blank_8p5x11, includes headers and footers.

<?xml version="1.0"?>
<!DOCTYPE JCPAGETEMPLATE SYSTEM "JCPageTemplate.dtd">
<JCPAGETEMPLATE TITLE="8p5x11">

<PAGE NAME="8p5x11" UNIT="inches">
<LOCATION X="0" Y="0"/>
<SIZE WIDTH="8.5" HEIGHT="11"/>
<FRAME NAME="header" UNIT="inches" COLOR="grey">

<LOCATION X="1" Y="0.25"/>
<SIZE WIDTH="6.5" HEIGHT="0.75"/>

</FRAME>
<FRAME NAME="body" UNIT="inches">

<LOCATION X="1" Y="1"/>
<SIZE WIDTH="6.5" HEIGHT="9"/>
<COLUMN COUNT="2"/>

</FRAME>
<FRAME NAME="footer" UNIT="inches" COLOR="pink">

<LOCATION X="1" Y="10.25"/>
<SIZE WIDTH="6.5" HEIGHT="0.75"/>

</FRAME>
<FLOWFRAME NAME="body"/>
<FLOWPAGE NAME="8p5x11"/>

Default Template Description

Blank_8p5x11 Creates a blank (no headers or footers) page of standard US Letter
size.

Blank_8p5x14 Creates a blank (no headers or footers) page of standard US Legal
size.

Blank_11x17 Creates a blank (no headers or footers) page of standard Tabloid size.

Blank_A3 Creates a blank (no headers or footers) page of standard ISO A3
size.

Blank_A4 Creates a blank (no headers or footers) page of standard ISO A4
size.

Blank_A5 Creates a blank (no headers or footers) page of standard ISO A5
size.
16 Part I ■ Using JClass PageLayout

pagelayout.book Page 17 Thursday, April 22, 2004 10:20 PM
<FLOWSECTION NAME="8p5x11"/>
</PAGE>

</JCPAGETEMPLATE>

2.1.2 The Template DTD

The structure of JClass PageLayout templates is defined in an XML Document Type
Definition (DTD) stored as a String in JCPageTemplate. We reprint it here to give you an
idea of the hierarchy of elements in an XML template. For a complete description of the
elements used in a JClass PageLayout template, refer to Template Elements and
Attributes, in Chapter 2.
Chapter 2 ■ Creating a Document 17

pagelayout.book Page 18 Thursday, April 22, 2004 10:20 PM
Please note that the order of the attributes and child elements of each element is fixed; the
order shown in the example below must be used.

<!-- DTD for JClass PageLayout Templates -->
<!ELEMENT JCPAGETEMPLATE (PAGE+)>
<!ATTLIST JCPAGETEMPLATE TITLE CDATA #IMPLIED>

<!ELEMENT PAGE (LOCATION,SIZE,FRAME+,FLOWFRAME*,FLOWPAGE,FLOWSECTION)>
<!ATTLIST PAGE NAME CDATA #REQUIRED

UNIT (inches|points|cm|cms|centimeters|centimetres) "inches"
COLOR CDATA #IMPLIED
ORIENTATION (automatic|portrait|landscape) "automatic"
FIRST (True|true|TRUE|False|false|FALSE) "false">

<!ELEMENT FRAME (LOCATION,SIZE,BORDER?,COLUMN?,MARGIN?)>
<!ATTLIST FRAME NAME CDATA #REQUIRED

UNIT (inches|points|cm|cms|centimeters|centimetres) "inches"
COLOR CDATA #IMPLIED>

<!ELEMENT LOCATION EMPTY>
<!ATTLIST LOCATION X CDATA #REQUIRED

Y CDATA #REQUIRED>

<!ELEMENT SIZE EMPTY>
<!ATTLIST SIZE WIDTH CDATA #REQUIRED

HEIGHT CDATA #REQUIRED>

<!ELEMENT BORDER EMPTY>
<!ATTLIST BORDER TYPE
(blank|broken|dashed|double|none|plain|regular|single) "blank"

COLOR CDATA "black"
THICKNESS CDATA #IMPLIED>

<!ELEMENT COLUMN EMPTY>
<!ATTLIST COLUMN COUNT CDATA #REQUIRED

SPACING CDATA #IMPLIED>

<!ELEMENT MARGIN EMPTY>
<!ATTLIST MARGIN TOP CDATA #REQUIRED

RIGHT CDATA #REQUIRED
LEFT CDATA #REQUIRED
BOTTOM CDATA #REQUIRED>

<!ELEMENT FLOWFRAME EMPTY>
<!ATTLIST FLOWFRAME NAME CDATA #REQUIRED>

<!ELEMENT FLOWPAGE EMPTY>
<!ATTLIST FLOWPAGE NAME CDATA #REQUIRED>

<!ELEMENT FLOWSECTION EMPTY>
<!ATTLIST FLOWSECTION NAME CDATA #REQUIRED>

2.1.3 Template Elements and Attributes

The following table describes the elements and attributes used to define a page template.
18 Part I ■ Using JClass PageLayout

pagelayout.book Page 19 Thursday, April 22, 2004 10:20 PM
Please note that the order of the attributes and child elements of each element is fixed; the
order shown in the table below and in Section 2.1.2, The Template DTD, must be used.

Element Attributes Child Elements

<JCPAGETEMPLATE> TITLE: An optional attribute that names this page
template.

<PAGE>

<PAGE> NAME: Required. The name of this page type,
referenced by other page definitions using the
<FLOWPAGE> tag.
UNIT: The unit of measurement used to plot out
this page. Choose from inches, points, cm, cms,
centimetres, and centimeters. The default is
inches.
COLOR: Optional. Specifies a default background
color for this page using hexadecimal notation or
a color from com.klg.jclass.util.swing.
JCSwingTypeConverter.
ORIENTATION: Choose from automatic, portrait,
and landscape.
FIRST: A Boolean attribute that indicates whether
or not this page template is used for the first page
in the document. The default is false.

<LOCATION>,
<SIZE>,
<FRAME>+,
<FLOWFRAME>*,
<FLOWPAGE>,
<FLOWSECTION>

<FRAME> NAME: Required. The name of this frame type,
referenced by other page definitions using the
<FLOWFRAME> tag.
UNIT: The unit of measurement used to plot out
this frame. Choose from inches, points, cm, cms,
centimetres, and centimeters. The default is
inches.
COLOR: Optional. Specifies a default background
color for this frame using hexadecimal notation or
a color from com.klg.jclass.util.swing.
JCSwingTypeConverter.

<LOCATION>,
<SIZE>,
<BORDER>?,
<COLUMN>?,
<MARGIN>?

<LOCATION> X: Required. Specifies the distance of the page or
frame from the left-hand page edge.
Y: Required. Specifies the distance of the page or
frame from the top of the page.

None.

+ Required and repeatable.
* Optional and repeatable.
? Optional and non-repeatable.
Chapter 2 ■ Creating a Document 19

pagelayout.book Page 20 Thursday, April 22, 2004 10:20 PM
<SIZE> WIDTH: Required. Specifies the width of the page
or frame, measured in the units defined by the
<UNIT> tag.
HEIGHT: Required. Specifies the height of the page
or frame, measured in the units defined by the
<UNIT> tag.

None.

<BORDER> TYPE: Specifies the style used to draw a frame
border. Choose from blank, broken, dashed,
double, none, plain, regular, or single. The
default is blank.
COLOR: Specifies the border color using either
hexadecimal notation or a color from
java.awt.Color. The default is black.
THICKNESS: Optional. Specifies the border width
in pixels. The default is 0.1.

None.

<COLUMN> COUNT: Required. Specifies the number of
columns in the frame.
SPACING: Optional. Specifies the amount of space
left between columns, measured in the units
defined by the <UNIT> tag.

None.

<MARGIN> TOP: Required. Specifies the top margin.
RIGHT: Required. Specifies the right margin.
LEFT: Required. Specifies the left margin.
BOTTOM: Required. Specifies the bottom margin.

None.

<FLOWFRAME> NAME: Required. Specifies the name of a frame to
be added to the sequence of frames to which the
document will flow content.

None.

<FLOWPAGE> NAME: Required. Specifies the name of the page to
which the flow is to progress when a new page is
begun.

None.

<FLOWSECTION> NAME: Required. Specifies the name of the page to
which the flow is to progress when a new section
is begun.

None.

Element Attributes Child Elements

+ Required and repeatable.
* Optional and repeatable.
? Optional and non-repeatable.
20 Part I ■ Using JClass PageLayout

pagelayout.book Page 21 Thursday, April 22, 2004 10:20 PM
2.2 Applying Page Templates

After writing your own XML page template, you can apply it to your document by
loading it either as an internal String or an external XML file. The following table
describes the various JCPageTemplate methods you can use to apply templates.

2.2.1 Loading External XML Files
Users of JClass PageLayout will need to include the JAR files jaxp.jar and crimson.jar1 in
their CLASSPATH. These files replace the now obsolete parser.jar and xml.jar from
earlier releases. They are distributed in the JCLASS_HOME/lib directory along with the
JClass PageLayout JAR file.

The following example uses java.io.File to load the external XML file 8p5x11.xml as a
template.

JCDocument document = null;
try {
document = new JCDocument(printer, JCPageTemplate.loadTemplates
(new java.io.File("8p5x11.xml")));
}
catch (Exception e) {
System.err.println("Error loading template = " + e);
System.exit(1);
}

Method Explanation

importTemplates(JCDocument
doc, File xmlfile)

Reads from java.io.File to import an XML
template and apply it to the specified JCDocument.

importTemplates(JCDocument
doc, Reader reader)

Reads from java.io.Reader to import an XML
template and apply it to the specified JCDocument.

importTemplates(JCDocument
doc, InputSource input)

Reads from org.xml.sax.InputSource to import an
XML template and apply it to the specified
JCDocument.

loadTemplates(File xmlfile) Reads from java.io.File to load the XML
template without applying it to a specific document.

loadTemplates(Reader reader) Reads from java.io.Reader to load the XML
template without applying it to a specific document.

loadTemplates(InputSource
input)

Reads from org.xml.sax.InputSource to load the
XML template without applying it to a specific
document.

1. You may substitute for crimson.jar any parser that is compliant with Sun's JAXP 1.1 specification. See Sun's JAXP
documentation for more information:
Chapter 2 ■ Creating a Document 21

http://java.sun.com/xml/jaxp-docs-1.1/docs/api/javax/xml/parsers/DocumentBuilderFactory.html#newInstance()
http://java.sun.com/xml/jaxp-docs-1.1/docs/api/javax/xml/parsers/DocumentBuilderFactory.html#newInstance()

pagelayout.book Page 22 Thursday, April 22, 2004 10:20 PM
2.2.2 Loading XML Strings
The following example uses java.io.StringReader to load an XML template that is
defined as a String (template) earlier in the program.

JCDocument document = null;
try {
document = new JCDocument(printer, JCPageTemplate.loadTemplates
(new StringReader(template)));
}
catch (Exception e) {
System.err.println("Error loading template = " + e);
System.exit(1);
}

2.3 Creating a Printer
Now that the page templates are defined, the next step is to instantiate the Printer object
that defines the type of print output produced.

// Open the output file
try {
outfile = new FileOutputStream("test.pdf");
}
catch (FileNotFoundException e) {
System.out.println("Could not open file");
return;
}

// Create a PDF printer
printer = new JCPDFPrinter(outfile);

This example creates a printer object which uses PostScript fonts, lays out the flow, and
generates a PDF (Adobe Portable Document Format) file (test.pdf) when the document
is printed.

Other printer types include JCHTMLPrinter, JCPostScriptPrinter and JCPCLPrinter,
which create output in Adobe’s PostScript and the Hewlett-Packard Printer Control
Language (PCL), respectively. Using JCAWTPrinter, you can print to the system printer.
JCAWTScreenPrinter is used for printing to a screen, which can be used with
JCAWTPreviewer for print preview mode. For more information on printing, refer to
Printing Options, in Chapter 7.

2.4 Creating a Document

The JCDocument object holds the JCPage and JCFrame objects into which text and images
are flowed. In the Hello, World example, we defined the JCDocument as follows:

JCDocument document = new JCDocument(printer,
JCDocument.BLANK_8p5X11);
22 Part I ■ Using JClass PageLayout

pagelayout.book Page 23 Thursday, April 22, 2004 10:20 PM
When you instantiate a new JCDocument, you can specify the printer to which you want to
send its output, along with the name of the standard template it is to use as shown in the
code line above, or by using the JCPageTemplate.loadTemplates() method and passing
a list of page templates. For information on defining a printer, refer to Creating a Printer,
in Chapter 2. For information on standard templates, refer to Building Page Templates, in
Chapter 2.

2.5 Controlling Flow

In cases where text is to flow from frame to frame, the page template specifies the basic
flow of text within a document. Template Elements and Attributes, in Chapter 2,
describes how to use FlowFrameList to direct the flow of text through frames,
FlowPageTemplate to direct the flow of text to the next page, and FlowSectionTemplate
to direct the flow of text after a section break.

At times, you may want to advance the flow before it reaches the end of the current frame
or page. For example, on a title page, you may want to flow the text containing the
document title into a frame you’ve named Title, then advance the flow to print the
author’s name into another frame you’ve named Author.

Because you need to use JCFrame methods when you want to render text and images
independently from the flow, these methods are extremely important to the text flow of
your layout. When you want to direct the flow through frames and pages, use JCFlow
methods.

2.5.1 Frame Methods
Use JCFrame methods when you want to render content that is not part of the main flow.
For example, the information contained in header and footer frames is rendered
separately from the contents of the body frame. Until new instructions are given,
information printed into the header frame of a template page will recur. For more
information, refer to Headers and Footers, in Chapter 6.

Content is not added directly into the JCFrame’s render list; rather, content is appended to
a current line until a complete line is built or the current line is flushed. The current line
always begins as zero height – no assumption is made about the attributes of the elements
that will subsequently be added to it. Thus, the current line will always fit immediately
following the just-completed previous line, even if there is virtually no space available at
the end of a frame. As content is added to the current line, its size will be adjusted to fit
the new elements. If an element is added to the line which makes the line too tall for the
available space, then the frame will attempt a newColumn() action. In a case where the
newColumn() action succeeds, the elements of the current line are mapped to their new
positions and the flow continues. In the remainder of cases where there is no following
column, the frame throws an EndOfFrameException. For more information on exceptions,
please see Exceptions, in Chapter 5.
Chapter 2 ■ Creating a Document 23

pagelayout.book Page 24 Thursday, April 22, 2004 10:20 PM
JCFrame methods cease rendering information when the content reaches the bottom of a
frame, since they are not part of the flow. When the frame runs out of room, an
EndOfFrameException is thrown.

2.5.2 Flow Methods

When a JCFlow object is instantiated for a document, it generates the document’s first
page. This first page will normally have one or more flow frames, and the first of these
will be initialized as the current frame. Once a current frame has been initialized, all flow
content is passed to that frame until the frame becomes full.

Note: If the first page does not have a flow frame, successive pages will be generated until
a flow frame is discovered.

You create the flow by instantiating a JCFlow object, passing in a JCDocument as a
parameter. The passed-in JCDocument is the only one that may be associated with the
JCFlow object. Note that there can be only one JCDocument object per JCFlow; also, the
JCDocument object must be the one passed to the JCFlow in the constructor.

The template page’s FlowFrameList, FlowPageTemplate, and FlowSectionTemplate
attributes control the order by which the flow progresses through frames and pages. To
control flow beyond the standard sequence specified by the templates, the program needs
to call JCFlow methods. The following table describes the methods used to control flow.

JCFrame Method Description

newColumn() Generates a column break and advances the text to the next
column in the specified frame. Throws an EndOfFrameException
in the last (only) column of a frame.

newLine() Ends the current line and transfers the flow to a new line.
Throws an EndOfFrameException if there is not enough room to
print the text.

print() Renders the specified content to this frame. Throws an
EndOfFrameException if there is not enough room to print the
text.

JCFlow Method Description

print() Renders the specified content to the flow.

newLine() Ends the current line and begins a new line.

newParagraph() Begins a new paragraph.

newColumn() Advances the text flow to the top of the next column, in the next
frame if necessary.
24 Part I ■ Using JClass PageLayout

pagelayout.book Page 25 Thursday, April 22, 2004 10:20 PM
2.5.3 A Flow Programming Example

The following example of flow programming comes from sample.java, which you can find
in the /examples/pagelayout/ folder of your JClass PageLayout installation directory.

 // Flow simple text into the document
 // while occasionally changing the text style.

 flow.setCurrentTextStyle(normal);
 normal.setFontStyle(Font.BOLD | Font.ITALIC);
 flow.print("Hello, world!");
 flow.newParagraph();
 normal.setFontStyle(Font.PLAIN);

 flow.print("This is a simple ");
 normal.setFontStyle(Font.BOLD | Font.ITALIC);
 flow.print("JClass PageLayout ");
 normal.setFontStyle(Font.PLAIN);
 flow.print("example which does a number of different things.");
 flow.newParagraph();

 // talk about headers and footers
 flow.setCurrentTextStyle(heading);
 flow.print("Headers and Footers");
 flow.newParagraph();
 flow.setCurrentTextStyle(normal);
 flow.print("First off, what we have done is set up a simple page

with a ");
 normal.setFontStyle(Font.ITALIC);
 flow.print("header");
 normal.setFontStyle(Font.PLAIN);
 flow.print(" and a ");
 normal.setFontStyle(Font.ITALIC);
 flow.print("footer");
 normal.setFontStyle(Font.PLAIN);
 flow.print(". The header contains a right justified title and the ");
 flow.print("footer contains a centered macro that prints the

current ");
 flow.print("page number.");

newFrame() Advances the text flow to the next frame, generating a new page
if necessary.

newPage() Creates a new page based on the current page’s
FlowPageTemplate, and directs the flow to the first frame of the
new page’s FlowFrameList.

newSection() Creates a new page based on the current page’s
FlowSectionTemplate, and directs the flow to the first frame of
the new page’s FlowFrameList.

JCFlow Method Description
Chapter 2 ■ Creating a Document 25

pagelayout.book Page 26 Thursday, April 22, 2004 10:20 PM
2.5.4 Typical Content Flow Sequence
Several events are normally involved in adding content to the flow. These events are
listed below.

1. The application declares the addition of a text String to the flow, calling JC-
Flow.print (String).

2. JCFlow.print() passes the String and the current JCTextStyle to the corresponding
JCFrame.print(JCTextStyle, String) method.

3. JCFrame.print() encapsulates the String object in a StringRender object, using the
JCTextStyle to supply formatting information and font metrics information from the
current Graphics (provided by the JCPrinter).

4. JCFrame.flowPrint() is called with the new StringRender object. flowPrint() de-
termines the amount of available space (subject to tab position and alignment, inden-
tation and margin) on the current line to see whether the String will fit. If the text is
too long to fit, flowPrint() will attempt to split off part of the String to fit into the
available space.

5. The text, or the portion of it that fits on the line, is added to the current line in memo-
ry, and any required adjustments are made to the height of the line and its baseline.
(If the text is larger than previous elements on the line more space will be needed.
Similarly, if the text is in superior subscript mode, then that may increase the height
of the line.)

6. If the line has been made too high to fit in the amount of vertical space currently
available, then the action is abandoned and the current line is stored in a EndOf-
FrameException object which is thrown to be caught by the JCFlow action.

7. If the line fits, but not all (or none) of the text was added to the line, the current line is
pasted into the frame and a new line is begun. The remaining text is printed into the
new line.

8. If an EndOfFrameException is thrown, it is caught in the JCFlow.print() method,
which will then find the next flow frame and pass to it the current line of text which
did not fit, followed by any other pending content.

Please note that the same sequence is followed for embedded objects, except that it is not
possible to split them; thus, if embedded objects do not fit on the current line, they are
handed in their entirety to the following line.
26 Part I ■ Using JClass PageLayout

pagelayout.book Page 27 Thursday, April 22, 2004 10:20 PM
3
Formatting Text

Working With Text Styles ■ Working with Fonts ■ Modifying Paragraphs ■ Inserting Tabs

3.1 Working With Text Styles

The JCTextStyle class gives you control over the appearance of text in your document
output. Many applications require several styles for different types of paragraphs, such as
headings, addresses, indented block quotes, and so on. You can use any of the standard
styles that come with JClass PageLayout, or you can create and modify your own styles.

3.1.1 Using Standard Styles

Although you can easily create and modify your own styles, you may want to take
advantage of the built-in standard styles found in JCTextStyle. You can apply any
standard style using JCFrame.print(), for example:

frame.print(JCTextStyle.HEADING_BOLD, "North America");

The preceding example prints the text “North America” in the standard style
HEADING_BOLD. Standard styles are constants and, by convention, always appear in
uppercase letters. You cannot modify the standard styles themselves, but you can use
them to create your own styles. For more information, refer to Section 3.1.2, Creating and
Modifying Styles.

The following table lists and describes the appearance of the standard styles available in
JClass PageLayout.

Style Appearance

BOLD Left-aligned, single-spaced, 10 pt. bold Times New Roman.

BOLD_ITALIC Left-aligned, single-spaced, 10 pt. bold, italic Times New Roman.

CODE Left-aligned, single-spaced, 10 pt. plain Courier.

CODE_INDENTED Left-aligned, single-spaced, 10 pt. plain Courier with left, right,
and paragraph indents of 0.25”.

DEFAULT_HEADER Center-aligned, single-spaced, 14 pt. bold Times New Roman.
27

pagelayout.book Page 28 Thursday, April 22, 2004 10:20 PM
3.1.2 Creating and Modifying Styles

When you instantiate a JCDocument object, JClass PageLayout generates a default style
(plain 12 pt TimesRoman) for any text you print. You can create and modify styles that
control the appearance of text in your document, including font selection, indents, and
line spacing.

A quick way to create a JCTextStyle object is to clone an existing one, saving you the
trouble of specifying every attribute of the style.

JCTextStyle style = (JCTextStyle) JCTextStyle.NORMAL.clone();
style.setName("Body");
style.setLeftIndent(new JCUnit.Measure(JCUnit.CM, 0.5));
style.setRightIndent(new JCUnit.Measure(JCUnit.CM, 0.5));
style.setParagraphIndent(new JCUnit.Measure(JCUnit.CM, 0.5));
flow.setCurrentTextStyle(style);

The preceding example creates a JCTextStyle by cloning the standard NORMAL style, uses
setName() to name it Body, and gives it left, right, and paragraph (first line) indents of 0.5
centimeters. JCFlow.setCurrentTextStyle() is called to apply this style to the text in the
current flow. All subsequent text will appear in this style until a new style is applied.

DEFAULT_TEXT Left-aligned, single-spaced, 12 pt. plain Times New Roman.

HEADING Left-aligned, single-spaced, 10 pt. plain Helvetica.

HEADING_BOLD Left-aligned, single-spaced, 10 pt. bold Helvetica.

