JClass LiveTable"
Programmer’s Guide

Version 6.3
for Java 2 (JDK 1.3.1 and higher)

The Essential Java Grid/Table Component

QUEST
SOFTWARE"

8001 Irvine Center Drive
Irvine, CA 92618
949-754-8000
www.quest.com

April 2004 RefNo: PRGDE-JCTBL/630-04/2004

© Copyright Quest Software, Inc. 2004. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used or copied
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording
for any purpose other than the purchaser's personal use without the written permission of Quest Software,
Inc.

Warranty

The information contained in this document is subject to change without notice. Quest Software makes no
warranty of any kind with respect to this information. QUEST SOFTWARE SPECIFICALLY
DISCLAIMS THE IMPLIED WARRANTY OF THE MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Quest Software shall not be liable for any direct, indirect, incidental,
consequential, or other damage alleged in connection with the furnishing or use of this information.

Trademarks

JClass, JClass Chart, JClass Chart 3D, JClass DataSource, JClass Elements, JClass Field, JClass HiGrid,
JClass JarMaster, JClass LiveTable, JClass PageLayout, JClass ServerChart, JClass ServerReport,

JClass DesktopViews, and JClass ServerViews are trademarks of Quest Software, Inc. Other trademarks and
registered trademarks used in this guide are property of their respective owners.

World Headquarters

8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com

e-mail: info@quest.com

U.S. and Canada: 949.754.8000

Please refer to our Web site for regional and international office information.

This product includes software developed by the Apache Software Foundation http://www.apache.org/.

The JPEG Encoder and its associated classes are Copyright © 1998, James R. Weeks and BioElectroMech.
This product is based in part on the work of the Independent JPEG Group.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, all
files included with the source code, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

http://www.quest.com
http://www.apache.org/

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This product includes software developed by the JDOM Project (http://www.jdom.org/). Copyright © 2000-
2002 Brett McLaughlin & Jason Hunter, all rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions,
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions, and the disclaimer that follows these conditions in the documentation and/or other
materials provided with the distribution.

3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact

license@jdom.org.

4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in
their name, without prior written permission from the JDOM Project Management

(pm@jdom.org).

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

http://www.jdom.org/
mailto:license@jdom.org
mailto:pm@jdom.org

Table of Contents

Preface.................cccciaia i i s 1
Introducing JClass LiveTable . .1
Assumptions .1
Typographical Conventlons in th1s Manual .2
Overview of the Manual . .2
API Reference . .3
Licensing . . .3
Related Documents . . 4
About Quest . . . 4
Contacting Quest Software .4
Customer Support . . .5
Product Feedback and Announcements . 6
Part I: Using JClass LiveTahle
1 ‘Hello Table’ -
JClass LiveTable Tutorial 9
1.1 The Basic Table e L
1.2 Overview of Table Changes T b
1.3 Improving the Table’s Appearance 13
Adding and Formatting Labels 13
Introduction to Cell Styles 021
Changing Foreground and Background Colors B
Changing Alignment 16
Changing the Fonts B
Adding Color to an Individual Cell T £
Changing the Cell Borders and Spacing 19
Displaying More of the Cells 20
1.4 Adding Interactivity . . . A
Making the Cells Ed1table B |
Enabling Cell Selection 22
Resizing Using Labels Only 23
Enabling Column Sorting 24

1.5 Proceeding fromHere 25

1.6 Internationalization .

BuildingaTable.............coiiiiiiiinrinnnnnns

2.1 Table Anatomy 101
2.2 Setting and Getting Properties
Table Contexts
Setting Table Properties w1thJava Code
Setting Properties with a Java IDE at Design- Tlme
2.3 Preset Table Styles . e
2.4 Global Table Properties .
Focus Rectangle Appearance .
Screen Cursor Type
Scrollbars .
Cell Selection Colors .
Row and Column Labels
Cell and Label Border Width
Cell and Label Margins .
Component Borders
Frame Border Attributes
Row and Column Definition .
Controlling Cell Editor Size oo
2.5 Column Width and Row Height Propertles
Character Height and Width .
Absolute Pixel Height and Width .
Variable Pixel Height and Width . .
Maximum and Minimum Pixel Height and Wldth
Displaying and Editing Multiple Lines in Cells .

Using Row Height and Width to Hide Rows and Columns .

2.6 Cell Styles . .
Cell Style Propertles and Implementatlon
Defining Your Own or Changing Built-In Cell Styles
Using and Modifying JClass LiveTable’s Built-In Styles
Working with Colors
Text and Image Alignment
Cell and Label Fonts .
Border Types . .
Cell and Label Border Sldes .
Text and Image Clipping .o
Displaying Images in Table Cells .

. 26

.27
. 28
. 29
. 31
. 32
. 32
. 32
. 33
. 33
. 33
. 34
. 35
. 37
. 37
. 38
. 38
. 40
. 42
. 43
. 43
. 44
. 45
. 46
. 46
. 46
. 47
. 47
. 48
. 50
. 52
. 53
. 54
. 54
. 57
. 57
. 58

Contents

2.7 Cell and Label Spanning . .
Using Spanning to Create Multlhne Headers .

WorkingwithTableData

3.1 Overview: Data Handling in JClass LiveTable
How the Table and Data Source Communicate .
3.2 Getting Data into your Table
Making the Data Source Editable
3.3 Using Stock Data Sources

JCVectorDataSource: the Data Source Workhorse

Getting Data from an Input Stream
Getting Data from a Database . .
Caching Data w1thJCCachedDataSource
Using Swing TableModel Data Objects .
3.4 Setting Stock Data Source Properties
Working with Rows and Columns .
Working with Other Properties
3.5 Loading Data from an XML Source
XML Primer .
Using XML in JClass . .
Example XML Files for JClass leeTable .
Tags . .
Creating a Sw1ng TableModel class
3.6 Creating your own Data Sources .
3.7 Dynamically Updating Data .
Adding and Removing Columns and Rows

Displaying and EditingCells.........................

4.1 Overview . .

4.2 Default Cell Rendermg and Edltmg

4.3 Rendering Cells .
JClass Cell Renderers . .
Setting a Cell Renderer for a Serles .
Mapping a Data Type to a Cell Renderer .
Creating your own Cell Renderers .

58
60

61
61
62
63
63
64

64

65
65
66
66
66
69
69
69
70
71
71
71
72
74
78

79
80
81
81
82
83
84

Contents

44 EditingCells89

Default Cell Editors . . . [0
Setting a Cell Editor for a Serles R 2 |
Mapping a Data Type to a Cell Editor91
Creating Your Own Cell Editors92
4.5 TheJCCelllnfo Interface 100

5 Adding Formulas to JClass LiveTable 103

5.1 Introductiono ... 103
5.2 com.klg.jclass.util. formulae S H1erarchy B (VX
53 ExpressionsandResults 105
54 MathValues 105
MathScalar 106
MathVector 106
MathMatrix 107
5.5 Operations (0]
The Defined Mathematlcal Operatlons R (1Y
Reducing Operations to Values 111
56 ExpressionLists 112
5.7 Eventsand Listeners 112
5.8 Exceptions . . . T B
5.9 Using Formulae mJClass L1veTable e 113
Registering a Cell Editor and a Cell Renderer w1th thejClass Central
Registry R D
Performing a Mathematlcal Operatlon ona Range of Cells . 114
6 Programming UserInteractivity 115
6.1 Cell Traversal . . . e B)
Default Cell Traversal . 021
Customizing Cell Traversal 115
Minimum Cell Visibility 116
Forcing Traversal e 116
Controlling Interactive Traversal B §
6.2 Resizing Rows and Columns 118
Default Resizing Behavior 118
Disallowing Cell Resizing 118
Controlling Resizing 118

iv Contents

6.3

6.4

6.5
6.6

6.7

Table Scrolling . .
Default Scrolling Behav1or .
Managing Table Scrolling
Scroll Listener Methods .

Cell Selection .
Default Cell Selectlon .
Selection Colors .
Customizing Cell Selection .
Selected Cell List .

Working with Selected Ranges

Removing Selections

Runtime Selection Control .
Dragging Rows and Columns .
Sorting Columns

Sort by Clicking on a Column Label .

Resetting the Table after Sorting .
Custom Mouse Pointers

. 120
. 120
. 120
. 122
. 123
. 123
. 124
. 124
. 125
. 125
. 126
. 126
. 126
. 127
. 129
. 129
. 129

EventsandlListeners............cciveennernn=.a..131

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Displaying Cells
Editing Cells .
Painting Tables .
Printing Tables .
Resizing Cells
Scrolling in Tables
Selecting Cells .
Sorting Table Data
Table Data Changes .

7.10 Traversing Cells

. 131
. 133
. 136
. 137
. 138
. 141
. 144
. 147
. 149
. 151

TablePrinting.ciiiiienn....155

8.1

8.2

Printing . .
Setting Page Layout Propertles
Page Resolution .
Printing Headers and Footers .
Print Preview

. 155
. 155
. 156
. 156
. 157

Contents

v

9 JClass LiveTabhleBeansandIDEs 159

9.1 An Introduction to JavaBeans 159
Properties 159
Setting Properties in aJava IDE at De51gn Tlme 160
Setting Properties using Methodsinthe API 160
9.2 JClass LiveTable and JavaBeans 160
9.3 Setting Properties for the LiveTable Bean 161
JClass LiveTable Property Editors 161
LiveTable Properties (0}
9.4 Tutorial: Building a Table in an IDE . VX!
The Basic Table I V4
Improving the Table’s Appearance S V()
Adding Interactivity 181
The Final Program 183
9.5 Data Binding with IDEs 183
Data Binding LiveTable with aJBullder Data Source ... 184
Data Binding Using JClass DataSource 189
9.6 Interacting with Data Bound Tables 193
9.7 Property Differences Between the JClass L1veTable Beans .. 194

Part Il: Reference Appendices

A EventSummaryot iinnnrncnnnnnns 199
B JClass LiveTable PropertyListing. 203
B.1 Properties of com.klg.jclass.table. JCTable 203
B.2 Properties of com.klg.jclass.table.CellStyleModel 212
B.3 Properties of com.klg.jclass.table.beans.LiveTable 214
B.4 Properties of com.klg.jclass.table.db.jbuilder.JBdbTable . . . 215
B.5 Properties of com.klg.jclass.table.db.datasource.DSdbTable . . 217
C Porting JClass 3.6.x Applications. 219
C.1 OverviewofChanges 219
C.2 Porting Strategies . . . e e e e s 220
C.3 Highlights of Main Changes e e e e 220
D ColorsandFontsc.ccviiiiinnnnnnn 223
D.1 Colorname Values 223

Vi Contents

D2 RGBColorValues223

D3 Fonts. 228
E JClass LiveTable Inheritance Hierarchy 229
F Distributing Applets and Applications 231
F.1 Using JarMaster to Customize the Deployment Archive . . . 231
G Overview of ExamplesandDemos 233
G.1 JClass LiveTable Examples 233
G.2 JClass LiveTable Demos 238
Indexciiiii i i s 21

Contents vii

viii Contents

Preface

Introducing JClass LiveTable wm Assumptions wm Typographical Conventions in this Manual
Overview of the Manual wm APl Reference m Licensing wm Related Documents wm About Quest
Contacting Quest Software wm Customer Support m Product Feedback and Announcements

Introducing JClass LiveTable

JClass LiveTable is a Java GUI component that displays rows and columns of user-
interactive text, images, hypertext links, and other Java components in a scrollable
window.

JClass LiveTable may be used in conjunction with Quest Software’s JClass Field, in that a
Field component may be added to a JClass LiveTable cell.

All JClass LiveTable components are written entirely in Java; as long as the Java
implementation for a particular platform works, JClass LiveTable will work.

You can freely distribute Java applets and applications containing JClass components
according to the terms of the License Agreement.

Feature Overview
You can set the properties of JClass LiveTable components to determine how the table
will look and behave. You can control:

The data source for the table.

m Preset and custom cell editing and display behavior for all types of data.

m Labels for columns and rows.

m Colors, fonts, borders (including custom borders), alignment, and spacing for cells
and labels.

® Row and column dragging.

m Column sorting.

® Adding, deleting, moving, and dragging rows and columns.

m Scrolling and attaching default or custom scrollbars.

m Cell selection and traversal.

Assumptions

This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming and

Java programming concepts such as classes, methods, and packages before proceeding
with this manual. See Related Documents later in this section of the manual for additional
sources of Java-related information.

Typographical Conventions in this Manual

Typewriter Font W Java language source code and examples of file contents.

m JClass LiveTable and Java classes, objects, methods, properties, constants,
and events.

HTML documents, tags, and attributes.
Commands that you enter on the screen.

Ttalic Text Pathnames, filenames, URLs, programs, and method parameters.
New terms as they are introduced, and to emphasize important words.
Figure and table titles.

The names of other documents referenced in this manual, such as Java in a
Nutshell.

Bold W Keyboard key names and menu references.

Overview of the Manual

Part I — Using JClass LiveTable — describes how to use the JClass LiveTable
programming components.

Chapter 1, ‘Hello Table’ — JClass LiveTable Tutorial, provides a tutorial exercise to
familiarize new users with the basics of writing a JClass LiveTable program.

Chapter 2, Building a Table, explains how to set most JClass LiveTable properties to
customize the appearance and display of JClass LiveTable applications.

Chapter 3, Working with Table Data, gives details on getting data into and out of
tables using the Model View Controller data handling in JClass LiveTable.

Chapter 4, Displaying and Editing Cells, describes how to configure JClass LiveTable
so users can edit cells of any data type.

Chapter 5, Adding Formulas to JClass LiveTable, outlines the formulae package in
com.klg jelass.util, which has special capabilities for working with mathematical objects.

Chapter 6, Programming User Interactivity, explains how to control how users
interact with your table application, including cell traversal, selection, sorting, and
more.

2 Preface

Chapter 7, Events and Listeners, explains how to send events and register event
listeners in your JClass LiveTable programs.

Chapter 8, Table Printing, describes the enhanced printing features of
JClass LiveTable.

Chapter 9, JClass LiveTable Beans and IDEs, describes the JClass LiveTable
JavaBeans and how to use them within a Java Development Environment.

Part IT — Reference Appendices - provides quick access to detailed information on
JClass LiveTable features and implementation.

Appendix A, Event Summary, lists events and corresponding event listeners.

Appendix B, JClass LiveTable Property Listing, is a quick reference to properties,
their functions, and settable values.

Appendix C, Porting JClass 3.6.x Applications, explains how to properly migrate
existing LiveTable 3.x applications to LiveTable 4.x.

Appendix D, Colors and Fonts, lists all of the color names and RGB values available
to JClass LiveTable applications. It also lists all of the available fonts and font style
constants.

Appendix E, JClass LiveTable Inheritance Hierarchy, summarizes the
com.klg.jclass.table package.

Appendix F, Distributing Applets and Applications, is a quick tutorial that
demonstrates how to take a completed Java applet and deploy it on a Web page and
Web server.

Appendix G, Overview of Examples and Demos, summarizes all JClass LiveTable
examples and demos, and refers you to the chapter that covers the predominant

feature(s) used in a particular example or demo.

API Reference

The API reference documentation (Javadoc) is installed automatically when you install

JClass LiveTable and is found in the JCLASS_HOME/docs/api/ directory.

Licensing

In order to use JClass LiveTable, you need a valid license. Complete details about

licensing are outlined in the Installation Guide, which is automatically installed when you

install JClass LiveTable.

Preface

3

../api/index.html
../getstarted/index.html

Related Documents

The following is a sample of useful references to Java and JavaBeans programming:

W “Java Tutorial’ at hitp://java.sun.com/docs/books/tutorial/index.html from Sun
Microsystems.

W Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc.

m Resources for using JavaBeans are at Atip://java.sun.com/beans/resources.html.

Please note that these documents are not required to develop applications using
JClass LiveTable and Java.

About Quest

Quest Software, Inc. (NASDAQ: QSFT) is a leading provider of application management
solutions. Quest provides customers with Application Confidence®™ by delivering
reliable software products to develop, deploy, manage and maintain enterprise
applications without expensive downtime or business interruption. Targeting high
availability, monitoring, database management and Microsoft infrastructure
management, Quest products increase the performance and uptime of business-critical
applications and enable IT professionals to achieve more with fewer resources.
Headquartered in Irvine, Calif., Quest Software has offices around the globe and more
than 18,000 global customers, including 75% of the Fortune 500. For more information on
Quest Software, visit www.quest.com.

Contacting Quest Software

E-mail sales@quest.com
Quest Software, Inc.
World Headquarters
Address 8001 Irvine Center Drive
Irvine, CA 92618
USA
Web site www.quest.com
Phone 949.754.8000 (United States and Canada)

Please refer to our Web site for regional and international office information.

4 Preface

http://www.quest.com
mailto:sales@quest.com
http://www.quest.com
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/beans/resources.html

Customer Support

Quest Software’s world-class support team is dedicated to ensuring successful product
installation and use for all Quest Software solutions.

SupportLink www.quest.com/support

E-mail support@quest.com

You can use SupportLink to do the following:

m Create, update, or view support requests

m Search the knowledge base, a searchable collection of information including program

samples and problem/resolution documents
m Access FAQs
m Download patches

m Access product documentation, API reference, and demos and examples

Please note that many of the initial questions you may have will concern basic installation

or configuration issues. Consult this product’s readme file and the Installation Guide
(available in HTML and PDF formats) for help with these types of problems.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying the
following information will help us serve you better:

Your name, email address, telephone number, company name, and country
The product name, version and serial number

The JDK (and IDE, if applicable) that you are using

The type and version of the operating system you are using

Your development environment and its version

to duplicate it

A full description of the problem, including any error messages and the steps required

JClass Direct Technical Support

JClass Support Email support@quest.com

Telephone 949-754-8000

Fax 949-754-8999

Preface

http://www.quest.com/support
mailto:support@quest.com
../api/index.html
../../readme.html
../getstarted/index.html
mailto:support@quest.com

European Customers Telephone: +31 (0)20 510-6700
Contact Information Fax: +31 (0)20 470-0326

Product Feedback and Announcements

We are interested in hearing about how you use JClass LiveTable, any problems you
encounter, or any additional features you would find helpful. The majority of
enhancements to JClass products are the result of customer requests.

Please send your comments to:
Quest Software

8001 Irvine Center Drive
Irvine, CA 92618

Telephone: 949-754-8000
Fax: 949-754-8999

6

Preface

Part

Using
JClass

LiveTable

‘Hello Tahle’ -
JGlass LiveTable Tutorial

The Basic Table wm Qverview of Table Changes wm Improving the Table’s Appearance
Adding Interactivity wm Proceeding from Here w Internationalization

You can immediately learn about some fundamental JClass LiveTable programming
concepts by compiling and running an example program!. This program displays
information about orders for “The Musical Fruit”, a fictional wholesale coffee distributor,
based on the following data:

Customer Name Order Date ltem Quantity (Ibs.) | Price/Ib.

The Cuppa 11/11/97 French Mocha | 60 $7.01

The Underground Cafe 11/14/97 Brazilian 112 $6.80
Medium

RocketFuel and Cake 10/30/97 Espresso Dark | 300 $8.02

Cafe

WideEyes Coffee House 11/12/97 Colombian/Ir | 120 $5.30
ish Cream
Flavored

Jitters Caffeine Cavern 10/01/97 Ethiopian 80 $7.50
Medium

Twitchie’s on the Mall 12/06/97 French Roast | 160 $14.50
Kona

Quest Software Inc. 12/12/97 Colombian 22,000 $5.28

1. This exercise assumes that you are familiar with Java programming concepts and have previously written and compiled
Java programs. It also begs forgiveness for yet another play on the coffee theme of Java.

1.1

The Basic Tahle

The following code is from Examplelable] java, found in the examples/table/intro directory
of your JClass LiveTable installation directory. The code creates a very plain looking
table, without column labels or any other JClass LiveTable features to improve usability
and appearance.

package examples.table.intro;

// import the necessary java classes, including the Table package
import java.awt.Component;

import javax.swing.JPanel;

import com.klg.jclass.util.swing.JCExitFrame;

import com.klg.jclass.table.JCTable;

import com.klg.jclass.table.data.JCVectorDataSource;

// initiate the class declaration
public class ExampleTablel extends JPanel {

// set the cell values as a matrix of strings
String cells[]I[] = {
{"The Cuppa","11/11/97","French Mocha","60","$7.01"},
{"The Underground Cafe","11/14/97", "Brazilian Medium", "112","$6.80"},
{"RocketFuel and Cake","10/30/97","Espresso Dark","300","$8.02"},
{"WideEyes Coffee House","11/12/97","Colombian/Irish Cream
Flavored","120","$5.30"},
{"Jitters Caffeine Cavern","10/01/97","Ethiopian Medium
Roast","80","$7.50"},
{"Twitchy’s on the Mall","12/06/97","French Roast Kona","160","$14.50"},
{"Quest Software Inc.","12/12/97", "Colombian","22,000","$5.28"}
b

// initialize the Table object
protected JCTable table;

// Build the table, point to the data source and define the table
properties.
public ExampleTablel() {

setLayout(new java.awt.GridLayout());

// Create a default table object
table = new JCTable();

// Create a vector data source to contain our data
JCVectorDataSource ds = new JCVectorDataSource();

// Turn off column labels
table.setColumnLabelDisplay(false);

// Turn off row labels
table.setRowlLabelDisplay(false);

// Set the data source to the vector data source from earlier
table.setDataSource(ds);

10

Part | m Using JClass LiveTable

// Set the number of rows in the data source.
ds.setNumRows(7);

// Set the number of columns in the data source.
ds.setNumColumns(5);

// Set the cell data in the data source.
ds.setCells(cells);

this.add(table);
}

public static void main(String args[]) {
JCExitFrame f = new JCExitFrame("ExampleTablel");
ExampleTablel et = new ExampleTablel();
f.getContentPane().add(et);
f.setSize(600, 200);
f.setVisible(true);

}

}

Note: As you change the ExampleTable].java file throughout this tutorial, it may be
necessary to resize the frame to fit the content.

How the Tahle Handles Data

The table uses a Model-View-Controller (MVC) data mechanism; the table data is stored
in a separate object. For this table example, we have used JCVectorDataSource, a class
provided with JClass LiveTable that retrieves data from the data source and stores it in
memory (see Using Stock Data Sources, in Chapter 3, for more information).

The data source is set using the table.setDataSource() method:

table.setDataSource(ds);
ds.setNumRows(7);
ds.setNumColumns(5);
ds.setCells(cells);

Once the data source is set to the JCVectorDataSource (ds) object, that object handles the
data, including setting the number of rows and columns, and accessing the cell values.
The data in the cells is of type String.

Chapter 1 m ‘Hello Table’ — JClass LiveTable Tutorial 11

What the Table Looks Like
If you compile and run the modified ExampleTable].java program,! the following table is

displayed:

E‘%ExampleTahltﬂ [_ (O] %]
The Cuppa 111087 French Mocha 1] F7.01

The Undrmrannd O 110 497 RArarzilian Medinm 112 FR AN

RocketFuel and Cak, 10730097 Espressa Dark 300 fa8.02

WideEyes Coffee Hgl 11012597 Colomhbianflrish Crg, 120 $5.30

Jditters Caffeine Cavg 10/01/97 Ethizpian Medium RJ/80 §7.400

Twitchy's on the Mall 1200697 French Roast Kona |[160 $14.50

Cluest Sofware Inc.| 1201 2597 Colombian 22,000 §5.28

The clip arrows indicate that the cells are not large enough to display their entire
contents. By default, users can resize rows and columns to view the contents of the cell.
Notice that if you click a cell, a focus rectangle appears, showing the current cell.

1.2 Overview of Table Changes

The following sections walk you through the modification of the example table. It is
assumed that you are changing the code in the ExampleTable] java file, compiling and then
running it after each step to view the results. Of course, it is recommended that you make
a copy of the original file.

For each of the table’s modifications, all the code that needs to be added is provided.
Since some code segments rely on the presence of code from previous steps, it is
recommended that you perform all modifications in the order in which they appear in
this chapter.

Additionally, all changes made in this tutorial are reflected in the other example files
found in the examples/table/intro directory. You can also compile and run those files to
compare and verify the changes you make to ExampleTable] java. Throughout the chapter,
you will be alerted when the cumulative changes can be seen in another example file.

Change to ExampleTable1.java Example File that Encompasses Changes Made

defining and adding labels examples/table/intro/ExampleTable2 java

label colors examples/table/intro/ExampleTable3 java

label text alignment

label font examples/table/intro/Examplelabled. java

1. Note that the example programs in your JClass LiveTable distribution contain a package name. To run the compiled
class, you must type the full package name, for example: java examples.table.intro.ExampleTablel

12 Part | m Using JClass LiveTable

1.3

1.3.1

Change to ExampleTahle1.java Example File that Encompasses Changes Made

color of an individual non-label
cell examples/table/intro/ExampleTable java

cell and frame borders and
spacing

cell height and width

enabling cell editing examples/table/intro/ExampleTable6.java

enabling cell selection

resize only with labels examples/table/intro/ExampleTable7 java

enable column sorting examples/table/intro/Examplelable8.java

Improving the Tahle’s Appearance

Using some of the properties for modifying a table’s appearance, you can easily move
from the basic, drab table in ExampleTable].java, to a table that is easier to understand,
easier to use, and more visually appealing.

All properties for a table can be specified when you create the table, or they may be
changed at any time as the program runs by using event listeners. Each property has two
accessor methods: set and get. An example of a set method for a property is
setBackground(), which sets the background color of a cell or label. You can retrieve the
current value of any property using the property’s get method, as in getBackground().

Adding and Formatting Labels

Background

The table displayed by the ExampleTable].java program is not very useful to an end-user.
Not only is it uninteresting to look at, but you cannot tell what kinds of information the
cells contain because there are no column labels. In the original data outline for the table
(at the beginning of the chapter), we specified the following column headers or labels:

m Customer Name
Order Date
Item

Quantity (Ibs.)
Price/lb.

Chapter 1 m ‘Hello Table’ — JClass LiveTable Tutorial 13

Labels are cells that can never be edited and can contain any Object, (for example,
Strings, images, integers). You can apply labels to rows and columns. The label values,
like cell values, are set in the data source object.