HEADING1 Left-aligned, single-spaced, 18 pt. bold Helvetica.

HEADING2 Left-aligned, single-spaced, 18 pt. plain Helvetica.

HEADING3 Left-aligned, single-spaced, 16 pt. bold Helvetica.

HEADING4 Left-aligned, single-spaced, 16 pt. plain Helvetica.

HEADING5 Left-aligned, single-spaced, 14 pt. bold Helvetica.

HEADING6 Left-aligned, single-spaced, 14 pt. plain Helvetica.

HEADING7 Left-aligned, single-spaced, 12 pt. bold Helvetica.

INDENTED Left-aligned, single-spaced, 10 pt. plain Times New Roman, with
left, right, and paragraph indents of 0.25”.

ITALIC Left-aligned, single-spaced, 10 pt. italic Times New Roman.

NORMAL Left-aligned, single-spaced, 10 pt. plain Times New Roman.

PLAIN Left-aligned, single-spaced, 10 pt. plain Times New Roman.

Style Appearance
28 Part I ■ Using JClass PageLayout

pagelayout.book Page 29 Thursday, April 22, 2004 10:20 PM
3.2 Working with Fonts

Java maps fonts from their AWT names to their platform-specific equivalents. For
example, “TimesRoman” maps to “Times New Roman” in Windows. When you program
a font change, you use the AWT name. JClass PageLayout then identifies a PCL, PDF, or
PostScript font that corresponds to the desired Java font. In this way, your code can run
across platforms, finding and using the desired fonts.

In JClass PageLayout, you can specify which font a text style is to use, for example:

JCTextStyle.setFontFamily("TimesRoman");

or by passing in an actual Java font object, for example:

JCTextStyle.setFont(new java.awt.font("TimesRoman", Font.PLAIN, 12));

Using a font map, JClass PageLayout then identifies a PCL, PDF, or PostScript font that
corresponds to the selected Java font.

You can use any Type 1 or Unicode mapped font in addition to the five fonts supported in
JDK 1.1. These fonts have slightly different names on different platforms, so Java maps
them to their platform-specific equivalents. Java 2 supports the five JDK 1.1 fonts, and
also uses java.awt.Font to provide access to any font supported on your computer. For
more information, refer to the next section.

If you want to use additional fonts, you must create a new font map and either an Adobe
or PCL JAR file. For more information, refer to Section 3.2.2, Adding Font Metrics Files
to JAR Files, and Section 3.2.3, Putting It Together. You also have the option of adding
Unicode mapped TrueType font files (see Section 3.3, Adding Your Own Fonts for PDF
Output for more information). JClass PageLayout can be programmed to embed
TrueType fonts in the output file, resulting in a very portable document. If PDF output is
not used, or if JClass PageLayout is not programmed to embed TrueType fonts in PDF
files, you must verify that any fonts used in your document are available to the system’s
printer drivers.

3.2.1 Mapping Fonts

The font map uses java.util.ListResourceBundle to map between the platform-
independent AWT font names you should use in your programs and the AFM, TFM and
TTF font names JClass PageLayout uses internally. For example:

AWT Internal

{"TimesRoman", "Times-Roman"},

{"TimesRoman-Bold", "Times-Bold"},

{"TimesRoman-Italic", "Times-Italic"},
Chapter 3 ■ Formatting Text 29

pagelayout.book Page 30 Thursday, April 22, 2004 10:20 PM
Since ListResourceBundle does not handle spaces in standard font names, the name
must be specified internally by replacing spaces in the font name with underscores, as in
this example for the font Courier New:

See com.klg.jclass.page.adobe.JCAdobeFontMap for the default font mappings that
come with JClass PageLayout.

Because ListResourceBundle does not allow underscores, JClass PageLayout removes
them at runtime. So, when you request an AWT font, no underscores are required. For
example, if you enter:

JCTextStyle.setFontFamily("Courier New");

JClass PageLayout automatically substitutes the mapped Java font name.

You are able to instantiate a java.awt.Font with any name you choose, but to use a font
other than the five supported by JDK 1.1 (Dialog, DialogInput, Monospaced, SansSerif,
Serif) you must create a mapping from its font name to a format recognizable by
JClass PageLayout. The easiest way to do this is to create a MyFontMap.properties file
that contains the mapping.

For an example, please refer to Section 3.2.3, Putting It Together, later in this section, and
to the FontMap example in the examples/pagelayout directory.

3.2.2 Adding Font Metrics Files to JAR Files
To use a font other than the five Java fonts, you must supply JClass PageLayout with the
font metric information it needs to correctly render the text to the page. To do so, you
must provide the Adobe or Hewlett-Packard font metrics file in a named JAR file. (The
fonts that come with JClass PageLayout are archived in fonts.jar, part of the larger
jcpagelayout.jar, found in the /lib/ subdirectory of your JClass PageLayout installation.)

Note: This does not apply for the use of TrueType font files in PDF output.

{"TimesRoman-BoldItalic", "Times-BoldItalic"},

AWT Internal

{"Courier_New", "Courier"},

{"Courier_New-Bold", "Courier-Bold"},

{"Courier_New-Italic", "Courier-Oblique"},

{"Courier_New-BoldItalic", "Courier-BoldOblique"},

AWT Internal
30 Part I ■ Using JClass PageLayout

pagelayout.book Page 31 Thursday, April 22, 2004 10:20 PM
When you extract files from jcpagelayout.jar, you’ll notice that there are separate fonts.jar
files in the /page/adobe/ and /page/pcl/ subdirectories. Adobe font metrics files have an .afm
extension. Hewlett-Packard PCL font metric files have a .tfm extension.

Adding a font is a three-step process:

1. Create a resource file to map the name by which it will be known in
JClass PageLayout to its PostScript, PDF, or PCL printer name. Give the resource file
any name you wish, but its extension must be .properties.
Entries in this file look like this (comment lines begin with #):
PageLayout PostScript Font Name

Optima= Optima

This file is required even if the alias names are the same as the printer names, as they
are in the example above.

2. Provide a JAR file containing the font metrics (.afm or .tfm files). Adobe font metrics
may be freely downloaded from Adobe’s Web site.

3. Use a PCL, PDF, or PostScript printer constructor and pass it the location of the JAR
file, the print file extension (.afm for PDF and PostScript, or .tfm for PCL), and the lo-
cation of the font map resource file. Since the JAR file and the resource file are loaded
as resources, they are specified using the CLASSPATH-relative dot notation, for ex-
ample, examples.pagelayout.MoreFontMappings.

Your JClass PageLayout application is now able to use both the standard fonts stored in
fonts.jar and the custom fonts you have just referenced.

Note: To use any font, you must have purchased a legitimate copy and installed it on
your system. The AFM or TFM file contains a description of the font, not the font itself.

3.2.3 Putting It Together

For example, suppose you wanted to use the Adobe font Optima in a JClass PageLayout
document. To do so, you would follow these steps:

1. Acquire the glb_____.afm file. If you do not have the file, you can download it from
ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles/.

2. Extract fonts.jar from jcpagelayout.jar, found in the /lib/ subdirectory of your
JClass PageLayout installation.

3. Add glb_____.afm to fonts.jar.

4. Create a MyFontMap.properties file that maps the AWT font name to its AFM equiva-
lent, for example:

Optima = Optima
Chapter 3 ■ Formatting Text 31

ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles/

pagelayout.book Page 32 Thursday, April 22, 2004 10:20 PM
5. In your main document file, when instantiating the printer object, modify it to reflect
the location of MyFontMap.properties, for example:
JCPrinter printer = new JCPDFPrinter(

System.out,
new com.klg.jclass.page.adobe.postscript.AFMParser(),
"/com/klg/jclass/page/adobe/fonts.jar", // jar location
".afm", // file extension
"examples/pagelayout/MyFontMap"); // user font map file

6. In your main document file, apply Optima to the current text style, for example:
JCTextStyle.setFont(new java.awt.Font("Optima",

Font. BOLD, 12));

3.2.4 Underlining

Underline mode is turned on and off by passing constants
JCTextStyle.LINEMODE_UNDERLINE and JCTextStyle.LINEMODE_NONE to the JCTextStyle
method called setUnderlining(). The following code fragment, taken from
examples/pagelayout/UnderlineExample.java, turns underlining on, prints some underlined
text, then returns the flow to normal, non-underlined mode:

// create a text style
JCTextStyle underlinedText = new JCTextStyle("Normal");
underlinedText.setUnderlining(JCTextStyle.LINEMODE_UNDERLINE);

// apply the style
flow.setCurrentTextStyle(underlinedText);

// print some text to the document
flow.print("This is some underlined text.");

underlinedText.setUnderlining(JCTextStyle.LINEMODE_NONE);

// apply the style
flow.setCurrentTextStyle(underlinedText);

3.2.5 Subscripts and Superscripts

The position of text relative to the baseline is controlled by setBaselineOffset(), which
takes three parameters: JCTextStyle.OFFSET_NONE, JCTextStyle.OFFSET_SUBSCRIPT, or
JCTextStyle.OFFSET_SUPERSCRIPT. Thus, to cause text to appear as a subscript, use

// Switch text style to subscript mode
style.setBaselineOffset(JCTextStyle.OFFSET_SUBSCRIPT);

to cause text to appear as a superscript, use

// Switch text style to superscript mode
style.setBaselineOffset(JCTextStyle.OFFSET_SUPERSCRIPT);

and to return text to normal, use

// Return text style to normal mode
style.setBaselineOffset(JCTextStyle.OFFSET_NONE);
32 Part I ■ Using JClass PageLayout

pagelayout.book Page 33 Thursday, April 22, 2004 10:20 PM
To control the size of the subscripted or superscripted text, use the method called
setSubscriptRatio(). It takes a double which specifies the size of the subscripted or
superscripted text relative to the size of the current normally-sized text. If this method is
not called, a default ratio of 0.75 is used.

3.2.6 Euro Symbol
In order to use the Euro symbol (€), first check whether the font you are using contains
the Euro symbol.

The Euro character is supported for all output types except PCL.

If your font includes the Euro symbol
If the font you are using contains the Euro symbol, you can use this character in
JClass PageLayout documents by printing the Unicode value of the Euro character
(U+20AC) to a JCFlow or JCFrame object. For example:

flow.print("\u20ac");

The default fonts used by the Adobe Acrobat PDF Viewer (for instance, Helvetica,
TimesRoman, Courier) and many browsers and printers now contain the Euro symbol. If
you are using a custom font, ensure that the font contains the Euro symbol and that the
symbol’s metrics are included in the font’s AFM file under the character name “Euro”.
For more details about working with custom fonts, please see Section 3.2.2, Adding Font
Metrics Files to JAR Files.

To enable the Euro in PostScript printing, you must also set the characterEncoding
property on the JCPostScriptPrinter class:

JCPostScriptPrinter printer;
printer.setCharacterEncoding

(JCPostScriptPrint.ENCODING_ISO_LATIN_1_EURO);

Please note that the Euro symbol is the only Unicode character that JClass PageLayout
supports for PCL and PostScript output formats.

If your font does not include the Euro symbol
If the font you are using does not contain the Euro symbol, there are two options with
JClass PageLayout:

■ make use of the Adobe Euro font package

■ use a GIF file for the Euro symbol

The Adobe Euro font package contains free, downloadable font families comprising only
the Euro symbol. Thus, when you want to use the Euro symbol, simply switch to one of
the fonts in this package, print the Unicode value of the Euro character (U+20AC) to the
desired JCFlow or JCFrame object, and then switch back to your previous font. The Adobe
Euro font package is available as a free download from Adobe at
http://www.adobe.com/type/eurofont.html
Chapter 3 ■ Formatting Text 33

http://www.adobe.com/type/eurofont.html

pagelayout.book Page 34 Thursday, April 22, 2004 10:20 PM
Alternatively, if the font you are using does not contain the Euro symbol,
JClass PageLayout provides the Euro symbol as a GIF file (). The euro.gif file is found
in pagelayout.jar (/com/klg/jclass/page/resources/).

You can use the code in this sample to create and reference an Image object of the symbol
and scale it to your desired size (for instance, to reflect the current point size of your text
style).

Embedding the Euro GIF in text
To embed the Euro GIF in a line of text, call:

java.net.URL url = document.getClass().getResource("/com/klg/jclass/
page/resources/euro.gif");

java.awt.Image euro = java.awt.Toolkit.getDefaultToolkit(). getImage(url)

Then, when you want to add the Euro symbol to a line of text, call:

flow.embedImage(euro, JCDrawStyle.POSITION_ON_BASELINE, new JCUnit.
Dimension(.12, .12));

where the JCUnit.Dimension argument represents a suitable size for the
currentTextStyle.

For more detailed information, please see the Euro example, automatically installed in
JCLASS_HOME/examples/pagelayout/

3.3 Adding Your Own Fonts for PDF Output

To use a font other than the standard three fonts supported by PDF (TimesRoman,
Helvetica, and Courier), you must supply JClass PageLayout with the information that it
needs to render text to PDF correctly. If the font you are adding is a TrueType font, you
must tell JClass PageLayout where the corresponding font program file (.TTF) is located.
If the font you are adding is a Type 1 font, you must give JClass PageLayout a font metrics
file (.AFM) that contains the metric information for the characters contained within the
font.

Note that JClass PageLayout does not embed Type 1 fonts in its PDF output, so you
must verify that any Type 1 fonts other than the standard three – TimesRoman, Helvetica,
and Courier – are available on the system on which the PDF file is to be viewed or on the
printer on which it is to be printed. TrueType fonts may be embedded in PDF output;
please see Section 3.3.1, Setting TrueType Font Properties for more information.

To add your own fonts, follow these steps. These steps are based on the font example
called UnicodeExample.java, which is automatically installed in your
JCLASS_HOME/examples/pagelayout/fonts/ directory when you install JClass PageLayout.

Note: If attempting to use a TrueType font on the Mac OS platform, please ensure that it
is an actual Unicode mapped TrueType font, not just a sfat-housed font. Other snft-housed
font varieties can be used on an Apple courtesy of Apple’s Open Font Architecture, but as
34 Part I ■ Using JClass PageLayout

pagelayout.book Page 35 Thursday, April 22, 2004 10:20 PM
these may not be TrueType fonts (containing TrueType’s required tables, they may not
behave as expected when attempting to use them with JClass PageLayout).

1. Locate the necessary files related to the desired new font.

To use a TrueType font, a legitimate copy of the font must be available on your
system. The TTF file must first be found so that its location can be given to JClass
PageLayout. On Windows platforms, most font files can be found in
C:\WINNT\FONTS or C:\WINDOWS\FONTS (for Windows XP). On Unix systems,
fonts might be found in /usr/lib/X11/fonts or /usr/share/fonts.

To use a Type 1 font, an AFM file containing the metrics of the characters within the
font is required. The AFM file contains a description of the font, but not the font itself.
If your copy of the font did not come with an AFM file, you might find one on the
Adobe Web site at ftp://ftp.adobe.com/pub/adobe/type/. For example, if you wanted to
use the Adobe font Galliard in a JClass PageLayout document, you would acquire the
font’s AFM files from ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles/001-050/017/.

2. If JClass PageLayout does not recognize the name of the font you’ve added,
you may need to create a user.properties font name map file.

You may need to create a file called user.properties that will specify a font name map.
This file creates a mapping between the AWT font names that you will use in your
program (for example, GalliardRoman) and the actual font name, as specified within
the font itself (for example, Galliard-Roman). If the name of your font in its plain style
does not contain any dashes or spaces, you may not need to create a user.properties file;
an automatic mapping will be attempted by JClass PageLayout.

Each line of the user.properties file consists of two names separated by an equals (“=”)
sign. The name on the left must be the AWT name, and the name on the right must
be the actual font name found within the font file.

■ The AWT name (the name on the left) cannot contain spaces. Any spaces must
either be escaped with a backslash (“\”), or replaced with underscores. Styled
fonts must be listed in the file as fontName-Style, where fontName is the AWT font
name (mentioned above), and Style is one of Bold, Italic, or BoldItalic.

If you require a list of available AWT font names, call
java.awt.GraphicsEnvironment.getAllFonts() to retrieve a list of fonts
available on your system, and then call getName() on each font in the list.

■ The actual font name (the name on the right) must appear exactly as it does in the
font file. Therefore, spaces must be left as they are. To determine the actual font
names for True Type fonts, call FontLibrary.getTTFFontNames(fontfileName)
on the font in question.

Here is an example of the user.properties font name map file for a program that will use
the GalliardRoman and CaslonRoman fonts. The name before the equals sign is the
AWT font name and the name after the equals sign is the actual font name. Note how
Chapter 3 ■ Formatting Text 35

ftp://ftp.adobe.com/pub/adobe/type/
ftp://ftp.adobe.com/pub/adobe/type/win/all/afmfiles/001-050/017/

pagelayout.book Page 36 Thursday, April 22, 2004 10:20 PM
styled fonts have been specified and the way that spaces in the AWT font name have
been dealt with.

GalliardRoman = Galliard-Roman
GalliardRoman-Bold = Galliard-Bold
GalliardRoman-Italic = Galliard-Italic
GalliardRoman-BoldItalic = Galliard-BoldItalic
Caslon\ Roman = CaslonRoman

3. Tell JClass PageLayout where to find these files.

By calling JCDocument.addFontPackage(String packagePath), where packagePath
is a String representing the absolute path of a directory, all fonts represented by the
TTF, TTC, or AFM files in the directory (and all subdirectories) will be added for use
in JClass PageLayout and all font names from the user.properties file found in these
same directories will be mapped. By default, JClass PageLayout lists the file system
directories where system font files are normally kept:

■ C:\WINNT\Fonts and C:\WINDOWS\Fonts for Windows systems

■ /usr/share/fonts and /usr/lib/X11/fonts for UNIX and Macintosh systems

These directories can be scanned for fonts and font name map files automatically by
calling FontLibrary.setAutoLoad(true) before the first use of FontLibrary,
JCDocument, or JCPDFPrinter.

Fonts may also be added one at a time.

■ The FontLibrary.addFont(String fileLocation) method adds a single font when
passed an absolute path to a TTF, TTC, or AFM file.

■ The method FontLibrary.addFont(URL fontURL, int fontType) loads a single font
of the type specified in fontType from the passed URL object. fontType may be
equal to either AFM or TTF.

■ The method FontLibrary.addRelativeFont(String fileLocation) adds a single
font when passed the location of a TTF, TTC, or AFM file relative to the
CLASSPATH.

Font name map .properties files may also be added one at a time.

■ The method FontLibrary.addFontNameMap(String fileLocation, String name)
reads the font name map file found in the directory specified by the absolute path in
fileLocation and whose name begins with name and ends with .properties.

■ The method FontLibrary.addFontNameMap(URL fontURL, String name) reads the
font name map file found in the directory specified by the passed URL object and
whose name begins with name and ends with .properties.

■ The method FontLibrary.addFontNameMap(URL location) reads the font name map
found at the location specified by the passed URL object.

■ The method FontLibrary.addRelativeFontNameMap(String location, String
name) reads the font name map file found in the specified directory relative to the
CLASSPATH and whose name begins with name and ends with .properties.
36 Part I ■ Using JClass PageLayout

pagelayout.book Page 37 Thursday, April 22, 2004 10:20 PM
Note that once fonts and font name maps have been loaded, they are globally
available to all programs running within the same class loader.

3.3.1 Setting TrueType Font Properties

There are some options available to users when using TrueType fonts with
JClass PageLayout. These options include the ability to embed parts or the whole of a
TrueType font within PDF output and the ability to specify character sets that may affect
the size of PDF output.

These options are contained within the TrueTypeFontProperties class. An instance of
the class that contains the values of properties for a particular font may be obtained by
calling the method FontLibrary.getTrueTypeFontProperties(String userFontName),
where userFontName is the same AWT name of the TrueType font that is used to
reference the font within the user program. If an instance of the class has not yet been
associated with the specified font, one will be created.

The following properties are available in the TrueTypeFontProperties class. Values for
each property may be set via a setPropertyName() method and retrieved via a
getPropertyName() method.

Property Name Description

EmbeddingRules Specifies whether a TrueType font should be embedded
within PDF output. A user may wish to embed a TrueType
font if the desired font is not expected to be available on all
systems on which the created PDF document will be viewed
or printed.

■ A value of DO_NOT_EMBED, the default, will not embed the
font.

■ A value of EMBED_NEEDED will embed only the characters
from the font that are used within the document.

■ A value of EMBED_ENTIRE_FONT will embed the entire font
program within the resulting PDF file.
Chapter 3 ■ Formatting Text 37

pagelayout.book Page 38 Thursday, April 22, 2004 10:20 PM
3.4 Modifying Paragraphs

You can set a style’s font properties to modify individual words or characters in a
paragraph, but properties such as alignment, indents, line spacing, and paragraph spacing
apply to the entire paragraph.

3.4.1 Alignment

JClass PageLayout supports the usual paragraph alignment options; left, center, right, and
justified. Left alignment is the default.

CharacterRange Specifies the range of font characters that will be used within
the user's document. The property is used to determine which
method should be used to encode text within the resulting
PDF document. Most users will never need to set this
property.

■ A value of AUTO_DETECT, the default, indicates that
JClass PageLayout should automatically detect changes
between the basic ANSI character set (character codes 0-
255) and the larger Unicode character set (character codes
0-65535) and write out text in the format to which the
character corresponds.

■ A value of ANSI will write out all characters in the single-
byte ANSI format. This value should be used only if the
user is certain that the document will never use a character
outside the range 0-255.

■ A value of UNICODE will write out all characters as
hexadecimal representations of the multi-byte Unicode
format. Its use may result in larger PDF files than the other
two settings in some cases, although it may result in a
smaller PDF file if the majority of characters the user is
referencing lie outside of the ANSI character set.

IncludeUnicodeMap Specifies whether a ToUnicode character map will be included
in PDF output. The default value is true. The ToUnicode
character map is used by the PDF viewer program to
translate between glyph codes and the characters they
represent. It is necessary to allow functions such as cut-and-
paste to work correctly.
If such functionality is not needed by the user, setting this
property to false will result in a smaller PDF file.

Property Name Description
38 Part I ■ Using JClass PageLayout

pagelayout.book Page 39 Thursday, April 22, 2004 10:20 PM
To control the alignment of a paragraph style, call JCTextStyle.setAlignment(), for
example:

style.setAlignment(JCTextStyle.ALIGNMENT_CENTER);

3.4.2 Indents
Indent properties control how far from the edge of the frame JClass PageLayout renders
the text.

Parameter Result

ALIGNMENT_LEFT Paragraph text is left
aligned.

ALIGNMENT_RIGHT Paragraph text is right
aligned.

ALIGNMENT_CENTER Paragraph text is center
aligned.

ALIGNMENT_JUSTIFY Paragraph text is left
and right aligned.
Chapter 3 ■ Formatting Text 39

pagelayout.book Page 40 Thursday, April 22, 2004 10:20 PM
To control indentation, call the appropriate JCTextStyle indent method. To define the
indentation width, use a JCUnit.Measure object. In turn, JCUnit.Measure requires
JCUnit.UNITS to specify the appropriate units of measurement. For example:

style.setLeftIndent(new JCUnit.Measure(JCUnit.INCHES, 0.25));

The preceding example creates a left indent at 0.25” from the edge of the frame.

The following diagram demonstrates how left, paragraph, and right indents are applied.

Figure 2 Different indentation types.

3.4.3 Line Spacing
Line spacing controls the amount of space between the baselines of text inside a
paragraph. Line spacing is defined as a multiple of the height of a line of text in the
current style.

style.setLineSpacing(1.2);

The preceding example sets the line spacing of the current JCTextStyle object to 1.2
times the height of the text. If the text is 10 points high, 12 points of space are left between
each line of rendered text.

3.4.4 Paragraph Spacing
Paragraph spacing controls the amount of space between paragraphs in the document.
Paragraph spacing is measured between the baseline of the last line of text in the
preceding paragraph and the baseline of the first line of text in the following paragraph.
Note the difference from line spacing, which controls the amount of space between lines

JCTextStyle Method Description

setLeftIndent() Defines the amount of space between the left side of the
frame and the left edge of every line in the paragraph
except for the first line.

setParagraphIndent() Defines the amount of space between the left side of the
frame and the left edge of the first line in the paragraph.

setRightIndent() Defines the amount of space between the right side of the
frame and the right edge of the paragraph.
40 Part I ■ Using JClass PageLayout

pagelayout.book Page 41 Thursday, April 22, 2004 10:20 PM
inside the paragraph. Like line spacing, paragraph spacing is defined as a multiple of the
height of a line of text in the current style.

style.setParagraphSpacing(2);

If the text in the current style is 10 points high, JClass PageLayout leaves a gap of 10
points between paragraphs.

3.5 Inserting Tabs
You create a tab stop by creating a JCTab object. When doing so, you can define variables
that control alignment, position, and fill.

The following example creates a left-aligned tab stop at the left margin with no fill.

tab = new JCTab();

You can instantiate a left-aligned Tab object at a position you specify:

tab = new JCTab(new JCUnit.Measure(JCUnit.CM, 3));

You can instantiate a Tab object, aligned and at a position you specify:

tab = new JCTab(new JCUnit.Measure(new JCUnit.CM, 8),
JCTab.TAB_ALIGNMENT_CENTER);

3.5.1 Adding Tabs to a Style
Typically, you set tab properties as part of a style, meaning that all further occurrences of
that style are created with tabs in the same locations. To add tabs to a style, use
JCTextStyle.addTab() or setTabs().

To align to a defined tab, you must call the JCFlow.tab() method after adding your JCTab
object to a style (that is, you need to call the JCFlow.tab() method in order to make use
of the tab).

Using addTab(), you can add a single tab to the style, aligned and at a position you
specify. The following example creates a left-aligned tab 3 cm from the edge of the frame.

JCTextStyle.addTab(JCTab.TAB_ALIGNMENT_LEFT,
new JCUnit.Measure(JCUnit.CM, 3));

Method Result

addTab() Adds a tab to the style in the location specified.

setTabs() Adds a list of identically aligned tabs to the style.
Chapter 3 ■ Formatting Text 41

pagelayout.book Page 42 Thursday, April 22, 2004 10:20 PM
Using setTabs(), you can add a list of regularly spaced tabs with a common alignment.
The following example formats the style with eight left aligned tabs, each spaced one
centimeter apart.

JCTextStyle.setTabs(JCTab.TAB_ALIGNMENT_LEFT,
new JCUnit.Measure(JCUnit.CM, 1), 8);

3.5.2 Tab Alignment

Once you have instantiated the JCTab object, you can use setTabAlignment() to adjust
the way text is aligned to it. The following example aligns the right edge of the text to the
tab stop location.

tab = new JCTab();
tab.setTabAlignment(JCTab.TAB_ALIGNMENT_RIGHT);

The following table describes the alignment options:

Field Result

TAB_ALIGNMENT_CENTER Aligns an equal amount of text on
either side of the tab stop.

TAB_ALIGNMENT_LEFT Aligns the left side (beginning) of
the text with the tab stop.

TAB_ALIGNMENT_RIGHT Aligns the right side (end) of the
text with the tab stop.

TAB_ALIGNMENT_DECIMAL Aligns a decimal or period (.) in
the text with the tab stop.
Primarily used for aligning
columns of numbers.
42 Part I ■ Using JClass PageLayout

pagelayout.book Page 43 Thursday, April 22, 2004 10:20 PM
3.5.3 Tab Position

You use JCTab.setPosition() in combination with JCUnit.Measure() to adjust the
horizontal (x-axis) location of the tab stop.

tab = new JCTab();
tab.setPosition(new JCUnit.Measure(JCUnit.INCHES, 1.0));

The preceding example creates a tab stop at 1”. You can use different units of
measurement (POINTS or CM), if you prefer. If you do not declare a unit of measurement,
JClass PageLayout uses the default unit type. For more information, refer to Units of
Measurement, in Chapter 6.

3.5.4 Tab Fill
Often, users want to include a fill or leader between the text before and the text after the
tab, as in the example of a Table of Contents:

4.4 Inserting Tab Stops 38

To control fill properties, use JCTab.setTabFill(). To create a right-aligned, right-margin
tab filled with leader dots (such as the previous example), use the following code:

tab = new JCTab();
tab.setPosition(new JCUnit.Measure(JCUnit.INCHES, 5.5));
tab.setTabAlignment(JCTab.TAB_ALIGNMENT_RIGHT);
tab.setTabFill(JCTab.TAB_FILL_DOTS);

Other fill options are TAB_FILL_NONE and TAB_FILL_UNDERLINE.
Chapter 3 ■ Formatting Text 43

pagelayout.book Page 44 Thursday, April 22, 2004 10:20 PM
44 Part I ■ Using JClass PageLayout

pagelayout.book Page 45 Thursday, April 22, 2004 10:20 PM
4
Creating Tables

Overview ■ Using JCPageTable ■ Table Structure ■ Creating a Table ■ Adding Data to Tables

Customizing Tables ■ Customizing Cells ■ Table Wrapping ■ Converting Tables

Tables in JClass PageLayout are implemented using the JCPageTable class. Tables contain
column objects and row objects; the row objects contain the cells of the table. Table
content is stored either in JCFrame objects belonging to individual cells or as objects in the
entries of a TableDataModel associated with the table. Tables are printed by the flow,
which breaks the table into rectangular ranges which are fit into flow frames.

4.1 Overview

The JCPageTable class provides methods and attributes for printing tables from your Java
application. This chapter shows you how to:

■ add a table to your document

■ flow data into the table

■ add a header row to the table

■ add borders and background colors

■ customize cell vertical alignment, margins, and borders

■ span cells

■ wrap tables

■ convert table data from other Java sources

4.2 Table Structure
A table is created with a given number of columns, and a column object is created for
each. The number of rows in a table is not fixed, and row objects are added to the table
either explicitly, by using a method such as JCPageTable.addRow(), or implicitly, through
reference to cell objects beyond the current last row of the table. The table’s rowList
attribute stores all the rows created within the table.
45

pagelayout.book Page 46 Thursday, April 22, 2004 10:20 PM
Cells of the table are stored in lists associated with particular rows. A row object with no
cells containing content will have a cell list with no entries. As cells are created, the cell
object will be stored at the correct position in the row's cellList. As with the table's
rowList, blank (null) entries are created for non-existent cells. The content of a cell can
be stored in a JCFrame object allocated by the cell; as a standard JCFrame, it can contain
any content that is valid for a JCFrame object, up to and including another JCPageTable.

In addition to ordered lists of row and column objects, the table object can also
(conditionally) own another JCPageTable object. The secondary JCPageTable object
defines the headers of the parent table, but a header JCPageTable cannot own a header
table. The structure of a header JCPageTable is identical to the structure of a main table,
except that the column layout of the header table is defined implicitly by reference to the
parent table.

There are also dummy cell objects attached to the table, and to each row and column
object. These cell objects store column-, row-, and table-wide default cell attributes.

4.3 Using JCPageTable

Here is an overview of the general steps required to use JCPageTable.

1. Create a JCPageTable object and pass in:

■ the document to which this table belongs

■ the number of columns in this table

■ column widths

2. Create table header by calling createHeaders(), if desired.

3. Customize cells by setting borders and margins on table, rows, columns, or individual
cells and by setting up any cell spans that are required.

4. Size table to frame using fitToFrame(), if desired.

5. Add data to tables (for example, call JCPageTable.printToCell() or JCPageTa-
ble.addRow()).

6. Print the table by calling flow.print(table), where flow is an instance of JCFlow.
46 Part I ■ Using JClass PageLayout

pagelayout.book Page 47 Thursday, April 22, 2004 10:20 PM
4.4 Creating a Table

By the end of this chapter, we will produce the following table:

Figure 3 A Table example in JClass PageLayout.

 To begin, we define a table with three columns, each of which is one inch wide. Here is
the relevant code.

JCPageTable table = new JCPageTable(document, 3,
new JCUnit.Measure(JCUnit.INCHES, 1.0));

The JCPageTable parameters indicate the JCDocument to which this table belongs and that
this table should contain three columns, each one inch wide.

4.5 Adding Data to Tables

To print data into cells, use the JCPageTable.printToCell() method. It prints text to the
cells you specify, generating them if necessary. For instance, the following code prints the
text “Calico”, using the current JCTextStyle (the style in the code sample below), to the
cell found in row 2, column 1.

table.printToCell(2, 1, style, "Calico");

Note: Cell indices start at (0, 0), independent of the presence of a header row.

4.5.1 Creating Body Rows

When you print to a cell frame that does not yet exist, you create a row of cells that
correspond to the number of columns in the table. The following example populates the
first three body rows of the table shown in Figure 3.

table.printToCell(0, 0, style, "Labrador");
table.printToCell(0, 1, style, "Persian");
table.printToCell(0, 2, style, "Shetland");
Chapter 4 ■ Creating Tables 47

pagelayout.book Page 48 Thursday, April 22, 2004 10:20 PM
table.printToCell(1, 0, style, "Collie");
table.printToCell(1, 1, style, "Siamese");
table.printToCell(1, 2, style, "Arabian");
table.printToCell(2, 0, style, "Terrier");
table.printToCell(2, 1, style, "Calico");
table.printToCell(2, 2, style, "Clydesdale");

To actually print the table, call

flow.print(table);

where flow is an instance of JCFlow.

Note that JClass PageLayout identifies each cell by numbering cells in a row, column
format, starting from zero (0).

Note that if a row cannot fit in the current page, then that row will be placed on the
following page. However, if the height of that row is larger than the height of the entire
page (for example, in the case that the row contains particularly extensive data, such as a
long String), then that row is truncated.

The table is beginning to take shape:

Figure 4 Table with body rows.

4.5.2 Adding Body Rows
You can also add rows of cells to the end of a table using JCPageTable.addRow().

table.addRow(style, newString[]{"Setter", "Tabby", "Palomino"});

The example produces the following results:

Figure 5 Table with additional body row.

4.5.3 Adding Header Rows

Suppose you wanted to create a table header row. Although a header row may look as
though it is part of the table containing the body rows, in actuality it is a separate table
48 Part I ■ Using JClass PageLayout

pagelayout.book Page 49 Thursday, April 22, 2004 10:20 PM
unto itself. You build the header table using JCPageTable.createHeaders(). Once you
have created the header table, you can populate its cells, much as you did the body rows.

JCPageTable header = table.createHeaders();
try {
JCFrame frame = header.getCellFrame(0, 0);
frame.print(style, "Dogs");

frame = header.getCellFrame(0, 1);
frame.print(style, "Cats");

frame = header.getCellFrame(0, 2);
frame.print(style, "Horses");
}
catch (EndOfFrameException e) {}

Adding the header row produces the following results:

Figure 6 Table with header row.

4.6 Customizing Tables
Now that you’ve laid out your table and printed data into it, you may want to customize
its appearance by defining borders and background colors or by defining various line
styles and shadings. This section describes how.

4.6.1 Table Styles

The simplest way to customize a table is to choose one of the numerous built-in table
styles in JCTableStyle. Table styles are constants, such as JCTableStyle.STYLE_DEFAULT,
or JCTableStyle.STYLE_n, where n ranges from 1 to 17.

Table styles are cloneable. You can further customize a table style by cloning the one you
wish to use as a base for making changes.

// Create a table style with orange headers and alternating colored
// rows
JCTableStyle tableStyle =
(JCTableStyle)JCTableStyle.STYLE_DEFAULT.clone();
tableStyle.getHeaderStyle().setBackground(Color.orange);
tableStyle.setAlternate(new JCAlternate(Color.lightGray,
Color.white, true));
Chapter 4 ■ Creating Tables 49

pagelayout.book Page 50 Thursday, April 22, 2004 10:20 PM
Style Name Description Image

Default ■ thin left, right, top,
bottom, header,
horizontal, and
column borders

■ no column shading
■ regular heading font

Style0 ■ no left, right, top,
bottom, header,
horizontal, or column
borders

■ no column shading
■ regular heading font

Style 1 ■ thick header border;
no other borders

■ no column shading
■ regular heading font

Style 2 ■ thin header border;
thick top and bottom
borders; no other
borders

■ no column shading
■ regular heading font

Style 3 ■ thick top, bottom, and
header borders; thin
horizontal borders; no
left, right, or column
borders

■ no column shading
■ regular heading font
50 Part I ■ Using JClass PageLayout

pagelayout.book Page 51 Thursday, April 22, 2004 10:20 PM
Style 4 ■ no left, right, top,
bottom, horizontal, or
column borders; thick
header border

■ header colored
(black); reverse type
for header text

■ no column shading

Style 5 ■ thick right, left, top,
bottom, and header
borders; no column or
horizontal borders

■ header colored
(black); reverse type
for header text

■ no column shading

Style 6 ■ thick right, left,
bottom and header
borders; thin
horizontal and column
borders; no top border

■ header colored
(black); reverse type
for header text

■ no column shading

Style 7 ■ thick right, left, top,
bottom and header
borders; no horizontal
or column borders

■ header colored (gray);
reverse type for
header text

■ no column shading

Style Name Description Image
Chapter 4 ■ Creating Tables 51

pagelayout.book Page 52 Thursday, April 22, 2004 10:20 PM
Style 8 ■ thick right, left, top,
bottom, and header
borders; thin
horizontal and column
borders

■ header colored (gray);
reverse type for
header text

■ no column shading

Style 9 ■ thin header border;
thick top, and bottom
borders; no right, left,
horizontal, and
column borders

■ header colored (gray);
reverse type for
header text

■ no column shading

Style 10 ■ thick right, left, top,
and bottom borders;
thin header,
horizontal, and
column borders

■ regular heading font
■ no column shading

Style 11 ■ no right, left, top, and
bottom borders; thin
header, horizontal,
and column borders

■ plain headers
■ no column shading

Style 12 ■ thick right, left, top,
bottom, and header
borders; no horizontal
or column borders

■ header colored (gray);
reverse type for
header text

■ gray column shading

Style Name Description Image
52 Part I ■ Using JClass PageLayout

pagelayout.book Page 53 Thursday, April 22, 2004 10:20 PM
Style 13 ■ thick right, left,
bottom, and header
borders; thin
horizontal border; no
top or column borders

■ header colored
(black); reverse type
for header text

■ no column shading

Style 14 ■ thin right, left, top,
bottom, and
horizontal borders;
thick header border;
no column border

■ plain header
■ no column shading

Style 15 ■ thin right, left, top,
bottom, header, and
column borders; no
horizontal border

■ plain header
■ no column shading

Style 16 ■ thin top, bottom, right,
left and horizontal
borders; thick header
border; thin border
between last two
columns

■ header colored (dark
gray); reverse type for
header text

■ no column shading
■ alternate row shading

(light gray and dark
gray)

Style Name Description Image
Chapter 4 ■ Creating Tables 53

pagelayout.book Page 54 Thursday, April 22, 2004 10:20 PM
JCTableStyle Methods

Alternating row or column colors
It is often desirable to shade every other row or column differently for easier reading. The
JCAlternate class is used for this purpose, and the setAlternate() method in
JCTableStyle takes an instance of JCAlternate to specify the alternating colors. There
are two default styles, one for columns and one for rows.

Style 17 ■ thin top, bottom, right,
left, and horizontal
borders; thick header
border; thin border
between last two
columns

■ header reverse type
■ alternate column

shading (light gray and
dark gray)

Method Description

setAlternate() See Alternating row or column colors for details.

setBackground() Sets the background color for a table.

setBottomBorder() Sets the bottom perimeter border of a table.

setColumnBorder() Sets the vertical border used by the internal table cells.

setHeaderBorder() Sets the border between the header and the first row of the
table.

setHeaderStyle() Sets a JCTableStyle instance to be used as a table style for the
header table.

setLeftBorder() Sets the left perimeter border of a table.

setName() Sets the name of the table style.

setRightBorder() Sets the right perimeter border of a table.

setRowBorder() Sets the default border drawn between table rows.

setTextStyle() Sets the default text style to be used when drawing text in table
cells.

setTopBorder() Sets the top perimeter border of a table.

Style Name Description Image
54 Part I ■ Using JClass PageLayout

pagelayout.book Page 55 Thursday, April 22, 2004 10:20 PM
To show rows alternating between gray and light gray, use JCAlternate.ROW. To show
columns alternating between gray and light gray, use JCAlternate.COLUMN. To choose
your own colors, create an instance of JCAlternate and pass its constructor the two colors
you want, and a Boolean flag specifying whether the alternation is to take place over rows
or over columns. If the flag is set to true, rows alternate in color, if the flag is set to false,
columns alternate in color. For example, the following causes rows to alternate between
red and blue:

tableStyle.setAlternate(new JCAlternate(Color.red, Color.blue, true));

Row/Column Dominance
To control the order of border and cell color drawing, use the RowColumnDominance
property of the table. A value of ROW_DOMINANCE forces column background colors and
borders to draw before the equivalent properties of the table’s row. In contrast, a value of
COLUMN_DOMINANCE forces row background colors and border to draw before the
equivalent properties of the table’s columns. This property is set on the table class
(JCPageTable or JCFlowTable) with the setRowColumnDominance() method.

4.6.2 Adding Borders

To define the appearance of a table border, you must select or create a JCDrawStyle with
the required attributes and apply the style to the border. For information on controlling
the appearance of borders, refer to Creating Draw Styles, in Chapter 6.

table.setAllBorders(JCDrawStyle.LINE);
table.setLeftBorder(JCDrawStyle.LINE_2POINT);
table.setRightBorder(JCDrawStyle.LINE_2POINT);

This example uses setAllBorders() to apply the default single line style to all borders in
the table, and then uses setLeftBorder and setRightBorder to apply thick side borders. If
we were to apply this style to the table we developed earlier, the result would be as
follows:

Figure 7 Table with borders.

JCDrawStyle makes the following line styles available for table borders:

LINE_TYPE_BROKEN Applies a dotted line to the table border.
Chapter 4 ■ Creating Tables 55

pagelayout.book Page 56 Thursday, April 22, 2004 10:20 PM
JCPageTable provides numerous methods for applying line styles to table borders:

The behavior of perimeter borders at page breaks is determined by the BorderMode
property of the table. A value of BORDER_USE_EXTERNAL forces perimeter borders to be
used on each section of the multi-page table. A value of BORDER_USE_INTERNAL forces

LINE_TYPE_DOUBLE Applies a double line to the table border.

LINE_TYPE_NONE Blanks out the table border.

LINE_TYPE_SINGLE Applies a single line to the table border.

JCPageTable Method Result

setAllBorders() Applies the style to every border in the table.

setBottomBorder() Applies the style to the bottom border of the table’s last
row.

setColumnBorder() Applies the style to all column borders, except for the
perimeter borders Left and Right.

setEdgeBorders() Applies the style to all borders on the perimeter of the
table (Top, Bottom, Left, and Right).

setHeaderBorder() Applies the style to the border between the header table
and the table’s first row.

setHorizontalBorder() Applies the style to the Top, Bottom, and header borders.

setInternalBorders() Applies the style to all row and column borders except
for the perimeter borders.

setLeftBorder() Applies the style to the border on the table’s left-hand
side.

setRightBorder() Applies the style to the border on the table’s right-hand
side.

setRowBorder() Applies the style to all table row borders except for the
header border and the perimeter borders Top and
Bottom.

setTopBorder() Applies the style to the top border of the table’s first row.
If there is a header table, applies the style to the top row
of the header.

setVerticalBorders() Applies the style to column, Left, and Right borders.
56 Part I ■ Using JClass PageLayout

pagelayout.book Page 57 Thursday, April 22, 2004 10:20 PM
perimeter borders to be used only at the beginning and end of the table. Internal cell
borders will be used for the table sections broken across pages. For example:

Figure 8 External and internal border behavior.

4.6.3 Adding Header Borders

As mentioned in Section 4.5.3, Adding Header Rows, the header row is a separate table
unto itself. Modifying header borders is just like modifying borders in the main table. For
example, to apply a double line to the top and bottom of the header row, enter:

table.setTopBorder(JCDrawStyle.LINE_DOUBLE);
table.setHeaderBorder(JCDrawStyle.LINE_DOUBLE);
Chapter 4 ■ Creating Tables 57

pagelayout.book Page 58 Thursday, April 22, 2004 10:20 PM
The table appears as follows:

Figure 9 Table with double header borders.

4.6.4 Applying Background Colors
You can further customize tables by applying background colors to cells, rows, columns,
or the entire table. Colors and greyscale are defined by java.awt.Color. For more
information on the colors and greys available to you, refer to the Java 1.2 API
Specification at http://java.sun.com/products/jdk/1.2/docs/api/index.html.

For example, suppose you wanted to apply a green background to all of the cells in the
first column of the table.

table.getColumn(0).setBackgroundColor(Color.green);

This example uses the getColumn() method to identify the column to be colored, and
then uses the setBackgroundColor() method to apply the specified static color.

4.6.5 Adjusting the Size of a Table

If you wish to adjust the size of a table so that it occupies all the space available in its
parent frame, use the fitToFrame() method. The method takes two parameters: the
frame to which the table should fit itself and the current JCTextStyle. It should only be
called after all table borders, cell borders, and margins have been finalized.

4.7 Customizing Cells

JCPageTable has three inner classes: JCPageTable.Cell, JCPageTable.Column, and
JCPageTable.Row, written to allow for more precise control over the description of
individual table components.

JCPageTable.Column and JCPageTable.Row provide methods that allow you to customize
the cells in an entire column or row by modifying their alignment, background color,
borders, and margins.

JCPageTable.Cell provides attributes and methods that allow you to customize cell
appearance, including settings for vertical alignment, borders, margins, and spans.
58 Part I ■ Using JClass PageLayout

http://java.sun.com/products/jdk/1.2/docs/api/index.html

pagelayout.book Page 59 Thursday, April 22, 2004 10:20 PM
4.7.1 Setting the Vertical Alignment

You can use the JCPageTable.Cell.setCellAlignment() method to adjust the vertical
alignment of text in a cell.