Procedure
In ExampleTablel java, set the labels as a String by inserting this line immediately after the
cell values String statement:

String labels[] = {"Customer Name","Order Date","Item", "Quantity
(Ths.)","Price/1b."};

Once you have defined the values for the column labels, you have to instruct the Table
object to display labels. The program currently contains the line:
table.setColumnlLabelDisplay(false);
By default, column labels are set to true. Change the label setting back to this default by
entering this code:
table.setColumnLabelDisplay(true);
Once the ColumnLabe1Display property is set to true, you can set the column labels in
the data source. After ds.setCells(cells);, add the line:
ds.setColumnLabels(labels);

This uses the data source to set the values of the column labels from the data specified in
the String cells.

Compile and run the modified ExampleIable].java file. The table now looks like this:

E‘%ExampleTahltﬂ [_ (O] %]
Custamer Mame]CrderDate]Iterr]Quantw {lhs)]Pricerlb.]
The Cuppa 111087 French Mocha 1] F7.01

The Underground G 11514597 Brazilian Medium 112 §6.80

RocketFuel and Cak, 10730097 Espressa Dark 300 fa8.02

WideEyes Coffee Hgl 11012597 Colomhbianflrish Crg, 120 $5.30

Jitters Caffeine Cavg/ 1000197 Ethiapian Medium R, 80 §7.80

Twitchy's on the Mall 1200697 French Roast Kona |[160 $14.50

Cuest Sofware Inc.| 1212197 Calombian 22,000 $5.28

Note: You can also run ExampleTable2.java, which already contains these changes.

Notice that the column labels are now part of the table. Also note that if you click a label,
you do not get the focus rectangle that would appear on a selected cell, as labels cannot
be edited and are not included in cell traversal. In certain situations, clicking a label
performs an action (this will be discussed in Section 1.4, Adding Interactivity). However,
in this case, the labels do not perform any interactive function.

14

Part | m Using JClass LiveTable

1.3.2

1.3.3

Introduction to Cell Styles

Cell Styles provide a very flexible model for changing the appearance (and some
behavior) of a table’s cells or labels. A style contains attributes that can be applied to cells
and labels, including color, text properties, and text/image alignment.

JClass LiveTable comes with several constructs that are part of Cell Styles:

m CellStyleModel: An interface that defines the methods required by an object to
specify the attributes of a cell.

JCCel1Style: The default implementation of the Ce11StyleModel interface.

The default cell and label styles: These are preset styles (one for labels, one for cells)
whose look and feel change with any changes to the pluggable look and feel (PLAF)
implementation of a table.

The visual table changes found in the next four sections are defined using these Cell Style
constructs.

For in-depth coverage of cells styles, please refer to Building a Table, in Chapter 2.

Changing Foreground and Background Colors

Background
There are thirteen AWT color constants that can be used in Java. The color constant
values are:

m Color.black m Color.magenta
m Color.blue m Color.orange
m Color.cyan B Color.pink

m Color.darkGray m Color.red

m Color.gray m Color.white
m Color.green m Color.yellow

m Color.lightGray

Procedure

In order to make changes with AWT colors, you need to include the java.awt.Color
package to the ExampleTable] java file that you are modifying. Add this to your list of
import statements:

import java.awt.Color;

Chapter 1 m ‘Hello Table’ — JClass LiveTable Tutorial 15

1.3.4

Since you are using default styles in the examples, you need to import the interface with
which you implement the style. To do this, import the Ce11StyleModel class by adding
this line to your list of import statements:

import com.klg.jclass.table.CellStyleModel;

Now that the required AWT color and Cell Style classes are accessible, set the
background color of the labels to blue, and the foreground color (text) to white. Do this
by inserting the following lines into the file’s ExampleTablel class:

CellStyleModel labelStyle = table.getDefaultLabelStyle();

labelStyle.setBackground(Color.blue);
labelStyle.setForeground(Color.white);

Here, you acquire the default label style. You then tweak the default label color attributes
by changing the default colors to blue and white. Recompile and run the modified
Examplelable].java file. The table now looks like this:

E‘%Examplefahhﬂ [_ (O] %]
Customer hame [Order Date QU3) Friceflk.

11111197 French Macha 0 $7.01

The Underground G 11114597 Brazilian Medium 12 §6.80
RocketFueland Cak) 10520097 Espressc Dark 300 fa8.02

WideEyes Coffee Hgl 11112597 Colombiznflrish Crg, 120 $5.30

Jitters Caffeine Cavg/ 10001597 Ethiapian Medium R 80 §7.80

Twitchy's onthe Malll 120697 French Roast Kona |160 $14.50

Cuest Software Inc.| 1212197 Calombizn 22,000 $5.28

Note: You can also run ExampleTable3.java, which already contains these changes.

Changing Alignment

Background

Another way to visually differentiate the text that appears within a table is to change its
alignment within a cell relative to the text alignment in other cells. By default, text (or
anything else you insert into specific cells in a table) is shifted to the top and left margins
of the cell. With Cell Styles, the horizontal and vertical positioning of a cell’s contents can
be defined.

If you want to set the labels in the sample program to appear horizontally centered and at
the top of the label, continue to modify the default label style that was set in the previous
step.

Procedure
Add this line to your set of import statements:

import com.klg.jclass.table.JCTableEnum;

Then, append these lines to the TabelStyle statements that were added in the previous
step:

16

Part | m Using JClass LiveTable

labelStyle.setHorizontalAlignment(JCTableEnum.CENTER);
labelStyle.setVerticalAlignment(JCTableEnum.TOP);

1.3.5 Changing the Fonts

Background

It is also possible to change fonts and their appearance. This is another way to visually
distinguish one part of a table from another, or to change the overall appearance of the
table.

Java defines five different platform-independent font names that are found (or have close
equivalents) on most computer platforms. Valid Java AWT font names are:

m Courier m Dialog
m Dialoglnput W Helvetica
B TimesRoman

Note: Font names are case-sensitive.

There are also four standard font style constants that can be used. Valid Java AWT font
style constants are:

W Font.BOLD W Font.PLAIN
m Font.ITALIC m Font.BOLD + Font.ITALIC
Procedure

We want to change the text column labels in the modified ExampleIable].java, from their
default to a 14 point, bold-italic, Times Roman text. In order to make changes with AWT
fonts, you need to include the java.awt.Font package to the program. Add this to your
list of import statements:

import java.awt.Font;

Append this line to the Tabe1Style statements added in the last two steps:

labelStyle.setFont(new Font("TimesRoman", Font.BOLD +
Font.ITALIC, 14));

Chapter 1 m ‘Hello Table’ — JClass LiveTable Tutorial 17

1.3.6

Recompile and run your modified Examplelable].java file. Having changed the text font
and alignment, your table now looks like this:

T [_[O]=]
Castomer Namz Qader Dogz Guandiy (ibs.) FricaD.

[resuwpa— Juieier Frensh rocha 60 70

The Jnderground Saf 11/ 4G7 Brazilian hedicmr 12 620

RrekeFoal and Cake [10AMGT Fapressa Dark ann fan?

WideEyas Coffas Hou |11/ 287 Colormbiarfiish Zras) 120 5230

Jitlers Caffzine C=a'.farL1U.iU1"97 Cthicpian Mediurm _\'OLUU 750

Twilehis un b2 Mall |1 20697 Frerch Ruasl kuna (160 f14.50

Cnmst Snfhwane ne 125 247 Colormbiar 210 i

Note: You can also run ExampleTable4.java, which already contains these changes.

The type of font displayed on a user’s system depends entirely on the fonts that are local
to that user’s computer. If a font name specified in a Java program is not found on a user’s
system, the closest possible match is used as determined by the Java AWT.

Adding Color to an Individual Cell

Background

In some cases, you will want the information in a certain cell or range of cells to stand out
from the rest. As previously mentioned, Cell Styles can be used with individual or ranges
of cells.

In our modified Examplelablel.java file, we want to highlight the premium coffee order
using different foreground and background colors — in this case, Twitchy’s on the Mall
(row 6, column 1).

When we originally made changes to the labels using Cell Styles (the first change made
was to the label colors), we retrieved the default label style and implemented them into
the Ce11StyleModel class. This made a change to alllabels. Now that you are working
with a single cell, using the default Cell Style for non-label cells requires a similar action,
but with an added step.

Procedure
First, import JCCe11StyTe by adding this line to your set of import statements:

import com.klg.jclass.table.JCCellStyle;
Then, similarly to what was done with the labels’ style, retrieve the default style for non-
label cells by adding this new line to the ExampleTablel class:

CellStyleModel cellStyle = table.getDefaultCellStyle();
Next, add this line to create a Cell Style for the single “Twitchy’s on the Mall” cell, which

creates a new unique Cell Style that inherits all the style settings from the default Cell
Style:

18

Part | m Using JClass LiveTable

CellStyleModel specialStyle = new JCCellStyle((JCCellStyle)cellStyle);

Since we want to change the specific cell’s color, but do not want these changes applied to

all the cells, the specialStyle object was created. Now, change the colors of the cell by
adding these lines:

specialStyle.setForeground(Color.red);
specialStyle.setBackground(Color.yellow);
table.setCel1Style(5, 0, specialStyle);

Note: The cell found at row 6, column 1 in the displayed table is designated as row 5,
column 0 in the code. This is because row and column indexes begin at zero. The top left
cell in the table is at location (0, 0).

Recompile and run the modified ExampleTable].java file. The colors in cell (5, 0) have
changed, and the table now looks like this:

[reSupa— Juiruer Frenzh rocha 60 §70
“he Jnderground Saf 11/ 487 Brazilian hedicrr 172 §6.30
RrekeFuel and Cake |1ME0@A7 Fapressa Dark ann fAN?
WideEpas Coffas HDLL’”." eli=Fs Colorbiarslich :‘reaLHD 520
Jitlers Caffizine Caverp10/01@7 Cthicpian Medium o /00 1730
Twilehir's on lhiz2 Mall |1 206097 FrenchRuasl kuna (160 §14.50
Opat SAfwam Ine |12 247 Colormbiar 22000 b

1.3.7 Changing the Cell Borders and Spacing

Background

There are a number of properties that can be used to define cell/frame borders and cell
spacing. These are outlined in Building a Table, in Chapter 2. For the example program,
we are going to thicken the cell borders, as well as the table’s frame border. Also, the
border style for the cells (not labels) and frame will be changed.

Procedure

First, in order to work with borders, import the JCCe11Border class by adding this line to
your list of import statements in your modified ExampleTablel.java:

import com.klg.jclass.table.JCCellBorder;
Next, add these lines to the ExampleTablel class:

cellStyle.setCellBorder(new JCCell1Border(JCTableEnum.BORDER_OUT));
table.setCellBorderWidth(5);

table.setFrameBorderWidth(3);
table.setFrameBorder(new JCCell1Border(JCTableEnum.BORDER_OUT));

Chapter 1 m ‘Hello Table’ — JClass LiveTable Tutorial 19

1.3.8

Now that you have made these additions to the code, recompile and run the modified
Examplelable].java file. Having changed the cell and frame border properties, the table
now looks like this:

|Thc Guppa 17004407 Trerch docha o] 5704
The Undeiguund gy 177 437 Bradlin Medicrn 1z i)
Rozkalk deland Cake § 1003007 Espresso Dark Eall) ELAT
\ideTyes Matiee Hugl 17 337 Ealambizeiraa coaagld 170 %420
Jtters Zaf ‘DCa\ucrg 1001437 Ethiagicn hodiamRog 81 F7 50
Towle s wnillieal | 120037 Frenul Tues. Kong 120 F14.90
Nuest Scftware Inc | 1247247 vohimbiEn AL $o 24

Note: You can also run ExampleTable.java, which already contains these changes.

Displaying More of the Cells

Background

The example table has come a long way after setting only a few properties, but there is
still a small problem: the table may clip the cell’s contents. This means that the user has to
resize the rows or columns in order to read the contents of some cells. By default,

JClass LiveTable sets all of the cells to a width of 10 characters and a height of one
character. You could specify the height and width of the cells in rows and columns in
terms of lines and characters using the CharHeight and CharWidth properties. However,
in this program we want the cells to size themselves to display the entire contents (if
possible).

Procedure
Add the following lines of code to the modified Examplelable] java:

table.setPixelHeight(JCTableEnum.ALLCELLS, JCTableEnum.VARIABLE);
table.setPixelWidth(JCTableEnum.ALLCELLS, JCTableEnum.VARIABLE);

20

Part | m Using JClass LiveTable

1.4

1.41

These lines set the PixelHeight and PixelWidth properties to a variable size for all rows
and all columns, ensuring that the table will attempt to display the entire contents of each
cell. Recompile and run the modified Examplelable].java. The table looks like this:

Ega ExampleTablel [_ Ol =]

Customet Name Crider Daie

Quaniy (1hs.)

|The Cuppa 11011597 French Mocha GO L7.01
The Underground Cafe 11014587 Brazilian Medium 112 §6.80
RocketFuel and Cake 10430087 Espressao Dark 300 fa.02
WideEyes Caffee House | 11712597 Colombianflrish Cream Flavared§ 120 $5.30
Jditters Caffoine Cavarn 10001597 Ethiopian Mod urn Roast 20 §7.80
Twitchy's onthe Mall 12006597 French Roast Kona 160 1450
Cuest Software Inc. 12112197 Colarmbian

You can also set these properties to specific pixel values for rows and columns; see the
section on how to set Column Width and Row Height Properties, in Chapter 2, for more
details.

So far, all the changes that have been made to ExampleTable] java have centered around a
table’s set of visual properties. Keeping the changes made thus far, we will continue by
making changes to some of Examplelable].java’s interactive properties.

Adding Interactivity

In a hypothetical scenario, our example table could be used to track orders and accounts
with a large number of customers. Your users will likely want to update the data, sort the
information displayed in the table, and select sections of the table to perform operations
on them.

We will add some basic user-interactivity to our example table to give you a sense of some
of the things you can do with JClass LiveTable. You can explore user-interactivity further
in Programming User Interactivity, in Chapter 6.

Making the Cells Editable

Background

As far as user interaction goes, one of the problems with this example table is that it is not
editable. If a user clicks a cell, the focus changes, but nothing else happens. To make the
cell editable, we have to change the data source object to an editable data source. The
JCVectorDataSource class we used as our data source has an editable counterpart called
JCEditableVectorDataSource.

Chapter 1 m ‘Hello Table’ — JClass LiveTable Tutorial 21

1.4.2

Procedure
The modified ExampleTable] java currently contains the lines:

import com.klg.jclass.table.data.JCVectorDataSource;
JCVectorDataSource ds = new JCVectorDataSource();

Change them to:

import com.klg.jclass.table.data.JCEditableVectorDataSource;
JCEditableVectorDataSource ds = new JCEditableVectorDataSource();

Once you change these lines, recompile and run the modified ExampleIable].java file. The
table now looks like this:

Eﬁ_@ExampleTahhﬂ Hi=] E3

Customer Name Crider Date Quantiy (1hs.) | Frice/I.

The Cuppa 11111097 rench Mocha

The Underground Cafe 110114197 Brazilian Medium 112 §6.80
RocketFuel and Cake 10530097 Espresso Dark 300 $8.02
WideEves Coffee Hause || 11412597 Colamb anflrish Cream|Flavored | 120 $5.30
Jitters Caffoine Cavarn 10001507 Ethiopian Med urn Roast a0 §7.60
Twiitchy's onthe hall 1208197 French RoastKona 160 $14.50
Quest Software Inc. 1212197 Colombian

Figure 1 The table with editable cells. Note cell (3, 2) is being edited.

Note: You can also run ExampleTable6.java, which already contains these changes.

Clicking a cell will bring up the editing component for the type of data in the cell. Since
all of the cells contain Strings, the editing component is a text editor. For more
information, see Displaying and Editing Cells, in Chapter 4.

Enabling Cell Selection

Background

JClass LiveTable provides methods that set how users can select cells, ranges of cells, and
entire rows and columns. Selection is enabled by setting the SelectionPolicy property.
By default, cell selection reverses the foreground and background colors of the cells to
highlight the selection.

Procedure
You can enable selection by adding the following code to the example program:

table.setSelectionPolicy(JCTableEnum.SELECT_RANGE) ;

This allows users to select one or more cells in rows or columns by clicking and dragging
the mouse, or using keyboard combinations.

22

Part | m Using JClass LiveTable

By default, setting the SelectionPolicy property enables selection of entire rows or
columns by clicking on the row or column label. When the user clicks on the column
label, the column display (including the label) is reversed to highlight the selection.
Similarly, when the user clicks on the row label, the row display (including the label) is
reversed and the selection is highlighted.

You can configure the table not to highlight the label by using the following line of code:
table.setSelectIncludelabels(false);

You can also change the default highlighting colors by setting the SelectedForeground
and SelectedBackground properties. See Customizing Cell Selection, in Chapter 6, for
more information.

1.4.3 Resizing Using Labels Only

Background

By default, users can resize rows, columns, and labels by clicking their borders and
dragging. You can change this functionality so that the resize capability is available only
from the label. To resize a column, the user resizes its label instead of its cells.

JClass LiveTable provides the A11owResizeBy property to enable this feature.

Procedure
In the modified ExampleIable].java, add this line to the ExampleTablel class:

table.setAllowResizeBy(JCTableEnum.RESTIZE_BY_LABELS);

Recompile and run the modified ExampleTable].java file. The mouse cursor becomes a
“resize” cursor only when it is located over the borders of the column labels.

Ega ExampleTablel M= R
The Cuppa 11111097 French Mocha G0 §7.01

The Underground Cafe 11114197 Brazilian Medium 112 §6.80
RockeiFuel and Cake 1030097 Espresso Dark 300 $a8.02
‘WideEyes Caffee Hause | 11412597 Coalombiandlrish Crearn Flavored | 120 $5.30
Jitters Gaffoine Cavarn 10601507 Ethiopian Med um Roast a0 §7.50
Twitchy's onthe Mall 12108197 French Roast Kona 160 §14.50
Quest Software Inc. 1212197 Colombian 12,000 $5.29

Figure 2 A table with cell selection and exclusive label resizing. Note that the cell range of (2, 0) through (2,
2) has been selected.

Note: You can also run ExampleTable7,java, which already contains these changes.

Chapter 1 m ‘Hello Table’ — JClass LiveTable Tutorial 23

1.4.4 Enabling Column Sorting

Background

It might be easier for your users to find certain information if they can sort the table based
on cell values in a column. For example, that way they can find a customer name
alphabetically or find large orders by sorting the “Quantity (Ibs.)” column.

A simple way to allow your users to sort a row or column is to add a ¢rigger that maps a
column or row event onto a label. Since the program currently selects a column when
you click its corresponding label, you need a way to differentiate between a selection and
a call to sort the column.

Procedure
You can allow users to sort the column by using a Shift-click combination. Add these
lines to your list of import statements in the modified Examplelable].java:

import com.klg.jclass.table.MouseActionInitiator;
import java.awt.event.InputEvent;

These will allow your program to work with different mouse events. Now, to add the
action, add this line to the ExampleTablel class:
table.addAction(new MouseActionInitiator(

MouseActionInitiator.ANY_BUTTON_MASK, InputEvent.
SHIFT_MASK),JCTableEnum.COLUMN_SORT_ACTION);

24

Part | m Using JClass LiveTable

1.5

When you recompile and run the program, you will see that holding down the Shift key
and clicking a column label sorts the rows in ascending alphabetical/numerical order,
based on the contents of the column.

Egg ExampleTablel [_ o] =]

|Thp chppa 1111097 French Mnrha FTm
The Underground Cafe 11014087 Brazilian Medium 112 $6.80
RocketFuel and Cake 10030087 Ezpresso Dark 300 $8.02
WideEyes Coffee Hause | 1111 2/97 Colombiandrizsh Cream Flavored § 120 §5.30
Jitters Caffeine Cavarn 10197 Ethiopian Med um Roast 20 §7.80
Twitchy's onthe Mall 12106697 French Roast Kona 160 §14.50
Cuest Software Inc 1201287 Caolambian 22,000 $5.28
Use SHIFT+mouse dick to sort a column
-
|The Underground Cafe 1114197 Brazilian Medium 5680
Quest Software Inc. 1212097 Colombian 22,000 5528
WideEyes Coffee Housel| 11012097 Colombiandlrizsh Cream Flavoredfj 120 $5.30
Mocketluel and Cake 10520037 Cspresso Dark juJul] 0.0z
Jitters Caffeine Cavarn 10/01597 Ethiopian Med um Roast a0 57.50
The Cuppa 1111597 French Macha 0 57.M
Twitchy's on the hall 12106597 French RoastKona 160 $1450

Use SHIFT+mouse dick te sort a column

Figure 3 Before enabling column sorting, when the third column’s label was clicked, all column cells were
selected (left). After inserting the code, Shift-clicking the column’s label resulted in an alphabetical
sort (right).

Note: You can also run Examplelable8.java, which already contains these changes.

Proceeding from Here

This exercise has given you a simple overview of some of the types of things you can do
with JClass LiveTable.

m For detailed information on the design elements of JClass LiveTable, see Building a
Table, in Chapter 2. Appendix B, JClass LiveTable Property Listing, contains the
JClass LiveTable Properties in table format.

m To learn about using the new JClass LiveTable data model, see Working with Table
Data, in Chapter 3, and Displaying and Editing Cells, in Chapter 4.

Chapter 1 m ‘Hello Table’ — JClass LiveTable Tutorial 25

1.6

m To learn about the formulae package in com.klg.jelass.util, which has special
capabilities for working with mathematical objects, see Adding Formulas to
JClass LiveTable, in Chapter 5.

m To learn about user-interaction with JClass LiveTable, see Programming User
Interactivity, in Chapter 6.

m To try this same tutorial in a JavaBeans development environment, see
JClass LiveTable Beans and IDEs, in Chapter 9.

You can find many more examples of ways to customize and enhance applications and
applets in the demos directory of your JClass LiveTable distribution.

Internationalization

Internationalization is the process of making software that is ready for adaptation to
various languages and regions without engineering changes. JClass products have been
internationalized.

Localization is the process of making internationalized software run appropriately in a
particular environment. All Strings used by JClass that need to be localized (that is,
Strings that will be seen by a typical user) have been internationalized and are ready for
localization. Thus, while localization stubs are in place for JClass, this step must be
implemented by the developer of the localized software. These Strings are in resource
bundles in every package that requires them. Therefore, the developer of the localized
software who has purchased source code should augment all .java files within the
/resources/ directory with the .java file specific for the relevant region; for example, for
France, Localelnfo.java becomes LocaleInfo_fr.java, and needs to contain the translated
French versions of the Strings in the source LocaleInfo.java file. (Usually the file is called
Localelnfo.java, but can also have another name, such as LocaleBeanInfo.java or
BeanLocaleInfo.java.)

Essentially, developers of the localized software create their own resource bundles for
their own locale. Developers should check every package for a /resources/ directorys; if one
is found, then the .java files in it will need to be localized.

For more information on internationalization, go to:
http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html.

26

Part | m Using JClass LiveTable

http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html

Building a Table

Table Anatomy 101 m Setting and Getting Properties m Preset Table Styles m Global Table Properties

2.1

Column Width and Row Height Propertiecs wm Cell Styles wm Cell and Label Spanning

Using the JClass LiveTable API, you can customize the appearance of your tables with
colors, borders, custom scrollbars, and other display properties. This chapter describes
the properties you can set to define the structure and appearance of your tables. The
properties are set for rows, columns, and cells. See Appendix B, JClass LiveTable
Property Listing, for a reference summary of the properties.

Many of the table’s properties are set using methods of the JCTab1e class. However, some
properties are set in the data source. For more information on setting properties using
methods in the data source, see Working with Table Data, in Chapter 3, and Displaying
and Editing Cells, in Chapter 4. The following descriptions note whether setting the
property from the data source is applicable.

JClass LiveTable property accessor methods are also exposed to JavaBeans-compatible
IDEs through the LiveTable Bean.

Table Anatomy 101

JClass LiveTable provides a scrollable viewing area for its cells and labels.

Ruws Colurin Labsl Zal Currert Call
Laacl .
[Custainer hane ‘I G aniity dks) etical
M3 rhe Cupna 111.4¢ Fiench Nccha kU Serallbar

[l e Linde greuns o 1111407 BeaziianMedom | 112
Il oo e and calg 100 Esprosco Dok 200
B e s Culler Ay 1101287 Euimiay rish o s 120
I ez ameine Cave| 1 iR 31 M2 R sl
French Reazthons |160

Hurizunlal Scrcllbar

Figure 4 The components of a Table.

The following list defines the terminology used with JClass LiveTable:

27

2.2

Label

A label is a non-editable cell appearing in a row at the top or bottom of the table, or in a
column at the left or right side of a table. Like cells, labels can contain text or
components, or can display an image. Please refer to sections later in this chapter, starting
with Section 2.4.5, Row and Column Labels, for more information about labels.

Scrollbar Components

These components are created and displayed if the number of rows or columns in the
table is greater than the number of rows or columns visible on the screen. They provide
end-users with the ability to scroll through the entire table. You can learn more about
scrollbars in Programming User Interactivity, in Chapter 6.

Cell

A cell is an individual container of table data. A cell is visible if it is currently scrolled into
view. The entire collection of displayed cells is called the cell area. You can find more
information about defining cell appearance later in this chapter.

Current Cell
This is the cell that currently has the user input focus. End-users can enter and edit the
value of this cell, unless this ability is disabled.

Cell Rendering, Editing and Management

Cell drawing and editing is handled by the com.k1g.jclass.cell package. Specifically,
cell rendering and editing are handled by the JCLightCel1Renderer,
JCComponentCell1Renderer, and JCCel1Editor interfaces.

Cells are drawn into the cell area by either a JCLightCel1Renderer object that
understands how to draw that specific type of data, or a JCComponentCel1Renderer object
that uses a lightweight component such as JLabel to render data.

If the user types or clicks a cell, and there is a JCCe11Editor for the data type of the cell,
the editor component is displayed over the cell. See Displaying and Editing Cells, in
Chapter 4, for more information on cell editors and renderers.

Setting and Getting Properties

There are two ways to set and retrieve JClass LiveTable properties:
1. By calling property set and get methods in a Java program
2. By using a Java IDE at design-time (JavaBeans)

Each method changes the same table property. This manual therefore uses properties to
discuss how features work, rather than using the method or Property Editor you might use
to set that property.

28

Part | m Using JClass LiveTable

2.2.1 Table Contexts

A context is composed of a row and column index, both zero-based. The current context
specifies the portion of a table’s cells and labels for which an application sets and retrieves
properties. Specifying a table context is part of any method that sets table
properties.

The following table outlines all table contexts. The example set the background color to
white for any cells encompassed by the defined context.

Context selection Examples
a cell (0,1) (1,0)
Referenced by a row index

and a column index. --- --

all row or column cells (0,dCTableEnum.ALLCELLS) | (JCTableEnum.ALLCELLS,0)
Referenced by the constant |[F LoL=| = O[]

JCTableEnum.ALLCELLS in -- --

conjunction with a row or [uriEEEEE 22530 27| 33| ||NOREHEEES 22030 27| 33
1 ind [Swikeiand) 21730 20| 23| [Swiserland, 21730 20 23
column Index. [Gemany 19770 26| 27| [Geimany 10770 26 27

This does not include labels.

a range of cells (range); /* range defined as JCCel1Range(0,1,1,2) */
Referenced by the location of =] = |
the top-left cell/label and the ---
location of the bottom-right [2260 1]
cell/label in the range. =} — i

A range be referenced as one
context when defining
JCCellRange.

a row or column label (0,dCTableEnum. LABEL) (JCTableEnum. LABEL,0)

Referenced by the constant | CEE| | BE
JCTableEnum. LABEL in [semess CIRIRAEN
conjunction with a row or Unied Slales | 22830 27 [UniedSistes 22330 27

3.3

3.3

column index. o S 78] 27

Chapter 2 m Building a Table 29

Context selection

Examples

all row or column labels

(JCTabelEnum.ALL,

(JCTableEnum. LABEL,

JCTabTeEnum. LABEL) JCTabTeEnum.ALL)
Referenced by both = HEE o=
JCTableEnum.ALL and] oor [oop | vmuat
JCTableEnum. LABEL, the United Stales | 22830 27 33 || [UniledStates, 22830 27 33
. Switzerland | 21730 20| 22| [Switeriand| 21730 20 22
order dependent on which Germany | 18770 26 27 _I 19770 26 27
set of labels is being
referenced.
all labels (JCTab] eEnum. LABEL,JCTableEnum. LABEL)
Referenced using B =
(JCTabTeEnum. LABEL, pernezd | Grouh | infaon
JCTabWeEnum.LABEL). United States | 22830 a7 a3
Switerland | 21730 20| 22
Germany 18770 2.8 27
an entire row or column (1,JCTableEnum.ALL) (JCTableEnum.ALL,1)
Referenced by the constant |[F Lo [E L[]
JCTableEnum. ALL in e . S
conjunction with a row or [Uniteastates 22330 27| 33| [NNCTEHEERS, 22530 27| a3
1 ind Switzerland | 21730 20 22 (|0 Switzerland, 21730 20 23
column mdadex. [GEE, 19770 26 27 || Getmany. 19770 26 27

The context includes labels.

all table cells

Referenced by
(JCTableEnum.ALLCELLS,
JCTableEnum.ALLCELLS).

The context does not include
labels.

27 33

(JCTableEnum.ALLCELLS,JCTableEnum.ALLCELLS)

an entire table

Referenced by
(JCTableEnum.ALL,
JCTableEnum.ALL).

The context includes labels.

(JCTableEnum.ALL,JCTableEnum.ALL)

[I (]|
GDP |Annual GOP | Annual
perhead Growth Inflation
United States | 22830 27 33
Switzerland | 21730 2.0 22
Germany 18770 28 27

30

Part | m Using JClass LiveTable

2.2.2 Setting Table Properties with Java Code

When setting table properties, you work with either general table properties or Cell
Styles. Cell Styles affect specific cell appearance and behavior settings for elements such
as color, typefaces, border types, editability and cell text/image alignment. All other non-
cell properties are handled as table-wide settings. To learn what can be defined with Cell
Styles, please refer to Section 2.6, Cell Styles, later in this chapter.

Setting Regular Cell and Label Properties

Setting cell and label properties that are not handled with Cell Styles involve the
straightforward use of set and get methods. Every JClass LiveTable property has a set
and get method associated with it.

For example, to set the value of the PixelHeight property to a value of 60 for all labels
and the first non-label row, the setPixelHeight () method is called:

table.setPixelHeight(JCTableEnum.LABEL,60);
table.setPixelHeight(0,60);

As another example, to set the value of the PixelWidth property to a value of 90 for all
labels and the first non-label row, the setPixeTWidth() method is called:

table.setPixelWidth(JCTableEnum.LABEL,90);
table.setPixelWidth(0,90);

You can also set properties for the entire table. For example, use the MarginHeight () and
MarginWidth() properties to set the distance between cell borders and cell contents:

table.setMarginHeight(10);
table.setMarginWidth(10);

Setting Cell Style Properties
Setting Cell Style properties involves the implementation of the Ce11Sty1eMode]
interface. This interface provides all information that the cell editors/renderers use.

JClass LiveTable includes the JCCel1Style class, which is the default implementation of
Cel1StyleModel. Also included are default look and feel settings for labels and cells.

For example, the following sample code adopts the default values set in JCCe11Sty1e, but
changes the cell colors to black (background) and yellow (text), and applies this change to
cell(2, 2):
JCCell1Style cellcolors = new JCCellStyle();
cellcolors.setBackground(Color.black);

cellcolors.setForeground(Color.yellow);
table.setCell1Style(l, 1, cellcolors);

In this example, the code acquires the default label look and feel for the particular
operating system you are using. Then, the foreground and background colors are
changed for all labels displayed in the table:

CellStyleModel labelStyle = table.getDefaultlLabelStyle();

labelStyle.setBackground(Color.blue);
labelStyle.setForeground(Color.white);

Chapter 2 m Building a Table 31

Most properties can be applied to individual cells as well as ranges. You can also set
properties for a range of cells defined by a JCCel1Range.
The following example sets a property to a range of cells using JCCel1Range:

JCCel1Range range = new JCCellRange(0,3,2,4);
JCCel1Style cell = new JCCellStyle();
cell.setBackground(Color.red);
table.setCellStyle(range, cell);

For more information about Cell Styles, please see Section 2.6, Cell Styles, later in this
chapter.

2.2.3 Setting Properties with a Java IDE at Design-Time

JClass LiveTable can be used with a Java Integrated Development Environment (IDE),
and its properties can be manipulated at design time. Consult the IDE documentation for
details on how to load third-party Bean components into the IDE.

See JClass LiveTable Beans and IDEs, in Chapter 9, for complete details on using
JClass LiveTable’s JavaBeans in IDEs.

2.3 Preset Table Styles

You can quickly build a standard table with a number of default settings by using the
JCListTable class. The preset features of this class affect:

m Cell selection: when users click a single cell, the entire row is selected.

m Label selection: labels are not included in selections.

m Resizing: the table’s cell sizes can only be changed by dragging label borders.
m Traversal: individual cells are traversable.

These settings are overridden by any properties you specifically set later on in your
program.

To view the JCListTable class in action, please look at the Cars example in the
JCLASS_HOME/examples/table/layout/ directory, and the Stocks demo in the
JCLASS_HOME/demos/table/stocks/ directory.

2.4 Global Table Properties

The following sections outline all properties that globally affect the appearance of your
table. When any of these properties are set, they are set for the entire table.

32 Part | m Using JClass LiveTable

2.4.1

24.2

243

Focus Rectangle Appearance

The focus rectangle visually informs the user which cell currently has the table’s focus.
You can change the color of the focus rectangle by using the setFocusColor() method.
For example:

setFocusColor(Color.blue);

Using the setFocusIndicator() method lets you set the type of focus indicator used.
Valid indicators are:

FOCUS_NONE

FOCUS_HIGHLIGHT

FOCUS_RECTANGLE

FOCUS_THIN_RECTANGLE
FOCUS_DASHED_RECTANGLE

Screen Cursor Type

Use the setCursor() method to determine which AWT cursor type is used in your table.
If cursor tracking is set to false, then a constant cursor is used (cursor tracking can be
used to change the cursor appearance, depending over which part of the table the cursor
is). By default, TrackCursor is set to true.

Scrollbars

JClass LiveTable offers control over the appearance and behavior of scrollbars. This
section outlines how to program the appearance of scrollbars. For information about
programming scrollbar behavior, please refer to Table Scrolling, in Chapter 6.

Positioning Scrollbars

The way scrollbars should be attached to the table depends on the style of table you need
for your application. Standard-style tables attach the scrollbars to the cell/label area and
move them to match changes to the size of the visible area.

The HorizSBPosition property sets how the horizontal scrollbar is attached to the table.
Similarly, VertSBPosition sets how the vertical scrollbar is attached to the table.

m When set to JCTableEnum.POSITION_BY_CELLS (default), the scrollbar is attached to
the cell/label viewport (that is, the cells that are visible).

m When set to JCTableEnum.POSITION_BY_SIDE, the scrollbar is attached to the side of
the table (that is, the whole of the table).

HorizSBAttachment sets how the end of the horizontal scrollbar is attached to the table.
When set to JCTableEnum.SIZE_TO_CELLS (default), the scrollbar ends at the edge of the
visible cells. When set to JCTableEnum.SIZE_TO_TABLE, the scrollbar ends at the edge of
the table.

To specify standard-style table scrollbars, leave the position and attachment properties at
their default values.

Chapter 2 m Building a Table 33

24.4

HorizSBOffset and VertSBOffset specify the offset between the scrollbars and the table
(default: 0 pixels). This offset usually applies to the space between the scrollbars and the
table’s cells/labels. However, when the scrollbars are attached to the side of the
component, it can also apply to the space between the scrollbars and the side of the
component, and only when there is space between the last row/column and the edge of
the component.

Setting the Top Row and Left Column

When a table initially appears, you can set it so that a particular row and column are set
as the top and left. Scrolling is set up automatically. Use setTopRow() and
setLeftColumn() to define the top row and left-most column. This value is updated as a
user scrolls through a table.

Setting Scrollbar Display Conditions

By default, JClass LiveTable displays each scrollbar only when the table is larger than the
number of rows/columns visible on the screen. To display a scrollbar at all times, set
HorizSBDisplay and/or VertSBDisplay to JCTableEnum.SCROLLBAR_ALWAYS. Set them to
JCTableEnum.SCROLLBAR_NEVER to completely disable the scrollbar display. To display
scrollbars only when the table size is greater than the viewing area, set them to
JCTableEnum.SCROLLBAR_AS_NEEDED.

Note: Although scrollbars are removed, a user can still scroll with the keyboard. See
Managing Table Scrolling, in Chapter 6, for complete information on disabling
interactive scrolling.

Using your own Scrollbar Component

You may want to use a scrollbar component other than the default provided with
JClass LiveTable. To do this, use the setVertSB() and setHorizSB() methods. The
scrollbar must be a JScrol1Bar instance.

Cell Selection Colors

When users select a cell or a range of cells, it often helps to highlight them. This section
outlines how to control the appearance of selected cells. For information about
programming cell selection behavior, please refer to Cell Selection, in Chapter 6.

Setting Cell Selection Colors

The background and foreground colors used for selected cells are specified by
setSelectedBackground() and setSelectedForeground(). By default, selected cells are
displayed in reverse video (i.e., the normal background and foreground color values have
been swapped). The current cell displays the selection colors in its border.

Using the previous methods requires you to select a specific foreground or background
color. Instead of committing to one color, you can also use color mode methods that
allow you to define selection colors by associating them with other foreground and
background colors.

34

Part | m Using JClass LiveTable

245

Use setSelectedBackgroundMode() to set how selected background colors are
determined. Valid modes include:

W USE_SELECTED_BACKGROUND: the selected background color is the same as the color
defined in the SelectedBackground property.

W USE_CELL_BACKGROUND: the selected background is the same as the cell background
color.

m USE_CELL_FOREGROUND: the background and foreground colors are inverted.

Use setSelectedForegroundMode () to set how selected foreground colors are
determined. Valid modes include:

W USE_SELECTED_FOREGROUND: the selected foreground color is the same as the color
defined in the SelectedForeground property.

W USE_CELL_FOREGROUND: the selected background is the same as the cell foreground
color.

m USE_CELL_BACKGROUND: the background and foreground colors are inverted.

Row and Column Labels

A row or column label is a non-editable cell that identifies the row or column to the user.
Row and column label values are set in the data source (see Working with Table Data, in
Chapter 3). By default, row and column labels are displayed in your table, regardless of
whether you have specified contents for the labels in the data source (they will be empty
if there are no labels defined in the data source). To prevent row and column labels from
displaying, you must use the methods:

table.setRowlLabelDisplay(false);
table.setColumnlLabelDisplay(false);

Placing Labels

You can specify the positioning of row/column labels on the screen using the
setRowlLabelPlacement() and setColumnLabelPlacement () methods. If you insert the
placement methods in the table.setColumnLabelPlacement(placement) or
table.setRowlLabelPlacement(placement) statements, valid values include:

Column and Row Placement Example
JCTableEnum.PLACE_TOP Custormer NJOrder Date Quantity (bgJPricerlb
JCTableEnum.PLACE_RIGHT [The Cuppa 11711587 [French Moct 60 57.01
The Underg,/11/14/97 Brazilian Mg/112 $6.80 u
. RocketFuel | 10/30/97 Espresso 0300 $8.02 u
The labels are dlsplayed at the tOp and WiideEyes Gf11/12/97 Colombian/120 $5.30
to the right of the table (default). Jitters Caffe, 10/01/37 | Ethiopian My 80 §7.50
Twitchy's on/1 2/06/97 French Rosg/160 514.50 ﬂ
QuestSUﬂ\iﬂZHZIQ? Colombian |22,000 $5.28

Chapter 2 m Building a Table 35

Column and Row Placement Example

JCTableEnum.PLAC EfTO p ls mer NJOrder Date Quuantity (Ibg
JCTableEnum.PLACE_LEFT e Cuppa] 11711797 [French Moch &0 $7.01
uThe Underg, 1111487 Brazilian Mg,/ 112 $6.80
. RocketFuel /10/30087 Espresso 0300 $8.02
The labels are displayed at top and to WideEyes G127 | Colombiang 120 $5.30
the left of the table. [l itters cafia) 1001597 | Ethiopian My 80 $7.50
[Titchy's on) 1200697 | French Roag 160 1450

@l cuestsoty 1212587 [Calambian 22,000 $5.28

JCTableEnum.PLACE_BOTTOM fThe Cuppa 11711687 [French Moct/60 57.01
JCTableEnum.PLACE RIGHT The Underg/11/14/97 |Brazilian Mg, 112 $6.80
- RocketFuel,/10/30087 Espresso 0300 $8.02

WideEyes GJ1112/97 Colombiani{/120 $5.30

The labels are displayed at the bottom | |- cata1coeT TEmiopian walet o7 2
and to the right of table. Twilchy's on,|12/08/37 |French Roag 160 $14.50
QuestSoftg/1212/87 |Colombian (22000 |$5.28

JCTableEnum.PLACE_BOTTOM _11;11;9;-' French Mot 60 $7.01
JCTableEnum.PLACE_LEFT uThe Underg, 11714587 |Brazilian Mg, 112 $6.80
ﬂRucketFuel.mISDIQ? Espresso 0300 $8.02

. LS ideEyes G 11412597 Colombiand 120 $5.30

The labels are dlsplayed at the bottom EJiﬂerS Caffe,10/01/97 Ethiopian by 80 §7.50
and to the left of the table (reversed ﬂTwnchy's on/12006/87 |French Roay160 $14.50
default). @l cucstSoiy 121297 |Colombian (22000 |35.28

Customer WJOrder Date

Defining Lahel Spacing

Normally, there is no space between labels and the cell area. The RowLabel0ffset
property specifies the distance in pixels between the row labels and the cell area.
Similarly, the CoTumnLabe10ffset property specifies the distance in pixels between the
column labels and the cell area. If you specify a negative value, the cell area overlaps the

labels.

Offset value examples

CO-‘ uanabE] OffSEt(O) ; Column1 | Column2 | Column3
RowlLabel0ffset(0); Fowt |1

Fowz

Fow3

36 Part | m Using JClass LiveTable

2.4.6

24.7

Offset value examples

ColumnlLabelOffset(15); [Columnt | Golumn | Column3
RowLabelOffset(15);

Row1 I

Fiow 2

Fiow 3
ColumnlLabelOffset(-10); Columnl__|_Column Cnlumn
Rowlabel0ffset(-10); a1

Fiow

Fiow

Cell and Label Border Width

The width of the borders around the cells and labels is specified by the
setCell1BorderWidth() method. This method’s actions apply to the entire table. By
default, the borders are 1 pixel wide. The following table demonstrates the effect of
different bordercell widths:

CeliBorderWidth Examples

table.setCel1BorderWidth(2);

sets the bordercell width for all cells 1,234.56
and Tabels to a value of two pixels

table.setCel1BorderWidth(5);

sets the bordercell width for all cells
and Tabels to a value of five pixels

Cell and Label Margins
The MarginWidth and MarginHeight properties alter the space between the cell borders
and the contents of cells.

The MarginWidth property sets the distance (in pixels) between the inside edge of the cell
border and the left and right edge of the cell’s contents (default: 2). The MarginHeight
property specifies the margin (in pixels) between the inside edge of the cell border and
the top and bottom edge of the cell’s contents (default: 1).

Chapter 2 m Building a Table 37

2.4.8

24.9

These properties affect all cells and labels in the table — margins cannot be set for
individual cells.

M argin

'J-I width

—
Cell Text,

M argin
Height

The following table demonstrates the effect of different margin height and width settings:

Cell and Label Margin Examples

table.setMarginHeight(2);
table.setMarginWidth(5); 1,234 56

sets the margin height to 2 and the
width to 5

table.setMarginHeight(10);
table.setMarginWidth(10);

1,234.56

sets the margin height and width to 10

Component Borders

The ComponentBorderWidth property sets the spacing between the border of a table’s cells
and components that are inserted into them. By default, this property is set to 0.

Frame Border Attributes

The FrameBorder property is an instance of Cel1BorderModel, and sets the border
surrounding the cell and label areas.

The FrameBorderWidth property specifies the thickness of the border surrounding the cell
and label areas. Its default value is 0 (no frame border).

Border colors are calculated using the table’s background color.

The following table outlines all the valid frameborder types, and demonstrates
frameborder widths. The FrameBorderWidth property, which specifies the thickness of the
border surrounding the cell and label areas, has been set to a value of 6. The code in each

38

Part | m Using JClass LiveTable

cell is the Cel1BorderModel value, which is used in the statement:
table.setFrameBorder(new JCCellBorder(value)).

FrameBorder Attribute Examples

JCTableEnum.BORDER_ETCHED_IN
creates a border that appears set in

Customer Mame

The
Cuppa

JCTableEnum.BORDER_ETCHED_OUT
creates a raised border

JCTableEnum.BORDER_FRAME_IN
creates a frame border whose enclosed cells
and labels appear set in

Custormer Mame |

The
Cuppa

JCTableEnum.BORDER_FRAME_OUT
creates a frame border whose enclosed
cells and labels appear raised

JCTableEnum.BORDER_IN
creates a border whose enclosed cells and
labels appear set in

Customer Mame

The
Cuppa

JCTabTleEnum.BORDER_OUT
creates a border whose enclosed cells and
labels appear raised

Custamer Mame

JCTableEnum.BORDER_PLAIN
creates a plain frame border

The
Cuppa

JCTableEnum.BORDER_THIN
creates a thin frame border

Customer Kame

Chapter 2 m Building a Table 39

FrameBorder Attribute Examples

JCTableEnum.BORDER_NONE
creates no frame border (default)

Custamer Mame

The
Cuppa

2.4.10 Row and Column Definition

Determining the Number of Rows/Columns

The NumRows and NumColumns properties are set using methods in the data source. To
retrieve these values, use the JCVectorDataSource.getNumRows () and
JCVectorDataSource.getNumColumns () methods. Please see Setting Stock Data Source
Properties, in Chapter 3, for information on setting these properties in the data source.

The number of rows/columns must be greater than the number of frozen rows/columns.
For more information on frozen rows/columns, see ‘Freezing’ Rows and Columns.

Setting and Getting Visible Rows and Columns
The number of rows and columns currently visible in the window is specified by the
VisibleRows and VisibleColumns properties.1

You can force the table to display a particular number of rows or columns by calling
setVisibleRows () and setVisibleColumns().

To retrieve the values of VisibleRows or VisibleColumns, call the getVisibleRows () and
getVisibleColumns () methods. These methods return the number of visible non-frozen
rows or columns. These values determine the preferred size of the table and are not
updated dynamically as a user resizes the table.

To get live values of the table, use getNumVisibleRows () and getNumVisibleColumns(),
which return the total number of visible rows or columns.

To work with cells instead of rows or columns, use the getVisibleCells() method,
which returns the range of non-frozen visible cells.

1. Rows/columns that are only partially visible are also included in the value of these properties.

40 Part | m Using JClass LiveTable

Displaying the Entire Table

To display the entire table, set VisibleRows and VisibleColumns to
JCTableEnum.NOVALUE. Setting either property to NOVALUE sets a special flag that causes
the table to attempt to resize to make all rows or columns visible.

Swapping Rows or Columns
You can make two rows or columns switch places by using the swapRows () and
swapColumns () methods. For example, to swap rows 3 and 9:

table.swapRows(3,9)

These methods do not affect the data source, but use an internal mapping table to keep
track of row and column locations.

To reset the rows or columns to their original locations, based on the data source, use the
resetSwappedRows () or resetSwappedColumns () methods.

‘Freezing’ Rows and Columns

An application can make rows and columns non-scrollable by using the FrozenRows and
FrozenColumns properties. You can use frozen rows or columns to hold important
information on the screen as a user scrolls through the table (such as totals at the bottom
of a table). You could also use frozen rows or columns as additional rows or columns that
act like labels; see Section 2.7.1, Using Spanning to Create Multiline Headers for an
example.

m setFrozenRows () specifies the number of rows held at the top or bottom of the
window and not scrolled. The default value is zero.

m setFrozenColumns() specifies the number of columns held at the left or right side of
the window and not scrolled. The default is zero.

Frozen rows/columns always start from the beginning of the table. By default, they are
editable and traversable, but not sorted and cannot be dragged. The following figure
shows an example of frozen rows.

4 Visible
Calumns |
Aaaada] nm'...m-.-m.wl TR R
2 Frozen [T edian values 370 11.46 32.0
Rows | [average Values 3.6 13.3 T}
Sample 3¢ 2.3 15.9 254 &
» Sample 35 5.2 10.9 25.0
8 Visible — Sample 28 5.3 T.T 0.2 =
Ross Sample 37 53,2 7.9 4z.2
Sample 33 547 19.6 25.2
| sample 39 .0 11.9 4.3 ¢
[=1 I -

Figure 5 Visible and Frozen Rows and Columns- note absence of scrollbar to right of frozen rows.

Chapter 2 m Building a Table 41

2.4.11

Setting frozen rows or columns sets the number of columns from the left or the number of
rows from the top. For example:

table.setFrozenRows(2);

freezes the first two rows of the table, and

table.setFrozenColumns(4);

freezes the first four columns of the table.

If you want to freeze a single column or row in the middle of the table, you can easily
move the specified row or column to the beginning of the table by using the swapRows ()
or swapColumns () method (described above), then freeze the row or column.

To move and freeze more than one column or row, you will have to call the moveRows ()
or moveColumns () method in the data source (see Using Stock Data Sources, in Chapter 3)
to move the desired rows/columns to the beginning of the table, then set FrozenRows or
FrozenColumns to the number of rows/columns that you want to freeze.

Placing Frozen Rows/Columns

You can place frozen rows at either the top or bottom of the table. Frozen columns can be
placed at either the left or right of the table. The placement of frozen rows/columns does
not affect the location of the rows/columns in the data source.

To change the placement of the frozen rows, set the FrozenRowPTacement property to
either JCTableEnum.PLACE_TOP or JCTableEnum.PLACE_BOTTOM.

To change the placement of all frozen columns, set the FrozenColumnPlacement property
to either JCTableEnum.PLACE_LEFT or JCTableEnum.PLACE_RIGHT.

Controlling Gell Editor Size

The table can control the size of a cell editing component using the EditHeightPolicy
and EditWidthPolicy properties. Each of these properties can take one of three values:
m JCTableEnum.EDIT_SIZE_TO_CELL: resize the component to fit the Table’s cell size.

m JCTableEnum.EDIT_ENSURE_MINIMUM_SIZE: resize the component to its minimum size.
m JCTableEnum.EDIT_ENSURE_PREFERRED_SIZE: resize the cell to editing component’s

preferred size.

These properties allow the table to have better control over cell editors created using the
com.klg.jclass.cel1.JCCel1Editor interface. For more information about cell editors,
see Displaying and Editing Cells, in Chapter 4.

42

Part | m Using JClass LiveTable

2.5

2.5.1

Column Width and Row Height Properties

By default, JClass LiveTable sets the height of rows to display one line of text. The width
of columns is set by default to display 10 characters of text. If a cell value, image file, or
component does not fit in its cell, the cell displays clipping arrows by default. Each row
can have its own height, and each column its own width.

JClass LiveTable provides two different ways to specify row height and column width:
character and pixel. Character specification determines the height/width by the number of
characters or lines that the row/column can display. Pixel specification determines the
height/width by the explicit number of pixels.

Only one method can be used for a row or column. Pixel specification overrides
character specification.

Note: When users interactively resize rows/columns, the row height/column width is
specified by pixel regardless of how your application specified it.

Row{Column
Dimensions

Height f— Height
[in Text Lines) [in Pixels)

Cell Tex

| Width [in Characters) |

Width {in Pixels)
Figure 6 The difference between Character and Pixel Row/Column specification.

Character Height and Width

The CharWidth property specifies the number of characters a column can display.
CharHeight specifies the number of lines of text a row can display. For these properties to
control row height/column width, PixelWidth and PixelHeight must be set to
JCTabTeEnum.NOVALUE.

To determine the pixel dimensions of a row or column whose height/width was set by
CharWidth or CharHeight, use the getColumnPixelWidth() or getColumnPixelHeight()
methods.

Chapter 2 m Building a Table 43

The following table demonstrates different character height and width settings:

For Column Width:

table.setCharHeight(0,1);
sets the first row’s height to 1 character Barometer: 10

table.setCharHeight(0,4);
sets the first row’s height to four characters Barometer: 10
Temperature: 15
Wind Speed: 35
Humidity: 14

For Row Height:

table.setCharWidth(4,3);

sets the fifth column’s width to 3 999 |_
characters

table.setCharWidth(4,10);

sets the fifth column’s width to 10 99,999,999
characters

Character specification is convenient when you know how many characters you want a
row/column to display. It works best with non-proportional® fonts because

JClass LiveTable uses the widest character along with the largest ascender/descender to
guarantee that the specified number of characters will fit in the cell or label.