Adding the words “Retriever” and “Scottish” to cells 0,0 and 2,0 increases the height of
all of the cells in rows 0 and 2. By default, the other cells in the same row align their text
to the top of the cell.

Figure 10 Table cells with vertical alignment set to Top.

Suppose, for example, you want to vertically align that text to the middle of the cell. Here
is the relevant code and how the altered table will appear:

table.setDefaultCellAlignment(JCPageTable.CELL_ALIGNMENT_CENTER);

Figure 11 Table cells with vertical alignment set to Center.

You may also control the alignment in cells individually. The first three code snippets show
how to align a cell to the bottom, top, and center of a cell, respectively. The last code
snippet shows how to revert to the last alignment specified.

cell = table.getCell(0,1);
cell.setCellAlignment(JCPageTable.CELL_ALIGNMENT_BOTTOM);

cell = table.getCell(0,2);
cell.setCellAlignment(JCPageTable.CELL_ALIGNMENT_TOP);

cell = table.getCell(2,2);
Chapter 4 ■ Creating Tables 59

pagelayout.book Page 60 Thursday, April 22, 2004 10:20 PM
cell.setCellAlignment(JCPageTable.CELL_ALIGNMENT_CENTER);

cell = table.getCell(2,1);
cell.setCellAlignment(JCPageTable.CELL_ALIGNMENT_NONE);

JCPageTable.getCell() identifies the cells containing text we want to vertically re-align.
JCPageTable.Cell.setCellAlignment() adjusts their vertical alignment in the cell, in
this case, to the center of the cell. Our adjustments produce the following results:

Figure 12 Table cells with vertical alignment set to Center.

JCPageTable provides the following cell vertical alignment options:

4.7.2 Defining Cell Margins

To control the space between the cell border and the text it contains, you adjust the cell
margins. An enlarged version of one of the cells in the sample table provides a good
example.

Figure 13 Enlarged table cell.

CELL_ALIGNMENT_CENTER Aligns cell text to the middle of the row.

CELL_ALIGNMENT_TOP Aligns cell text to the top of the row.

CELL_ALIGNMENT_BOTTOM Aligns cell text to the bottom of the row.

CELL_ALIGNMENT_NONE No specific cell alignment.
60 Part I ■ Using JClass PageLayout

pagelayout.book Page 61 Thursday, April 22, 2004 10:20 PM
The program has left gaps between the text and the left, right, top, and bottom borders of
the cell. You can adjust the size of these gaps using JCPageTable.Cell methods.

cell = table.getCell(1,1);
cell.setBottomMargin(new JCUnit.Measure(JCUnit.POINTS, 8));
cell.setTopMargin(new JCUnit.Measure(JCUnit.POINTS, 8));
cell.setLeftMargin(new JCUnit.Measure(JCUnit.POINTS, 2));
cell.setRightMargin(new JCUnit.Measure(JCUnit.POINTS, 2));

The preceding example identifies the cell (1,1 — remember that the header row is
numbered separately) for which margins are to be adjusted, and then calls the appropriate
JCPageTable.Cell methods to set the top and bottom margins to 8 points and the left and
right margins to 2 points.

Figure 14 Enlarged table cell with margins illustrated.

4.7.3 Customizing Cell Borders

You can customize individual cells by overriding the border style specified by the
JCDrawStyle and applied by the appropriate JCPageTable method. To override the style
for a particular cell’s borders, identify the cell, create a new JCDrawStyle, and apply it
using a method from the JCPageTable.Cell class.

JCDrawStyle cellstyle = (JCDrawStyle)
JCDrawStyle.stringToStyle("default line").clone();
cellstyle.setLineType(JCDrawStyle.LINE_TYPE_DOUBLE);
cellstyle.setLineWidth(new JCUnit.Measure(JCUnit.POINTS, 1));
JCPageTable.Cell cell = table.getCell(1, 1);
cell.setBottomBorderStyle(cellstyle);
cell.setRightBorderStyle(cellstyle);

Note that style changes can also be made in one line as follows:

table.getCell(0, 1).setBottomBorderStyle(cellstyle);
table.getCell(1, 0).setRightBorderStyle(cellstyle);
Chapter 4 ■ Creating Tables 61

pagelayout.book Page 62 Thursday, April 22, 2004 10:20 PM
After applying the above style changes to our table, this is the result:

Figure 15 Table cell with customized borders.

In order to prevent cells from overriding each other’s border styles, you can only specify
the appearance of a cell’s right and bottom borders. To achieve the results shown in the
example, the program applies the JCDrawStyle to the right and bottom borders of the cell
in question (Siamese), then applies the style to the bottom border of the cell immediately
above it (Persian), and to the right border of the cell to its left (Collie).

4.7.4 Spanning Cells

Spanning cells is the process by which the borders between specified cells are eliminated,
creating one merged cell. The merged cell can cross multiple row and column borders,
but does not alter the structure of the remaining cells, rows or columns in the table. Note
that you should span cells before populating the cells.

To span cells, you pass to the JCPageTable.spanCells() method the row and column
number of the cell that is the upper left-hand corner of the span, along with the number of
rows to span down and the number of columns to span to the right. Follow this format:

table.spanCells(startRow, startColumn, numRows, numColumns);

For example, to span four cells down the first column of a table, beginning with the upper
left-hand corner cell in the table, enter:

table.spanCells(0, 0, 4, 1);

Figure 16 Table with spanned cells.
62 Part I ■ Using JClass PageLayout

pagelayout.book Page 63 Thursday, April 22, 2004 10:20 PM
4.8 Table Wrapping
If a table is too long for the current frame, the extra rows flow to the next frame, along
with the header row, which appears at the top of every frame to which the table rows
flow.

If a table is too wide for the current frame, use JCPageTable.setOverflowMode() to
handle the extra column data.

To wrap the extra column(s) so that they appear below the table:

table.setOverflowMode(JCPageTable.OVERFLOW_WRAP_COLUMNS);

Figure 17 Table with wrapped column.
Chapter 4 ■ Creating Tables 63

pagelayout.book Page 64 Thursday, April 22, 2004 10:20 PM
To wrap the extra column(s) onto the following page:

table.setOverflowMode(JCPageTable.OVERFLOW_WRAP_COLUMNS_NEXT);

Figure 18 Table with column wrapped to the next page.

To clip an equal amount of data from the left and right-most columns in the table:

table.setOverflowMode(JCPageTable.OVERFLOW_CLIP_COLUMNS);

Figure 19 Table with clipped columns.

4.9 Converting Tables

You can use JClass PageLayout to convert data from other Java table classes into
JCPageTable tables. You can extract table data along with simple text formatting from
JClass JCTables and Swing JTables. You can also extract the data from a JDBC result set
and reconstruct it as a JCPageTable.
64 Part I ■ Using JClass PageLayout

pagelayout.book Page 65 Thursday, April 22, 2004 10:20 PM
4.9.1 Converting JClass LiveTables

If you installed JClass LiveTable with your JClass DesktopViews installation, you can
flow data from a JClass LiveTable JCTable into a JCPageTable in your JClass PageLayout
application.

Creating a New JCPageTable

To flow JCTable data into a new instance of a JCPageTable, use
JCPageTableFromJTable.createTable(). You have the following options:

Populating an Existing JCPageTable
To flow JCTable data into an existing JCPageTable, use
JCPageTableFromJCTable.populateTable(). You have the following options:

Method Description

createTable(JCDocument doc, JCTable
jcTable, boolean populate)

If populate is true, creates a
JCPageTable by duplicating all of the
data and text formatting stored in the
JCTable. If populate is false, an
empty JCPageTable is created.

createTable(JCDocument doc,
TableDataModeltableDataModel,
boolean populate)

If populate is true, creates a
JCPageTable by duplicating the data
stored in the data source normally
used by the JCTable. Since no
JCTable is passed in, no text
formatting is converted. If populate
is false, an empty JCPageTable is
created.

Method Description

populateTable(JCPageTable doc, JCTable
jcTable)

Populates a JCPageTable with
all of the data and text
formatting stored in the
JCTable.

populateTable(JCPageTable doc, TableDataModel
tableDataModel)

Populates a JCPageTable with
the data stored in the data
source normally used by a
JCTable. Since no JCTable is
passed in, no text formatting is
converted.
Chapter 4 ■ Creating Tables 65

pagelayout.book Page 66 Thursday, April 22, 2004 10:20 PM
4.9.2 Converting Swing JTables

You can also convert tables created with javax.swing.JTable into JCPageTable
instances.

Creating a New JCPageTable

To create a new JCPageTable from an existing Swing JTable or JTable TableModel, use
the JCPageTableFromJTable.createTable() method. You have the following options:

Method Description

createTable(JCDocument doc,
javax.swing.JTable jTable,
boolean populate)

If populate is True, creates a
JCPageTable by duplicating all
of the data, cell fonts, and text
alignments from the view of
the source JTable. If populate
is False, an empty
JCPageTable, with the same
number of columns as the view
of the source JTable, is
created.

createTable(JCDocument doc,
javax.swing.table.TableModel tableModel,
boolean populate)

If populate is True, creates a
JCPageTable by duplicating all
of the data from the source
TableModel. No text formatting
is performed. If populate is
False, an empty JCPageTable,
with the same number of
columns as the source
TableModel, is created.
66 Part I ■ Using JClass PageLayout

pagelayout.book Page 67 Thursday, April 22, 2004 10:20 PM
Populating an Existing JCPageTable
To flow data and text styles from an existing Swing JTable or JTable TableModel into an
existing JCPageTable, use the JCPageTableFromJTable.populateTable() method. You
have the following options:

Examples
To perform a complete conversion of an existing JTable to a JClass PageLayout
PageTable:

JCPageTable pageTable =
JCPageTableFromJTable.create(document, jTable, true);

To convert an existing JTable to a JClass PageLayout PageTable, without preserving text
formatting from the existing JTable so that new formatting can be applied:

// create JCPageTable with same number of columns as JTable
JCPageTable pageTable =

JCPageTableFromJTable.create(document, jTable, false);
// apply our own text formatting to headers and body
JCPageTable headerTable = pageTable.getHeaders();
headerTable.getRow(0).setDefaultStyle(JCTextStyle.HEADING5);
pageTable.setDefaultStyle(JCTextStyle.CODE);
// populate JCPageTable with data from JTable
JCPageTableFromJTable.populate(pageTable, jTable, false);

4.9.3 Converting JDBC Databases

JDBC (Java DataBase Connectivity) is the part of the Java API (java.sql) that allows you
to send SQL queries to a database. You can format the result set of an SQL query into a
JCPageTable.

Method Description

populateTable(JCPageTable table,
javax.swing.JTable jTable,
boolean applyJTableStyles)

Populates an existing
JCPageTable with all of the
data from the view of the
source JTable. If
applyJTableStyles is true,
cell fonts and text alignments
from the source JTable will be
copied to the JCPageTable.

populateTable(JCPageTable table,
javax.swing.table.TableModel tableModel)

Populates a JCPageTable with
all of the data from the source
TableModel. No text
formatting is performed.
Chapter 4 ■ Creating Tables 67

pagelayout.book Page 68 Thursday, April 22, 2004 10:20 PM
1. Create the JCPageTable and the ResultSet.
protected JCPageTable createTable(JCDocument doc) {
ResultSet resultSet = null;
JCPageTable table= null;

2. Load the JDBC driver.
try {
Class.forName(driver); // Example: sun.jdbc.odbc.JdbcOdbcDriver
} catch (ClassNotFoundException cnfe) {
cnfe.printStackTrace();
}

3. Conduct the SQL query and return the JCPageTable.
try {
Connection connection = DriverManager.getConnection(url,

login, password);
Statement statement = connection.createStatement();
resultSet = statement.executeQuery(query);
table = com.klg.jclass.page.JCPageTableFromJDBC.createTable(doc,

resultSet);

// clean up
resultSet.close();
statement.close();
connection.close();

} catch (SQLException sqle) {
JOptionPane.showMessageDialog(null, sqle.toString(), "SQL error",

JOptionPane.ERROR_MESSAGE);
return null;

}

// return the JCPageTable
return table;
68 Part I ■ Using JClass PageLayout

pagelayout.book Page 69 Thursday, April 22, 2004 10:20 PM
5
Adding Formulas to JClass PageLayout

Introduction ■ util.formulae’s Hierarchy ■ Expressions and Results ■ Math Values

Operations ■ Exceptions ■ Using Formulas in JClass PageLayout

5.1 Introduction

The formulae package in com.klg.jclass.util has special capabilities for working with
mathematical objects. Similar to the way that objects such as java.lang.Double wrap a
primitive type, those in com.klg.jclass.util.formulae encapsulate mathematical expressions
(operators) whose operands may be scalars, vectors (in the mathematical sense), and
matrices. These objects may then be stored as the generalized values of cells in a
JClass PageLayout table, or in a JClass LiveTable, where they may be evaluated at run
time to produce results based on the then-current data.

In addition, subclasses of MathValue, which are wrappers for generalized scalars, vectors,
and matrices, provide several methods for converting an expression to a value and to a
String, as well as other methods useful when dealing with these objects.

5.2 util.formulae’s Hierarchy

The interfaces, abstract classes, and derived classes, including possible exception classes,
are shown in Figure 20.
69

pagelayout.book Page 70 Thursday, April 22, 2004 10:20 PM
Figure 20 The inheritance hierarchy for com.klg.jclass.util.formulae.

The diverse set of mathematical operations permit you to compose complex
mathematical formulas and provide references to them.
70 Part I ■ Using JClass PageLayout

pagelayout.book Page 71 Thursday, April 22, 2004 10:20 PM
5.3 Expressions and Results

The top-level interface for the com.klg.jclass.util.formulae package is Expression, whose
sole method is evaluate(). Any object that functions as an expression must have an
evaluate() method that knows how to operate on data that might be a scalar, a vector, or
a matrix. Applying the evaluate() method to an Expression produces a Result, which is
a marker interface that identifies Expression types which are valid return types from the
evaluation of other Expressions.

An Expression may be an Operation, as in

Expression f = new Add(op1, op2);

which, after evaluation, returns a Result.

5.4 Math Values

The abstract class MathValue forms the root for all derived constant-based result/data
classes. It satisfies the Expression interface by defining an evaluate() method, which
simply returns the MathValue as a Result. Its concrete subclasses are MathMatrix,
MathScalar, and MathVector. Because MathValue has an evaluate() method it is an
Expression. Thus, MathValues may be passed as Expression objects.

MathValue Methods

Note: The subclasses of MathValue override all but the first method. Since, for example,
matrixValue() is not appropriate to a MathScalar, it throws an
UnsupportedOperationException if it is called. Other method-data type mismatches also
throw UnsupportedOperationExceptions. The method tables for the subclasses indicate
which methods are data type mismatches for the given class.

MathValue Method Description

evaluate() Satisfies the Expression interface by returning the stored value.
No evaluation is required because no operation is implied.

getDataFormat() Retrieves the NumberFormat associated with this data.

matrixValue() Gets the contents of this MathValue as a matrix of Numbers.

numberValue() Gets the contents of this MathValue as a Number.

setDataFormat() Sets a NumberFormat to use on the contents of this MathValue.

vectorValue() Gets the contents of this MathValue as a vector of Numbers.
Chapter 5 ■ Adding Formulas to JClass PageLayout 71

pagelayout.book Page 72 Thursday, April 22, 2004 10:20 PM
5.4.1 MathScalar

MathScalar is a scalar constant represented as a MathValue. By encapsulating it in this
fashion it can support integer and real numbers, and it can be extended if necessary to
support other types of scalar numbers. Its data field is a realValue, a Number that is output
based on the current dataFormat kept in MathValue.

Example:

double s1 = 10.0; MathValue ss1 = new MathScalar(s1);

MathScalar Constructors
The no-argument constructor MathScalar() creates an instance that encapsulates the
value 0.0, while the other three constructors take a double, an int, or a
java.lang.Number argument.

MathScalar Methods

5.4.2 MathVector

MathVector is a representation of the class of vectors in a linear algebra sense. They may
also be used as operands in matrix multiplication. A MathVector encapsulates a list of
values which may be integers, doubles, or more generally, objects of type Number. It has
methods for retrieval or modification of a value at a particular index, and for outputting
the list as a String. The operators discussed in the next section accept these objects as
operands. For example:

double[] ed = {2.71828, 3.1415927, 1.6020505};
MathValue mv = new MathVector(ed);

MathVector Constructors
The constructors for MathVector parallel those for MathScalar, except they take arrays as
parameters rather than single values.

MathScalar Method Description

matrixValue() Throws an UnsupportedOperationException.

numberValue() Gets the contents of this MathValue as a Number.

toString() Returns a String representation of this value.

vectorValue() Throws an UnsupportedOperationException.
72 Part I ■ Using JClass PageLayout

pagelayout.book Page 73 Thursday, April 22, 2004 10:20 PM
MathVector Methods

5.4.3 MathMatrix

MathMatrix is a representation of the class of matrices, again in the sense of linear
algebra. The package implements the basic addition and multiplication operations in
matrix algebra, including multiplying a matrix by a vector. It has methods for retrieval or
modification of a value at a particular pair of indices, and for outputting the matrix as a
String. The operators discussed in the next section accept these objects as operands. For
example:

double[][] m1 = {{1.1, 1.2, 1.3},
 {2.1, 2.2, 2.3},
 {3.1, 3.2, 3.3}};

MathValue mm = new MathMatrix(m1);

MathMatrix Constructors
The constructors for MathMatrix parallel those for MathScalar, except they take 2D
arrays as parameters rather than single values.

MathVector Method Description

getValueAt() Retrieves the value at a particular index in the vector.

matrixValue() Throws an UnsupportedOperationException.

numberValue() Throws an UnsupportedOperationException.

setValueAt() Sets the value at a particular index in the vector.

toString() Outputs the value of this vector as a String.

vectorValue() Gets the contents of this MathValue as a vector of Numbers.
Chapter 5 ■ Adding Formulas to JClass PageLayout 73

pagelayout.book Page 74 Thursday, April 22, 2004 10:20 PM
MathMatrix Methods

5.5 Operations
The abstract Operation class defines the basic elements of an operator. Binary operators
have a left and right operand, which enables the correct ordering to be applied to matrix
operations and any other non-commutative operators. Unary operators have a single
operand. For example:

double[] ed = {2.71828, 3.1415927, 1.6020505};
double[] rd = {(Math.sqrt(5.0) + 1.0) / 2.0, 4.0, 32.0};

MathValue e = new MathVector(ed);
MathValue r = new MathVector(rd);

Expression add = new Add(e, r);

Operation Constructors
There is a no-argument constructor that creates a generic operator, and there are
constructors for every unary and binary permutation of Expressions and Numbers.
A sample constructor is: Operation(Expression left, Expression right).

MathMatrix Method Description

getValueAt() Retrieves the value at a particular row, column pair of index
values in the matrix.

matrixValue() Gets the contents of this MathValue as an array of Numbers.

numberValue() Throws an UnsupportedOperationException.

setValueAt() Sets the value at a particular row, column pair of index values
in the matrix.

toString() Outputs the value of this vector as a String.

vectorValue() Throws an UnsupportedOperationException.
74 Part I ■ Using JClass PageLayout

pagelayout.book Page 75 Thursday, April 22, 2004 10:20 PM
Operation Methods

5.5.1 The Defined Mathematical Operations

Unary Operators
Unary operators take one parameter, which is either an Expression or a Number. Because
they are Expressions they all have an evaluate() method which returns a Result.

Binary Operators
Binary operators take two parameters, which are either Expressions or a Numbers.
Because they are Expressions they all have an evaluate() method which returns a
Result,

Operation Method Description

clone() Returns a deep-copy clone of the operation and of all operands.

evaluate() Returns a Result containing the evaluation of the expression.

Operator Description

Abs The class for the absolute value operation. The operand may be a Number
or an Expression, which may be a MathScalar or an ExpressionList,
but not a vector or a matrix.

Ceiling Ceiling is defined as the least integer greater than or equal to the
operand, which may be a MathValue.

Floor Floor is defined as the greatest integer less than or equal to the operand.

Root Returns the positive square root of its operand.

Round Round is defined as nearest integer to the operand. Rounding is done to
an even number if the operand is exactly midway between two integers.

Trunc Takes the integer part of a number. Equivalent to rounding to the nearest
integer closer to zero. Example: trunc(-3.5) = -3.

Operator Description

Add Adds two Expressions. If the Expressions are vectors of the same
length, pairwise addition is performed. Matrices may be added
providing the two operands have the name number of rows and
columns. Unary addition is possible, and returns the evaluated
operand.
Chapter 5 ■ Adding Formulas to JClass PageLayout 75

pagelayout.book Page 76 Thursday, April 22, 2004 10:20 PM
Average Average (arithmetic mean) is defined as the sum of all elements
divided by the number of elements. Its one-parameter constructor is
an Expression, usually a list. Its two-parameter constructors are
combinations of Expressions and Numbers.

Count Count determines the total number of elements in its operands. Its
one- and two-parameter constructors take one or two Expressions
(usually a list or lists) and count their elements.

Divide Division is the ratio of two operands. The left operand is the
numerator and the right operand is the denominator.

GeometricMean Geometric mean is defined as the nth root of the product of a set of n
numbers. Its one-parameter constructor takes an Expression, usually
a list. Its two-parameter constructors take combinations of
Expressions and Numbers, multiplying all elements together and
taking the nth root.

Max Max is defined for a pair of elements or across a list. It selects the
largest element. Its one-parameter constructor takes an Expression,
usually a list. Its two-parameter constructors take combinations of
Expressions and Numbers, examining all elements and selecting the
largest.

Median The Median of a list is the middle element of a sorted list, or the
average of the two middle values if the list has an even number of
elements. Its one- and two-parameter constructors take one or two
Expressions.

Min Min is defined for a pair of elements or across a list. It selects the
smallest element. Its one-parameter constructor takes an Expression,
usually a list. Its two-parameter constructors take combinations of
Expressions and Numbers, examining all elements and selecting the
smallest.

Multiply Multiplication is the product of a pair of elements. Its two-parameter
constructors take combinations of Expressions and Numbers,
examining all elements and selecting the smallest.

Power The exponentiation (^) operation. Its two-parameter constructors
take combinations of Expressions and Numbers. The left operand is
the base and the right operand is the exponent.