2.5.2 Absolute Pixel Height and Width

PixelWidth and PixelHeight specify column width and row height in pixels. You can set
these properties to an explicit pixel value using JCTableEnum.NOVALUE or
JCTableEnum. VARIABLE (this value is discussed in detail in the following section).

Unless set to JCTabTeEnum.NOVALUE (default), these properties override the CharWidth
and CharHeight properties. The next illustration shows setting PixelHeight to a pixel
value.

Absolute Pixel Height Examples

table.setPixelHeight(4,15);
sets the fifth row’s height to 15 pixels Barometer: 10

1. All of the characters in a fixed-width font have the same width

44 Part | m Using JClass LiveTable

Absolute Pixel Height Examples

table.setPixelHeight(4,30);
sets the fifth row’s height to 30 pixels Barometer: 10

Tomnoratura: 19

2.5.3 Variable Pixel Height and Width

An application can have JClass LiveTable automatically size rows and columns to fit the
contents of the table by setting PixelWidth and PixelHeight to JCTableEnum. VARIABLE.
As your application changes table attributes affecting the cells’ contents, the table will
resize the rows and columns to fit.!

When a cell contains a component, JClass LiveTable sizes the cell to fit the component’s
preferred size.

To determine the pixel dimensions of a row or column with variable height or width, call
the getRowPixelHeight () and getColumnPixelWidth() methods.

Defining How Much of the Table is Used in Pixel Estimates
By default, the JCTableEnum. VARIABLE value, when used with PixelHeight and
PixelWidth, uses the entire row or column to calculate pixel dimensions.

Using VARIABLE with large tables can result in general table slowdowns due to the large
number of cells involved in the height calculation. For large tables, use the
JCTableEnum.VARIABLE_ESTIMATE value instead, which sets the pixel dimension to the
highest value found in a range that you define.

You can explicitly control the range of cells used in the variable height calculation by
using setVariableEstimateCount (). Typically, this value is set to the number of cells
expected to be visible at any time.

Changing Variable Row and Height Dimensions to Fixed Values
Setting PixelHeight and PixelWidth to JCTableEnum.AS_IS does not change the pixel
dimensions, and makes the current height and width settings fixed values.

Additionally, if you have set your row and column dimensions to be of variable height
and width, and the user interactively resizes a row or column, the PixelWidth and
PixelHeight values are converted to fixed values.

1. When width are height are set to zero, the row/column becomes hidden.

Chapter 2 m Building a Table 45

2.5.4

2.5.5

2.5.6

Maximum and Minimum Pixel Height and Width

While you can work with varying pixel height and width dimensions, you can still set the
absolute maximum and minimum pixel dimensions for a table.

Use setMaxHeight() and setMinHeight () to determine the maximum height of any or all
rows, all column labels or the whole table. Likewise, use setMaxWidth() and
setMinWidth() to determine the minimum width of any or all columns, all row labels, or
the whole table.

Displaying and Editing Multiple Lines in Cells

When you set the height and width of your cells, you adjust how much of the data can be
displayed in the cell. If your cell contains text, then JClass LiveTable makes it possible for
you to display and edit multiple lines.

For cell rendering, if the data displayed in the cells contains a newline character (\n), the
cell is automatically displayed as a multiline cell.

For cell editing, by default, text is edited on a single line. For multiline editing, you must
set the multiline editor. To set a multiline editor, you need to set the Cell Style’s editor
properties. Create a Cell Style and set the editor for it, then call setCel1Style() with a
row, column, or range. Please refer to Section 2.6, Cell Styles, for more information about
setting editor properties.

Using Row Height and Width to Hide Rows and Columns

An application can “hide” rows and columns from the end-user by setting the
PixelHeight/PixelWidth properties to zero pixels (the current cell should not be in the
hidden row/column). Though the row/column appears to have vanished, the application
can set attributes or change cell values.

46

Part | m Using JClass LiveTable

2.6

2.6.1

Note: The recommended way of hiding rows and columns is to set the boolean value of
setRowHidden() and setColumnHidden() to true.

amer] Order Date ltern
1111197 |French Mocha
The Underground Cafe |[11/11 4797 Brazilian Medium 112
RocketFuel and Cake 10030597 Espresso Dark 300

WideEyes Coffee House |[1111 2597 Colombianflrish Cream §/120
Jitters Caffeine Cavern |[10/01/97 Ethiapian Medium Roast |80

Twitchy's on the kall 12006197 French Roast Kona 160
Cluest Software Inc. 12112087 |Colombian 22,000
Custamer Name Item Cuanti .0 Pricelb.
French Mocha &0 $7.01
The Underground Cafe |Brazilian Medium 112 §6.80
RocketFuel and Cake Espresso Dark 300 fa8.02
WideEyes Coffee House |Colombianilrish Cream B 120 $5.30
Jitters Caffeine Cavern |Ethiopian Medium Roast |80 §7.80
Twitchy's on the kall French Roast Kona 160 $14.50
Cuest Software Inc. Calombian 22,000 $5.28

Figure 7 Hiding the “Order Date” column.

Cell Styles

Friceflb.
$7.01
$6.80
$8.02
$5.30
$7.80
$14.80
$5.28

While the classes and properties mentioned in previous sections define table-wide or
row/column properties, you can use Cell Styles to set the properties of individual cells or

labels, or ranges of cells.

Every cell in a table is associated with a style that defines how the cell looks, how the data
is edited, and whether the cell is traversable and editable.

Cell Style Properties and Implementation

A Cell Style is any object that implements the Ce11StyleModel interface. With this

interface, the style properties that you can define are:

background colors and foreground colors

font attributes

horizontal and vertical text alignment
cell border types

cell border sides

clip hints

boolean editable

repeating background and foreground color settings

Chapter 2 m Building a Table

47

2.6.2

editor (JCCel1Editor)
renderer (JCCelTRenderer)

data types

cell traversal

Cell Styles make it easier to define and manage the appearance of a table. Instead of
working with a myriad of visual properties for ranges of cells, you can define a particular
Cell Style (which encompasses all of these properties), and then apply the style to any
cells or labels.

Getting and setting Cell Styles
In order to set a Cell Style, you can use one of two methods:
// this applies a style to a cell
setCellStyle(int row, int column, CellStyleModel csm);

// this applies a style to a range of cells
setCellStyle(JCCellRange cr, CellStyleModel csm);

To retrieve the style for a cell, use:

CellStyleModel getCellStyle(int row, int column);

Defining Your Own or Changing Built-In Cell Styles

You can easily modify Cell Styles by making property changes to the JCCel1Style
implementation, as well as default cell and label styles.

Changing Cell Styles
You can change a Cell Style by creating a new JCCe11Sty1e object, modifying the desired
properties, and applying these changes with the setCe11Style() method. For example,
the style for cell (2, 2) is changed by using this code:

JCCel1Style cs = new JCCel1Style();

cs.setBackground(Color.blue);
table.setCellStyle(2, 2, cs);

You can also use the getCel1Style() method to retrieve the style properties from a
particular cell. Consider this example, which gets the properties of cell (0, 0), then sets the
background color to red:

JCCel1Style cs = new JCCel1Style();

cs.setBackground(Color.blue);
table.setCel1Style(JCTableEnum.ALL, JCTableEnum.ALL, cs);

CellStyleModel csm = table.getCellStyle(0, 0);
csm.setBackground(Color.red);

The problem with using getCe11Style() is that the style obtained from an individual cell
may not be unique to that cell. Styles can also be applied to ranges, or an entire table. In
the above example, you might expect the code to produce a table whose cells have a blue
background, with the exception of cell (0, 0) which should have a red background.

48

Part | m Using JClass LiveTable

However, since the style you are retrieving from cell (0, 0) is used for the whole table, all
cell backgrounds will be red.

If you wanted to change the background color for cell (0, 0) to red, even though that cell’s
style is also being used for the whole table, you can work with a unique Cell Style:

CellStyleModel csm = table.getUniqueCellStyle(0, 0);
csm.setBackground(Color.red);
table.setCell1Style(0, 0, csm);

The bottom line is that you do not need to apply specific style changes with
setCell1Style() if you want to change all the cells that share the style. In other words, the
first example which used:

CellStyleModel csm = table.getCellStyle(0, 0);
csm.setBackground(Color.red);

is correct if your intention is to set the background color to red for all cells that share the
same style as cell (0, 0).

Retrieving all Styles Used in a Tahle
You can easily work through all Cell Styles found in a table (even without knowing what
they all are) by calling ColTection getCellStyles(). You can use this to change a
property for all styles in your table. The following example performs this operation, as it
retrieves all the table’s styles, and changes the foreground color to blue:

Collection col = table.getCellStyle();

Iterator it = col.iterator();

while(it.hasNext()){

Cell1StyleModel csm = (CellStyleModel)it.next();

csm.setForeground(Color.blue);
}

Creating “Parent” Styles

JClass LiveTable allows you to create styles that inherit property values from a parent
style. For example, imagine you have a style (mySimpleSty1e) with white background and
black foreground (text) settings. If you want to change the style properties for a particular
cell, or cell range, but retain the original properties for the other cells, you have two
choices.

m The first choice involves the creation of a copy of the style in which you are
interested, changing the property, and applying it back to the cell you want changed:
CellStyleModel myNewStyle = (CellStyleModel)(mySimpleStyle.clone());
myNewStyle.setBackground(Color.red);
table.setCell1Style(0, 0, myNewStyle);

The problem with this approach is that if mySimpleStyle changes (for example, the
font is changed), myNewSty1e will not pick up this change. Updating styles to match
changes in other styles can be tedious.

Chapter 2 m Building a Table 49

m The second option makes updates automatic, as you implement mySimpleStyle as the
“parent” of myNewStyTe.
CellStyleModel myNewStyle = new JCCellStyle(mySimpleStyle):
myNewStyle.setBackground(Color.red);
table.setCellStyle(0, 0, myNewStyle);

By creating a JCCe11Style with another style as an argument, you create a link
between the new style and the original one. Any property that is changed to the new
style overrides the setting that comes from the original style, and any changes made
to the original style (that are not overridden) are picked up by the new style.

The following example demonstrates the relationship between parent and child styles.
Here, both styles end up using the anotherFont typeface. However, since the foreground
color in myNewStyle was changed to yellow, setting the my01dSty1e foreground color to
white will not affect myNewStyTe.

myNewStyle.setForeground(Color.yellow);

my0ldStyle.setFont(anotherFont);
my0ldStyle.setForeground(Color.white);

The Ce11StyleModel has getParentStyle() and setParentStyle() methods in addition
to using the special constructor.

2.6.3 Using and Modifying JClass LiveTable’s Built-In Styles
To define Cell Styles, use the Ce11StyleModel interface. Cel1StyleModel is an interface
that defines the methods required by an object to specify the attributes of a cell.

JCCellStyle: the Default CellStyleModel Implementation

JClass LiveTable provides an implementation of the Ce11StyleModel interface in the
JCCel1Style class. Creating an instance of this class in your table program is a quick way
of setting up a Cell Style. It has the following defaults:

Background System control color

Border BORDER_IN

BorderSides BORDERSIDE_ALL

Cel1BorderColor based on the background color of the cell
ClipHints SHOW_ALL

Data Type null

Editable true

Editor null

Foreground System control text color

Font Dialog-Plain-12

50 Part | m Using JClass LiveTable

HorizontalAlignment | LEFT

Renderer null
RepeatBackground NONE
RepeatForeground NONE
Traversable true

VerticalAlignment TOP

JCCel1Style does not specify any DataType, Cel1Editor, or Cel1Renderer properties.
Editors and renderers are determined by the type of data in the data source if an
editor/renderer is not set. Please see Displaying and Editing Cells, in Chapter 4, for more
information.

Pluggable Look and Feel (PLAF) Styles

There are two default styles that are used and changed by the current system’s PLAF. Use
these if you want your table to look and behave in accordance with the host machine’s
properties (e.g. Swing Metal, Windows). DefaultlLabelStyle is automatically applied to
labels, while DefaultCel1Style is applied to all cells. Access the default styles as follows:

CellStyleModel csm = table.getDefaultlLabelStlye();
csm = table.getDefaultCellStyle();

JClass LiveTable handles PLAF through a “parenting” mechanism. When the PLAF
changes, JCTableUI updates DefaultlLabelStyle and DefaultCel1Style as required.

If you create a cell that uses this default style, but want to change a cell property while
maintaining PLAF support for all other cell properties, you have to create a unique style
for a cell.

For example, you can create a style for your table that has PLAF support, but changes the
text alignment:
Cell1StyleModel csm = new JCCellStyle(table.getDefaultCellStyle();

csm.setHorizontalAlignment(JCTableEnum.CENTER);
table.setCell1Style(0, 0, csm);

Here, you have created a new style based on DefaultCel1Style, and changed one
property HorizontalAlignment. Applying this to cell (0, 0) changes the text alignment,
but the other properties (background/foreground color, font, border type) will only
change if the host machine’s look and feel changes.

To gain a better understanding of how JCTableUI works with default styles, imagine that
you are applying this style change:

CellStyleModel csm = table.getDefaultCellStyle();
csm.setBackground(Color.blue);

Chapter 2 m Building a Table 51

2.6.4

You might think that when the user changes the PLAF, the blue background color will be
cancelled out with the new PLAF defaults. This will not happen because JCTableUI uses
special wrapper objects to set values (e.g. ColorUIResource), and checks the current value
to see if it is an instance of a UI Resource. If so, the property value is changed because
JCTableUI assumes the PLAF logic set it. If it is a regular object (in this case, Color), the
value will not be updated by JCTableUI.

Working with Colors

Setting Foreground and Background Colors
The foreground and background colors used for cells are specified by the Foreground and

Background properties. The following example sets the background color of column 2 to
blue:

JCCel1Style cell = new JCCellStyle();
cell.setBackground(Color.blue);
table.setCel1Style(JCTableEnum.ALL,2,cell);

In that example, the JCCe11Style default Cell Styles are used, with one overriding
change for the background color.

The same applies in the next example, in which the foreground color value for cell (1, 4)
is set to the color white:
JCCel1Style cell2 = new JCCellStyle();

cell2.setForeground(Color.white);
table.setCel1Style(0,3,cell2)

In addition to the row, column indexed contexts, you can set the Foreground and
Background properties for a range of cells specified by a JCCel1Range object:
JCCel1Range range = new JCCellRange(0,3,2,4);
JCCellStyle cell = new JCCellStyle();

cell.setBackground(Color.red);
table.setCel1Style(range,cell);

Repeating Colors

JClass LiveTable makes it easy to create rows or columns whose background and
foreground colors alternate or cycle in a repeating pattern. To create a repeating pattern
of background colors, set the RepeatBackgroundColors and RepeatBackground properties
as shown in the following example:

JCCel1Style colors = new JCCellStyle();

Color[] repeating = {Color.orange, Color.green, Color.white};

colors.setRepeatBackgroundColors(repeating);

colors.setRepeatBackground(JCTableEnum.REPEAT _COLUMN) ;

table.setCel1Style(JCTabTleEnum.ALLCELLS,
JCTableEnum.ALLCELLS, colors);

52

Part | m Using JClass LiveTable

2.6.5

You can define as many repeating colors as you like. The colors are always selected in the

order listed.

Repeating Color Property Example
JCTableEnum.REPEAT_COLUMN

T
sets repeating background or foreground colors |
use as value for setRepeatBackground or =
setRepeatForeground methods b

JCTableEnum.REPEAT_ROW

sets repeating background or foreground colors

by columns

use as value for setRepeatBackground or
setRepeatForeground methods

Text and Image Alignment

The horizontal and vertical alignment of text and images within cells and labels is
specified by the HorizontalAlignment and VerticalAlignment properties. Cell/label

values can be centered or positioned along any side of the cell/label.

Alignment Property Examples
setVerticalAlignment(JCTableEnum.TOP) T —
setHorizontalAlignment(JCTableEnum. LEFT) o Y
setVerticalAlignment(JCTabTeEnum.TOP) 99800 —
setHorizontalAlignment(JCTableEnum.CENTER) o g
setVerticalAlignment(JCTableEnum.TOP) 0 —
setHorizontalAlignment(JCTableEnum.RIGHT) o Y
setVerticalAlignment(JCTableEnum.CENTER) -
setHorizontalAlignment (JCTableEnum. LEFT) 1,234 56 &

Chapter 2 m Building a Table 53

2.6.6

2.6.7

Alignment Property Examples

setVerticalAlignment(JCTableEnum.CENTER)
setHorizontalATignment(JCTableEnum.CENTER) 1,254 5@ &

setVerticalAlignment(JCTabTeEnum.CENTER)
setHorizontalAlignment(JCTableEnum.RIGHT) 1,284 56 &

setVerticalAlignment(JCTableEnum.BOTTOM)
setHorizontalAlignment (JCTableEnum.LEFT)

1,234 56
1

setVerticalAlignment(JCTableEnum.BOTTOM)
setHorizontalAlignment(JCTableEnum.CENTER) DEE
1,234 56 &

setVerticalAlignment(JCTableEnum.BOTTOM)
setHorizontalAlignment(JCTableEnum.RIGHT) DEE
1,234 56 &

Cell and Label Fonts

You can specify the font for the text in a cell or label with the Font property.
JClass LiveTable supports the use of one or more fonts in each cell/label. The example
below sets a bold, serif font for all labels:

JCCel1Style Tabelfont = new JCCellStyle();

labelfont.setFont(new Font("TimesRoman",Font.BOLD,10));
table.setCellStyle(JCTableEnum. LABEL,JCTableEnum. LABEL, Tabelfont);

JClass LiveTable can use any of the fonts available to Java. See your Java documentation
for details on finding and setting fonts, or refer to Appendix D.

Border Types

All cells and labels have a border around them, and the appearance of the cell or label
border can be customized for individual cells and labels.

The border width, as well as the border around the table’s frame, are not part of the Cell
Style, as they are specified for the entire table. Please refer to Section 2.4, Global Table
Properties, for information about setting table-wide properties.

Cell and Label Border Types
Cell and label border types are defined by the JCCe11Border class. JCCel1Border
implements the Cel1BorderModel interface, and can be set like any other Cell Style

property.

94

Part | m Using JClass LiveTable

The following table outlines all the valid cell and label border types. The code in each cell
is the JCCel1BorderModel value, which is used in the statement:
border.setCel1Border(new JCCellBorder(value)).

Note: In order for any different cell or label border type to be visible, the width of the
border must be 5 pixels or greater (default: 1).

Cell or Label Border Type Properties

JCTableEnum.ETCHED_IN
sets an etched border whose enclosed cells
appear raised.

JCTableEnum.ETCHED_OUT
sets an etched border whose enclosed cells
appear set in.

JCTableEnum. FRAME_IN
sets a framed border whose enclosed cells
appear set in.

—

JCTabTeEnum. FRAME_OUT
sets a framed border whose enclosed cells
appear raised.

—

JCTableEnum.IN
sets a plain border whose enclosed cell
appears set in.

r

JCTableEnum.OUT
sets a plain border whose enclosed cell
appears raised.

JCTableEnum.PLAIN
set a plain border.

JCTableEnum. THIN
sets a plain border that appears thin.

JCTableEnum.NONE
sets no border.

Chapter 2 m Building a Table 55

The following example sets a blank border for all cells in the first row:

JCCel1Style border = new JCCellStyle();
border.setCellBorder(new JCCellBorder(JCTabTleEnum.BORDER_NONE));
table.setCellStyle(0, JCTableEnum.ALLCELLS, border);

To retrieve the border style for a cell, use the getCel1BorderType() method. This returns
a Cel1Border object (see below).

Custom Cell and Label Borders

JClass LiveTable includes an interface that allows you to define your own cell borders
and backgrounds for cells and labels. The Ce11BorderModel interface has a single method
called drawBackground(). The drawBackground() method allows you to specify the
border width, the sides of the cell on which to draw the border, the colors of the border
sides, and the dimensions of the rectangle that gets drawn.

To define a new type of border, you have to create an Object that implements the
Cel1BorderModel interface. The following (from the BorderTjpes.java example in
examples/table/style) defines a single-line border object called LiteBorder:

class LiteBorder implements CellBorderModel {
Color color;

public LiteBorder(Color color) {
this.color = color;
}

public void drawBackground(Graphics gc, int border_thickness, int
border_sides, int x, int y, int width, int height,
Color top_color, Color bottom_color, Color plain_color) {

gc.setColor(color);
gc.drawRect(x, y, width, height);
}

Now that the new type of border has been defined, you can use it as you would any cell
style property:

JCCel1Style cellborder = new JCCellStyle();

cellborder.setCellBorder(new LiteBorder(Color.gray));

table.setCel1Style(JCTableEnum.ALLCELLS,
JCTableEnum.ALLCELLS, cellborder);

The examples/table/style directory also contains a program called TextureTable.java, which
illustrates how you can use the custom border features to insert a background graphic into
cells.

Caution: If you create many different Ce11Border objects, it will have an impact on your
table’s performance.

56 Part | m Using JClass LiveTable

2.6.8

2.6.9

Cell and Label Border Sides

The Cel1BorderSides property specifies the sides of a cell or label that display the border
type (specified by the JCCel1Border class). By default, the border type is displayed on all
sides of a cell or label. The following figure illustrates one of the visual effects that can be
achieved.

15 148 9 1/6|15G Tech ISETF| 10 142 100 101/4 16
2 1/2) 93144 | Immune Rsp IR 12 548 12 12 148 -1/4| 823
7 1/4|13 378 | Informix IF ks i 21 22| +142| B3

Figure 8 Customized Cell Borders.

The valid values for Ce11BorderSides are:

m JCTableEnum.BORDERSIDE_LEFT m JCTableEnum.BORDERSIDE_BOTTOM
m JCTableEnum.BORDERSIDE_RIGHT m JCTableEnum.BORDERSIDE_ALL
m JCTableEnum.BORDERSIDE_TOP m JCTableEnum.BORDERSIDE_NONE

Specifying border sides is accomplished by OR-ing together all desired Ce11BorderSides
values. The following example establishes cell borders on the left and top sides for all
cells in column 3:
JCCel1Style borderside = new JCCellStyle();
borderside.setCell1BorderSides(JCTableEnum.BORDERSIDE_LEFT |

JCTableEnum.BORDERSIDE _TOP);
table.setCel1Style(JCTableEnum.ALL, 2, borderside);

Text and Image Clipping

When cell and label contents do not fit in their defined area, JClass LiveTable can clip the
display of the cell value. The C1ipHints property determines which method is used. The
setClipHints() method can take the following values:

Clip Hints Properties

JCTableEnum.SHOW_HORIZTONAL JCTableEnum.SHOW_VERTICAL
The Underground C The Underground <
JCTableEnum. SHOW_NONE JCTableEnum.SHOW_ALL (default)
The Underground < The Underground C
.‘hv

Chapter 2 m Building a Table 97

2.6.10 Displaying Images in Table Cells

JClass LiveTable can display an image in each cell or label in the table. The image
appears inside the margin of the cell. Images are displayed using the
JCImageCellRenderer class in the com.k1g.jclass.cell package. For more information,
please see Displaying and Editing Cells, in Chapter 4.

JClass LiveTable supports the image file formats supported by the Java AWT: GIF and
JPEG. For more information on available file formats, see your Java documentation.

The position of the image within the cell is specified in the same way as Strings, using
HorizontalAlignment and VerticalAlignment. This aspect of displaying images is
handled by the Styles property. This is covered in Section 2.6.5, Text and Image
Alignment.

2.7 Cell and Label Spanning

Spanning is a way to join a range of cells or labels together and treat them as a single
cell/label. A spanned range looks and acts like one cell/label that covers several rows
and/or columns. There are many potential uses for spanning, including designing
complex forms, displaying large images or components, and creating multiline headers.

When you create a spanned range, the top-left cell in the range is extended over the
entire range. The top-left cell is the source cell, and its value and attributes apply over the
entire span, overriding any values or attributes set for the other cells/labels in the range.
Spanned ranges must begin at the top-left corner of the range. A span cannot contain
both cells and labels, or frozen and non-frozen elements. There must also be more than
one cell/label in a spanned range. When a single-cell range is specified, it is removed
from the list.

The next figure shows an example of a table containing spanned ranges.

[E3 PrimeTime Demo [_ IC]x] |

[15] 5 [Tae outerLimits Tae Pratencer Pofilar

B 4 20 |Babyon s Buffy Yarrp re Slayo: Bapwacn Mows

lﬂ 1€ ‘B |Mews Medizine YWamar Ezily Edtion Cheers

6 6 |Sal Repot |Empyhest Loy St Lib2rty 5t

ﬂ 3 k] Wilderpss PsiFactnr Farly Fritinn Mrws

i1 ‘A |Maws Collegs Focthall

o] a Crletainment Mow Medizine Womar I'ligh Ircd=znt Tain City

m " 1 |Penc@uula Wings T Przlencer Feuiilz Dperdliun

1 | 54 |Hinoo Sporsbest |Ar-arce | IBA

m % 17 |Fnlrtainment Mow Mrdiine Wnmar High Irr:dant Operatinn
Print |

Figure 9 Table design using spanned cells.

58 Part | m Using JClass LiveTable

JClass LiveTable handles spanning cells with the SpanHandler class. This class contains
the setSpannedRanges () method, which sets a ColTection of ranges of cells or labels.
(Please note that a Collection is typically a vector.) Each element of the Vector is an
instance of a JCCel1Range.

A spanned range is a range of cells or labels that appear joined and can be treated as one
cell. The top-left cell (specified by the start_rowand start_column members) is the
source cell for the spanned range. The cell/label value and attributes of the source cell are

displayed in the spanned cell. Attributes for the spanned range must be set on the source
cell.

Note: Spanned ranges may not overlap. If you have overlapping Spans, you will get a
System.err message similar to the following:

spanlist.overlap: Range R1C2:R1C4 overlaps RIC1:R1CZ
Overlaps are determined by the order of cell ranges in the Span Vector.
To remove all of the spanned ranges, use the clearSpannedRanges () method.