Operator Description
76 Part I ■ Using JClass PageLayout

pagelayout.book Page 77 Thursday, April 22, 2004 10:20 PM
5.5.2 Reducing Operations to Values

Since Operations are Expressions, they all have an evaluate() method. Evaluation
returns a Result, which may be converted to a String for printing. Here is an example:

double edd = 2.0;
double exp = 8.0;
MathValue eddy = new MathScalar(edd);
MathScalar expy = new MathScalar(exp);

double[] ed = {2.71828, 3.1415927, 1.6020505};
MathValue e = new MathVector(ed);

Expression pow = new Power(eddy, expy);
Expression powr = pow.evaluate();
// Either one of these has a toString() method
System.out.println("Power without evaluate(): " + pow);
System.out.println("Power with evaluate(): " + powr);

After which the following is written on the output:

Power without evaluate(): com.klg.jclass.util.formulae.Power@eb4f3b8c
Power with evaluate(): 256.0

You see that calling evaluate() is necessary to have a value returned by the implicit
toString() call.

Product A product can be performed on a pair of elements or across a list.
The product of an ExpressionList is the product of its individual
members. Multiplication order is left-to-right, and first element of a
list to last element. The result of a matrix multiplication may depend
on the order of the operands.

Sort This operation returns a sorted list of the given elements. Any
secondary or nested lists are flattened.

StdDeviation The sample standard deviation, given by
sd = root((sum(1 to n)(element - average)^2) / (n - 1)),
where n is the number of samples and average is the sample average.
It has one- and two-parameter constructors consisting of
Expressions.

Subtract The difference between two numbers. It has two-parameter
constructors that take combinations of Expressions and Numbers.

Sum A sum can be performed on a pair of elements or across a list. Its
two-parameter constructors take combinations of Expressions and
Numbers. Its one-parameter constructor usually takes an
ExpressionList.

Operator Description
Chapter 5 ■ Adding Formulas to JClass PageLayout 77

pagelayout.book Page 78 Thursday, April 22, 2004 10:20 PM
5.6 Expression Lists

Expression lists are handy containers that permit you to perform an operation on a group
of values.

MathExpressionList
The example shown here uses the binary form of Add to find the grand total of all the
elements in two ExpressionLists.

// Expression Lists
Expression[] exprs1 = {null, null, null, null, null, null, null,

null, null, null};
for (int i = 0; i < 10; i++){

exprs1[i] = new MathScalar(95 + i);
}
ExpressionList explist1 = new MathExpressionList(exprs1);

Expression[] exprs2 = {null, null, null, null, null, null, null,
null, null, null};

for (int i = 0; i < 10; i++){
exprs2[i] = new MathScalar(95 + i);

}
ExpressionList explist2 = new MathExpressionList(exprs2);

sss1 = new Sum(explist1, explist2);
ssss1 = sss1.evaluate();
System.out.println(

"Summing ExpressionLists with evaluate(): " + ssss1);

Here’s the output:

Summing ExpressionLists with evaluate(): 1990

QueryExpressionList
A QueryExpressionList is designed as a wrapper for a set of Expressions stored in a
JDBC-type ResultSet, that is, the result of a database query. Users of JClass DataSource
may also use this facility.

TableExpressionList
Expression lists may be used to extend data from portions of a JCPageTable to produce
summary reports. See Section 5.8, Using Formulas in JClass PageLayout, for details.

5.7 Exceptions

OperandMismatchException
Various operations such as adding a number to a vector are not defined, whereas other
operations such as multiplying a vector by a number can be interpreted as a scaling
operation. At compile time numbers, vectors, and matrices can be declared as generic
Expressions, making it impossible to predetermine which operations are not permitted.
78 Part I ■ Using JClass PageLayout

pagelayout.book Page 79 Thursday, April 22, 2004 10:20 PM
A run time check of the validity of an operation must be made. If a mathematical
construct is evaluated and found to be illegal, the class throws an
OperandMismatchException.

ClassCastException
There are cases where a run time class cast exception may occur. While most of these
should be avoidable by selecting the correct class (such as using Product rather than
Multiply when multiplying two vectors) the fact that both take Expressions as their
parameters makes it difficult to avoid the possibility of an end user passing in an incorrect
type if your application permits flexible user input. You may permit substitution of one
arithmetic class for another, since they are all Operations. This also opens the door to
class cast exceptions.

If the possibility exists for either of these exceptions, your code should attempt to handle
it.

5.8 Using Formulas in JClass PageLayout

5.8.1 Performing a Mathematical Operation on a Range of Cells

Expression Lists and Expression References
Expression list objects hold a group of Expressions. ExpressionList is an abstract class
whose methods permit the inclusion of additional elements to those already present, a
method for removing elements or clearing all elements, for retrieving an element, and for
comparing with another list. These operations are common to the concrete classes
MathExpressionList, QueryExpressionList, and TableExpressionList.

Expression lists may be used as arguments for all mathematical operations. When given
an expression list, evaluating a unary operator such as Abs returns a list containing the
absolute values of its input list. Binary operators may return a single result or a list. Given
expression lists, the mathematical operators Abs, Add, Ceiling, Divide, Floor, Multiply,
Power, Remainder, Root, Round, Sort, and Subtract return lists, while Average, Count,
GeometricMean, Max, Median, Min, Product, and Sum all return a single result after
evaluate() has been called on them.
Chapter 5 ■ Adding Formulas to JClass PageLayout 79

pagelayout.book Page 80 Thursday, April 22, 2004 10:20 PM
Use TableExpressionList to perform an operation over a range of cells in a
JCPageTable. The following code snippet shows that the required parameters are a table
data model and a block of cells.

Expression expression = new TableExpressionList(
pageTable.getTableData(),
new MathScalar(startRow), // first row
new MathScalar(endRow), // last row
new MathScalar(startColumn), // first column
new MathScalar(endColumn) // last column
);

Sum sum = new Sum(expression);

The next code fragment places the formula for the sum in a selected cell. The formula is
evaluated and the value of the sum is written to the designated cell.

pageTable.getCell(i, j).setCellValue(sum);

The advantage of using TableExpressionLists is that the formulas containing them can
be evaluated after all table data has been filled in.
80 Part I ■ Using JClass PageLayout

pagelayout.book Page 81 Thursday, April 22, 2004 10:20 PM
6
Refining a Document

Headers and Footers ■ Multiple Columns ■ Page Numbers ■ Creating Macros

Units of Measurement ■ Importing Images ■ Displaying Imported Components ■ Creating Draw Styles

Drawing Shapes ■ Render Objects ■ Listening for JClass PageLayout Events

6.1 Headers and Footers

You create headers and footers in the page template by defining frames not connected to
the document’s main flow. Building Page Templates, in Chapter 2, shows you how to use
JClass PageLayout’s default templates, and lists the XML elements you can use to write
your own templates.

Because header and footer frames are not connected to the main flow of the document,
but are defined separately, any text or images you render to those frames in a page
template are replicated on every page that is based on that template. For an example,
refer to Section 6.3, Page Numbers.

The following XML template lays out a standard 8.5x11 page consisting of a header
frame, a body frame, and a footer frame.

<PAGE NAME="BookLeft" UNIT="inches">
<LOCATION X="0" Y="0"/>
<SIZE WIDTH="8.5" HEIGHT="11.0"/>
<FRAME NAME="header">
<LOCATION X="0.5" Y="0.5"/>
<SIZE WIDTH="7.5" HEIGHT="0.5"/>
</FRAME>
<FRAME NAME="body">
<LOCATION X="0.5" Y="1.25"/>
<SIZE WIDTH="7.5" HEIGHT="8.5"/>
</FRAME>
<FRAME NAME="footer">
<LOCATION X="0.5" Y="10"/>
<SIZE WIDTH="7.5" HEIGHT="0.5"/>
</FRAME>
<FLOWFRAME NAME="body"/>
<FLOWPAGE NAME="BookRight"/>
<FLOWSECTION NAME="BookChapter"/>
</PAGE>
81

pagelayout.book Page 82 Thursday, April 22, 2004 10:20 PM
This page template defines the following layout.

Figure 21 Header, Body, and Footer frames.

6.2 Multiple Columns

To create multiple columns, add COLUMN COUNT and SPACING attributes to the definition of
the body frame in the XML template, for example:

<FRAME NAME="body">
<LOCATION X="0.5" Y="1.25"/>
<SIZE WIDTH="7.5" HEIGHT="8.5"/>
<COLUMN COUNT="2" SPACING="0.5"/>

The COLUMN COUNT and SPACING parameters instruct JClass PageLayout to flow text
through the body frame in two columns, separated by a gap of 0.5”. Columns are always
of equal width.
82 Part I ■ Using JClass PageLayout

pagelayout.book Page 83 Thursday, April 22, 2004 10:20 PM
The changes to the template produce the following results.

Figure 22 Text flowing through columns.

6.3 Page Numbers
You number pages by embedding a macro in the frame that is to contain the page
number, usually the header or the footer.

JCPage template_page = doc.stringToTemplate("bookLeft");
JCFrame footer_frame = template_page.stringToFrame(FOOTER);

JCTextStyle style = JCTextStyle.stringToStyle("default text");
try {
footer_frame.print(style, TextMacro.PAGE_NUMBER);
}
catch (EndOfFrameException e) {}

The preceding example uses the stringToFrame method to establish that the
footer_frame is to hold the PAGE_NUMBER macro. Once the macro is embedded in the
page template, it is added to the footer frame and evaluated whenever a new page is
generated from this template.

Any content added to template pages should be done before any template pages are used,
that is, before JCFlow is instantiated (otherwise content may not appear on the first page
of the document). Please see Building Page Templates, in Chapter 2, for more
information.
Chapter 6 ■ Refining a Document 83

pagelayout.book Page 84 Thursday, April 22, 2004 10:20 PM
You must repeat this process for every page template used to generate document pages
that contain page numbers.

template_page = doc.stringToTemplate("bookRight");
footer_frame = template_page.stringToFrame(FOOTER);

// print the page number macro to the frame
try {
footer_frame.print(style, TextMacro.PAGE_NUMBER);
}
catch (EndOfFrameException e) {}

In this manner, you have precise control over which pages display page numbers and
which do not.

The TextMacro interface gives you the following options:

6.4 Creating Macros

In addition to the predefined macros in TextMacro (see Section 6.3, Page Numbers),
JClass PageLayout allows you to create customized macros that allow the insertion of
custom run-time text into a document.

To create your own macro, you must first create a java class that implements the
TextMacro interface. (TextMacro is in the com.klg.jclass.page package.) TextMacro
specifies three methods that must be implemented in your macro class: evaluate(),
getStatus(), and getText(). Once the macro has been added to a document, each
implemented method will be called by JClass PageLayout.

If getStatus() and getText() are called before evaluate(), you must ensure that they
return MACRO_INITIALIZED and a non-null placeholder Sting, respectively. Once
evaluate() is called by JClass PageLayout, the method should attempt to construct the
text String that is represented by the macro.

If the macro can be evaluated given the current flow and page information, evaluate()
must return MACRO_EVALUATED, as must any subsequent calls to getStatus(). Subsequent
calls to getText() must return the evaluated text String.

PAGE_NUMBER Inserts the current page number.

ROMAN_NUMBER Inserts the current page number in Roman numerals.

SECTION_NUMBER Inserts the current section number.

SECTION_PAGE_NUMBER Insets the current page number within the current
section.

SECTION_PAGE_TOTAL Inserts the total number of pages in the current section.

PAGE_TOTAL Inserts the total number of pages in the document.
84 Part I ■ Using JClass PageLayout

pagelayout.book Page 85 Thursday, April 22, 2004 10:20 PM
If the macro cannot be evaluated given the current flow and page information,
evaluate() must return MACRO_NOT_YET_EVALUATED, as must any subsequent calls to
getStatus(). Subsequent calls to getText() must return a non-null placeholder String.

Note: evaluate() may be called by JClass PageLayout several times per macro (and may
be passed different, potentially null values for the flow and page parameters). Once
evaluate() returns MACRO_EVALUATED for the instance of the macro within the current
frame, it is never called again. If the macro is being used in a static frame across multiple
pages (for example, in the header of a table or a static page frame), the evaluate()
method will be called again when any new frame containing the macro instance is created
by JClass PageLayout.
Chapter 6 ■ Refining a Document 85

pagelayout.book Page 86 Thursday, April 22, 2004 10:20 PM
For example, here is a class that overrides TextMacro and prints continued each time it is
evaluated, except the first time.

import com.klg.jclass.page.*;

public class ContinuedMacro implements TextMacro {

 /** The text to which this macro has been evaluated */
 protected String text = "";

 /** The status of the result of the last evaluation */
 protected int status = TextMacro.MACRO_INITIALIZED;

 /** True the first time this macro is evaluated; false otherwise. */
 private boolean firstTime = true;

 public ContinuedMacro() {
 }

 /** Return currently evaluated text. */
 public String getText() {
 // if there is no current value for the macro, return

placeholder text
 if (text == null) {
 return ("");
 }
 return (text);
 }

 /** Return current evaluation status. */
 public int getStatus() {
 return (status);
 }

 /** Evaluate macro. Parameters flow and page may be null. */
 public int evaluate(JCFlow flow, JCPage page) {

// if flow or page is null, don't evaluate
 if (flow == null || page == null) {
 text = null;
 status = TextMacro.MACRO_NOT_YET_EVALUATED;
 } else {
 // first evaluation -- text is blank
 if (firstTime) {
 text = "";
 firstTime = false;
 status = TextMacro.MACRO_EVALUATED;
 // all other evaluations -- text is "continued"
 } else {
 text = "continued";
 status = TextMacro.MACRO_EVALUATED;
 }
 }

// return evaluation status
 return status;
 }
}

86 Part I ■ Using JClass PageLayout

pagelayout.book Page 87 Thursday, April 22, 2004 10:20 PM
Note: This macro can be used in many instances; for example, in table headers.

To add this macro to a frame, use:

try {
 frame.print(textStyle, new ContinuedMacro());
} catch (EndOfFrameException eofe) {
}
To add this macro to the flow, use:
flow.print(new ContinuedMacro());

6.5 Units of Measurement

Many JClass PageLayout functions require you to measure distances on the output page.
For example, to import images or draw shapes, you must pinpoint the location on the
page where the image or drawn object is to be placed. To do so, you must possess an
understanding of the methods JClass PageLayout provides for the precise measurement
of linear distances.

The JCUnit class lets you define linear distances using three different units of
measurement: centimeters, inches, and points. You can set default units and convert
distances from one unit type to the next. You can use JCUnit.Point to precisely identify a
location on a page and JCUnit.Margins to create a margin on the inside of a frame.

6.5.1 Setting a Default Unit of Measurement
You can set the default unit type to be centimeters, inches, or points. Once you set a
default unit, all methods that use measurement units use the default, unless instructed
otherwise. For example, to set centimeters as the default unit type, enter:

JCUnit.setDefaultUnit(JCUnit.CM);

6.5.2 Converting Units of Measurement

Your application may need to convert a distance from one unit type to another on the fly.
JCUnit provides methods to convert a distance to each supported unit type. For example,
suppose you have defined a distance in centimeters, as follows:

JCUnit.Measure measurement = new JCUnit.Measure(JCUnit.CM, 5);

To convert distance to a measurement in inches, enter:

double distanceInInches = JCUnit.getAsInches(
measurement.units, measurement.distance);

or more simply,

measurement.getAs(JCUnit.INCHES);
Chapter 6 ■ Refining a Document 87

pagelayout.book Page 88 Thursday, April 22, 2004 10:20 PM
6.5.3 Defining Points

Some JClass PageLayout functions require you to define a location on a page, for
example, in order to draw a line or a polygon. JCUnit.Point makes it possible for you to
precisely define locations, using any of the available units of measurement.

JCUnit.Point point = new JCUnit.Point(JCUnit.INCHES, 2.5, 2.5);

The preceding example pinpoints a location on the page at the X- and Y-coordinates of
2.5 inches by 2.5 inches. To draw a line or a polygon, you would define other points on
the page and use the corresponding JCFrame method to connect those points with lines.
For more information, refer to Section 6.9.1, Drawing Lines, and Section 6.9.5, Drawing
Polygons.

6.5.4 Creating Margins
You can use JCUnit.Margins to set margins around the interior of a frame, for example,
inside the body frame on your page.

Figure 23 Margins inside a frame.

These margins are the same as those created when you define the frames in a page
template. For more information, refer to Building Page Templates, in Chapter 2.

This example assumes that the JCPage template is named template.

JCFrame frame = template.stringToFrame("body");
frame.setMargins(new JCUnit.Margins((JCUnit.POINTS, 5, 5, 5, 5));

This example creates a margin of 5 points between the edge of the frame and any object
rendered to it.

JCUnit.Margins provides methods that allow you to specify the width of individual
margins.

JCUnit.Margins
Method Result

setBottom() Sets the bottom margin to the width of the given
JCUnit.Measure.
88 Part I ■ Using JClass PageLayout

pagelayout.book Page 89 Thursday, April 22, 2004 10:20 PM
6.6 Importing Images

To add an Image to a document, the first step is to load the image file. For example:

Image image = Toolkit.getDefaultToolkit().getImage("image.jpg");

This example instantiates the image as a java.awt.Image object and uses
Toolkit.getDefaultToolkit().getImage() to load the image from its file source.

Next, you use a JCFrame or JCFlow embed(), float(), or paste() method to render the
image into the current frame or flow. Recall that JCFrame methods render content apart
from the main flow of the document, while their JCFlow counterparts render content into
the flow.

Embedding places the image on the current line of text, which will wrap if there is not
enough space on the current line to hold the image. For this reason, the embed method is
often used for smaller graphics.

Floating an image inserts it on its own line. If there is not enough space on the page to
hold the image, it “floats” to a roomier location, for example, the top of the next page. For
this reason, the float method is often used for larger graphics.

Pasting an image locks the image at a set of coordinates you define. The paste() method
is used to import images that must always appear at the same location, such as a logo in
company letterhead. Pasting is only available as a JCFrame method.

In the following example, the image is resized to 50 by 50 points and embedded on the
current line.

try {
flow.embedImage(image, new JCUnit.Dimension(JCUnit.POINTS,
50, 50));
}
catch (EndOfFrameException e) {
System.out.println(e.toString());
}

setLeft() Sets the left margin to the width of the given
JCUnit.Measure.

setRight() Sets the right margin to the width of the given
JCUnit.Measure.

setTop() Sets the top margin to the width of the given
JCUnit.Measure.

JCUnit.Margins
Method Result
Chapter 6 ■ Refining a Document 89

pagelayout.book Page 90 Thursday, April 22, 2004 10:20 PM
The following table describes the types of methods available for importing images.

6.6.1 Importing EPS Images

If your application prints to JCPostScriptPrinter, you can add EPS images to the
document. You instantiate the file using EPSImage and provide an open reader to the EPS
data.

EPSImage epsImage = new EPSImage(new BufferedReader(reader));

Next, you import the image using an embedEPS(), floatEPS(), or pasteEPS() method:

flow.floatEPS(epsImage, new JCUnit.Dimension(JCUnit.POINTS, 75, 100));

6.6.2 Importing Swing Icons

You can also import icons from the javax.swing.icon class into a JClass PageLayout
document in much the same manner you import other images.

Icon icon = new ImageIcon(image);
flow.embedIcon(icon);

JCFlow Method Result

embedEPS() Imports the image specified by EPSImage and places it on
the current line of text.

embedIcon() Imports the image specified by javax.swing.icon and
places it on the current line of text.

embedImage() Imports the image specified by java.awt.Image and places
it on the current line of text.

floatEPS() Imports the image specified by EPSImage and places it on its
own line.

floatIcon() Imports the image specified by javax.swing.icon and
places it on its own line.

floatImage() Imports the image specified by java.awt.Image and places
it on its own line.

JCFrame.pasteEPS() Imports the image specified by EPSImage and locks it to a
specified location on the page.

JCFrame.pasteIcon() Imports the image specified by javax.swing.icon and locks
it to a specified location on the page.

JCFrame.pasteImage() Imports the image specified by java.awt.Image and locks it
to a specified location on the page.
90 Part I ■ Using JClass PageLayout

pagelayout.book Page 91 Thursday, April 22, 2004 10:20 PM
The preceding example creates a Swing icon based on the image defined earlier, and
places it on the current line in the flow.

6.7 Displaying Imported Components

In addition to displaying images defined by image files, JClass PageLayout is capable of
importing and displaying a visual object, such as a JClass Chart, so long as the object is of
type java.awt.Component. The process is simple: instantiate the component and pass it to
the current flow as a parameter in the flow’s embedComponent() method.

Note: If you choose to embed a component using embedComponent(), the component
cannot be changed until after the JCDocument.print() method has been executed.
Because a document is only a series of information and references until it is printed,
changing a component before it has been printed may change the output of the
component, resulting in it being drawn differently than what was originally intended.

An example of a page containing a JClass Chart can be found in ChartExample.java. Once
a component that knows how to draw itself is instantiated, one line is all that is needed to
embed it in the flow:

// Create new chart instance.
chart = new JCChart();
// Load the chart’s data from a data source
// so there is something to display, then embed it:
// ...
flow.embedComponent(chart); // Places the chart in the flow

// The following adds a caption to the embedded image:
flow.newLine();
flow.setCurrentTextStyle(JCTextStyle.ITALIC);
flow.print("Figure 1.1 A Simple Chart");

The image of the component may be drawn using:

flow.floatComponent(chart);

In this case, the image is drawn after the current line. If the command is encountered
while there is a partial line being output, that line will be completed before the image is
positioned on the page. The method takes alignment parameters to further control its
position.

If you need to separate the image from the current line, bracket the call to
embedComponent() with newlines, as follows,

flow.newLine();
flow.embedComponent(chart);
flow.newLine();

Method embedComponent() takes a java.awt.Component as a required parameter and two
optional parameters: alignment and size. The alignment parameter takes one of the
alignment constants in JCDrawStyle for positioning an object vertically relative to the line
Chapter 6 ■ Refining a Document 91

pagelayout.book Page 92 Thursday, April 22, 2004 10:20 PM
it is on. This parameter is useful for positioning a small component’s image. The size
parameter is specified with a JCUnit.Dimension object and permits scaling the image
both horizontally and vertically.

Besides setting the size by passing a size parameter to embedComponent(), a component’s
printable size is determined:

■ By the component’s preferred size, if no other size setting has been made.

■ By using the component’s setSize() or setPreferredSize() method, if it has one.

■ By its instantiated size if the application creates a instance of the component and
displays it on-screen in a frame before flowing it on a page, as is done in
ChartExample.java.

6.7.1 Native Scaling

You can use JClass PageLayout to print components and images to EPS, PS, PDF, or
PCL. Note that you can embed components and images to achieve greater resolution
through the use of the output type’s native scaling. This process is for only PDF, PS and
EPS (AWT printing is constantly at 72 dpi -- this is a Java limitation).

For instance, if you have an image that is 300 pixels by 300 pixels and you want to
display it at a resolution of 300 dpi, you should embed the image at a size of 1 inch by 1
inch. Using this same image, if you wanted a resolution of 600 dpi, you would embed the
image at a size of 0.5 inches by 0.5 inches.

6.8 Creating Draw Styles

Adding Borders, in Chapter 4 demonstrates the use of draw styles when drawing borders
in a table. Later in Section 6.9, Drawing Shapes, you’ll define a draw style to use.

Draw styles define the appearance of objects drawn on a page, such as the lines used in
tables. JCDrawStyle provides methods and procedures for defining draw styles you can
use to control the appearance of the lines and fills of the drawn objects in your document.

The following example defines a draw style named ds.

JCDrawStyle ds = JCDrawStyle.LINE;

6.8.1 Setting Line Properties

JCDrawStyle provides methods you can use to control the appearance of lines drawn in
the draw style you’ve created. For example, to adjust the thickness of the line to 5 pts,
enter:

ds.setLineWidth(new JCUnit.Measure(JCUnit.POINTS, 5));
92 Part I ■ Using JClass PageLayout

pagelayout.book Page 93 Thursday, April 22, 2004 10:20 PM
To change the solid line to a dashed line, enter:

ds.setLineType(LINE_TYPE_BROKEN);

The following table describes the JCDrawStyle methods you can use to modify line styles.

6.8.2 Setting Fill Properties
By altering the draw style, you can adjust the fill color of two-dimensional objects, such as
circles, rectangles, or polygons. JCDrawStyle provides separate methods for the
specification of line and fill colors.

The following example modifies the draw style created in the previous section (ds), by
setting its fill foreground color to yellow. You can specify any fill color you have defined
using java.awt.Color.

ds.setFillForegroundColor(yellow);

6.9 Drawing Shapes

Using JClass PageLayout, your Java application can draw and print a variety of geometric
shapes, including lines, circles, rectangles, rounded rectangles, and polygons.

To draw a shape, you must provide a JCDrawStyle that describes its appearance. (For
more information, refer to Section 6.8, Creating Draw Styles.) In simple cases such as the
following examples, you can use a default style, for example:

JCDrawStyle ds = JCDrawStyle.LINE;

JCDrawStyle Method Result

setDashLength Controls the length of the dashes and the spaces between
them when line type is set to LINE_TYPE_BROKEN.

setForegroundColor Controls the color of the line.

setLineSpacing In a multi-line style, such as LINE_TYPE_DOUBLE, controls the
amount of space left between the lines.

setLineType Selects the appearance of the line. Options include:

■ LINE_TYPE_BROKEN

■ LINE_TYPE_DOUBLE

■ LINE_TYPE_SINGLE

setLineWidth Uses JCUnit.Measure to control the width of the line.
Chapter 6 ■ Refining a Document 93

pagelayout.book Page 94 Thursday, April 22, 2004 10:20 PM
6.9.1 Drawing Lines

To draw a line, you create an array of points, then call JCFrame.drawLine() to connect
those points with a line drawn in the current JCDrawStyle.

ArrayList list = new ArrayList();
list.add(new JCUnit.Point(JCUnit.CM, 2, 3.5));
list.add(new JCUnit.Point(JCUnit.CM, 2, 5.5));
frame.drawLine(ds, list);

The preceding example draws a line between the two points defined in the array, as
illustrated in the following diagram.

Figure 24 A drawn line.

6.9.2 Drawing Rectangles
To draw a rectangle, use JCFrame.drawRectangle(). For example:

frame.drawRectangle(ds, new JCUnit.Point(JCUnit.POINTS, 25, 100),
new JCUnit.Dimension(JCUnit.POINTS, 50, 50));

The drawRectangle() method creates the outline of a rectangle. JCUnit.Point places the
upper-left corner of the rectangle on the X- and Y-coordinates of 25 by 100 points.
JCUnit.Dimension makes the rectangle a square by setting its size to 50 by 50 points.

Figure 25 An outlined square (50 by 50).
94 Part I ■ Using JClass PageLayout

pagelayout.book Page 95 Thursday, April 22, 2004 10:20 PM
To draw a filled rectangle, use fillRectangle(). The color used to fill the rectangle is the
color defined by JCDrawStyle.setFillForegroundColor().

frame.fillRectangle(ds, new JCUnit.Point(JCUnit.POINTS, 100, 100),
new JCUnit.Dimension(JCUnit.POINTS, 50, 50));

The sample code draws a square with a 100% black fill at the X- and Y-coordinates of 100
by 100 points, with dimensions of 50 by 50 points.

Figure 26 A filled square (50 by 50).

6.9.3 Drawing Rounded Rectangles
You can also draw outlined and filled rectangles with rounded corners. For rounded
rectangles, you need to specify the radius of the rounded corners using JCUnit.Measure.

To draw the outline of a rounded rectangle:

frame.drawRoundedRectangle(ds, new JCUnit.Point(JCUnit.POINTS,
350, 350), new JCUnit.Dimension(JCUnit.POINTS, 50, 50),
new JCUnit.Measure (JCUnit.POINTS, 5));

The preceding example produces a rounded rectangle with dimensions of 50 by 50 points
and a corner radius of 5 points:

Figure 27 An outlined square with rounded corners.

To draw a filled, rounded rectangle:

frame.fillRoundedRectangle(ds, new JCUnit.Point(JCUnit.POINTS,
400, 400), new JCUnit.Dimension(JCUnit.POINTS, 50, 50),
new JCUnit.Measure (JCUnit.POINTS, 5));
Chapter 6 ■ Refining a Document 95

pagelayout.book Page 96 Thursday, April 22, 2004 10:20 PM
The preceding example produces the following result:

Figure 28 A filled square with rounded corners.

6.9.4 Drawing Circles
To draw a circle, use the JCFrame.drawCircle() method. For instance, here is the code to
place the center of the circle at the X- and Y-coordinates of 175 by 175 points, and to set
the radius of the circle to 25 points:

frame.drawCircle(ds, new JCUnit.Point(JCUnit.POINTS, 175, 175),
new JCUnit.Measure(JCUnit.POINTS, 25));

JCUnit.Point places the center of the circle at the X- and Y-coordinates of 175 by 175
points. JCUnit.Measure sets the radius of the circle to 25 points.

Figure 29 A circle with a radius of 25 points.

As with rectangles, you can draw circles filled with the color defined by the JCDrawStyle.

frame.fillCircle(ds, new JCUnit.Point(JCUnit.POINTS, 225, 225),
new JCUnit.Measure(JCUnit.POINTS, 25));
96 Part I ■ Using JClass PageLayout

pagelayout.book Page 97 Thursday, April 22, 2004 10:20 PM
The preceding example produces the following result:

Figure 30 A filled circle with a radius of 25 points.

6.9.5 Drawing Polygons

JClass PageLayout also allows you to draw angular shapes with more than two sides —
polygons. To draw a polygon, you create an ArrayList of points that define the X- and Y-
coordinates of each of the polygon’s corners. You then instruct JClass PageLayout to draw
the polygon by connecting those points with lines.

For example, you could use the following code to draw a triangle:

ArrayList list = new ArrayList();
list.add(new JCUnit.Point(JCUnit.POINTS, 275, 250));
list.add(new JCUnit.Point(JCUnit.POINTS, 300, 300));
list.add(new JCUnit.Point(JCUnit.POINTS, 250, 300));
frame.drawPolygon(ds, list);

Using the X- and Y-coordinates as a guide, JClass PageLayout draws the following object:

Figure 31 Constructing a polygon from a list of X- and Y-coordinates.

To draw more complex polygons, extend the list. For example, to draw a hexagon, define
a total of six points in the list.
Chapter 6 ■ Refining a Document 97

pagelayout.book Page 98 Thursday, April 22, 2004 10:20 PM
6.10 Render Objects

Render objects allow a description of the page-marking actions needed to draw a page
stored in memory as the document is created. There are two kinds of render objects:
those directly representing page-marking primitives (such as drawn lines or formatted
text), and those representing additions to the flow of conceptual objects (such as
horizontal rules). The current set of provided render objects includes all supported
graphical primitives and all higher-level objects (for instance, images and tables) which
can be added to the flow.

6.10.1 Render Object Categories

There are several interfaces that provide categorization of the types of render objects. The
basic interfaces comprise:

■ Embedable. Embedable objects can be added into the text flow as flowed objects
because the interface provides the necessary support for determining the position of
this object relative to the line contents. Text is not considered embedable because it
defines the baseline of a line and doesn't need alignment attributes. ImageRender is
the only Embedable render object.

■ Floatable. Floatable objects can be added into the document flow as independent
paragraph-level objects that do not break lines and allow normal flowed content to be
added while they are awaiting sufficient space. ImageRender is the only Floatable
object.

■ FlowMarker. FlowMarker objects are not graphical primitives, but represent logical
elements of the flow, which may have printer-specific or variable handling. The
current FlowMarker objects are HRuleMarker, ImageMarker, and TableMarker.

■ Splitable. Splitable objects are flow objects that implement methods that allow them
to be broken into smaller pieces in order to fit on lines. The best example is text,
which can be divided into words or even individual letters. StringRender is currently
the only Splitable object.

6.10.2 Subclasses of the Render object

The com.klg.jclass.page.render package also contains classes that are not render
objects; there are a number of page numbering and counting macros. The macro classes
each implement a single page numbering or counting mechanism, such as representing
the page number in roman numerals, and can be distinguished by names ending in
...Macro.java. The following table describes all objects that can be considered render
objects.

ArcRender Represents a graphical primitive in the shape of a circular arc.
A complete circle is a special case of this render object.

BoxRender A graphical primitive describing a rectangular area.
98 Part I ■ Using JClass PageLayout

pagelayout.book Page 99 Thursday, April 22, 2004 10:20 PM
6.11 Listening for JClass PageLayout Events

If your application needs to be informed about such events as the beginning, completion,
or ending of a frame or a page, you can implement the JCFlowListener interface and

HRuleMarker Indicates that at this point in the flow, a line is drawn between
the margins of the current frame. Storing a horizontal rule in
this fashion allows the printer to make a decision about how it
is reproduced rather than simply copying a stored line.

ImageMarker Records the point in the flow at which a floating image was
added. This marker allows the HTML printer to reposition
images at their point of addition to the document, rather than
at the point at which they may finally have been placed on a
page.

ImageRender Represents a drawable object such as an Image, an EPS file,
or a Component.

LineRender A graphical primitive for a line with an indefinite number of
straight segments. Curves are not supported.

MacroRender This render object stores a reference to a text macro that is to
be evaluated and the result entered at the given point in the
document.

RoundRectRender Describes a rectangular graphical primitive with rounded
corners.

StringRender Represents all text elements in the document. As such it
exports a number of methods designed to allow manipulation
of the contents of text Strings.

SymbolRender Instances of this class represent actions with respect to the text
flow, such as newLine and newParagraph. A SymbolRender
marking a new line action distinguishes an application-driven
newLine() – the parent application called newLine() on the
JCFlow or JCFrame – from an implicit newLine(), which
occurs when a line becomes filled by the flowPrint()
mechanism.

TableCellRender This object locates and encapsulates a CellRenderer object so
that the contents of a table cell can be drawn at the correct
location.

TableMarker Records the insertion in the document of a table, and
subsequently the actual point of placement of a range of cells
of the table.
Chapter 6 ■ Refining a Document 99

pagelayout.book Page 100 Thursday, April 22, 2004 10:20 PM
examine the event to take appropriate action. The JCFlowListener implementation can
either be passed to the JCFlow constructor or added to an existing JCFlow via the
addFlowListener() method.

JCFlowEvent
A JCFlowEvent occurs when a flow enters or exits a new frame or page as a result of
document flow, and also when a frame or page is marked as complete by the resolution of
embedded macros. The methods in JCFlowEvent are:

JCFlowListener
JCFlowListener methods each take a JCFlowEvent as their only parameter.

JCPrintEvent
A JCPrintEvent occurs when a document is opened or closed, or when a page begins or
ends. The availability of a JCPrintEvent overcomes a limitation of AWT printing. You
can now be notified when a document finishes printing.

JCFlowEvent Method Description

getCurrentPageArea() The current PageArea on which the event occurred.

getNextElementName() The name of the next PageArea to be processed.

getNextPageArea() The next page relative to where the event occurred.

getSource() The source of the event, the current JCFlow where the
event occurred.

JCFlowListener Method Description

frameBegin() Invoked before the flow to a frame begins.

frameComplete() Invoked when the flow to a frame is complete, that is, when
all macros in the frame have been evaluated.

frameEnd() Invoked when the flow is transferred to another frame.

pageBegin() Invoked before the flow to a page begins.

pageComplete() Invoked when the flow to a page is complete, that is, when all
macros on this page have been evaluated.

pageEnd() Invoked when the flow is transferred to another page.

JCPrintEvent Method Description

getPageNumber() Returns the page number or -1 if not applicable.
100 Part I ■ Using JClass PageLayout

pagelayout.book Page 101 Thursday, April 22, 2004 10:20 PM
JCPrintListener
JCPrintListener methods each take a JCPrintEvent as their only parameter.

getEventId() Returns the eventId. The returned value is one of
JCPrintEvent.BEGIN_PAGE, JCPrintEvent.END_PAGE,
JCPrintEvent.OPEN_DOCUMENT, or
JCPrintEvent.CLOSE_DOCUMENT.

JCPrintListener Method Description

openDocument() Invoked before a document has been printed.

closeDocument() Invoked after a document has been printed.

beginPage() Invoked before a page has been printed.

endPage() Invoked after a page has printed.

JCPrintEvent Method Description
Chapter 6 ■ Refining a Document 101

pagelayout.book Page 102 Thursday, April 22, 2004 10:20 PM
102 Part I ■ Using JClass PageLayout

pagelayout.book Page 103 Thursday, April 22, 2004 10:20 PM
7
Printing Options

Printing to the System Printer ■ Printing to a File

Printing to a Screen ■ Print Preview ■ OutputPolicy and FlushPolicy

Creating a Printer, in Chapter 2, demonstrated that in order to print from a
JClass PageLayout application you first need to set up a printer object that defines the
nature of the print output. (We suggest that you buffer print output. See the note on
Printing Large Documents, in Chapter 1, for details.) This chapter provides a more
detailed explanation of the print options JClass PageLayout makes available to you.

7.1 Introduction

The printer associated with a document is used to determine text size in order to perform
text layout. Since the printer initially associated with a document is used to size and lay
out the text, using a different printer to create the output stream or image may result in
spacing problems.

Please note that a document may hang when it is printing. This can happen if the flow
contains a floating object that is too large to fit in any frame in the document. The flow
will attempt to past all floating objects as part of completing the document before printing
it, which includes pasting any floating objects that haven’t yet been fit into the document.
If the floating object does not fit into the current frame, the flow will traverse to the next
frame, possibly generating a new page, and try there. If there is no frame in the document
large enough to contain the object, then a simple infinite loop will result.

7.2 Printing to the System Printer

JClass PageLayout provides two different printing formats that send output to your
system printer. JCAWTPrinter allows you to render most AWT components in accordance
with the Java 2 Printing API.
103

pagelayout.book Page 104 Thursday, April 22, 2004 10:20 PM
7.2.1 Using JCAWTPrinter

Printing to the system printer using JCAWTPrinter is much slower than using other
JClass PageLayout printing methods. JCAWTPrinter uses the Java 2 Printing API, and
supports most of the Graphics 2D API. The Java 2 Printing API usually causes all Java 2D
graphics to be rendered on the client machine before sending a raster image to the
printer. When this raster printing method is used, the amount of data sent to the printer is
much greater than the amount of data created by other printers. This aspect of the Java 2
Printing API is the reason why using JCAWTPrinter to print to the system printer is not as
efficient as using the other printing methods supported by JClass PageLayout.

There is an optimized shape printing method that can be used in place of the raster
printing method above under certain conditions. If there are no images on the page, and
if only solid colors are used (java.awt.Color), then the shape printing method will be
used. This optimized process converts the graphics on the page into shapes, which are
then filled. Less data is generated using this process instead of the raster printing method,
although a large amount of data can still be generated for complex shapes (such as a page
of text). The shape printing method case is being extended, so printing performance
should be better in the next Java 2 platform release.

Java requires that you instantiate JCAWTPrinter in a try block. To obtain the best results,
the page templates list, which will later be passed to the JCDocument constructor, should
also be passed to the JCAWTPrinter constructor. It is possible to use the current printer
driver and not pop up the print dialog. There is a constructor for a JCAWTPrinter which
takes a boolean that determines whether to pop up the dialog, as shown in the following
code fragment:

JCPrinter printer = null;
try {

// Create an AWT printer, output to printer. Don’t show print dialog
printer = new JCAWTPrinter(false, templates);

}
catch (JCAWTPrinter.PrinterJobCancelledException e) {

System.out.println("Print Job Cancelled by user");
System.exit(1);

}

After programming the output, send it to the system printer.

document.print();

7.3 Printing to a File

You may already know that java.io.FileOutputStream lets you write data to a file.
JCHTMLPrinter, JCPCLPrinter, JCPDFPrinter, and JCPostScriptPrinter format file
output to enable your application to print directly to HTML, PCL, PDF, and PostScript
files.
104 Part I ■ Using JClass PageLayout

pagelayout.book Page 105 Thursday, April 22, 2004 10:20 PM
7.3.1 Printing to a PostScript File
The following example generates an Adobe PostScript file using the
JCPostScriptPrinter.

1. Create an instance of the FileOutputStream class.
try {
outfile = new FileOutputStream("test.ps");
}
catch (FileNotFoundException e) {
System.out.println("Could not open file");
return;
}

2. Next, instantiate the printer object, selecting outfile as its output stream.
printer = new JCPostScriptPrinter(outfile);

3. To generate the file, call the JCDocument.print() method.

7.3.2 Printing to a PDF File
The following example generates an Adobe PDF file using the JCPDFPrinter.

1. Create an instance of the FileOutputStream class.
try {
outfile = new FileOutputStream("test.pdf");
}
catch (FileNotFoundException e) {
System.out.println("Could not open file");
return;
}

2. Instantiate the printer object, selecting outfile as the output stream.
printer = new JCPDFPrinter(outfile);

3. To generate the file, call the JCDocument.print() method.

7.3.3 Printing to a PCL file
The following example generates a Hewlett-Packard PCL file using the JCPCLPrinter.

1. Create an instance of the FileOutputStream class.
try {
outfile = new FileOutputStream("test.pcl");
}
catch (FileNotFoundException e) {
System.out.println("Could not open file");
return;
}

2. Instantiate the printer object, selecting outfile as the output stream.
printer = new JCPCLPrinter(outfile);

3. To generate the file, call the JCDocument.print() method.

7.3.4 Printing to an HTML file
The following example generates an HTML file using the JCHTMLPrinter.
Chapter 7 ■ Printing Options 105

pagelayout.book Page 106 Thursday, April 22, 2004 10:20 PM
1. Create an instance of the FileOutputStream class.
try {
outfile = new FileOutputStream("test.html");
}
catch (FileNotFoundException e) {
System.out.println("Could not open file");
return;
}

2. Instantiate the printer object, selecting outfile as the output stream.
printer = new JCHTMLPrinter(outfile);

3. To generate the file, call the JCDocument.print() method.

Because the HTML specification lacks many of the features normally associated with
printed documents you will encounter certain limitations if you decide to create HTML
pages from JClass PageLayout. Among the limitations are:

■ No pagination — HTML has no tag for a page, so the document becomes a single
HTML file. Users scroll through the file using their browser. Whatever pagination
information the source file contains is ignored.

■ Components/images – HTML pages created with JClass PageLayout cannot include
components or images.

■ Tables — HTML does define a table tag, but the mechanism is very different from that
used by most page layout applications. Not all of your table formats are available
when exporting to HTML.

■ Single header and footer — Because the concept of a page is lost in HTML, different
page headers and footers throughout the document are ignored. Instead,
JClass PageLayout attempts to find a header and a footer to be used as header and
footer for the entire HTML document.

7.4 Printing to a Screen

You can use JCAWTScreenPrinter to create a Java JComponent on which it will render
your print output. You can then embed the component in your application. For example,
in JClass PageLayout, we use JCAWTScreenPrinter to create the print previewer
described in the next section.

1. First, get the component from the printer:
JCPrintPage page = (JCPrintPage)
((JCAWTScreenPrinter)printer).getComponent();

The returned component is a subclass of JComponent called JCPrintPage.

2. Set the document and page you want to render to the component:
page.setDocument(document);
page.setPage(0);
106 Part I ■ Using JClass PageLayout

pagelayout.book Page 107 Thursday, April 22, 2004 10:20 PM
3. Add the frame to the component and make it visible:
frame.getContentPane().add(page);
frame.pack();
frame.setVisible(true);

7.5 Print Preview

End users have grown accustomed to the “Print Preview” — an interim step that displays
documents as they will appear when printed. Print previews make it possible for the user
to page through their documents and scan for layout errors before they send the
document to the printer. JClass PageLayout brings this functionality to Java applications
using the JCAWTPreviewer class.

As described in the previous section, JCAWTPreviewer requires java.awt.Component and
JCAWTScreenPrinter to realize the component on which the frame will be drawn. The
next step is to use a JCAWTPreviewer constructor to declare the title that will be displayed
in the frame, the name of the frame declared in your program, and the name of the
document you want to display in the frame.

JCAWTPreviewer previewer = new JCAWTPreviewer("Print Preview",
frame, document);
previewer.setVisible(true);

As well, in order for the JCAWTPreviewer to work correctly, the FlushPolicy must be set
to FLUSH_POLICY_ALWAYS_SAVE. (For details on FlushPolicy, please refer to FlushPolicy.)
Chapter 7 ■ Printing Options 107

pagelayout.book Page 108 Thursday, April 22, 2004 10:20 PM
In print preview mode, the Hello, World program you saw in JClass PageLayout Basics, in
Chapter 1, might appear as follows:

Figure 32 Print preview.

7.6 OutputPolicy and FlushPolicy

Once a page is created, you can designate whether it will be held until the entire
document is finished before it is printed. This is set via the outputPolicy property; please
see OutputPolicy.

As well, once pages are printed, you can designate whether pages are to be discarded
once printed. You can do this by setting the flushPolicy property. Please see
FlushPolicy.
108 Part I ■ Using JClass PageLayout

pagelayout.book Page 109 Thursday, April 22, 2004 10:20 PM
OutputPolicy
Once a page is created, you can designate whether it will be held until the entire
document is finished before it is printed. In the JCDocument class, the outputPolicy
property indicates whether rendered pages are to be held for printing. If set to
OUTPUT_POLICY_ON_REQUEST (default), then completed pages are held in memory until the
document is printed. If set to OUTPUT_POLICY_IMMEDIATE, then each page is outputted as it
is completed (if all predecessors are complete).

The getOutputPolicy() method gets the document’s current policy on outputting
completed (rendered) pages. The setOutputPolicy() method sets the document’s
behavior for outputting printed pages. Its parameter, outputPolicy, indicates the policy
to apply to completed (rendered) pages.

FlushPolicy
Once pages are printed, you can designate whether to save or flush them. In the
JCDocument class, the flushPolicy property indicates whether pages are to be discarded
once printed. If set to FLUSH_POLICY_ALWAYS_SAVE (default), then all pages are saved, not
flushed, as they are completed and printed. If set to FLUSH_POLICY_ON_OUTPUT, then pages
are flushed as they are completed and printed.