The following example defines a cell that spans three columns and two rows (columns 2
through 4, and rows 2 through 3):

JCCellRange spanrange = new JCCellRange(1,1,2,3);
table.addSpannedRange(spanrange);

& ExampleTable3

Custormer M l Order Date ltern ‘ Guantity {lbs J
1 The Cuppa 1111597 French Moct B0
5
2 The Underg 11114797 Brazilian Me 112
-
El RacketFuel 10/30/87 EspressoD | 300
B »
4 WideEyes C 1T zar Calombiani 120
" -

& ExampleTable3

Custormer M l Order Date ltern ‘ Guantity {lbs J
1 The Cuppa 1111597 French Moct B0
5

2 The Underg

3 RocketFuel
H

4 WideEyes C 1T zar Calombiani 120
" -

Figure 10 Color properties of source cell (1,1) in the original table (left) are retained over the spanned cells
in the table after the listed code has been added (right).

Chapter 2 m Building a Table 59

2.7.1 Using Spanning to Create Multiline Headers

You may want to create tables that contain multiline column headers where a top header
is divided into two columns by sub-headers, as in the following illustration.

Customer Mame | Order Date [term Drder nfo.
Quantity Pricelb.
1111187 | French Mocha 60 £7.01
The Undergruung 1T14may Brazilian . 112 F6.20
RocketFuel and . 10030097 Espresso Dark 300 F8.02
WideEyes Cuf'fee_ 1112087 Colomhbianfrish Crearg 120 55.30
ditters L | 1o1raT | Ethiopian . |80 §7.a0
Twitchy's on . 12106597 French Roast . 160 F14.50
Cluest Sufmrare_ 1202197 Colombian 22,000 §5.28

Figure 11 Multiline headers.

While JClass LiveTable does not support multi-row column labels, this effect can be
achieved by setting some table-wide cell appearance and behavior properties, and some
Cell Style properties. Use a frozen row at the top of the table to mimic the appearance of
the column labels as follows:

The right-most column label has been set to span columns 3 and 4. This produces a
heading for both columns.

The cell values for columns 3 and 4 in row zero have been set to contain the
“subheadings” of the spanned label heading.

The cells in row zero, columns 0 to 2 are empty.

Row zero has been frozen using setFrozenRows(1) so that it stays at the top of the
table and acts like a label.

Row zero’s cells are not editable (using the setEditable(false) method) and not
traversable (using setTraversable(false)).

The FrameBorderWidth property of the table must be set to zero, so that the labels
blend seamlessly into the frozen row.

Finally, using Cell Styles, the Ce11BorderSides, Background, and Foreground
properties for the column labels and row zero are all set to blend the two together.

60

Part | m Using JClass LiveTable

Working with Table Data

Overview: Data Handling in JClass LiveTable wm Getting Data into your Table
Using Stock Data Sources wm Setting Stock Data Source Properties

Loading Data from an XML Source wm Creating your own Data Sources wm Dynamically Updating Data

3.1

Overview: Data Handling in JClass LiveTahle

JClass LiveTable is a Java component that creates a table-formatted view of a given set of
data. Data can come from many different types of sources; different applications can have
different data storage needs. Since applications can generally store data more efficiently
than a component, it is more practical for JClass LiveTable to use an external data object
rather than storing the data internally. An external data model organizes the data in a way
that is more convenient for the application, rather than for the component.

Consequently, JClass LiveTable uses a Model-View-Controller (MVC) architecture for
data handling. The data in the table cells is stored in an external data source rather than
the JCTabTe object itself. Either you create the data source object, or the data source can
be a database. To use the latter, you need to use one of the LiveTable data-binding Beans.
For more information about these Beans, please see JClass LiveTable Beans and IDEs, in

Chapter 9.

With LiveTable’s MV C architecture, the data source object is the Model, which manages
the underlying data being displayed and manipulated. The JCTable object acts as both
the View (the object displaying the data to the user) and the Controller (the object that
manipulates and modifies the data).

Because the JCTable object and the data source are separated, you are free to use
whatever data storage mechanism you want; the JCTab1le object doesn’t need to know
anything about the mechanism itself. The MV C architecture also helps improve the
performance of JClass LiveTable programs by removing the need to load all of the table’s
data into memory, then copy it to the JCTab1e object. The data source is able to copy
only the data that is currently displayed by the JCTable object. An external data source
can also manage large sets of data more efficiently than the JCTable object can.

How the Table and Data Source Communicate

Between the JCTable object and the data source lies an object that implements the
DataViewModel and/or the SortableDataViewModel. The default implementation in the

61

3.2

table is TableDataView. While most developers will never have to work with it directly,
it’s important to realize that the TableDataView monitors the data source for changes and
notifies the JCTab1e object when they occur. Additionally, the TableDataView has a set of
translation tables that allow it to re-map rows or columns from the data source to the
table. This is how JClass LiveTable can support features like column sorting and row or
column swapping, where the appearance of the table changes, without manipulating the
data source itself.

Getting Data into your Table

To display data in a JClass LiveTable application or applet, you need to create a data
source object. Any object that implements the TableDataModel interface can be a data
source. This can either be one of the stock data sources included with LiveTable (see
Section 3.3, Using Stock Data Sources) or one of your own data sources (see Section 3.6,
Creating your own Data Sources).

The TableDataModel interface is as follows:

public interface TableDataModel ({

public Object getTableDataltem(int row, int column);
public int getNumRows();

public int getNumColumns();

public Object getTableRowlLabel(int row);

public Object getTableColumnlLabel(int column);

public void addTableDatalistener(TableDatalistener 1);
public void removeTableDatalistener(TableDatalistener 1);
}

The primary method in the TableDataModel interface is getTableDataltem(), which
retrieves the value of a specified cell. For more information on the types of cell data
objects that Table understands, see Displaying and Editing Cells, in Chapter 4. In short,
you can have any type of object (usually one of Integer, Double, String, or Image) in a
cell.

Tahle Size
The size of the table is also specified by the data source, using the getNumRows () and
getNumColumns () methods.

Row and Column Lahels

If you want to display row or column labels, their values are provided using the
getTableRowLabel() and getTableColumnLabel () methods. These methods return the
same types of objects as getTableDataltem(), but labels are never editable or traversable.

Data Format Detection

When using the JCInputStream stock data source, LiveTable automatically detects
whether a data stream is in standard table or CSV format. So by default,
JCInputStreamDataSource and JCFileDataSource attempt to determine the format of the

62

Part | m Using JClass LiveTable

3.2.1

3.3

data source. To remove this automatic detection (and the overhead it creates), set a
preferred data format type.

Data Source Listeners

Any time the data inside the data source changes, it should notify all of its listeners. To
add and remove listeners to and from the data source, use the methods
addTableDatalistener() and removeTableDatalistener().

Making the Data Source Editable

If you want users to be able to edit the data, you must implement the
EditableTableDataModel interface. EditableTableDataModel is derived from
TableDataModel and adds one new method: setTableDataltem().

public interface EditableTableDataModel extends TableDataModel {

public boolean setTableDataltem(Object o, int row, int column);
}

When the user edits a cell in the table, the cell editor validates the data (for more
information about cell editing, see Displaying and Editing Cells, in Chapter 4), and passes
the new data to the data source using the setTableDataltem() method. If the data source
does not accept the value of the object (for example, if the value is invalid in some way), it
will return false to indicate that the edit has been rejected. If the new value is valid, then
setTableDataltem() will return true and the data source will store the value.

The setEditable() Method

You can use the setEditable() method, which is part of the Ce11StyleModel
implementation, to turn editing on and off for specific cells and ranges of cells.
setEditable() has no effect on labels, as they can never be edited. For
setEditable(true) to have any effect, the data source must be editable.

Using Stock Data Sources

While it isn’t hard to create a data source for a table, JClass LiveTable includes several
stock data sources to save you the work of writing data sources for the most common data
types. The following data sources are found in the com.k1g.jclass.table.data package:

Data Source Description
JCAppletDataSource Reads in data from the DATA tag of an applet.
JCCachedDataSource Caches previously read data from the data source.

JCEditableCachedDataSource | Allows users to edit cell values in tables with the
above data source.

Chapter 3 m Working with Table Data 63

3.3.1

3.3.2

Data Source Description

JCEditableFileDataSource Allows users to edit cell values in tables with the
above data source.

JCEditableVectorDataSource | Allows users to edit cell values in tables with the
above data source.

JCFileDataSource Creates an input data stream from a file.

JCInputStreamDataSource Base class for any data source that relies on
streamed input. This data source type can handle
comma-separated value (CSV) data files.

JCResultSetDataSource Simple read-only JDBC database source.

JCSpreadLabel Contains convenience methods for creating
spreadsheet labels.

JCTableModelDataSource Enables users to display and edit Swing TableModel

data objects in JClass LiveTable. Swing TableModel
objects are typically used by the Swing JTable

component.
JCURLDataSource Uses URL: to create a data source object.
JCVectorDataSource General purpose data source: extended by almost all

stock data sources.

Most of the stock data sources extend the JCVectorDataSource class. Please see
Appendix E, JClass LiveTable Inheritance Hierarchy, for a complete hierarchy diagram
that outlines the relationship between the stock data source classes.

JCVectorDataSource: the Data Source Workhorse

A JCVectorDataSource simply stores all of its data in memory using vectors. The
JCVectorDataSource class contains methods that allow you to set individual elements, or
to set all of the data in the data source from a vector or an array of objects.

Since JCVectorDataSource implements TableDataModel, it can’t be edited by the
JCTable object. If you want users to be able to edit the cell values through the table, you
should use JCEditableVectorDataSource. The JCEditableVectorDataSource classis a
subclass of JCVectorDataSource that implements the EdtitableTableDataModel interface
model.

Getting Data from an Input Stream

JClass LiveTable provides the JCInputStreamDataSource class to read data in through a
standard java.io.InputStream, and since it is derived from JCVectorDataSource, it has
all of the same capabilities as a JCVectorDataSource (see Section 3.4, Setting Stock Data

64

Part | m Using JClass LiveTable

3.3.3

3.3.4

Source Properties). JCInputStreamDataSource accepts both CSV and table format data
files, and items read into the data source are stored as either String or double objects. The
data format for a simple table would be similar to the following (the # symbol denotes the
beginning of a comment):

TABLE 2 4 NOLABEL # 2 rows, 4 columns

1234 # row 1
1234 # row 2
If you want to include labels, the data format would be:
TABLE 3 4
"CoTumn 17 *Column 2° ’Column 3 ’Column 4’
"Row 1° 1 2 3 4
"Row 2’ 1 4 9 16
"Row 3’ 1 16 81 256

The JCInputStreamDataSource class has the following subclasses that provide convenient
constructors to create an InputStream from various sources:

m JCFileDataSource, for reading data from a file.
m JCURLDataSource, for reading data from a URL.

m JCAppletDataSource, for reading data from the DATA <PARAM> tag associated with
the specified applet.

Getting Data from a Database

The JCResultSetDataSource uses a JDBC database connection and an SQL query to
create a data source. The JCResultSetDataSource is a rudimentary implementation of a
data-bound data source to demonstrate that JClass LiveTable can be used with database
applications quite easily.

Note: The JCResultSetDataSource is not a data source that can be edited; that is, it will
not write to the database.

JClass LiveTable also comes with data-binding Beans that allow you to bind your table to
any JDBC data source. For information about the data binding Beans, please refer to Data
Binding with IDEs, in Chapter 9.

Caching Data with JCCachedDataSource

While JCVectorDataSource stores its memory using vectors, the JCCachedDataSource
class stores its data in a vector of vectors. JCCachedDataSource uses another
TableDataModel class to contain table cell and label information (“in between” the table
and the data source). It will reference the cache first to see if the required data exists; if it
does not, the call passes through to the original TableDataModel class, and the value is
taken. When this happens, the retrieved value is also stored in JCCachedDataSource’s
other TableDataModel class.

This method saves time by creating a second instance of previously retrieved data,
outside of the actual data source. JCCachedDataSource should only be used when the

Chapter 3 m Working with Table Data 65

3.3.5

3.4

3.4.1

TableDataModel’s getTableltem, getTableRowlLabel, and/or getTableColumnLabel are
calculation-intensive or expensive to retrieve.

Use JCEditableCachedDataSource to bind to an editable data source and be able to edit
the cell contents.

Note: A non-editable data source bound to JCEditableCachedDataSource will display an
editor but reject all changes.

Using Swing TabhleModel Data Objects

The JCTableModelDataSource enables you to use any type of Swing TableModel data
object in JClass LiveTable. JCTableModelDataSource is an editable data source.

JCTableModelDataSource interprets and reformats the TableMode data to the layout used
by JClass LiveTable. This makes it easier to replace the Swing JTable component with
JClass LiveTable because you do not have to reformat your data.

When you create a JCTableModelDataSource, you need to pass the constructor a valid
Swing TableModel object.

Setting Stock Data Source Properties

The following properties are set using methods of the JCVectorDataSource class. Since
the stock data sources are derived from the JCVectorDataSource class, you can set these
properties from any of the stock data sources (though all of the properties may not be
applicable to the specific data source).

Note: The JCVectorDataSource class contains properties that are not inherent to the
TableDataModel interface. If you create your own data source, you will have to produce
your own methods for such operations as adding and deleting rows and columns.

Working with Rows and Columns

Setting the Number of Rows/Columns

The setNumRows () and setNumColumns () methods specify the number of rows and
columns in the data source (default is 5 columns and 10 rows). These values do not affect
the internal Cel1Values Vector of the data source. The values of the NumRows and
NumColumns properties are updated by the addRow(), addColumn(), deleteRows (), and
deleteColumns () methods (see below).

Specifying Row and Column Labels
You can set row and column labels by calling:

B setRowlabel() and setColumnlLabel () for individual labels.
B setRowlabels() and setColumnLabels() for all of the labels.

66

Part | m Using JClass LiveTable

Column and row labels can be set as an array of Strings, or as a vector. Each element of
the labels’ vector may be an instance of a String, Image, Component, or other object. To
clear column or row labels, call the method with a null argument.

String clabels[] = { "Name", "Address", "Phone" };

JéVectorDataSource vds;
vds.setColumnLabels(clabels);

To retrieve the values, use:
B getTableRowlLabel() and getTableColumnLabel () for individual labels.
B getRowlabels() or getColumnlLabels() for all of the labels.

Adding Rows and Columns

You can insert new rows and columns into the data source using the addCoTumn() and
addRow () methods. The addCoTumn() method inserts a new column into the data source,
shifting any cell values to the right of the insertion. The addRow() method inserts a new
row into the data source, shifting any cell values down.

The addColumn() and addRow() methods are identical:

B public boolean addRow(int position,
Object Tabel,
Vector values)

B public boolean addColumn(int position,

Object Tabel,
Vector values)

In the previous methods,

m The position parameter is the initial column (or row) index, and the new columns or
rows are added prior to this position. If the position is set to JCTableEnum.MAXINT, the
column or row is added after the final existing column or row.

m The label parameter refers to the column or row label. This parameter can have a null
value.

m The values parameter refers to the array of objects that comprises the cell values. This
parameter can have a null value.

m Both the addColumn() and addRow() methods return false if any of the parameters
are invalid; if they return false, the row or column will not be added.
When calling addRow() and addColumn(), note the following:

m If you do not supply values for the new cells within the method, the cells are blank.
Values for the new row or column labels must be specified separately.

m The initial row or column index cannot be greater than the values of NumRows or
NumColumns.

Chapter 3 m Working with Table Data 67

Deleting Rows and Columns

Use the deleteRows () and deleteColumns () methods to remove rows and columns from
the data source. When you delete a column, remaining cell values shift to the left; when
you delete a row, existing cell values shift up.

The deleteRows () and deleteColumns () methods are identical:

B public boolean deleteRows(int position,
int num_rows)

B public boolean deleteColumns(int position,
int num_columns)
In the previous methods,

m The position parameter specifies the first row or column number to delete from the
data source.

m The num_rows or num_columns parameter specifies the number of rows or columns to
be deleted, starting from the row or column specified by position.
When calling deleteRows () and deleteColumns(), note the following:

m The starting row or column cannot be greater than the NumRows or NumCo1lumns
properties.

m Both the deleteRows () and deleteColumns () methods return false if any of the
parameters are invalid.

Moving Rows and Columns

To move a range of rows or columns in the data source, use the moveRows () and
moveColumns () methods. The moveRows () and moveColumns () methods take the
following forms:

B public boolean moveRows(int source,

int num_rows,
int destination)

B public boolean moveColumns(int source,
int num_columns,
int destination)

In the previous methods,
m The source parameter specifies the first row or column to move.

m The num_rowsand num_columns parameters specify the number of rows or columns to
move.

m The destination parameter specifies the row number above which, or the column
number to the left of which, to move the rows or columns.

When calling moveRows () and moveColumns (), note the following:

m The starting (source) row or column cannot be greater than the value of the NumRows ()
or NumColumns () properties.

68

Part | m Using JClass LiveTable

m Both the moveRows () and moveColumns () methods return false if any of the
parameters are invalid.

3.4.2 Working with Other Properties

3.5

3.5.1

Setting Cell Values

To set the cell values in the data source, use the setCel11() or setCel1s() methods. The
setCel1s() method can be a matrix of Strings or a vector of vectors. To remove all
values, call clearCells().

Adding and Removing TableDataListeners

The JCVectorDataSource class contains methods for adding and removing listeners to the
data source: addTableDatalistener() and removeTableDatalistener(). These methods
monitor the data source for changes. For more information, see Section 3.7, Dynamically
Updating Data.

Loading Data from an XML Source

XML Primer

XML - eXtensible Markup Language - is a scaled-down version of SGML (Standard
Generalized Markup Language), the standard for creating a document structure. XML
was designed especially for Web documents, and allows designers to create customized
tags (“extensible”), thereby enabling a flexible approach to create common information
formats for sharing both the format and the data on the Internet, intranets, and so on.

XML is similar to HTML in that both contain markup tags to describe the contents of a
page or file. But HTML describes the content of a Web page (mainly text and graphic
images) only in terms of how it is to be displayed and interacted with. XML, however,
describes the content in terms of what data is being described. This means that an XML
file can be used in various ways. For instance, an XML file can be utilized as a convenient
way to exchange data across heterogeneous systems. As another example, an XML file
can be processed (for example, via XSLT [Extensible Stylesheet Language
Transformations]) in order to be visually displayed to the user by transforming it into
HTML.

Here are links to more information on XML.

B hup/fwww.w3.org/ XML/ - another W3C site; contains exhaustive information on
standards. Of particular note are the XML schema 1 (structures) and XML schema 2
(datatypes) working drafts. They make up an extension that specifies how to constrain
XML documents to particular schema. This is important if you want to represent
database data or object-oriented data as XML

W http:/fwww.javasofi.com/xmi/tutorial_intro.html — Sun’s XML site

Chapter 3 m Working with Table Data 69

http://www.w3.org/XML/
http://www.javasoft.com/xml/tutorial_intro.html

W http://www.oasis-open.org/cover/xml.html — thorough list of links to XML papers and
ongoing work

3.5.2 Using XML in JClass
In order to work with XML in your programs, or even to compile our XML examples,
you will need to have the JAR files jaxp.jar and crimson.jar' in your CLASSPATH. These
files are distributed with JClass LiveTable - you can find them in JCLASS_HOME/lib/.

JClass LiveTable can accept XML data formatted to the specifications outlined in
com.klg.jclass.util.xml.JCTableXMLParser. This class takes in a stream of data and
parses it under the assumption that it is in the defined XML format that JClass LiveTable
uses. It then populates the specified table with the resulting data.

Examples of XML in JClass

For XML data source examples, see the XMLFileData and XMLTableModelData
examples in JCLASS_HOME/examples/table/datasource. These both use the colors.xml file in
JCLASS_HOME/examples/table/datasource/.

You can also specify your own data parsing format. There are now constructors in the
JCInputStreamDataSource, JCFileDataSource, JCURLDataSource, and
JCAppletDataSource classes that take an object that implements the
com.klg.jclass.table.data.JCFileFormatParser interface.

Interpreter

The interpreter, which lets JClass LiveTable interpret the incoming data via the defined
XML format, must be explicitly set by the user. The interpreter to use for

JClass LiveTable is com.k1g.jclass.table.data.JCXMLFormatParser.

Many constructors in the various data sources in JClass LiveTable take the
JCFileFormatParser interface that this class (JCXMLFormatParser) implements.
Here are a few code examples that load XML data using this interpreter:
TableDataModel tdm = new JCFileDataSource(fileName,

new JCXMLFormatParser());

TableDataModel tdm = new JCURLDataSource(codeBase, fileName,
new JCXMLFormatParser());

Note: A user can create a custom data format and create a custom data interpreter by
implementing JCFileFormatParser.

1. You may substitute for crimson.jar any parser that is compliant with Sun's JAXP 1.1 specification. See Sun's JAXP
documentation for more information:

70 Part | m Using JClass LiveTable

http://www.oasis-open.org/cover/xml.html

3.5.3 Example XML Files for JClass LiveTable

Here is an XML file that contains data formatted to the specifications detailed in
com.klg.jclass.util.xml.JCTableXMLParser:

<?xml version="1.0"7?>
<IDOCTYPE JCTableData SYSTEM "JCTableData.dtd">
<JCTableData>
<Row>
<Cell>1</Cell> <Cel1>2</Cell> <Cell1>3</Cell> <Cell>4</Cell>
</Row>
<Row>
<Cel1>1</Cell> KCel1>2</Cell> <Cell1>3</Cell> <Cell>4</Cell>
</Row>
</JCTableData>

Here is another example XML file that contains data formatted to the specifications
detailed in com.k1g.jclass.util.xml.JCTableXMLParser, this one with row and column
labels:

<?xml version="1.0"7?>
<IDOCTYPE JCTableData SYSTEM "JCTableData.dtd">
<JCTableData>
<ColumnLabel>Column 1</ColumnlLabel>
<ColumnLabel>Column 2</ColumnlLabel>
<ColumnLabel>Column 3</ColumnlLabel>
<ColumnLabel>Column 4</ColumnlLabel>
<Row>
<RowlLabel>Row 1</RowLabel>
<Cell>1</Cell> <Cel1>2</Cell> <Cell>3</Cell> <Cell>4</Cell>
</Row>
<Row>
<RowlLabel>Row 2</RowLabel>
<Cell>1</Cell> <Cel1>4</Cell> <Cell1>9</Cell> <Cell>16</Cell>
</Row>
<Row>
<RowlLabel>Row 3</RowLabel>
<Cell>1</Cel1> <Cell>16</Cell> <Cel1>81</Cell> KCell1>256</Cell>
</Row>
</JCTableData>

3.5.4 Tags

<ColumnLabel> and <RowlLabel> tags are optional. Every <{Row> tag can contain any
number of <Ce11> tags. These <Ce11> tags define the value of one cell within the row.

3.5.5 Creating a Swing TahleModel class

For details on how to use the above XML format to create a Swing TableModel class
instead of a standard JClass LiveTable data source, please look at the
com.klg.jclass.util.xml.JCXMLTableModel class. The user can pass an XML input
stream to this object and use the resulting table model to populate a JClass LiveTable, a
Swing JTable, a JClass Chart, or any other object that takes a Swing TableModel class.

Chapter 3 m Working with Table Data A

Also, the XMLTableModelData example in JCLASS_HOME/examples/table/datasource
shows this.

3.6 Creating your own Data Sources

If the stock data sources provided with JClass LiveTable do not meet your needs, you can
easily create your own data source objects by implementing the TableDataModel
interface, as in the following example from examples/table/datasource/StaticDataSource.java:

import com.klg.jclass.table.TableDataModel;
import com.klg.jclass.table.JCTableDatalistener;

public class StaticDataSource implements TableDataModel {
protected String datal];

public StaticDataSource(String strings[]) {
if(strings == null)
data = new String[0];
else
data = strings;
}

public Object getTableDataltem(int row, int column) {
if(column == 0)
return datalrow];
else
return null;
}

public int getNumRows() {
return data.length;
}

public int getNumColumns() {
return 1;
}

public Object getTableRowlLabel(int row) {
return Integer.toString(row);
}

public Object getTableColumnLabel(int column) {
return "Some Data";
}

public void addTableDatalistener(JCTableDatalListener 1) {
}

public void removeTableDatalistener(JCTableDataListener 1) {
}
}

72 Part | m Using JClass LiveTable

The StaticDataSource class takes a one-dimensional array of Strings and turns it into a
read-only data source. The constructors take the array of Strings; the
getTableDataltem() method supplies the data as it is needed. Note that the
addTableDatalistener() and removeTableDatalistener() methods have been left
empty because this data source is not going to be changing dynamically, and thus does
not need to keep track of its listeners. You can attach this data source to a table quite
easily. To see a demonstration of this, run the StaticTést.java file, found in the
examples/table/datasource directory.

To make the items in the table editable, you must implement the
EditableTableDataModel interface, as in
examples/table/datasource/StaticEditableDataSource.java:

import com.klg.jclass.table.EditableTableDataModel;
import com.klg.jclass.table.JCTableDatalistener;

public class StaticEditableDataSource implements EditableTableDataModel {
protected String datal];

public StaticEditableDataSource(String strings[1) {
if(strings == null)
data = new String[0];
else
data = strings;
}

public Object getTableDataltem(int row, int column) {
if(column == 0)
return datalrow];
else
return null;
}

public boolean setTableDataltem(Object o, int row, int column) {
if(column == 0) {
if (o instanceof String)
datalrow] = (String)o;
else
datalrow] = o.toString();
}

return true;
}

public int getNumRows() {
return data.length;
}

public int getNumColumns() {
return 1;
}

public Object getTableRowlLabel(int row) {

Chapter 3 m Working with Table Data 73

3.7

return Integer.toString(row);
}

public Object getTableColumnlLabel(int column) {
return "Some Data";
}

public void addTableDatalistener(JCTableDatalistener 1) {
}

public void removeTableDatalistener(JCTableDatalistener 1) {
}
}

The StaticEditableDataSource class could have been a subclass of StaticDataSource,
adding only the setTableDataltem() method, but in this example it was shown as a
standalone class to make sure everything is as clear as possible. Note that the object that is
passed back to the data source in setTableDataltem() is nota String.

To see a demonstration of the StaticEditableDataSource class, run the
StaticEditableIest.java file, found in the examples/table/datasource directory.

Dynamically Updating Data

Sometimes the data in the data source changes all by itself — for example, you may have a
table displaying stock prices with data arriving in real-time over a network socket. As
new prices arrive, your users would like the table to update the values of the appropriate
cells.