The getFlushPolicy() method gets the document's current policy on flushing completed
(printed) pages. The setFlushPolicy() method sets the document's behavior for flushing
printed pages. The flushPolicy parameter of setFlushPolicy() designates the policy to
apply to completed (output) pages.

In order for the JCAWTPreviewer to work correctly, the FlushPolicy must be set to
FLUSH_POLICY_ALWAYS_SAVE.
Chapter 7 ■ Printing Options 109

pagelayout.book Page 110 Thursday, April 22, 2004 10:20 PM
110 Part I ■ Using JClass PageLayout

Part
II

Reference
Appendices

pagelayout.book Page 111 Thursday, April 22, 2004 10:20 PM

pagelayout.book Page 112 Thursday, April 22, 2004 10:20 PM

pagelayout.book Page 113 Thursday, April 22, 2004 10:20 PM
Appendix A
JClass PageLayout Design Elements

Page Templates ■ Controlling Flow ■ Standard Styles ■ Alignment ■ Indents

Tab Alignment ■ Table Style ■ Line Style ■ Cell Alignment

This appendix summarizes JClass PageLayout design elements.

A.1 Page Templates

Default Page Templates

Default Template Description

Blank_A3 Creates a blank (no headers or footers) page of standard ISO
A3 size.

Blank_A4 Creates a blank (no headers or footers) page of standard ISO
A4 size.

Blank_A5 Creates a blank (no headers or footers) page of standard ISO
A5 size.

Blank_8p5x11 Creates a blank (no headers or footers) page of standard US
Letter size.

Blank_8p5x14 Creates a blank (no headers or footers) page of standard US
Legal size.

Blank_11x17 Creates a blank (no headers or footers) page of standard
Tabloid size.
113

pagelayout.book Page 114 Thursday, April 22, 2004 10:20 PM
Template Elements and Attributes

Element Attributes Child Elements

<JCPAGETEMPLATE> TITLE: An optional attribute that names this page
template.

<PAGE>

<PAGE> NAME: Required. The name of this page type,
referenced by other page definitions using the
<FLOWPAGE> tag.
UNIT: The unit of measurement used to plot out
this page. Choose from inches, points, cm, cms,
centimetres, and centimeters. The default is
inches.
COLOR: Optional. Specifies a default background
color for this page using hexadecimal notation or
a color from com.klg.jclass.util.swing.
JCSwingTypeConverter.
ORIENTATION: Choose from automatic, portrait,
and landscape.
FIRST: A Boolean attribute that indicates whether
or not this page template is used for the first page
in the document. The default is false.

<LOCATION>,
<SIZE>,
<FRAME>+,
<FLOWFRAME>*,
<FLOWPAGE>,
<FLOWSECTION>

<FRAME> NAME: Required. The name of this frame type,
referenced by other page definitions using the
<FLOWFRAME> tag.
UNIT: The unit of measurement used to plot out
this frame. Choose from inches, points, cm, cms,
centimetres, and centimeters. The default is
inches.
COLOR: Optional. Specifies a default background
color for this frame using hexadecimal notation or
a color from com.klg.jclass.util.swing.
JCSwingTypeConverter.

<LOCATION>,
<SIZE>,
<BORDER>?,
<COLUMN>?

<LOCATION> X: Required. Specifies the distance of the page or
frame from the left-hand page edge.
Y: Required. Specifies the distance of the page or
frame from the top of the page.

None.

+ Required and repeatable.
* Optional and repeatable.
? Optional and non-repeatable.
114 Part II ■ Reference Appendices

pagelayout.book Page 115 Thursday, April 22, 2004 10:20 PM
<SIZE> WIDTH: Required. Specifies the width of the page
or frame, measured in the units defined by the
<UNIT> tag.
HEIGHT: Required. Specifies the height of the page
or frame, measured in the units defined by the
<UNIT> tag.

None.

<BORDER> TYPE: Specifies the style used to draw a frame
border. Choose from blank, broken, dashed,
double, none, plain, regular, or single. The
default is blank.
COLOR: Specifies the border color using either
hexadecimal notation or a color from
java.awt.Color. The default is black.
THICKNESS: Optional. Specifies the border width
in pixels. The default is 0.1.

None.

<COLUMN> COUNT: Required. Specifies the number of
columns in the frame.
SPACING: Optional. Specifies the amount of space
left between columns, measured in the units
defined by the <UNIT> tag.

None.

<FLOWFRAME> NAME: Required. Specifies the name of a frame to
be added to the sequence of frames to which the
document will flow content.

None.

<FLOWPAGE> NAME: Required. Specifies the name of the page to
which the flow is to progress when a new page is
begun.

None.

<FLOWSECTION> NAME: Required. Specifies the name of the page to
which the flow is to progress when a new section
is begun.

None.

Element Attributes Child Elements

+ Required and repeatable.
* Optional and repeatable.
? Optional and non-repeatable.
Appendix A ■ JClass PageLayout Design Elements 115

pagelayout.book Page 116 Thursday, April 22, 2004 10:20 PM
A.2 Controlling Flow

Frame Method

Flow Method

A.3 Standard Styles

JCFrame Method Description

newColumn() Generates a column break and advances the text to the next
column in the specified frame. Throws an EndOfFrameException
in the last (only) column of a frame.

newLine() Ends the current line and transfers the flow to a new line.
Throws an EndOfFrameException if there is not enough room to
print the text.

print() Renders the specified content to this frame. Throws an
EndOfFrameException if there is not enough room to print the
text.

JCFlow Method Description

print() Renders the specified content to the flow.

newLine() Ends the current line and begins a new line.

newParagraph() Begins a new paragraph.

newColumn() Advances the text flow to the top of the next column, in the next
frame if necessary.

newFrame() Advances the text flow to the next frame, generating a new page
if necessary.

newPage() Creates a new page based on the current page’s
FlowPageTemplate, and directs the flow to the first frame of the
new page’s FlowFrameList.

newSection() Creates a new section based on the current section’s
FlowSectionTemplate, and directs the flow to the first frame of
the new page’s FlowFrameList.

Style Appearance

BOLD Left-aligned, single-spaced, 10 pt. bold Times New Roman.
116 Part II ■ Reference Appendices

pagelayout.book Page 117 Thursday, April 22, 2004 10:20 PM
BOLD_ITALIC Left-aligned, single-spaced, 10 pt. bold, italic Times New
Roman.

CODE Left-aligned, single-spaced, 10 pt. plain Courier.

CODE_INDENTED Left-aligned, single-spaced, 10 pt. plain Courier with left,
right, and paragraph indents of 0.25”.

DEFAULT_HEADER Center-aligned, single-spaced, 14 pt. bold Times New Roman.

DEFAULT_TEXT Left-aligned, single-spaced, 12 pt. plain Times New Roman.

HEADING Left-aligned, single-spaced, 10 pt. plain Helvetica.

HEADING_BOLD Left-aligned, single-spaced, 10 pt. bold Helvetica.

HEADING1 Left-aligned, single-spaced, 18 pt. bold Helvetica.

HEADING2 Left-aligned, single-spaced, 18 pt. plain Helvetica.

HEADING3 Left-aligned, single-spaced, 16 pt. bold Helvetica.

HEADING4 Left-aligned, single-spaced, 16 pt. plain Helvetica.

HEADING5 Left-aligned, single-spaced, 14 pt. bold Helvetica.

HEADING6 Left-aligned, single-spaced, 14 pt. plain Helvetica.

HEADING7 Left-aligned, single-spaced, 12 pt. bold Helvetica.

INDENTED Left-aligned, single-spaced, 10 pt. plain Times New Roman,
with left, right, and paragraph indents of 0.25”.

ITALIC Left-aligned, single-spaced, 10 pt. italic Times New Roman.

NORMAL Left-aligned, single-spaced, 10 pt. plain Times New Roman.

PLAIN Left-aligned, single-spaced, 10 pt. plain Times New Roman.

Style Appearance
Appendix A ■ JClass PageLayout Design Elements 117

pagelayout.book Page 118 Thursday, April 22, 2004 10:20 PM
A.4 Alignment

A.5 Indents

Parameter Result

ALIGNMENT_LEFT Paragraph text is left
aligned.

ALIGNMENT_RIGHT Paragraph text is
right aligned.

ALIGNMENT_CENTER Paragraph text is
center aligned.

ALIGNMENT_JUSTIFY Paragraph text is left
and right aligned.

JCTextStyle Method Description

setLeftIndent() Defines the amount of space between the left side of the
frame and the left edge of every line in the paragraph except
for the first line.
118 Part II ■ Reference Appendices

pagelayout.book Page 119 Thursday, April 22, 2004 10:20 PM
A.6 Tab Alignment

setParagraphIndent() Defines the amount of space between the left side of the
frame and the left edge of the first line in the paragraph.

setRightIndent() Defines the amount of space between the right side of the
frame and the right edge of the paragraph.

Field Result

TAB_ALIGNMENT_CENTER Aligns an equal amount of text on
either side of the tab stop.

TAB_ALIGNMENT_LEFT Aligns the left side (beginning) of the
text with the tab stop.

TAB_ALIGNMENT_RIGHT Aligns the right side (end) of the text
with the tab stop.

TAB_ALIGNMENT_DECIMAL Aligns a decimal or period (.) in the
text with the tab stop. Primarily used
for aligning columns of numbers.

JCTextStyle Method Description
Appendix A ■ JClass PageLayout Design Elements 119

pagelayout.book Page 120 Thursday, April 22, 2004 10:20 PM
A.7 Table Style

Style
Name Description Image

Default ■ thin left, right, top, bottom,
horizontal, and column
borders

■ no column shading

■ regular heading font

Style0 ■ no left, right, top, bottom,
horizontal, or column
borders

■ no column shading

■ regular heading font

Style 1 ■ thin header border; no
other borders

■ no column shading

■ regular heading font

Style 2 ■ thin header border; thick
top and bottom borders;
no other borders

■ no column shading

■ regular heading font

Style 3 ■ thick top, bottom, and
header borders; thin
horizontal borders; no
column border

■ no column shading

■ regular heading font
120 Part II ■ Reference Appendices

pagelayout.book Page 121 Thursday, April 22, 2004 10:20 PM
Style 4 ■ no left, right, top, bottom,
horizontal, or column
borders

■ header colored (black);
reverse type for header
text

■ no column shading

Style 5 ■ thick right, left, top,
bottom, and header
borders; no column or
horizontal borders

■ header colored (black);
reverse type for header
text

■ no column shading

Style 6 ■ thick right, left, top,
bottom and header
borders; thin horizontal
and column borders

■ header colored (black);
reverse type for header
text

■ no column shading

Style 7 ■ thick right, left, top,
bottom and header
borders; no horizontal or
column borders

■ header colored (gray);
reverse type for header
text

■ no column shading

Style
Name Description Image
Appendix A ■ JClass PageLayout Design Elements 121

pagelayout.book Page 122 Thursday, April 22, 2004 10:20 PM
Style 8 ■ thick right, left, top,
bottom, and header
borders; thin horizontal
and column borders

■ header colored (gray);
reverse type for header
text

■ no column shading

Style 9 ■ thin header border; thick
top, and bottom borders;
no right, left, horizontal,
and column borders

■ header colored (gray);
reverse type for header
text

■ no column shading

Style 10 ■ thick right, left, top, and
bottom borders; no
header, horizontal, and
column borders

■ regular heading font

■ no column shading

Style 11 ■ no right, left, top, and
bottom borders; thin
header, horizontal, and
column borders

■ plain headers

■ no column shading

Style 12 ■ thick right, left, top,
bottom, and header
borders; no horizontal or
column borders

■ header colored (gray);
reverse type for header
text

■ gray column shading

Style
Name Description Image
122 Part II ■ Reference Appendices

pagelayout.book Page 123 Thursday, April 22, 2004 10:20 PM
Style 13 ■ thick right, left, top,
bottom, and header
borders; thin horizontal
border; no column borders

■ header colored (black);
reverse type for header
text

■ no column shading

Style 14 ■ thin right, left, top, bottom,
and horizontal borders;
thick header border; no
column border

■ plain header

■ no column shading

Style 15 ■ thin right, left, top, bottom,
header, and column
borders; no horizontal
border

■ plain header

■ no column shading

Style 16 ■ thin left and horizontal
borders; thick top border;
no bottom, right, and
header borders; thin
border between last two
columns

■ header colored (dark
gray); reverse type for
header text

■ no column shading

■ alternate row shading
(light gray and dark gray)

Style
Name Description Image
Appendix A ■ JClass PageLayout Design Elements 123

pagelayout.book Page 124 Thursday, April 22, 2004 10:20 PM
A.8 Line Style

A.9 Cell Alignment

Style 17 ■ thin left and horizontal
borders; thick top border;
no bottom, right and
header borders; thin
border between last two
columns

■ header reverse type

■ alternate row shading
(light gray and dark gray)

LINE_TYPE_BROKEN Applies a dotted line to the table border.

LINE_TYPE_DOUBLE Applies a double line to the table border.

LINE_TYPE_NONE Blanks out the table border.

LINE_TYPE_SINGLE Applies a single line to the table border.

CELL_ALIGNMENT_CENTER Aligns cell text to the middle of the row.

CELL_ALIGNMENT_TOP Aligns cell text to the top of the row.

CELL_ALIGNMENT_BOTTOM Aligns cell text to the bottom of the row.

CELL_ALIGNMENT_NONE No specific cell alignment.

Style
Name Description Image
124 Part II ■ Reference Appendices

pagelayout.book Page 125 Thursday, April 22, 2004 10:20 PM
Appendix B
JClass PageLayout Commonly Used

Methods
JCDrawStyle ■ JCFlow ■ JCFlowEvents ■ JCFlowListener ■ JCFrame ■ JCPageTable

JCPageTemplate ■ JCPrintEvent ■ JCPrintListener ■ JCTab ■ JCTextStyle ■ JCUnit.Margins

MathMatrix ■ MathScalar ■ MathValue ■ MathVector

This appendix summarizes JClass PageLayout commonly used methods in alphabetical
order.

B.1 JCDrawStyle

B.2 JCFlow

Method Description

setDashLength Controls the length of the dashes and the spaces between
them when line type is set to LINE_TYPE_BROKEN.

setForegroundColor Controls the color of the line.

setLineSpacing In a multi-line style, such as LINE_TYPE_DOUBLE, controls the
amount of space left between the lines.

setLineType Selects the appearance of the line. Options include:
LINE_TYPE_BROKEN
LINE_TYPE_DOUBLE
LINE_TYPE_SINGLE

setLineWidth Uses JCUnit.Measure to control the width of the line.

Method Description

embedEPS() Imports the image specified by EPSImage and places it on the
current line of text.
125

pagelayout.book Page 126 Thursday, April 22, 2004 10:20 PM
embedIcon() Imports the image specified by javax.swing.icon and places
it on the current line of text.

embedImage() Imports the image specified by java.awt.Image and places it
on the current line of text.

floatEPS() Imports the image specified by EPSImage and places it on its
own line.

floatIcon() Imports the image specified by javax.swing.icon and places
it on its own line.

floatImage() Imports the image specified by java.awt.Image and places it
on its own line.

JCFrame.pasteEPS() Imports the image specified by EPSImage and locks it to a
specified location on the page.

JCFrame.pasteIcon() Imports the image specified by javax.swing.icon and locks
it to a specified location on the page.

JCFrame.pasteImage() Imports the image specified by java.awt.Image and locks it
to a specified location on the page.

newColumn() Advances the text flow to the top of the next column, in the
next frame if necessary.

newFrame() Advances the text flow to the next frame, generating a new
page if necessary.

newLine() Ends the current line and begins a new line.

newPage() Creates a new page based on the current page’s
FlowPageTemplate, and directs the flow to the first frame of
the new page’s FlowFrameList.

newParagraph() Begins a new paragraph.

newSection() Creates a new section based on the current section’s
FlowSectionTemplate, and directs the flow to the first frame
of the new page’s FlowFrameList.

print() Renders the specified content to the flow.

Method Description
126 Part II ■ Reference Appendices

pagelayout.book Page 127 Thursday, April 22, 2004 10:20 PM
B.3 JCFlowEvents

B.4 JCFlowListener

B.5 JCFrame

Method Description

getCurrentPageArea() The current PageArea on which the event occurred.

getNextElementName() The name of the next PageArea to be processed.

getNextPageArea() The next page relative to where the event occurred.

getSource() The source of the event, the current JCFlow where the
event occurred.

Method Description

frameBegin() Invoked before the flow to a frame begins.

frameComplete() Invoked when the flow to a frame is complete, that is, when
all macros in the frame have been evaluated.

frameEnd() Invoked when the flow is transferred to another frame.

pageBegin() Invoked before the flow to a page begins.

pageComplete() Invoked when the flow to a page is complete, that is, when all
macros on this page have been evaluated.

pageEnd() Invoked when the flow is transferred to another page.

Method Description

newColumn() Generates a column break and advances the text to the next
column in the specified frame. Throws an EndOfFrameException
in the last (only) column of a frame.

newLine() Ends the current line and transfers the flow to a new line.
Throws an EndOfFrameException if there is not enough room to
print the text.

print() Renders the specified content to this frame. Throws an
EndOfFrameException if there is not enough room to print the
text.
Appendix B ■ JClass PageLayout Commonly Used Methods 127

pagelayout.book Page 128 Thursday, April 22, 2004 10:20 PM
B.6 JCPageTable

B.7 JCPageTemplate

Method Description

setAllBorders() Applies the style to every border in the table.

setBottomBorder() Applies the style to the bottom border of the table’s last
row.

setColumnBorder() Applies the style to all column borders, except for the
perimeter borders Left and Right.

setEdgeBorders() Applies the style to all borders on the perimeter of the
table (Top, Bottom, Left, and Right).

setHeaderBorder() Applies the style to the border between the header table
and the table’s first row.

setHorizontalBorder() Applies the style to the Top, Bottom, and header borders.

setInternalBorders() Applies the style to all row and column borders except for
the perimeter borders.

setLeftBorder() Applies the style to the border on the table’s left-hand
side.

setRightBorder() Applies the style to the border on the table’s right-hand
side.

setRowBorder() Applies the style to all table row borders except for the
header border and the perimeter borders Top and
Bottom.

setTopBorder() Applies the style to the top border of the table’s first row.
If there is a header table, applies the style to the top row
of the header.

setVerticalBorders() Applies the style to column, Left, and Right borders.

Method Description

importTemplates(JCDocument
doc, File xmlfile)

Reads from java.io.File to import an XML
template and apply it to the specified JCDocument.

importTemplates(JCDocument
doc, InputSource input)

Reads from org.xml.sax.InputSource to import an
XML template and apply it to the specified
JCDocument.
128 Part II ■ Reference Appendices

pagelayout.book Page 129 Thursday, April 22, 2004 10:20 PM
B.8 JCPrintEvent

B.9 JCPrintListener

B.10 JCTab

importTemplates(JCDocument
doc, Reader reader)

Reads from java.io.Reader to import an XML
template and apply it to the specified JCDocument.

loadTemplates(File xmlfile) Reads from java.io.File to load the XML
template without applying it to a specific document.

loadTemplates(InputSource
input)

Reads from org.xml.sax.InputSource to load the
XML template without applying it to a specific
document.

loadTemplates(Reader reader) Reads from java.io.Reader to load the XML
template without applying it to a specific document.

Method Description

getEventId() Returns the eventId. The returned value is one of
JCPrintEvent.BEGIN_PAGE, JCPrintEvent.END_PAGE,
JCPrintEvent.OPEN_DOCUMENT, or
JCPrintEvent.CLOSE_DOCUMENT,

getPageNumber() Returns the page number or -1 if not applicable.

Method Description

beginPage() Invoked before a page has been printed.

closeDocument() Invoked after a document has been printed.

endPage() Invoked after a page has printed.

openDocument() Invoked before a document has been printed.

Method Description

addTab() Adds a tab to the style in the location specified.

Method Description
Appendix B ■ JClass PageLayout Commonly Used Methods 129

pagelayout.book Page 130 Thursday, April 22, 2004 10:20 PM
B.11 JCTextStyle

B.12 JCUnit.Margins

B.13 MathMatrix

setTabs() Adds a list of identically aligned tabs to the style.

Method Description

setLeftIndent() Defines the amount of space between the left side of the
frame and the left edge of every line in the paragraph
except for the first line.

setParagraphIndent() Defines the amount of space between the left side of the
frame and the left edge of the first line in the paragraph.

setRightIndent() Defines the amount of space between the right side of the
frame and the right edge of the paragraph.

 Method Description

setBottom() Sets the bottom margin to the width of the given
JCUnit.Measure.

setLeft() Sets the left margin to the width of the given JCUnit.Measure.

setRight() Sets the right margin to the width of the given
JCUnit.Measure.

setTop() Sets the top margin to the width of the given JCUnit.Measure.

Method Description

getValueAt() Retrieves the value at a particular row, column pair of index
values in the matrix.

matrixValue() Gets the contents of this MathValue as an array of Numbers.

numberValue() Throws an UnsupportedOperationException.

Method Description
130 Part II ■ Reference Appendices

pagelayout.book Page 131 Thursday, April 22, 2004 10:20 PM
B.14 MathScalar

B.15 MathValue

B.16 MathVector

setValueAt() Sets the value at a particular row, column pair of index values
in the matrix.

toString() Outputs the value of this vector as a String.

vectorValue() Throws an UnsupportedOperationException.

Method Description

matrixValue() Throws an UnsupportedOperationException.

numberValue() Gets the contents of this MathValue as a Number.

toString() Returns a String representation of this value.

vectorValue() Throws an UnsupportedOperationException.

Method Description

evaluate() Satisfies the Expression interface by returning the stored
value. No evaluation is required because no operation is
implied.

getDataFormat() Retrieves the NumberFormat associated with this data.

matrixValue() Gets the contents of this MathValue as a matrix of Numbers.

numberValue() Gets the contents of this MathValue as a Number.

setDataFormat() Sets a NumberFormat to use on the contents of this MathValue.

vectorValue() Gets the contents of this MathValue as a vector of Numbers.

Method Description

getValueAt() Retrieves the value at a particular index in the vector.

Method Description
Appendix B ■ JClass PageLayout Commonly Used Methods 131

pagelayout.book Page 132 Thursday, April 22, 2004 10:20 PM
matrixValue() Throws an UnsupportedOperationException.

numberValue() Throws an UnsupportedOperationException.

setValueAt() Sets the value at a particular index in the vector.

toString() Outputs the value of this vector as a String.

vectorValue() Gets the contents of this MathValue as a vector of Numbers.

Method Description
132 Part II ■ Reference Appendices

pagelayout.book Page 133 Thursday, April 22, 2004 10:20 PM
Index

A
Abs

unary operator 75
Add

binary operator 75
adding

fonts 34
tabs to a style 41

addTab
JCTab method 129

adjust
the size of a table to a frame 58

alignment 118
cell 124
paragraphs 38
tab 119
tabs 42
vertical, in cells 59

API 3
applying templates 21
ArcRender

render object 98
attributes, in XML templates 18
Average

binary operator 76
AWT

names 29

B
background colors, setting in tables 58
basic program, creating 9
beginPage

JCPrintListener method 101, 129
BOLD

text style 27
BOLD_ITALIC

text style 27
BORDER 20
BORDER_USE_EXTERNAL 56
BORDER_USE_INTERNAL 56
borders

adding to a table 55
adding to a table header 57
customizing in cells 61

BoxRender
render object 98

building
page templates 15

C
Ceiling

unary operator 75
cells

alignment 124
customizing 58
defining margins 60
performing a mathematical operation 79
setting borders 61
setting vertical alignment 59
spanning 62

CharacterRange TrueTypeFontProperty property name
38

circles
drawing 96

class overview 11
ClassCastException 79
clone

Operation method 75
closeDocument

JCPrintListener method 101, 129
CODE

text style 27
CODE_INDENTED

text style 27
colors

background, in tables 58
COLUMN 20
column

dominance 55
columns

alternating colors 54
creating in a table 47
multiple on a page 82

comments on product 5
components

embedding in a flow 91
native scaling 92
printing 14

constructors
133

pagelayout.book Page 134 Thursday, April 22, 2004 10:20 PM
MathMatrix 73
MathScalar 72
MathVector 72
Operation 74

content
added that is too high 23

controlling flow 23, 116
flow method 116
frame method 116

converting
tables from JClass LiveTable 65
tables from JDBC databases 67
tables from Swing JTables 66
units of measurement 87

Count
binary operator 76

createHeaders method 49
creating

a document 15
a flow 13
a printer object 22
draw styles 92
tables 45
text styles 28

customizing
cell borders 61
cells 58
tables 49

D
data

adding to tables 47
default

table style 50
units of measurement 87

DEFAULT_HEADER
text style 27

DEFAULT_TEXT
text style 28

defined mathematical operations 75
binary 75
unary 75

defining
cell margins 60
points on a page 88

design elements 113
alignment 118
cell alignment 124
controlling flow 116

flow method 116
frame method 116

indents 118
line style 124
page templates 113

attributes 114
default 113
elements 114

standard styles 116
tab alignment 119
table style 120

Divide
binary operator 76

document
creating 15, 22
object 22
refining 81

dominance
row and column 55

draw styles
creating 92
setting fill properties in 93
setting line properties 92

drawing
circles 96
lines 94
polygons 97
rectangles 94
rounded rectangles 95
shapes 93

DTD 15
template 17

E
embedComponent

method in JCFlow 91
embedding

components
native scaling 92

components in a flow 91
images 89

native scaling 92
EmbeddingRules TrueTypeFontProperty property name

37
embedEPS

JCFlow method 90, 125
embedIcon

JCFlow method 90, 126
embedImage

JCFlow method 90, 126
EndOfFrameException 24
endPage

JCPrintListener method 101, 129
EPS

graphic format 92
importing 90

Euro symbol 33
evaluate

method in MathValue 71, 131
134 Index

pagelayout.book Page 135 Thursday, April 22, 2004 10:20 PM
operation method 75
events 99
exception 78

ClassCastException 79
OperandMismatchException 78

expression 71
interface 71
lists 78

MathExpressionList 78
QueryExpressionList 78
TableExpressionList 78

F
FAQs 5
feature overview 1
file

printing to 104
fill properties, setting in a draw style 93
fit

a table in a frame 58
fitToFrame

method in JCPageTable 58
floatEPS

JCFlow method 90, 126
floatIcon

JCFlow method 90, 126
floatImage

JCFlow method 90, 126
floating images 89
Floor

unary operator 75
flow

controlling 23, 116
flow method 116
frame method 116

creating 13
data into tables 47
mechanism 9
methods 24
programming example 25
typical sequence 26

FLOWFRAME 20
FLOWPAGE 20
FLOWSECTION 20
FlushPolicy 109
fonts

adding to JAR files 30
adding TrueType fonts 34
adding Type 1 fonts 34
adding your own fonts 34
AWT names 29
font metrics file 34
importing 29
mapping 29

setting TrueType properties 37
Type 1 34
working with 29

footers
creating 81
frame 11

formatting text 27
formulas 12, 69

math values 71
using 79

FRAME 19
frame

footer 11
full 24
header 11
margins 88
methods 23
object 11

frameBegin
method in JCFlowListener 100, 127

frameComplete
method in JCFlowListener 100, 127

frameEnd
method in JCFlowListener 100, 127

G
GeometricMean

binary operator 76
getCell method 60
getColumn method 58
getCurrentPageArea

JCFlowEvent methods 100
JCFlowEvents method 127

getDataFormat
method in MathValue 71, 131

getEventId
JCPrintEvent method 101, 129

getImage method 89
getNextElementName

JCFlowEvent method 100
JCFlowEvents method 127

getNextPageArea
JCFlowEvent method 100
JCFlowEvents method 127

getPageNumber
JCPrintEvent method 100, 129

getSource
JCFlowEvent method 100
JCFlowEvents method 127

getValueAt
method in MathMatrix 74, 130
method in MathVector 73, 131

graphic format
EPS 92
Index 135

pagelayout.book Page 136 Thursday, April 22, 2004 10:20 PM
PCL 92
PDF 92
PS 92

H
header

adding header rows to a table 48
creating 81
frame 11
rows, adding borders to 57

HEADING
text style 28

HEADING_BOLD
text style 28

HEADING2
text style 28

HEADING3
text style 28

HEADING4
text style 28

HEADING5
text style 28

HEADING6
text style 28

HEADING7
text style 28

Hello, World program 10
HRuleMarker

render object 99
HTML

printing to 105

I
icons

importing 90
ImageMarker

render object 99
ImageRender

render object 99
images

embedding 89
floating 89
importing 89
importing EPS 90
importing Swing icons 90
native scaling 92
pasting 89

importing
components into a flow 91
EPS images 90
images 89
Swing icons 90

IncludeUnicodeMap TrueTypeFontProperty property
name 38

INDENTED
text style 28

indenting 118
paragraphs 39
setting 39

inserting
tabs 41

ITALIC
text style 28

J
JAR files, adding fonts to 30
Java 2 Printing API 104
JCAWTPrinter class 103
JCDocument 9, 11
JCDrawStyle 12, 93, 125
JCFlow 11, 13, 90, 125

methods 24
JCFlowEvent 100, 127

methods 100
JCFlowListener 127

listener interface for JCFlowEvents 100
methods 100

JCFlowTable
table styles

row and column dominance 55
JCFrame 11, 13, 23, 127

methods 23
JCFrame.pasteEPS

JCFlow method 90, 126
JCFrame.pasteIcon

JCFlow method 90, 126
JCFrame.pasteImage

JCFlow method 90, 126
JCHTMLPrinter class 104
JClass PageLayout

overview 9
JClass technical support 4

contacting 5
JCPage 11
JCPageTable 12, 45, 65, 128

populating 65
table styles

row and column dominance 55
JCPAGETEMPLATE 19
JCPageTemplate 128

loadTemplate 23
JCPCLPrinter class 104
JCPDFPrinter class 104
JCPostScriptPrinter class 104
JCPrinter 9, 12
JCPrintEvent 100, 129
136 Index

pagelayout.book Page 137 Thursday, April 22, 2004 10:20 PM
methods 100
JCPrintListener 129

listener interface for JCPrintEvents 101
methods 101

JCTab 12, 129
JCTableStyle 49

methods 54
setAlternate 54
setBackground 54
setBottomBorder 54
setColumnBorder 54
setHeaderBorder 54
setHeaderStyle 54
setLeftBorder 54
setName 54
setRightBorder 54
setRowBorder 54
setTextStyle 54
setTopBorder 54

JCTextStyle 12, 130
class 27

JCUnit.Margins 88, 130

L
large documents

printing 14
line

drawing 94
properties, setting in a draw style 92
spacing, setting 40
style 124

LineRender
render object 99

listeners 99
loadTemplates

method in JCPageTemplate 23
LOCATION 19

M
MacroRender

render object 99
macros 84

create 84
customize 84
TextMacro 84

mapping fonts 29
MARGIN 20
margins

creating in a frame 88
defining in cells 60

math values 71
mathematical operations

binary 75
defined 75
performing on a range of cells 79
unary 75

MathExpressionList 78
MathMatrix 73, 130

constructors 73
methods 74

MathScalar 72, 131
constructors 72
methods 72

MathValue 131
methods 71

MathVector 72, 131
constructors 72
methods 73

matrixValue
method in MathMatrix 74, 130
method in MathScalar 72, 131
method in MathValue 71, 131
method in MathVector 73, 132

Max
binary operator 76

measurement units 87
converting 87
setting defaults 87

Median
binary operator 76

method
setAlternate 54
setBackground 54
setBottomBorder 54
setColumnBorder 54
setHeaderBorder 54
setHeaderStyle 54
setLeftBorder 54
setName 54
setRightBorder 54
setRowBorder 54
setTextStyle 54
setTopBorder 54

methods
common 125
createHeaders 49
flow 24
frame 23
getCell 60
getColumn 58
getImage 89
JCDrawStyle 125
JCFlow 24, 125
JCFlowEvent 100
JCFlowEvents 127
JCFlowListener 100, 127
JCFrame 23, 127
JCPageTable 128
Index 137

pagelayout.book Page 138 Thursday, April 22, 2004 10:20 PM
JCPageTemplate 128
JCPrintEvent 100, 129
JCPrintListener 101, 129
JCTab 129
JCTableStyle 54
JCTextStyle 130
JCUnit.Margins 130
MathMatrix 74, 130
MathScalar 72, 131
MathValue 71, 131
MathVector 73, 131
newColumn 24, 116
newFrame 25, 116
newLine 24, 116
newPage 25, 116
newParagraph 24
newSection 25
Operation 75
print 24, 116
setAlignment 39
setAllBorders 55, 56
setBackgroundColor 58
setBottomBorder 56
setColumnBorder 56
setEdgeBorders 56
setForegroundColor 95
setHeaderBorder 56
setHorizontalBorder 56
setInternalBorders 56
setLeftBorder 56
setLeftIndent 40, 118
setParagraphIndent 40, 119
setRightBorder 56
setRightIndent 40, 119
setRowBorder 56
setTopBorder 56
setVerticalBorders 56
spanCells 62

Min
binary operator 76

modifying
paragraphs 38
text styles 28

multiple columns 82
Multiply

binary operator 76

N
native scaling 92
newColumn 23

JCFlow method 24, 126
JCFrame method 24
method 116
method in JCFrame 127

newFrame
JCFlow method 25, 126
method 116

newLine
JCFlow method 24, 126
JCFrame method 24
method 116
method in JCFrame 127

newPage
JCFlow method 25, 126
method 116

newParagraph
JCFlow method 24, 126

newSection
JCFlow method 25, 126

NORMAL
text style 28

numbering pages 83
numberValue

method in MathMatrix 74, 130
method in MathScalar 72, 131
method in MathValue 71, 131
method in MathVector 73, 132

O
object hierarchy 11
objects 11

document 22
frame 11
page 11
printer 12
style 12
tab 12
table 45

offset
subscript or superscript 32

openDocument
JCPrintListener method 101, 129

OperandMismatchException 78
Operation

class 74
clone 75
constructors 74
evaluate 75
methods 75

operations
mathematical 75

binary 75
unary 75

reducing to values 77
operator

binary
Add 75
Average 76
138 Index

pagelayout.book Page 139 Thursday, April 22, 2004 10:20 PM
Count 76
Divide 76
GeometricMean 76
Max 76
Median 76
Min 76
Multiply 76
Power 76
Product 77
Sort 77
StdDeviation 77
Subtract 77
Sum 77

in com.klg.jclass.util.formulae 75
unary

Abs 75
Ceiling 75
Floor 75
Root 75
Round 75
Trunc 75

OutputPolicy 109
overview 9

class 11

P
PAGE 19
page

numbers, inserting 83
object 11

page templates 15, 113
applying 21
attributes 114
default 16, 113
elements 114
sample, using XML 16

pageBegin
method in JCFlowListener 100, 127

pageComplete
method in JCFlowListener 100, 127

pageEnd
method in JCFlowListener 100, 127

paragraphs
aligning 38
indenting 39
modifying 38
setting spacing 40

pasting images 89
PCL 22

graphic format 92
printing to 105

PDF
fonts in output 34
graphic format 92

printing to 105
PLAIN

text style 28
points

defining on a page 88
units of measurement 87

polygons
drawing 97

positioning tabs 43
PostScript 22

printing to 105
Power

binary operator 76
preview printing 107
print

JCFlow method 24, 126
JCFrame method 24
method 116
method in JCFrame 127

printer control language 22
printer object 12
printing 14, 103

a GUI component 92
APIs

Java 2 104
components 14
creating a printer object 22
HTML file 105
large documents 14
notification 100
PCL file 105
PDF file 105
PostScript file 105
print preview 107
screen 106
system printer

using JCAWTPrinter 104
to a file 104
to the system printer 103

Product
binary operator 77

product feedback 5
PS

graphic format 92

Q
QueryExpressionList 78
Quest Software technical support

contacting 5

R
rectangles
Index 139

pagelayout.book Page 140 Thursday, April 22, 2004 10:20 PM
drawing 94
rounded, drawing 95

referencing
external XML files 21
reference documents 3
XML template strings 22

refining a document 81
related documents 3
render 98

content
not in the main flow 23

object
ArcRender 98
BoxRender 98
HRuleMarker 99
ImageMarker 99
ImageRender 99
LineRender 99
MacroRender 99
RoundRectRender 99
StringRender 99
SymbolRender 99
TableCellRender 99
TableMarker 99

object category
embedable 98
floatable 98
flowMarker 98
splitable 98

subclasses 98
results 71
Root

unary operator 75
Round

unary operator 75
RoundRectRender

render object 99
row

dominance 55
rows

adding to a table 47, 48
alternating colors 54
header, adding to a table 48

S
screen

printing to 106
setAlignmentmethod 39
setAllBorders

method 55, 56
method in JCPageTable 128

setAlternate method 54
setBackground method 54
setBackgroundColor method 58

setBaselineOffset
method in JCTextStyle for subscripts and superscripts

32
setBottom

JCUnit.Margins method 88, 130
setBottomBoder method 54
setBottomBorder

method 56
method in JCPageTable 128

setColumnBorder
method 56
method in JCPageTable 128

setColumnBorder method 54
setDashLength

JCDrawStyle method 93, 125
setDataFormat

method in MathValue 71, 131
setEdgeBorders

method 56
method in JCPageTable 128

setForegroundColor
JCDrawStyle method 93, 125
method 95

setHeaderBorder
method 56
method in JCPageTable 128

setHeaderBorder method 54
setHeaderStyle method 54
setHorizontalBorder

method 56
method in JCPageTable 128

setInternalBorders
method 56
method in JCPageTable 128

setLeft
JCUnit.Margins method 89, 130

setLeftBorder
method 56
method in JCPageTable 128

setLeftBorder method 54
setLeftIndent

method 40, 118
method in JCTextStyle 130

setLineSpacing
JCDrawStyle method 93, 125

setLineType
JCDrawStyle method 93, 125

setLineWidth
JCDrawStyle method 93, 125

setName method 54
setParagraphIndent

method 40, 119
method in JCTextStyle 130

setRight
JCUnit.Margins method 89, 130

setRightBorder
140 Index

pagelayout.book Page 141 Thursday, April 22, 2004 10:20 PM
method 56
method in JCPageTable 128

setRightBorder method 54
setRightIndent

method 40, 119
method in JCTextStyle 130

setRowBorder
method 56
method in JCPageTable 128

setRowBorder method 54
setSubscriptRatio

method to control the size of subscripted or superscript-
ed text 33

setTabs
JCTab method 130

setTextStyle method 54
setting

indents 39
line spacing 40
paragraph spacing 40
tab fill 43

setTop
JCUnit.Margins method 89, 130

setTopBorder
method 56
method in JCPageTable 128

setTopBorder method 54
setValueAt

method in MathMatrix 74, 131
method in MathVector 73, 132

setVerticalBorders
method 56
method in JCPageTable 128

shapes
drawing 93

simple program 10
SIZE 20
Sort

binary operator 77
spacing

setting line 40
setting paragraph 40

spanCells method 62
spanning cells 62
standard

styles 116
text styles, using 27

StdDeviation
binary operator 77

StringRender
render object 99

style
draw 92

setting fill properties 93
setting line properties 92

table

default 50
Style 1 50
Style 10 52
Style 11 52
Style 12 52
Style 13 53
Style 14 53
Style 15 53
Style 16 53
Style 17 54
Style 2 50
Style 3 50
Style 4 51
Style 5 51
Style 6 51
Style 7 51
Style 8 52
Style 9 52
Style0 50

style object 12
styles

adding tabs to 41
creating 28
line 124
modifying 28
standard 116
table 49, 120
text 27
text, using standard 27

subscript 32
Subtract

binary operator 77
Sum

binary operator 77
superscript 32
support 4, 5

contacting 5
FAQs 5

Swing icons, importing 90
Swing JTables, converting from 66
SymbolRender

render object 99
system printer 103

using JCAWTPrinter 104

T
tab

alignment 119
object 12

table
adding rows 48
columns 47
creating 47
size 58
Index 141

pagelayout.book Page 142 Thursday, April 22, 2004 10:20 PM
structure 45
style 120

TableCellRender
render object 99

TableExpressionList 78
TableMarker

render object 99
tables

adding borders to 55
adding data 47
adding header rows 48
adding rows 47
alternating row or column colors 54
converting

from Swing JTables 66
Swing JTables 66

converting from JClass LiveTable 65
converting from JDBC databases 67
creating 45
customizing 49
flowing data 47
object 45
setting background colors 58
styles 49
table styles

row and column dominance 55
wrapping 63

tabs
adding to a style 41
aligning 42
inserting 41
leaders, setting 43
positioning 43
setting fill 43

tags, in templates 18
technical support 4, 5

contacting 5
FAQs 5

templates
applying 21
DTD 17
page 15
referencing external XML files 21
referencing XML strings 22
sample 16
tags and attributes 18

test
style

ITALIC 28
text

Euro symbol 33
formatting 27
style

BOLD 27
BOLD_ITALIC 27
CODE 27

CODE_INDENTED 27
creating 28
DEFAULT_HEADER 27
DEFAULT_TEXT 28
HEADING 28
HEADING_BOLD 28
HEADING1 28
HEADING2 28
HEADING3 28
HEADING4 28
HEADING5 28
HEADING7 28
modifying 28
NORMAL 28
PLAIN 28

styles
using standard 27

subscript 32
superscript 32
underlining 32
Unicode 33
working with styles 27

text style
INDENTED 28

toString
method in MathMatrix 74, 131
method in MathScalar 72, 131
method in MathVector 73, 132

TrueType fonts 34, 37
setting font properties 37

TrueTypeFontProperties 37
Trunc

unary operator 75
tutorial documents 3
Type 1 fonts 34

font metrics file 34
typographical conventions 2

U
underlining text 32
Unicode 33
units of measurement 87

converting 87
setting defaults 87

using standard text styles 27
util.formulae

hierarchy 69

V
vectorValue

method in MathMatrix 74, 131
method in MathScalar 72, 131
142 Index

pagelayout.book Page 143 Thursday, April 22, 2004 10:20 PM
method in MathValue 71, 131
method in MathVector 73, 132

vertical alignment
setting in cells 59

W
working with fonts 29
wrapping tables 63

X
XML 15

applying templates 21
referencing external template files 21
referencing template strings 22
sample template 16
template DTD 17
templates, tags 18
Index 143

pagelayout.book Page 144 Thursday, April 22, 2004 10:20 PM
144 Index

	JClass PageLayout
	Preface
	Introducing JClass PageLayout
	Assumptions
	Typographical Conventions in this Manual
	Overview of the Manual
	Licensing
	Related Documents
	About Quest
	Contacting Quest Software
	Customer Support
	Product Feedback and Announcements

	Using JClass PageLayout
	JClass PageLayout Basics
	1.1 Overview of JClass PageLayout
	1.2 Basic Steps for Creating a JClass PageLayout Document
	1.3 A Simple JClass PageLayout Program
	1.4 JClass PageLayout Objects
	1.5 Creating Flow
	1.6 Printing

	Creating a Document
	2.1 Building Page Templates
	2.2 Applying Page Templates
	2.3 Creating a Printer
	2.4 Creating a Document
	2.5 Controlling Flow

	Formatting Text
	3.1 Working With Text Styles
	3.2 Working with Fonts
	3.3 Adding Your Own Fonts for PDF Output
	3.4 Modifying Paragraphs
	3.5 Inserting Tabs

	Creating Tables
	4.1 Overview
	4.2 Table Structure
	4.3 Using JCPageTable
	4.4 Creating a Table
	4.5 Adding Data to Tables
	4.6 Customizing Tables
	4.7 Customizing Cells
	4.8 Table Wrapping
	4.9 Converting Tables

	Adding Formulas to JClass PageLayout
	5.1 Introduction
	5.2 util.formulae’s Hierarchy
	5.3 Expressions and Results
	5.4 Math Values
	5.5 Operations
	5.6 Expression Lists
	5.7 Exceptions
	5.8 Using Formulas in JClass PageLayout

	Refining a Document
	6.1 Headers and Footers
	6.2 Multiple Columns
	6.3 Page Numbers
	6.4 Creating Macros
	6.5 Units of Measurement
	6.6 Importing Images
	6.7 Displaying Imported Components
	6.8 Creating Draw Styles
	6.9 Drawing Shapes
	6.10 Render Objects
	6.11 Listening for JClass PageLayout Events

	Printing Options
	7.1 Introduction
	7.2 Printing to the System Printer
	7.3 Printing to a File
	7.4 Printing to a Screen
	7.5 Print Preview
	7.6 OutputPolicy and FlushPolicy

	Reference Appendices
	JClass PageLayout Design Elements
	A.1 Page Templates
	A.2 Controlling Flow
	A.3 Standard Styles
	A.4 Alignment
	A.5 Indents
	A.6 Tab Alignment
	A.7 Table Style
	A.8 Line Style
	A.9 Cell Alignment

	JClass PageLayout Commonly Used Methods
	B.1 JCDrawStyle
	B.2 JCFlow
	B.3 JCFlowEvents
	B.4 JCFlowListener
	B.5 JCFrame
	B.6 JCPageTable
	B.7 JCPageTemplate
	B.8 JCPrintEvent
	B.9 JCPrintListener
	B.10 JCTab
	B.11 JCTextStyle
	B.12 JCUnit.Margins
	B.13 MathMatrix
	B.14 MathScalar
	B.15 MathValue
	B.16 MathVector

	Index