To notify the table that the data has changed, send a JCTableDataEvent to all of the
JCTableDatalistener objects that have registered themselves with the data source.

The following is a simple example that creates a background thread that automatically
updates cell values. It can be found in the file
examples/table/datasource/DynamicDataSource.java:

import java.util.Enumeration;

import java.util.Random;

import com.klg.jclass.table.TableDataModel;
import com.klg.jclass.table.JCTableDatakvent;
import com.klg.jclass.table.JCTableDatalistener;
import com.klg.jclass.util.JdCListenerlist;

public class DynamicDataSource implements TableDataModel, Runnable ({
protected int data[] = {

1, 2,3,4,5,6,7,8,09,
b

protected JCListenerList Tisteners;
protected Thread kicker;

74

Part | m Using JClass LiveTable

public DynamicDataSource() {
kicker = new Thread(this);
kicker.start();

}

public Object getTableDataltem(int row, int column) {
if (column == 0) {
return new Integer(datalrow]);
}
return null;
}

public int getNumRows() {
return data.length;
}

public int getNumColumns() {
return 1;
}

public Object getTableRowlLabel(int row) {
return Integer.toString(row);
}

public Object getTableColumnlLabel(int column) {
return "Some Data";
}

public void addTableDatalistener(JCTableDatalistener 1) {
listeners = JCListenerList.add(listeners,1);
}

public void removeTableDatalistener(JCTableDatalListener 1) {
listeners = JCListenerList.remove(listeners,1);
}

public void run() {
Random random = new Random();
Enumeration e;
JCTableDatalistener 1;
JCTableDatakvent event;

int i;

for(;;) |
i = random.nextInt() % data.length;
if (j < 0) {

1= -1;
}
datal[i] += (int)(random.nextGaussian()*10);
event = new JCTableDataEvent(this,i,0,0,0,
JCTableDatakEvent.CHANGE_VALUE);

for(e = JCListenerList.elements(listeners); e.hasMoreElements();) {
1 = (JCTableDataListener)e.nextElement();
1.dataChanged(event);

Chapter 3 m Working with Table Data 75

try {
Thread.sleep(100);
}

catch(Exception ex) {
}

}
}

The DynamicDataSource class sends CHANGE_VALUE messages to all of its listeners
whenever a value changes. When the JCTab1e object receives this message it retrieves the
new value from the data source and repaints the appropriate cell. There are several other
update commands available on the JCTableDataEvent class:

m CHANGE_VALUE m NUM_ROWS

m CHANGE_ROW m NUM_COLUMNS
B CHANGE_COLUMN m ADD_COLUMN

m CHANGE_ROW_LABEL m REMOVE_COLUMN

m CHANGE_COLUMN_LABEL m MOVE_ROW
m ADD_ROW m MOVE_COLUMN

m REMOVE_ROW W RESET

All of the CHANGE_ messages cause the Table to reload the specified data and repaint the
intersection of the data that has been changed and the data that is being shown on screen.

The file examples/table/datasource/DynamicTest.java demonstrates the simple technique used
in DynamicDataSource.java.

Easy Listener Management

If you do not want to have to manage the listeners, JClass LiveTable includes a class
called AbstractDataSource. AbstractDataSource is an object provided by JCTable that
implements TableDataModel, and has methods for adding and removing
JCTableDatalisteners. In addition, it contains several convenience methods for firing
events, such as fireValueChanged() and fireRowlLabelChanged() method.

As an example, the DynamicDataSource.java program could be implemented again to use
the AbstractDataSource as follows:

import java.util.Enumeration;

import java.util.Random;

import com.klg.jclass.table.data.AbstractDataSource;
import com.klg.jclass.table.JCTableDataEvent;

import com.klg.jclass.table.JCTableDatalistener;
import com.klg.jclass.util.JdCListenerlList;

76

Part | m Using JClass LiveTable

public class DynamicDataSource? extends AbstractDataSource
implements Runnable {

protected int datal] = {
1, 2,3,4,5,6,7,8,9,
b

protected Thread kicker;

public DynamicDataSource2() {
kicker = new Thread(this);
kicker.start();
}
public Object getTableDataltem(int row, int column) {
if(column == 0)
return new Integer(datalrow]);
else
return null;

}

public int getNumRows() f
return data.length;
}

public int getNumColumns() {
return 1;
}

public Object getTableRowlLabel(int row) {
return Integer.toString(row);
}

public Object getTableColumnlLabel(int column) {
return "Some Data";
}

public void run() {
Random random = new Random();
Enumeration e;
JCTableDatalistener 1;
JCTableDataEvent event;
int i;

{
random.nextInt() % data.length;
f (i <0) {

datal[i] += (int)(random.nextGaussian()*10);

event = new JCTableDataEvent(this,i,0,0,0,
JCTableDatakEvent.CHANGE_VALUE) ;

fireTableDataEvent(event);

Chapter 3 m Working with Table Data

17

3.71

try {
Thread.sleep(100);
}

catch(Exception ex) {
}

}
}

Running examples/table/datasource/Dynamiclest2.java demonstrates that the same results can
be achieved more easily by using a subclass of AbstractDataSource.

Adding and Removing Columns and Rows

ADD_ROW, REMOVE_ROW, ADD_COLUMN, and REMOVE_COLUMN notify the table that a row or
column has been added or removed so that the table can update its internal list of cell
attributes. For example, if all your rows are different colors, and you delete a row, the
remaining rows will still have the correct colors if you send a REMOVE_ROW message to the
JCTable. Some of the event parameters may be ignored for row or column operations.
For example, when you do an operation on an entire row or column, if you create an
ADD_ROW event, the column parameter is ignored by the table. With the exception of the
MOVE_ events, all of the events ignore the num_affected and destination parameters of the
JCTableDataEvent.

The MOVE_ROW and MOVE_COLUMN commands are the only commands that make use of the
num_affected and destination parameters in the JCTableDataEvent. When you have a MOVE_
event, you can move multiple rows/columns (the num_affected parameter) and you must
specify to which row/column you are moving (destination).

The RESET message causes the JCTable object to re-initialize itself by re-reading the
number of rows, number of columns and all the data from the data source. The table’s
visual attributes, such as fonts and colors, are not affected.

Note: When a user edits a cell in the table and the value is put back into the data source
via setTableDataltem(), the table will automatically repaint the cell with a new value.

78

Part | m Using JClass LiveTable

4.1

Displaying and Editing Cells

Overview w Default Cell Rendering and Editing

Rendering Cells wm Editing Cells wm The JCCelllnfo Interface

Overview

JClass LiveTable offers a flexible way to display and edit any type of data contained in a
table’s cells. The following sections explain the techniques for displaying and editing cells

in your programs.

In order to display a cell, JClass LiveTable has to know what type of data renderer is
associated with the cell so it knows how to paint that data into the cell area. Similarly, in
order for users to edit the cell values, LiveTable has to know what editor to return for that

data type.

These operations are performed using the classes in the JClass cell package, which is

structured as follows:

JClass Cell Package

Contents

com.klg.jclass.cell

Contains editor/renderer interfaces and support
classes, including these interfaces:

JCCel1Editor: used to define an editor
JCCel1Renderer: the common and basic
interface for renderers
JCComponentCellRenderer: allows the creation
of renderers that are based on JComponent
JCLightCel1Renderer: allows the creation of
renderers based on direct drawing

com.klg.jclass.cell.editors

Contains editors for common data types.

Please see Section 4.4.1, Default Cell Editors, for
details.

79

4.2

JClass Cell Package Contents

com.klg.jclass.cell.renderers Contains renderers for common data types,
including expressions.

Please see Section 4.3.1, JClass Cell Renderers,
for details.

com.klg.jclass.cell.validate Contains data validation interfaces and support
classes.

This JClass cell package is generic; renderers and editors written for JClass LiveTable will
work with other JClass products. In addition, JClass Field components can work as
renderers and editors within JClass LiveTable, allowing very lightweight operation.

Note: For the JClass Field component to work as a renderer, you need to use a particular
instance from the com.klg.jclass.field.cell package.

JClass LiveTable has been designed to identify the type of data being retrieved from the
data source and to provide the appropriate cell renderer and cell editor for that data type.
For example, if JClass LiveTable encounters an expression in a cell (for example, any
formula from com.klg.jclass.util. formulae), the default JCExpressionCellRenderer will be
used.

Often, however, you will want to control the way data in a particular area of the table is
rendered, or assign a specific type of editor for that data. An example of this is rendering
String data in multiple lines and using javax.swing.JTextArea as the editor, rather than
rendering and editing single line Strings.

The following sections describe the techniques for rendering and editing cells by
beginning with the easiest default methods, followed by detailed explanations for setting
specific renderers and editors, mapping renderers and editors to a particular data type,
and creating your own renderers and editors.

Default Cell Rendering and Editing

Basic Editors and Renderers
When the table draws itself, it accesses the data source and attempts to paint the contents
of each cell. In doing so, it works through a two-stage process:

1. The table checks to see if a renderer has been assigned to the cell or a series of cells
by the Cel1Renderer property in the cell’s style.

2. Ifthe table can’t find a specific Ce11Renderer for the data, it uses the default mapping
for that data type.

80

Part | m Using JClass LiveTable

4.3

4.3.1

The following table lists the cell renderers and editors for common data types included
with JClass LiveTable, which are found in the com.k1g.jclass.cell.renderers and
com.klg.jclass.cell.editors packages, respectively. When going through the above
steps, JClass LiveTable uses these default mappings.

Data Type Renderer Editor

Boolean JCStringCellRenderer JCBooleanCellEditor
Date JCStringCellRenderer JCDateCellEditor
Double JCStringCellRenderer JCDoubleCellEditor

Expression

JCExpressionCellRenderer

none

Float JCStringCellRenderer JCFloatCellEditor
Image JCImageCellRenderer none

Integer JCStringCellRenderer JCIntegerCellEditor
Object JCStringCellRenderer none

String JCStringCellRenderer JCStringCellEditor

Although these editors and renderers are included with JClass LiveTable, you might find
that you need more control over the way data is displayed and edited than simply relying
on these defaults. The following sections explain cell rendering and cell editing in detail.

Rendering Cells

Cell rendering is simply the way in which data is drawn into a cell. JClass LiveTable
includes renderers that you can use in your table. Additionally, two rendering models,
JCLightCel1Renderer and JCComponentCel1Renderer, are provided if you want to create
your own renderer. Each model caters to different rendering needs.

More information about included renderers is found in the next section, and information
about the two rendering models on which you can base customized renderers is found in
Section 4.3.4, Creating your own Cell Renderers.

JClass Gell Renderers

As shown in the table above, JClass LiveTable maps standard data types to specific
renderers when the program does not specify a renderer for that data type (either by
setting for a series or mapping). This means that most tables are easily rendered without
any special coding. The renderers are internally assigned. JClass LiveTable also contains
several cell renderers for specific data types that you can set for a series (see Section 4.3.2,
Setting a Cell Renderer for a Series) or as a mapping (see Section 4.3.3, Mapping a Data

Chapter 4 m Displaying and Editing Cells 81

Type to a Cell Renderer). These cell renderers are described in the following table and all
of them are in com.k1g.jclass.cell.renderers package.

Name Data Type Description

JCCheckBoxCellRenderer boolean Defines a JCComponentCellRenderer
object that paints boolean objects in a
table cell using Swing’s JCheckBox.

JCComboBoxCellRenderer integer Defines a JCComponentCel1Renderer
that paints integer objects in a table using
Swing’s JComboBox.

JCImageCellRenderer image Defines a JCLightCel1Renderer object
that paints Image objects in a table cell.

JCExpressionCellRenderer |expression Defines the result of a formula

(com.klg.jelass.util formulae. Expression).

JCLabelCelTRenderer

String and/or
image

Defines a JCLabe1Cel1Renderer object
that uses Swing’s JLabel to render cell
contents.

JCRawImageCellRenderer image Defines a JCLightCel1Renderer object
that paints unconverted Image objects in
a table cell (extends
JCScaledImageCellRenderer).

JCScaledImageCellRenderer |image Defines a JCLightCel1Renderer object

that paints scaled Image objects in a table
cell.

JCStringCellRenderer

String, boolean,
double, float,
integer, object

Defines a JCLightCel1Renderer object
that can draw Strings.

JCWordWrapCellRenderer

String

Defines word-wrapping logic for
multiline display of Strings in cells.

The default mappings and these special renderer classes should provide rendering for
most data types. Few programmers work under ideal conditions, however, and you may
need to extend the capability of these renderers. JClass LiveTable includes ways for you
to customize cell rendering as described in Section 4.3.4, Creating your own Cell

Renderers.

4.3.2 Setting a Cell Renderer for a Series

Often, the rows and columns that comprise a table are grouped by the type of data they
contain. You may be creating an order form that has a product name (a String) in one

82

Part | m Using JClass LiveTable

4.3.3

column, a part number (an Integer) in another, and a check box (a special type of object)
in the final column to indicate that you want that product. For example:

Contents Product Name Part Number | Order Checkbox

Data Type String Integer Boolean

All of these columns take a different data type, so their data is all rendered differently.
LiveTable will automatically detect the type of data found, and use one of the default
renderers for that column (please see Section 4.2, Default Cell Rendering and Editing, for
a list of default renderers). However, you can use your own renderer if the default does
not suit your needs.

In the case of the Order check box, the default renderer for its Boolean data type will be
the JCStringCel1Renderer. With this default renderer, since the data type is boolean,
instead of having a check (or no check) painted onto the cell, “true” or “false” will appear.
This is not desirable, so you need to deviate from JClass LiveTable’s default renderer.

To set a new cell renderer for a range of cells, use a cell style, which has its own cell
renderer property (for more information, please refer to Cell Styles, in Chapter 2).
Inserting these lines of code into your program will do this:

CellStyleModel style = table.getUniqueCellStyle(0,3);

style.setCellRenderer(new JCCheckBoxCellRenderer());
table.setCel1Style(JCTableEnum.ALL, 3, style);

The JCCheckBoxCel1Renderer class defines an object that paints boolean objects in a
table cell as checks. This way, the first two columns render automatically with the
defaults, and the third column will use your defined renderer.

Mapping a Data Type to a Cell Renderer

Even though you can set the renderer series, your table may be designed in such a way
that the data types within a row or column are not consistent, or will change depending
on the data source. In this case you could decide not to set the renderer series at all, and
allow the container to evaluate the data type and provide the appropriate renderer.
Unfortunately, this means you have to use the default renderers for a given data type.

To use your own renderers without sacrificing flexibility, you can create a mapping. The
mapping takes a data type and associates it with a JCCe11Renderer object; whenever the
container encounters that type of data, it uses the mapped JCCel1Renderer object to
render the data object in the cell.

Mapping a JCCel1Renderer object to a data type takes the following construction:

table.setCelTRenderer(Class cellType, Class renderer);

Chapter 4 m Displaying and Editing Cells 83

4.3.4

For example, in the following code fragment (from TriangleTable.java in the
examples/table/cell directory of the JClass distribution), the cell renderer is set for a
particular data type, defined by java.awt.Polygon.
try {
table.setCellRenderer(Class.forName("java.awt.Polygon"),

Class.forName
("examples.table.cell.TriangleCellRenderer"));

}

catch (ClassNotFoundException e) {
e.printStackTrace(System.out);
}

}

The table.setCellRenderer() method takes a class to define the data type and a class to
define the renderer. In the case below, we have created a class called
TriangleCellRenderer, which is identified using the Class. forName () method imported
from java.lang.Class. (Creating your own cell renderers is explained in the next
section.)

Normally, you would use these mappings in a construction that would test for the
presence of the renderer you specify, and throw an exception if the renderer class was not
found, as is the case in the above sample.

To “unmap” a renderer, set the renderer class parameter to null.

Alternatively, you can map a particular cell renderer instance to a data type using:

table.setCellRenderer(Class cellType, JCCellRenderer renderer);

This method is useful if you want to reuse the same renderer instance, or if your renderer
does not have a default construction.

Creating your own Cell Renderers

Naturally, the renderer classes provided with JClass LiveTable will not meet every
programmer’s specific needs. However, they can be convenient as bases for creating your
own renderer objects by subclassing the original classes. If you want to create your own
renderer classes, you can build your own renderer from scratch. Both techniques are
discussed below.

The examples/table/cell directory and the demos/table directories of your JClass LiveTable
distribution contain a wide array of sample programs that use different approaches to cell
rendering. You can use these examples and demos to help you refine your own renderers
for whatever purpose you require.

84

Part | m Using JClass LiveTable

Subclassing the Default Renderers

A simple way to create your own renderer objects is to subclass one of the renderers
provided with JClass LiveTable. For example, CurrencyRenderer.java, found in the
examples/table/cell directory, is an example of subclassing from the JCStringCel1Renderer
in the com.kl1g.jclass.cell.renderers package

import com.klg.jclass.cell.renderers.JCStringCellRenderer;
import com.klg.jclass.cell.dCCellInfo;

import java.awt.Graphics;
public class CurrencyRenderer extends JCStringCellRenderer ({

public void draw(Graphics gc, JCCellInfo celllnfo,
Object o, boolean selected) f{
if (o instanceof Double) {
double d = ((Double)o).doubleValue();
o = formatlLabel(d, 2);
}
super.draw(gc, celllnfo, o, selected);
}

Creating a Drawing-based Gell Renderer with JCLightCellRenderer

One way JClass LiveTable lets you write your own cell renderer is with
JCLightCel1Renderer. This model is used for drawing directly into a cell, which is ideal
for custom painting and rendering text.

To create a drawing-based renderer object of your own, you must implement

com.klg.jclass.cell.JCLightCellRenderer:

public interface JCLightCellRenderer {

public void draw(Graphics gc, JCCellInfo celllnfo, Object o,
boolean selected);

public Dimension getPreferredSize(Graphics gc, JCCellInfo celllnfo,
Object 0);
}

The JCLightCel1Renderer interface requires that you create two methods:

1. A draw() method, which is passed a JCCel1Info object (see Section 4.5, The JCCel-
IInfo Interface, for more details) containing information from the container about the
cell, a java.awt.Graphics object, and the object to be rendered. The Graphics object
is positioned at the origin of the cell (0,0), but is not clipped.

2. A getPreferredSize() method, which is used to allow the renderer to influence the
container’s layout. The container may not honor the renderer’s request, depending
on a number of factors.

Chapter 4 m Displaying and Editing Cells 85

The following code, TriangleCellRenderer.java, draws a triangle into the cell area:

import java.awt.Polygon;

import java.awt.Dimension;

import java.awt.Graphics;

import java.awt.Rectangle;

import com.klg.jclass.cell.dCCellInfo;

import com.klg.jclass.cell.dCLightCellRenderer;

public class TriangleCellRenderer implements JCLightCellRenderer ({

public void draw(Graphics gc, JCCellInfo celllnfo,
Object o, boolean selected) f{
Polygon p = makePolygon(o);
gc.setColor(selected ? celllnfo.getSelectedForeground()
:cellInfo.getForeground());
gc.fil1Polygon(p);
}

public Dimension getPreferredSize(Graphics gc, JCCellInfo celllnfo,
Object o) {
// Make a polygon from the object
Polygon p = makePolygon(o);
// Return no size if no polygon was created
if (p==null) {
return new Dimension(0,0);
}

// Bounds of the polygon determine size

Rectangle r = p.getBoundingBox();

return new Dimension(r.x+r.width,r.y+r.height);
}

private Polygon makePolygon(Object o) {
if (o == null) return null;
if (o instanceof Number) {
return makePolygon(((Number)o).intValue());
}
else if (o instanceof Polygon) {
return (Polygon)o;
1
return null;
}
public Polygon makePolygon(int s) {
Polygon p = new Polygon();
p.addPoint(0,0);
p.addPoint(0,s);
p.addPoint(s,0);
return p;
}
}

The above program creates a triangle renderer object that can handle both Integer and
Polygon objects.

86

Part | m Using JClass LiveTable

As required by JCCel1Renderer, the program contains a draw() method in the lines:

public void draw(Graphics gc, JCCellInfocellInfo,
Object o boolean selected) f{

Polygon p = makePolygon(o);

gc.getColor(selected ? celllnfo.getSelectedForeground():
cellInfo.getForeground());

gc.fillPolygon(p);

}

The draw() method renders the object 0 by making it into a polygon and drawing the
polygon using the gc provided. Table, as the container, automatically translates and clips
the gc, draws in the background of the cell, and sets the foreground color.

The parameter cel1Info can be used to retrieve other cell property information through
the JCCe11Info interface (see Section 4.5, The JCCelllnfo Interface).

The second required method, getPreferredSize(), is provided in the lines:

public Dimension getPreferredSize(Grahpics gc, JCCellInfo celllnfo,
Object o) {
Polygon p = makePolygon(o);
if (p=null) {
return new Dimension(0,0);
}
Rectangle r = p.getBoundingBox();
return new Dimension(r.x+r.width,r.y+r.height);
}

Here, the object is used to create a polygon (using a local method called makePolygon()).
If it doesn’t create a polygon from the object, the object is deemed to have no size (0,0)
and will not be displayed by the renderer. If a polygon was created from the object, the
polygon’s bounds determine the size of the rectangle in the drawing area of the cell. The
size returned is only a suggestion; control of the cell size can be overridden by the Table
container.

Creating a Component-based Cell Renderer with JCComponentCellRenderer

While JCLightCelTRenderer is useful for drawing directly into cells (that is, text
rendering and custom cell painting), it is a cumbersome model to use if you want to draw
a component as part of an editor/renderer pair. For example, if you wanted to use a drop-
down list in a table cell, creating a renderer based on JCLightCel1Renderer forces you to
write the code that draws the arrow button. Obviously, it is more desirable to use the
actual code for the component — this is exactly for what JCComponentCel1Renderer is best
suited.

Component-based cell renderers use an existing lightweight component for rendering the
contents of a cell. As such, the JCComponentCellRenderer interface can be used to create
a component-based cell renderer:

public interface JCComponentCellRenderer extends JCCellRenderer ({

public Component getRendererComponent(JCCellInfo cellInfo, Object o,
boolean selected);

}

Chapter 4 m Displaying and Editing Cells 87

The getRendererComponent() method returns the component that is to be used to render
the cell. It is the responsibility of the implementor to use the information provided by
getRendererComponent () to set up the component for rendering:

m celllnfo contains information from the container about the cell (see Section 4.5, The
JCCellInfo Interface, for more details).

m 0 is the object to be rendered.

m selectedisaboolean indicating whether the cell is selected. Many implementors use
this information to modify the component appearance.

As an example, consider JCLabelCellRenderer.java from com.klg.jclass.cell.renderers,
which uses a Swing JLabel for rendering String data.

import com.klg.jclass.cell.JCComponentCellRenderer;
import com.klg.jclass.cell.dCCellInfo;

import javax.swing.Jlabel;

import java.awt.Component;

public class JCLabelCellRenderer extends Jlabel
implements JCComponentCellRenderer {

public JCLabelCellRenderer() {
super();
}

public Component getRendererComponent(JCCellInfo cellInfo, Object o,
boolean selected) {

if (o !=null) {

if (o instanceof String) {

setText((Stringlo);
}
else {
setText(o.toString());

}
}
else {

setText("");
}
setFont(cellInfo.getFont());
setBackground(selected ? celllnfo.getSelectedBackground() :

cellInfo.getBackground());
setForeground(selected ? celllnfo.getSelectedForeground() :
cellInfo.getForeground());

setHorizontalAlignment(cellInfo.getHorizontalAlignment());
setVerticalAlignment(cellInfo.getVerticalAlignment());
return this;
}
}

In this example, note that JCLabe1Cel1Renderer extends JLabel, which makes it easier
for the renderer to control the label’s appearance.

88 Part | m Using JClass LiveTable

4.4

In getRendererComponent (), the object o is converted to a String and used to set the Text
property of the label. Then, the font, foreground color, and background color are
extracted from the cel1Info. Finally, the JLabe1 instance is passed back to the container.

JCComponentCellRenderer is a very powerful rendering model. While it is not as flexible
as JCLightCel1Renderer, it allows the reuse of code by using a lightweight component as
a rubber stamp for painting in a cell. Any existing lightweight container can be used to
render data inside of a cell — even other JClass components.

Editing Cells

While rendering cells is fairly straightforward, handling interactive cell editing is
considerably more complex. Cell editing involves coordinating the user-interactions that
begin and end the edit with cell data validation and connections to the data source. In
JClass, cell editing is handled using the JCCe11Ed1i tor interface.

A typical cell edit works through the following process:

m The container listens for events that come from the editor by implementing
JCCellEditorListener.

® When a user initiates a cell edit with either a mouse click or a key press, the container
calls JCCelTEditor.initialize() and passes a JCCel1Info object with information
about the cell, and the object (data) that will be edited.

The JCCel1Editor displays the data and changes it according to user input.

If the user traverses out of the cell, then the container calls the stopCelTEditing()
method, which asks the JCCe11Editor to validate the edit. If the edit is not valid —
that is, stopCel1Editing() returns false —the container then retrieves the original
cell value from the data source. If the edit is valid, then the container calls
getCellEditorValue() on the editor to retrieve the new value of the cell and send it
to the data source.

m If the user types a key that the editor interprets as “done” (for example, Enter), the
editor will inform the table that the edit is complete by sending an editingStopped
event to the table. Typical editors will validate the user’s changes before sending the
event.

m If the user types a key that the editor interprets as “cancel” (for example, Esc), the
editor will instruct the table to cancel the edit by sending an editingCanceled event.

Because cell editing has been designed to be flexible, you can have as little or as much
control over the editing process as you want. The following sections explain cell editing in
further detail.

Chapter 4 m Displaying and Editing Cells 89

4.4.1 Default Cell Editors

Cell editors are typically Swing components with extended functionality provided by the
com.klg.jclass.table.cell.JCCel1Editor interface. Although every data object is
guaranteed to have a cell renderer, not every object is guaranteed to have an editor.
Unless an object has an editor, the cell is not editable, regardless of whether the
table.setEditable() method has a true value for that cell. Most of the standard data
types have default editors which are internally associated with that data type. If the
program does not specify an editor for a series or map a data type to an editor, the Table
uses the default. The following editors are provided in the
com.klg.jclass.cell.editors package:

Editor Description

BaseCellEditor Provides a base editing component for other editors.

JCBigDecimalCellEditor An editor using a simple text field for BigDecimal
objects.

JCBooleanCellEditor Provides a simple text editing component that allows
the user to set the boolean value as true, false, t, or f.

JCByteCellEditor An editor using a simple text field for Byte objects.
JCCheckBoxCellEditor An editor for boolean data that automatically changes
the checked state.
JCComboBoxEditor An editor using a simple Swing JComboBox for editing an
enum.
JCDateCellEditor An editor using a simple text field for Date objects
JCDoubleCellEditor An editor using a simple text field for Double objects.
JCFloatCellEditor An editor using a simple text field for Float objects.
JCImageCellEditor An editor using a simple text field for Image objects.
JCIntegerCellEditor An editor using a simple text field for Integer objects.
JCLongCellEditor An editor using a simple text field for Long objects.
JCMuTtilineCellEditor A simple text editing component for multiline data.
JCShortCellEditor An editor using a simple text field for Short objects.
JCSq1DateCellEditor An editor using a simple text field for SQL Date
objects.
JCSq1TimeCellEditor An editor using a simple text field for SQL Time
objects.

90 Part | m Using JClass LiveTable

4.4.2

443

Editor Description

JCSq1TimestampCellEditor | An editor using a simple text field for SQL Timestamp

objects.
JCStringCellEdtitor Provides a simple text editing component.
JCWordWrapCelTEditor Provides a simple text editing component that wraps
text.

While these classes provide editing capability for most data types, many real-world
situations require greater control over cell editing, editing components, and their
relationships to specific data types. The following sections explore how you can more
minutely control the cell editing mechanism in your programs.

Setting a Cell Editor for a Series

As mentioned above, JClass LiveTable contains logic that will map data types to their
default editors. If you want to override these defaults, you can set a specific editor for a
series of cells in your table by setting the Cel11Editor property on a cell style, for a range
of cells:

CellStyleModel style = table.getUniqueCellStyle(0,3);

style.setCellEditor(new JCStringCellEditor());
table.setCellStyle(JCTableEnum.ALL, 3, style);

This code uses the same Cel1Editor (the default String editor in the
com.klg.jclass.cell.editors package) for all of the cells in the fourth column in the
table.

Mapping a Data Type to a Cell Editor

Even though you can set the editor series, your table may be designed in such a way that
the data types within a row or column are not consistent, or will change depending on the
data source. In this case you can create a mapping. The mapping takes a data type and
associates it with a cell editor; whenever the container encounters that type of data, it uses
the mapped JCCellEditor.

Mapping a Cel1Editor object to a data type takes the following construction:
table.setCelTEditor(Class cellType, Class Editor);

Chapter 4 m Displaying and Editing Cells 91

4.4.4

Consider the following sample from TriangleTable.java in the examples/table/cell directory of
the JClass LiveTable distribution:
try {
table.setCellEditor(Class.forName("java.awt.Polygon"),
Class.forName
("examples.table.cell.TriangleCellEditor"));
}
catch (ClassNotFoundException e) {
e.printStackTrace(System.out);
}

The table.setCel1Editor() method takes a class to define the data type and a class to
define the editor. In the case above, we have created a class called TriangleCellEditor,
which is identified using the Class. forName() method imported from java.lang.Class.
(Creating your own cell editors is explained in the next section).

To “unmap” an editor, set the editor class parameter to null.

Alternatively, you can map a cell editor to a data type using:
table.setCellEditor(Class cellType, JCCellEditor editor);

This method is useful if you want to reuse the same editor instance, or if your editor does
not have a default constructor.

Note: If the value for a particular cell is null, JClass LiveTable has no way of determining
its type. This can cause problems if mapping a null value to an editor. To work around
this, use the DataType property that is used with cell styles. LiveTable refers to DataType
when it encounters a null in the data source.

Creating Your Own Cell Editors

To create a cell editor object, you must implement the com.klg.cel1.JCCell1Editor
interface. The following code comprises the JCCel1Ed1itor interface:

public interface CellEditor extends JCCellEditorEventSource,
serializablef

public void initialize(AWTEvent ev, JCCellInfo info, Object o0);

public Component getComponent();

public Object getCellEditorValue();

public boolean stopCellEditing();

public boolean isModified();

public void cancelCellEditing();

public JCKeyModifier[] getReservedKeys();

}

92

Part | m Using JClass LiveTable

This chart describes each of the methods in JCCel1Editor:

Method and Description

public void initialize(AWTEvent ev, JCCellInfo info, Object 0);

The table calls initialize() before the edit starts to let the editor know what kind of
event started the edit, using java.awt.AWTEventObject. The size of the cell comes from
the JCCe11Info interface (detailed below). The initialize() method also provides the
data object (Object o).

public Component getComponent();

Returns the AWT component that does the editing. The component should be
lightweight.

public Object getCellEditorValue();

Returns the value contained in the editor. This method is called by the table when the edit
is complete. The value will be sent to the data source.

public boolean stopCellEditing();

When this method is called by the table, the editor can refuse to commit invalid values by
returning false. This tells the container that the edit is not valid.

public boolean isModified();

The container uses this method to check whether the data has changed. This can save
unnecessary access to the data source when the data has not actually changed.

public void cancelCellEditing();

Called by the table to stop editing and restore the cell’s original contents.

public JCKeyModifier[] getReservedKeys();

Retrieves the keys the editor would like to reserve for itself. In order to avoid the
container overriding key processing in the editor, the editor can pass back a list of keys it
wishes to reserve. The container can refuse the editor’s request to reserve keys. Most
editors can simply return null for this method.

Chapter 4 m Displaying and Editing Cells 93

Because the JCCel1Editor interface extends JCCel1EditorEventSource, the following
two methods are required to manage JCCel1Editor event listeners:

Method and Description

public abstract void addCellEditorlListener(JCCellEditorListener 1);

Adds a listener to the list that's notified when the editor starts, stops, or cancels editing.

public abstract void removeCellEditorlListener(JCCellEditorListener 1);

Removes the listener.

In addition to implementing the methods of JCCe11Editor, an editor is responsible for
monitoring events and sending editingStopped and editingCanceled events to the
table. This functionality is further explained in Creating Your Own Cell Editors.

Subclassing the Default Editors

One easy way to create your own editor is to subclass one of the editors provided in the
com.klg.jclass.cell.editors package. The following code is from
examples/table/cell/Money CellEditor.java. It creates a simple editor that extends the
JCStringCellEditor class. The MoneyCelTEditor class formats the data as money (two
digits to the right of the decimal point) instead of a raw String; but JCStringCellEditor
does most of the work.

94

Part | m Using JClass LiveTable

The initialize() method in MoneyCellEditor takes the object passed in and creates a
Money value for it. The getCel1EditorValue() method will pass the Money value back
to the container.

import java.awt.Dimension;

import com.klg.jclass.cell.editors.JCStringCellEditor;
import com.klg.jclass.cell.JCCellInfo;

import java.awt.AWTEvent;

public class MoneyCellEditor extends JCStringCellEditor {
Money initial = null;

public void initialize(AWTEvent ev, JCCellInfo info, Object o) f{
if (o instanceof Money) {
Money data = (Money)o;
initial = new Money(data.dollars, data.cents);
}
super.initialize(ev, info, initial.dollars+"."+initial.cents);
}
public Object getCellEditorValue() {
int d, c;
String text = getText().trim();
Money new_data = new Money(initial.dollars, initial.cents);

try {
// one of these will probably throw an exception if
// the number format is wrong
d Integer.parselnt(text.substring(0,text.index0f(’.”)));
c = Integer.parselnt(text.substring(text.index0f(.’)+1));

new_data.setDollars(d);
// this will throw an exception if there’s an invalid
// number of cents
new_data.setCents(c);
}
catch(Exception e) |
return null;
}

return new_data;
}

public boolean isModified() {

if (initial == null) return false;

Money nv = (Money)getCellEditorValue();

if (nv == null) return false;

return (initial.dollars != nv.dollars || initial.cents != nv.cents);
}
}

Starting with one of the cell editors provided with the com.k1g.cel1.editors package
can save you a lot of work coding entire editors on your own.

Chapter 4 m Displaying and Editing Cells 95

Writing Your Own Editors

Of course, you may not want to subclass any of the editors provided with the
com.klg.jclass.cell.editors package. The following is from an editor that was written
without subclassing an existing editor. By implementing the JCCe11Editor interface, we
have written an editor that will edit triangles. The code is in

examples/table/cell/Triangle CellEditor.java. You can see it work by running
examples.table.cellTriangeTable.

The editor handles both Integer and Polygon data types. It initializes the editor with the
object to be edited, either a Number or a Polygon:

public void initialize(AWTEvent ev, CelllInfo info, Object o) {
if (o instanceof Polygon) {
orig_poly = (Polygon)o;

else if (o instanceof Number) {
// Create polygon from the number
int s = ((Number)o).intValue();
orig_poly = new Polygon();
orig_poly.addPoint(0,0);
orig_poly.addPoint(0,s);
orig_poly.addPoint(s,0);

}

new_poly = null;

margin = info.getMarginSize();

The editor also needs to retrieve the AWT component that will be associated with it. In
this case the editor is an a javax.swing.JComponent object.

bQBiic Component getComponent() ({
return this;
}

The isModified() method checks to see if the editor has changed the data, and
getCellEditorValue() which returns the new Polygon created.

pubhc boolean isModified() ({
return new_poly != null;
}

public Object getCellEditorValue() {
return new_poly;
}

The JCCe11Editor interface defines the stopCel1Editing() method, which stops and
commits the editing operation. In the case of this example, there isn’t any validation

96 Part | m Using JClass LiveTable

taking place, so the stopCel1Editing() method will be unconditionally obeyed. The

TriangleCellEditor also defines a cancelCel1Editing() method, which resets the new

Polygon.

bQBiic boolean stopCellEditing() {
return true;

}

public void cancelCellEditing() f
new_poly = null;
return;

}

The editor contains a local method for retrieving a non-null polygon for drawing:

private Polygon getDrawPoly() {
if (new_poly == null)
return orig_poly;
return new_poly;
}

The editor also has to determine the minimum size for the cell.

bQBiic Dimension minimumSize() {
Rectangle r = getDrawPoly().getBoundingBox();
return new Dimension(r.width+r.x,r.height+r.y);
}

Chapter 4 m Displaying and Editing Cells

97

Finally, the editor needs to know how to paint the current polygon into the cell:

public void paintComponent(Graphics gc) {
// No L&F, so paint your own background.
if (isOpaque()) {
if (lgc.getColor().equals(getBackground())) {
gc.setColor(getBackground());
}
Rectangle r = getBounds();

gc.fiTlRect(0, 0, r.width, r.height);
!

int x, y;

Polygon Tocal_poly = getDrawPoly();
gc.setColor(cellInfo.getForeground());
gc.translate(margin.left, margin.top);
gc.fillPolygon(local_poly);

for(int i = 0; 1 < Tocal_poly.npoints; i++) {
x = local_poly.xpoints[i];
y = local_poly.ypoints[i];
gc.drawOval(x-2,y-2,4,4);

}

gc.translate(-margin.left, -margin.top);
}

Much of the rest of the editor handles mouse events to drag the triangle points, or to
move the whole triangle inside the cell. See the example file for this code.

Finally, the editor contains event listener methods that add and remove listeners from the
listener list. These listeners are notified when the editor starts, stops, or cancels an edit.

JCCelTEditorSupport support = new JCCellEditorSupport();

pubhc void addCellEditorListener(CellEditorListener 1) {
support.addCellEditorListener(1);
}

public void removeCellEditorlListener(CellEditorListener 1) {
support.removeCellEditorListener(1);
}

Note that an instance of com.kl1g.jclass.cel1.JCCel1EditorSupport is used to manage
the listener list. JCCe1TEditorSupport is a useful convenience class for editors that want
to send events to JClass LiveTable programs.

The TriangleCellEditor is an example of a fairly complex implementation of the
JCCel1Editor interface. It contains all of the core methods of the interface, and extends
the capabilities for an interesting type of data. You can use this example to help you to
write your own JCCel1Editor classes that handle any type of data you care to display and
edit.

98

Part | m Using JClass LiveTable

Handling Editor Events

The com.klg.jclass.cell package contains several event and listener classes that enable
cell editors and their containers to inform each other of changes to the cell contents, and
allow you to control validation of the cell’s edited contents.

The simplest way to handle JCCel1Editor events is to use the JCCel1EditorSupport
convenience class. JCCel1EditorSupport makes it easy for cell editors to implement
standard editor event handling by registering event listeners and providing easy methods
for sending events.

JCCel1EditorSupport methods include:

Method Description

addCel1EditorListener() Adds anew JCCel1EditorListener to the listener list

removeCellEditorListener() Removes a JCCel1EditorListener from the list

fireStopEditing() Sends an editingStopped event to all listeners

fireCancelEditing() Sends an editingCanceled event to all listeners

For example, consider the TriangleCel1Editor. The changes made are not actually sent
to the data source until the user clicks on another cell. It is more useful to have the editor
send an editingStopped event when the mouse button is released:

public void mouseReleased(MouseEvent e) {

support.fireStopEditing(new JCCellEditorEvent(e));
}

For more complete control, however, you will have to use the other event handling
classes provided in the com.k1g.jclass.cell package:

Method Description

JCCellEditorEvent Sent when the JCCel11Editor finishes an operation.
The JCCel1EditorEvent contains the event that
originated the operation in the editor.

JCCellEditorListener The container registers a JCCel1EditorListener to
let the JCCe11Editor inform it when editing has
stopped or been canceled.

JCCell1EditorEventSource This class defines the add and remove methods for
an object that posts JCCel1EditorEvents.

Editor Key Control
Sometimes, you may want your cell editor to be able to accept keystrokes that have
already been reserved for a specific purpose in the container (a Tab key in LiveTable, for

Chapter 4 m Displaying and Editing Cells 99

4.5

example). To do this, you need to use the JCKeyModifier class to reserve a key/modifier
combination:

JCKeyModifier(int key, int modifier, boolean canlnitializeEdit);

Using this class, you can reserve a key for a particular modifier or for all modifiers. To
reserve Ctrl-Tab and Shift-Tab you would specify two JCKeyModifier objects with
standard KeyEvent modifiers, for example KeyEvent.ALT_MASK.

If you want to reserve all Tab keys for the editor, you can use either of the following:
B new JCKeyModifier(KeyEvent.VK_TAB, KeyModifier.ALL);

Hm new JCKeyModifier(KeyEvent.VK_TAB);

Note that the container can still choose to ignore reserved keys.

The JCCellinfo Interface

You can see that JCComponentCel1Renderer, JCLightCelTRenderer and JCCelTEditor
use the JCCel11Info interface to get information about the cell. The JCCel1Info interface
provides information about how the container wants to show the cell. The renderer and
editor determine whether or not to honor the container’s request.

The JCCe11Info interface gives the renderer and editor access to cell formatting
information from the Table, including:

m foreground color

background color

selected foreground color

selected background color

font

font metrics

horizontal and vertical alignment

This information is fairly generic. The com.k1g.jclass.table package also contains an
object called TableCel1InfoModel, which extends JCCel1Info to include more detailed
information from the Table. TableCel1InfoModel is useful for retrieving Table-specific
information for use in the editor or renderer.

Note that editors and renderers that rely on TableCel1InfoModel can only be used with
JClass LiveTable.

100

Part | m Using JClass LiveTable

baorder top

margin bop

margin left drawing area margin right

border left

border right

mnargin bottam

border battom

Figure 12 The relationship of border sides, margins, and drawing
area provided by JCCelllnfo.

For more information, please see the JCCe11Info API documentation.

Chapter 4 m Displaying and Editing Cells 101

102 Part | m Using JClass LiveTable

Adding Formulas to JClass LiveTable

Introduction wm com.klg.jclass.util.formulae’s Hierarchy wm Expressions and Results m Math Values

5.1

5.2

Operations wm Exceptions m Using Formulae in JClass LiveTable

Introduction

The formulae package in com.k1g.jclass.uti1 has special capabilities for evaluating
mathematical objects. Similar to the way that objects such as java.lang.Double wrap a
primitive type, those in com.k1g.jclass.util.formulae encapsulate mathematical
expressions (operators) whose operands may be scalars, vectors (in the mathematical
sense), and matrices. These objects may then be stored as the generalized values of cells
in a JClass LiveTable, or in a JClass PageLayout table, where they may be evaluated at
run time to produce results based on the then-current data.

In addition, subclasses of MathValue, which are wrappers for generalized scalars, vectors,
and matrices, provide several methods for converting an expression to a value and to a
String, as well as other methods useful when dealing with these objects.

com.klg.jclass.util.formulae’s Hierarchy

The interfaces, abstract classes, and derived classes, including possible exception classes,
are shown in Figure 13.

103

CRrESEIOr
“anable

Creration

ExpressiorList Mtk alLe
[T e Sty o st RRFTRFRNTF

Audd Pkalt i pr 2zl =1

1=
=
A

Ayorago Tak cExarcsz onliz:

Ailing

Zout

Froduzt M adhtdatriz
Hemander bt Sealar

e

RealTamparatar
TaskExareszonlisterstor

Gearetricidean

Mirdian

Shdlmindinr

Ilin Subtrsc

5

jAus lamy Rurime=yerptinn
Crerardhizmanchbxcedt on

Mutiply

Fowo

=
k3
o 2]
o
=3

ext2nes

KEY LA AOERACT CLesS
[

- ——— irplements

Figure 13 The inheritance hierarchy for com.klg.jclass.util.formulae.

The diverse set of mathematical operations permit you to compose complex
mathematical formulas and provide references to them. Dynamic updating of the value

104 Part | m Using JClass LiveTable

5.3

5.4

represented by the expression is made possible through callbacks to the mathematical
expression object.

Expressions and Results

The top-level interface for the com.klg.jclass.util.formulae package is Expression,
whose sole method is evaluate(). Any object that functions as an expression must have
an evaluate() method that knows how to operate on data that might be a scalar, a
vector, or a matrix. Applying the evaluate() method to an Expression produces a
Result, which is a marker interface that identifies Expression types that are valid return
types from the evaluation of other Expressions.

An Expression may be an Operation, as in:
Expression f = new Add(opl, op2);

which, after evaluation, returns a Result.

Math Values

The abstract class MathValue forms the root for all derived constant-based result/data
classes. It satisfies the Expression interface by defining an evaluate() method, which
simply returns the MathValue as a Result. Its concrete subclasses are MathMatrix,
MathScalar, and MathVector. Because MathValue has an evaluate() method it is an
Expression. Thus, MathValues may be passed as Expression objects.

MathValue Methods

MathValue Method Description

evaluate() Satisfies the Expression interface by returning the stored
value. No evaluation is required because no operation is
implied.

getDataFormat() Retrieves the NumberFormat associated with this data.

matrixValue() Gets the contents of this MathValue as a matrix of Numbers.

numberValue() Gets the contents of this MathValue as a Number.

setDataFormat() Sets a NumberFormat to use on the contents of this MathValue.

vectorValue() Gets the contents of this MathValue as a vector of Numbers.

Note: The subclasses of MathValue override all but the first method. Since, for example,
matrixValue() is not appropriate to a MathScalar, it throws an

Chapter 5 m Adding Formulas to JClass LiveTable 105

5.4.1

5.4.2

UnsupportedOperationkException if it is called. Other method-data type mismatches also
throw UnsupportedOperationExceptions. The method tables for the subclasses indicate
which methods are data type mismatches for the given class.

MathScalar

MathScalar is a scalar constant represented as a MathValue. By encapsulating it in this
fashion it can support integer and real numbers, and it can be extended if necessary to
support other types of scalar numbers. Its data field is a realValue, a Number that is output
based on the current dataFormat kept in MathValue.

Example:
double s1 = 10.0; MathValue ssl = new MathScalar(sl);

MathScalar Constructors

The no-argument constructor MathScalar() creates an instance that encapsulates the
value 0.0, while the other three constructors take a double, an int, or a
Jjava.lang.Number argument.

MathScalar Methods
MathScalar Method Description
matrixValue() Throws an UnsupportedOperationException.
numbervValue() Gets the contents of this MathValue as a Number.
toString() Returns a String representation of this value.
vectorValue() Throws an UnsupportedOperationException.
MathVector

MathVector is a representation of the class of vectors in a linear algebra sense. They may
also be used as operands in matrix multiplication. A MathVector encapsulates a list of
values which may be integers, doubles, or more generally, objects of type Number. It has
methods for retrieval or modification of a value at a particular index, and for outputting
the list as a String. The operators discussed in the next section accept these objects as
operands.

Example:

double[] ed = {2.71828, 3.1415927, 1.6020505};
MathValue mv = new MathVector(ed);

MathVector Constructors
The constructors for MathVector parallel those for MathScalar, except they take arrays as
parameters rather than single values.

106

Part | m Using JClass LiveTable

MathVector Methods

MathVector Method Description

getValueAt() Retrieves the value at a particular index in the vector.
matrixValue() Throws an UnsupportedOperationException.
numberValue() Throws an UnsupportedOperationkException.
setValueAt() Sets the value at a particular index in the vector.
toString() Outputs the value of this vector as a String.
vectorValue() Gets the contents of this MathValue as a vector of Numbers.

5.4.3 MathMatrix

MathMatrix is a representation of the class of matrices, again in the sense of linear
algebra. The package implements the basic addition and multiplication operations in
matrix algebra, including multiplying a matrix by a vector. It has methods for retrieval or
modification of a value at a particular pair of indices, and for outputting the matrix as a
String. The operators discussed in the next section accept these objects as operands.

Example:
double[][] ml = {{1.1, 1.2, 1.3},
(2.1, 2.2, 2.3},
{3.1, 3.2, 3.3}1};
MathValue mm = new MathMatrix(ml);

MathMatrix Constructors
The constructors for MathMatrix parallel those for MathScalar, except they take 2D
arrays as parameters rather than single values.

Chapter 5 m Adding Formulas to JClass LiveTable 107

MathMatrix Methods

MathMatrix Method Description

getValueAt() Retrieves the value at a particular row, column pair of index
values in the matrix.

matrixValue() Gets the contents of this MathValue as an array of Numbers.
numberValue() Throws an UnsupportedOperationException.
setValueAt() Sets the value at a particular row, column pair of index values

in the matrix.

toString() Outputs the value of this vector as a String.

vectorValue() Throws an UnsupportedOperationException

5.5 Operations

The abstract Operation class defines the basic elements of an operator. Binary operators
have a left and right operand, which enables the correct ordering to be applied to matrix
operations and any other non-commutative operators. Unary operators have a single
operand.

Example:

double[] ed
doublel[] rd

{2.71828, 3.1415927, 1.6020505};
{(Math.sqrt(5.0) + 1.0) / 2.0, 4.0, 32.0};

MathValue e = new MathVector(ed);
MathValue r = new MathVector(rd);

Expression add = new Add(e, r);

Operation Constructors

There is a no-argument constructor that creates a generic operator, and there are
constructors for every unary and binary permutation of Expressions and Numbers.
A sample constructor is: Operation(Expression left, Expression right).

Operation Methods

The two non-inherited methods in Operation are evaluate(), which returns a Result
containing the evaluation of the expression, and clone(), which returns a deep-copy
clone of the operation and of all operands.

108 Part | m Using JClass LiveTable

5.5.1 The Defined Mathematical Operations

Unary Operators

Unary operators take one parameter, which is either an Expression or a Number. Because
they are Expressions they all have an evaluate() method which returns a Result.

Operator Description

Abs The class for the absolute value operation. The operand may be a
Number or an Expression, which may be a MathScalar or an
ExpressionlList, but not a vector or a matrix.

Ceiling Ceiling is defined as the least integer greater than or equal to the
operand, which may be a MathValue.

Floor Floor is defined as the greatest integer less than or equal to the
operand.

Root Returns the positive square root of its operand.

Round Round is defined as nearest integer to the operand. Rounding is done
to an even number if the operand is exactly midway between two
integers.

Trunc Takes the integer part of a number. Equivalent to rounding to the

nearest integer closer to zero. Example: trunc(-3.5) = -3.

Binary Operators

Binary operators take two parameters, which are Expressions, Numbers, or one of each.
Because they are Expressions they all have an evaluate() method which returns a

Result.

Operator Description

Add Adds two Expressions. If the Expressions are vectors of the
same length, pairwise addition is performed. Matrices may be
added providing the two operands have the same number of
rows and columns. Unary addition is possible, and returns the
evaluated operand.

Average Average (arithmetic mean) is defined as the sum of all

elements divided by the number of elements. Its one-
parameter constructor is an Expression, usually a list. Its two-
parameter constructors are combinations of Expressions and
Numbers.

Chapter 5 m Adding Formulas to JClass LiveTable 109

Operator

Description

Count Count determines the total number of elements in its
operands. Its one- and two-parameter constructors take one or
two Expressions (usually a list or lists) and count their
elements.

Divide Division is the ratio of two operands. The left operand is the

numerator and the right operand is the denominator.

GeometricMean

Geometric mean is defined as the nth root of the product of a
set of 7 numbers. Its one-parameter constructor takes an
Expression, usually a list. Its two-parameter constructors take
combinations of Expressions and Numbers, multiplying all
elements together and taking the nth root.

Max

Max is defined for a pair of elements or across a list. It selects
the largest element. Its one-parameter constructor takes an
Expression, usually a list. Its two-parameter constructors take
combinations of Expressions and Numbers, examining all
elements and selecting the largest.

Median

The Median of a list is the middle element of a sorted list, or
the average of the two middle values if the list has an even
number of elements. Its one- and two-parameter constructors
take one or two Expressions.

Min

Min is defined for a pair of elements or across a list. It selects
the smallest element. Its one-parameter constructor takes an
Expression, usually a list. Its two-parameter constructors take
combinations of Expressions and Numbers, examining all
elements and selecting the smallest.

Multiply

Multiplication is the product of a pair of elements. Its two-
parameter constructors take combinations of Expressions and
Numbers, examining all elements and selecting the smallest.

Power

The exponentiation (") operation. Its two-parameter
constructors take combinations of Expressions and Numbers.
The left operand is the base and the right operand is the
exponent.

Product

A product can be performed on a pair of elements or across a
list. The product of an ExpressionList is the product of its
individual members. Multiplication order is left-to-right, and
first element of a list to last element. The result of a matrix
multiplication may depend on the order of the operands.

110 Part | m Using JClass LiveTable

Operator Description

Sort This operation returns a sorted list of the given elements.
Any secondary or nested lists are flattened.

StdDeviation The sample standard deviation, given by sd = root((sum(1
to n)(element - average)”2) / (n - 1)), where nis the
number of samples and average is the sample average. It has
one- and two-parameter constructors consisting of
Expressions.

Subtract The difference between two numbers. It has two-parameter
constructors that take combinations of Expressions and
Numbers.

Sum A sum can be performed on a pair of elements or across a list.

Its two-parameter constructors take combinations of
Expressions and Numbers. Its one-parameter constructor
usually takes an Expressionlist.

5.5.2 Reducing Operations to Values

Since Operations are Expressions, they all have an evaluate() method. Evaluation
returns a Result, which may be converted to a String for printing. Here is an example:

double edd 2.0;
double exp = 8.0;
MathValue eddy = new MathScalar(edd);
MathScalar expy = new MathScalar(exp);

doublel[] ed {2.71828, 3.1415927, 1.6020505};
MathValue e = new MathVector(ed);

Expression pow = new Power(eddy, expy);

Expression powr = pow.evaluate();

// Either one of these has a toString() method
System.out.printin("Power without evaluate(): " + pow);
System.out.printin("Power with evaluate(): " + powr);

After which the following is written on the output:

Power without evaluate(): com.klg.jclass.util.formulae.Power@eb4f3b8c
Power with evaluate(): 256.0

You see that calling evaluate() is necessary to have a value returned by the implicit
toString() call.

Chapter 5 m Adding Formulas to JClass LiveTable 111

9.6

5.7

Expression Lists

Expression lists are handy containers that permit you to perform an operation on a group
of values.

MathExpressionList
The example shown here uses the binary form of Add to find the grand total of all the
elements in two ExpressionLists.

// Expression Lists

Expression[] exprsl = {null, null, null, null, null, null, null,

null, null, null};
for (int i =0; i < 10; i++){
exprsl[i] = new MathScalar(95 + 1);

}
ExpressionlList explistl = new MathExpressionList(exprsl);

Expressionl] exprs2 = {null, null, null, null, null, null, null
null, null, null};
for (int i =0; i < 10; i++){
exprs2[i] = new MathScalar(95 + 1);
}
Expressionlist explist? = new MathExpressionlList(exprs?2);

sssl = new Sum(explistl, explist2);
ssssl = sssl.evaluate();
System.out.printin(
"Summing ExpressionlLists with evaluate(): " + ssssl);

Here’s the output:

Summing ExpressionlLists with evaluate(): 1990

QueryExpressionList

A QueryExpressionlList is designed as a wrapper for a set of Expressions stored in a
JDBC-type ResultSet; that is, the result of a database query. Users of JClass DataSource
may also use this facility.

TahleExpressionList
Expression lists may be used to extend data from portions of a JClass LiveTable to
produce summary reports. For details, see Section 5.9, Using Formulae in

JClass LiveTable.

Events and Listeners

TableListenerPropagator

The TableListenerPropagator listener, which implements the JCTableDatalistener
interface, wraps a formula and listens for changes to table cells that are operands for this
formula, and propagates the changes so that other interested listeners can re-evaluate

112

Part | m Using JClass LiveTable

5.8

5.9

5.9.1

themselves. The TablelistenerPropagator listener automatically updates the whole
dependency hierarchy of com.kl1g.jclass.util.formulae when a suboperation has been
modified.

Exceptions

OperandMismatchException

Various operations such as adding a number to a vector are not defined, whereas other
operations, for example, multiplying a vector by a number, can be interpreted as a scaling
operation. At compile time, numbers, vectors, and matrices can be declared as generic
Expressions, making it impossible to predetermine which operations are not permitted.
A run time check of the validity of an operation must be made. If a mathematical
construct is evaluated and found to be illegal, the class throws an
OperandMismatchException.

ClassCastException

There are cases where a run time class cast exception may occur. While most of these
should be avoidable by selecting the correct class (such as using Product rather than
Multiply when multiplying two vectors) the fact that both take Expressions as their
parameters makes it difficult to avoid the possibility of an end-user passing in an incorrect
type if your application permits flexible user input. You may permit substitution of one
arithmetic class for another, since they are all Operations. This also opens the door to
class cast exceptions.

If the possibility exists for either of these exceptions, your code should attempt to handle
it.

Using Formulae in JClass LiveTabhle

Registering a Cell Editor and a Cell Renderer with the JClass Central Registry

If you are planning to allow your end-users to specify mathematical operations, you may
make use of the editor/renderer registry in com.klg.jclass.cell. Note that if a cell is
placed in a JClass LiveTable, the ExpressionCellRenderer will be used by default.

The following code snippet, taken from the SpreadSheet demo, registers a cell editor that
takes a value in the form of a uti1.formulae.Expression from a table cell and copies its
String equivalent in a text box. In the SpreadSheet demo, formulas are entered by
beginning them with an equal sign (=), for example, =SUM(A7:45). The class called

Chapter 5 m Adding Formulas to JClass LiveTable 113

5.9.2

MyFormulaCel1Editor recognizes this syntax and translates a String of this form to an
Expression, then stores it in a table cell.
EditorRendererRegistry.getCentralRegistry().addClass(
"java.lang.String",
null,

"demos.table.spreadsheet.MyFormulaCellEditor",
"com.klg.jclass.cell.renderers.JCStringCellRenderer");

See the SpreadSheet demo for a complete code listing.

Performing a Mathematical Operation on a Range of Cells

Expression Lists and Expression References

Expression list objects hold a group of Expressions. ExpressionlList is an abstract class
whose methods permit the inclusion of additional elements to those already present, a
method for removing elements or clearing all elements, for retrieving an element, and for
comparing with another list. These operations are common to the concrete classes
MathExpressionlList, QueryExpressionlList, and TableExpressionList.

Expression lists may be used as arguments for all mathematical operations. When given
an expression list, evaluating a unary operator such as ABS returns a list containing the
absolute values of its input list. Binary operators may return a single result or a list. Given
expression lists, the mathematical operators Abs, Add, Ceiling, Divide, Floor, Multiply,
Power, Remainder, Root, Round, Sort, and Subtract return lists, while Average, Count,
GeometricMean, Max, Median, Min, Product, and Sum all return a single result after
evaluate() has been called.

Use TableExpressionlList to perform an operation over a range of cells in a table. The
following code snippet shows that the required parameters are a table data model and a
block of cells.

Expression expression = new TableExpressionlList(
table.getDataSource(),

new MathScalar(startRow), // first row
new MathScalar(endRow), // last row
new MathScalar(startColumn), // first column
new MathScalar(endColumn) // last column

);
Sum sum = new Sum(expression);
The next code fragment places the formula for the sum in the last column, just below the
last row. With the proper cell renderer/editor combination, such as the one listed in the
previous section, the formula or the numerical value of the sum is shown, depending on
whether the cell is selected or not.

((EditableTableDataModel)table.getDataSource()).setTableDataltem(sum,
endRow + 1, endColumn);

The advantage of using TableExpressionlLists is that the formulas containing them know
to update themselves when a cell’s value is altered.

114

Part | m Using JClass LiveTable

../../demos/table/spreadsheet/MyFormulaCellEditor.java

6.1

Programming User Interactivity

Cell Traversal wm Cell Selection wm Resizing Rows and Columns w Table Scrolling
Dragging Rows and Columns w Sorting Columns wm Custom Mouse Pointers

JClass LiveTable makes it easy to allow users to interact with the tables you create. You
can control how users can manipulate the table, and how a JClass LiveTable application
can control this interaction. The following sections describe the types of user interactivity
supported by JClass LiveTable, its default behavior, and how to customize that behavior.
Note that programming cell editing behavior is discussed separately in Displaying and
Editing Cells, in Chapter 4.

Cell Traversal

Traversal is the act of moving the current cell indicator from one location to another. A
traversal passes through three stages: validating the edited current cell, determining the
new current cell location, and entering that cell.

The Traversable property, which is part of the Cel1StyleMode] interface, determines
whether or not a cell is traversable. You set this property when you are setting a cell style
(for more information about cell styles, please see Cell Styles, in Chapter 2).

Default Cell Traversal

Users can traverse cells by clicking the primary mouse button when the mouse pointer is
over a cell. This changes the focus to that cell (a focus rectangle appears around the inside
of the cell borders). Users can traverse cells from the keyboard by using the cursor keys
(up, down, left, and right) and the Tab key to traverse right and Shift+Tab key to traverse
left.

Customizing Cell Traversal

By default, all cells are traversable. To prevent users from traversing to a cell, set
Traversable cell style property to false. Making a cell non-traversable also prevents it
from being traversed to programmatically.

115

6.1.4

Disabling traversal also disables cell editability regardless of whether the cell’s data source
is editable.

The following code fragment sets all cells in row 3 to be non-traversable:

JCCell1Style traverserow = new JCCellStyle
traverserow.setTraversable(false);
table.setCell1Style(3, JCTableEnum.ALLCELLS, traverserow);

You can also set the Traversable property for a range of cells specified by a JCCel1Range
object:

JCCel1Range range = new JCCellRange(2, 3, 2, 8);

JCCellStyle traverserange = new JCCellStyle;

traverserange.setTraversable(false);
table.setCellStyle(range, traverserange);

Use the setTraverseCycle() method, part of the JCTab1e class, to determine whether the
traversal moves to the opposite side when the left, top, right or bottom cell is reached
(that is, when the user traverses to the bottom of the table, the next traversal down will
bring them to the top of the table). The TraverseCycle property takes a boolean value,
and the default is true.

Minimum Cell Visibility

By default, when a user traverses to a cell that is not currently visible, JClass LiveTable
scrolls the table to display the entire cell.

The setMinCel1Visibility() method sets the minimum amount of a cell made visible
when it is entered. When the table scrolls to edit a non-visible cell, the
MinCel1Visibility property determines the percentage of the cell that is scrolled into
view. When MinCel1Visibility is set to 100, the entire cell is made visible. When
MinCel1Visibility is set to 10, only 10% of the cell is made visible. If
MinCel1Visibility is set to 0, the table will not scroll to reveal the cell.

The value of the MinCel11Visibility property also affects the behavior of the
makeVisible() methods described in Section 6.3.2, Managing Table Scrolling.

Forcing Traversal

An application can force the current cell to traverse to a particular cell by calling
traverse(). If the cell is non-traversable (specified by Traversable), this method returns
false.

Calling the traverse() method to force cell traversal requires that you define these
parameters:
m row: the row to which the current cell will traverse

m column: the column to which the current cell will traverse

116

Part | m Using JClass LiveTable

show_editor: a boolean value that determines if the editing component will be
displayed in the cell. The default is false.

select: a boolean value that determines the cell will be selected (if the
SelectionPolicy allows it). The default is false.

6.1.5 Controlling Interactive Traversal

You can use the TRAVERSE_CELL action in JCTraverseCellEvent to control interactive
traversal. As a user traverses from one cell to another, this event is posted after a user has
committed a cell edit, and before moving to the next cell. Each event listener is passed an
object of type JCTraverseCellEvent.

JCTraverseCellEvent uses the getTraverseType() method to retrieve information on
the direction of the traversal. getTraverseType() retrieves one of the following integers
indicating the direction of traversal:

TRAVERSE_POINTER - traverse to the cell the user clicked.

TRAVERSE_LEFT — traverse left to the first traversable cell.

TRAVERSE_RIGHT — traverse right to the first traversable cell.

TRAVERSE_UP — traverse up to the first traversable cell.

TRAVERSE_DOWN — traverse down to the first traversable cell.

TRAVERSE_HOME — traverse to the top-left corner of the table (0, 0).
TRAVERSE_END — traverse to the bottom-right corner of the table.
TRAVERSE_TOP — traverse to the top of the table column.

TRAVERSE_BOTTOM — traverse to the bottom of the table column.
TRAVERSE_PAGEUP — traverse up to the next off-screen or partially visible row.
TRAVERSE_PAGEDOWN — traverse down to the next off-screen or partially visible row
TRAVERSE_TO_CELL — traverse programmatically.

The getColumn() and getRow() methods get the column and row of the current cell
respectively. Finally, the NextColumn and NextRow properties respectively set or retrieve
the column and row of the cell to traverse to.

The TRAVERSE_CELL action attempts to traverse to the cell specified by these members.
Note that if NextColumn and NextRow reference a non-traversable cell, the traversal

Chapter 6 m Programming User Interactivity 117

6.2

6.2.1

6.2.2

6.2.3

attempt will be unsuccessful. The following example code prevents the user from
traversing outside of column 0:
public void traverseCell(JCTraverseCellEvent ev) {
if (ev.getNextColumn() > 0) {
if (ev.getRow() >= table.getNumRows()) {
ev.setNextRow(0);
}
else {
ev.setNextRow(ev.getRow() + 1);
}
ev.setNextColumn(0);

Resizing Rows and Columns

Default Resizing Behavior

JClass LiveTable allows a user to interactively resize a row and/or column (when allowed
by AllowCelTResize). This action routine alters the PixelHeight property when resizing
rows, and the PixelWidth property when resizing columns.

Users can position the mouse pointer over a cell/label border and click-and-drag to resize
the row/column. If users position the mouse pointer over the corner of a cell/label, the
mouse drag will resize the row and column simultaneously.

Disallowing Cell Resizing

Use the setAllowCel1Resize() method to control interactive row/column resizing over
the entire table. The valid parameters of the A11owCe11Resize property are:

B JCTableEnum.RESIZE_ALL: user resizing of cell permitted (default).

m JCTableEnum.RESIZE_NONE: no row/column resizing is allowed.

m JCTableEnum.RESIZE_COLUMN: only columns may be resized.

m JCTableEnum.RESIZE_ROW: only rows may be resized.

Controlling Resizing

You can use a JCResizeCellListener (registered with
addResizeCelllistener(JCResizeCellListener)) to control interactive row/column
resizing on a case-by-case basis. JCResizeCel1Event is the event posted as a user resizes a
row and/or column, with valid stages being BEFORE_RESIZE, RESIZE, and AFTER_RESIZE.

The getColumn() method gets the column being resized. The getCurrentColumnWidth()
and getCurrentRowHeight () methods get the current column width and the current row

118

Part | m Using JClass LiveTable

height respectively. The NewColumnWidth and NewRowHeight properties can set and
retrieve information on the new column width and the new row height respectively.

As a cell is resized by the user, a JCResizeCel1Event is triggered, which passes objects to
JCResizeCellMotionListener during the event.
beforeResizeCel1(JCResizeCellEvent) is sent the initial values (as specified by
getCurrentColumnWidth() and getCurrentColumnHeight()). When the user commits the
change by releasing the mouse button, the end value from
resizeCel1(JCResizeCellEvent) is available for retrieval (by getNewColumnWidth() or
getNewRowHeight()) or changing (by setNewColumnWidth() and setNewRowHeight()),
and afterResizeCel1() is called with final results.

Note: Interactively resizing cannot exceed the set minimum and maximum cell sizes.

The following example event listener routine sets the width of any resized column to an
increment of 10 pixels:

public class MyTable extends Frame implements JCResizeCelllListener {

public void beforeResizeCell(JCResizeCellEvent ev) {]
public void resizeCell(JCResizeCellEvent ev) {

ev.setNewColumnWidth(ev.getNewColumnWidth() / 10 * 10);
}

public void afterResizeCell(JCResizeCellEvent ev) {};

To register the above event listener routine, use the following call (where this refers to
the class MyTab1e, which implements the JCResizeCellListener interface):

table.addResizeCellListener(this);

Resizing all Rows or Columns at Once

You can configure your JClass LiveTable program so that when a user interactively
resizes a row or column, all of the other rows or columns in the table resize to the same
value. This is achieved by setting the ResizeEven property to true using the following
method:

table.setResizeEven(true);

Setting this property overrides row and column height and width properties, since the
rows and columns are all set to the same value as the row and column the user resized.

Resizing Using Only Labels or Cells

As you’ve seen above, you can control how users can resize cells, rows, columns, and
labels. JClass LiveTable also allows you to set the resizing capability so that users can only
resize rows and/or columns using the row and column labels.

The setAllowResizeBy() method determines how table rows and columns are resized.
Use RESIZE_BY_LABELS to allow resizing only with labels. The mouse pointer will not
change to a resize arrow over cell borders in the body of the table.

Chapter 6 m Programming User Interactivity 119

6.3

6.3.1

6.3.2

Using RESIZE_BY_CELLS achieves the opposite, while the default, RESIZE_BY_ALL allows
resizing with both cells and labels.

Tahle Scrolling

Default Scrolling Behavior

When a table is larger than the rows/columns visible on the screen, an end-user can scroll
through the table with the mouse or keyboard. JClass LiveTable uses two scrollbar
components (one horizontal, one vertical) to implement table scrolling.

JClass LiveTable can also scroll the table when requested by other interactions, such as
cell traversal, mouse dragging, or cell selection. Scrolling does not change the location of
the current cell.

You can control how and where scrollbars are attached to the component, when they are
displayed, and how they behave. The following sections outline programming scrollbar
behavior. For information about displaying scrollbars, and setting scrollbar display
properties, please refer to Scrollbars, in Chapter 2.

Managing Table Scrolling

Jump Scrolling

You can configure the table to scroll smoothly (by pixel) through the table or to use jump
scrolling, which is scrolling the table one whole row or column at a time. This behavior is
controlled by calling setJumpScrol11() with one of the following parameters:

m JCTableEnum.JUMP_NONE: neither horizontal nor vertical scrollbars will use jump
scrolling (default)

JCTableEnum.JUMP_HORIZONTAL: only the horizontal scrollbar will use jump scrolling
JCTableEnum.JUMP_VERTICAL: only the vertical scrollbar will use jump scrolling

JCTableEnum.JUMP_ALL: both the vertical and horizontal scrollbars will use jump
scrolling

Using Automatic Scrolling

You can configure the table to scroll automatically whenever a user selects cells or drags
the mouse past the edge of the visible table area. To do this, you must call the
setAutoScrol1() method, specifying one of the following parameters:

JCTableEnum.AUTO_SCROLL_NONE (default)

m JCTableEnum.AUTO_SCROLL_ROW
m JCTableEnum.AUTO_SCROLL_COLUMN
m JCTableEnum.AUTO_SCROLL_BOTH

120

Part | m Using JClass LiveTable

Note that automatic scrolling is disabled when no scrollbars are visible and when jump
scrolling is enabled.

Disabling Interactive Scrolling
Scrolling can be disabled in one or both directions. Mouse and keyboard scrolling cannot
be disabled separately.

Remove the scrollbars from the screen by setting HorizSBDisplay and/or VertSBDisplay
to JCTbTEnum.SCROLLBAR_NEVER.

To fully disable any and all scrolling, an application should also ensure that the user
cannot select cells or traverse to cells outside the visible area.

Forcing Scrolling
An application can force the table to scroll in any of the following four ways.

m First, to scroll a particular row to the top of the display, set the TopRow property to the
number of the row you want to display at the top. For example, to display the fifth
row at the top of the table:
setTopRow(4)

m Second, to scroll a particular column to the left side of the display, set the LeftColumn
property to the column number that you want to display. For instance, to display the
thirteenth column at the left of the table:
setleftColumn(12)

m Third, to determine whether a row or column is visible, call the
JCTable.isRowVisible() or JCTable.isColumnVisible() methods. To check
whether a particular cell is visible, use JCTable.isCel1Visible().

m Finally, to scroll to display a particular cell, call the makeVisible() method for that
cell’s context. For example: makeVisible(4, 21)
(You can also call the makeRowVisible() and makeColumnVisible() methods for
entire rows and columns.)

Mouse Wheel Support

JClass LiveTable has built in mouse wheel support, if mouse wheel support is available in
the underlying JDK (JDK 1.4 or higher). By default, a table adds a
TableMouseWheelListener which listens for MouselWheelEvents and changes the value of
the vertical or horizontal scrollbar, depending on which ones are visible. The vertical
scrollbar is used if visible; otherwise, the horizontal scrollbar is used if visible. Mouse
wheel support can be disabled by calling removeTableMouseWheelListener(), or the
default listener can be replaced by calling addTableMouseWheellistener() with a new
MouseWheelListener.

A table scrolls one unit for every click of a scrollbar arrow. This unit value can be set by
calling getVertSB() or getHorizSB() and setting the appropriate property on the

JScrol1Bar object that is returned. By default, JClass LiveTable sets the unit to 20 pixels
for a horizontal scrollbar and 21 pixels for a vertical scrollbar. If mouse wheel support is

Chapter 6 m Programming User Interactivity 121

6.3.3

enabled, rolling the mouse wheel one click will scroll the table the number of units that
your mouse software has been configured to scroll. For example, if this value is set to
three and the unit value of the scrollbar is set to 20 pixels, rolling the mouse one click will
cause the table to scroll 60 pixels, the equivalent of clicking the corresponding scrollbar
arrow three times.

If jumpScrol1 is set on the scrollbar, scrolling the mouse wheel one click will cause
exactly one row or column to be scrolled in the appropriate direction. In this case, one
mouse wheel click is exactly the same as clicking once on the corresponding scrollbar
arrow.

Tracking Scrollbars

The behavior of scrollbars during tracking can be set by using setHorizSBTrack() for
horizontal scrollbars and setVertSBTrack() for vertical scrollbars. Scrolling behavior can
be set two ways.

Using JCTableEnum. TRACK_LIVE, the table redisplays while the user scrolls. This type of
scrollbar tracking can be resource intensive, particularly with larger tables.

An alternate way of tracking scrollbars is to use JCTableEnum. TRACK_COLUMN_NUMBER for
horizontal scrollbar tracking, and JCTableEnum. TRACK_ROW_NUMBER for vertical scrollbar

tracking. In these cases, the table does not redisplay until scrollbar tracking is complete,

but an indicator appears beside the scrollbar that informs the user where in the table the
scrolling has taken them.

When using this kind of tracking, the indicator’s appearance is set using
setTrackBackground(), setTrackForeground(), and setTrackSize(). The contents of
the indicator can either be the row/column number, or the contents of a cell or label.

To display the contents of a cell or label, use setHorizSBTrackRow() and
setVertSBTrackColumn() to specify which row or column’s data will be used in the scroll
tracking indicator, and use JCTableEnum. TRACK_ROW, JCTabTleEnum. TRACK_COLUMN, or
JCTableEnum. LABEL to specify the specific row number (for vertical scrolling), column
number (for horizontal scrolling), or label whose data will be used in the indicator.

For example, the following line of code sets the vertical tracking so that it displays the
contents of the second column:

table.setVertSBTrackColumn(1);

Scroll Listener Methods

JClass LiveTable provides a way for your application to be notified when the table is
scrolled by either the end-user or the application. The JCScrollListener (registered with
addScrollListener(JCScrollListener)) allows you to define a procedure to be called
when the table scrolls; this is useful if your application is drawing into the table. The
method is sent an instance of JCScrollEvent.

122

Part | m Using JClass LiveTable

6.4

6.4.1

The example below shows how to use the scro11(JCScrol1Event) and
afterScrol1(JCScrol1Event) scrollbar interface methods to store an internal state:

public MyClass extends Frame implements JCScrolllistener {

public void scrol1(JCScrollEvent ev) {
if (ev.getDirection() == TableScrollbar.HORIZONTAL)
hScrollingActive = true;
else if (ev.getDirection() == TableScrollbar.VERTICAL)
vScrollingActive = true;
}

public void afterScroll(JCScrollEvent ev) {
if (ev.getDirection() == TableScrollbar.HORIZONTAL)
hScrollingActive = false;
else if (ev.getDirection() == TableScrollbar.VERTICAL)
vScrollingActive = false;

}

To register the above event listener routine, use the following call (where (this) refers to
the class MyClass, which implements the JCScrol1Listener interface):

table.addScrolllListener(this);

Cell Selection

Default Cell Selection
Cell selection is not enabled by default. When cell selection is enabled (see Section 6.4.3,
Customizing Cell Selection), the default selection behavior is as follows:

m Clicking a cell, holding the mouse button down, and dragging selects those cells.
m Clicking a label selects all the cells in the column or row.

m Holding down the Shift key while clicking and dragging modifies the selection (that
is, it does not clear the previous selection).

m Holding down the Ctrl key and making a sequence of selections adds the selections
together.

m Clicking a cell, traversing out of the cell, then traversing back to the clicked cell
selects the cell without editing it.

JClass LiveTable allows a user to interactively select one or more ranges of cells. An
application can retrieve each range to manipulate the cells within it. An application can
also be notified of each user selection to control what and how the user selects cells.

JClass LiveTable supports a number of selection policies, including:

B JCTableEnum.SELECT_MULTIRANGE: multirange selection (selecting multiple ranges of
cells)

m JCTableEnum.SELECT_RANGE: single range
m JCTableEnum.SELECT_SINGLE: single cell

Chapter 6 m Programming User Interactivity 123

6.4.2

6.4.3

m JCTableEnum.SELECT_NONE: no selection.

Selection Colors

By default, selected cells and labels display with reversed colors, that is, the background
and foreground colors are inverted under selection. When programming the appearance
of your table, you can set the colors for selected cells. For more information, please see
Cell Selection Colors, in Chapter 2.

Customizing Cell Selection

The SelectionPolicy property controls the amount of selection allowed on the table,
both by end-users and by the application. Changing the selection policy affects
subsequent selection attempts; it does not affect current selections. The following
illustration shows the valid values, and the amount of selection they allow.

Selection Policy Example

selection disabled
JCTableEnum.SELECT_NONE

rench hhocha

Espres=zo Dark

single cell selection
JCTabTeEnum.SELECT_SINGLE

single range selection
JCTableEnum.SELECT_RANGE

multiple range selection
JCTableEnum. SELECT_MULTIRANGE

When SelectionPolicy is set to JCTableEnum.SELECT_NONE (default), JCSelectEvent
events are not posted as a user edits or attempts to select cells. Note that setting this
property does not change the selected cell list - this means that if a cell is already selected,
then changing this property won’t clear the list. As an example, if your selection policy
was set to MULTI_RANGE and you selected multiple ranges of cells, a change to RANGE,

124

Part | m Using JClass LiveTable

SINGLE or NONE will not modify the current selection, that is, the current selection will not
honour the selection policy.

Selecting Row/Column Labels

By default, when a user clicks on a row or column label, the entire row or column,
including the label is highlighted. To change it so that the label is not highlighted with the
rest of the cells, set SelectIncludelabels to false:

table.setSelectIncludelabels(false);

6.4.4 Selected Cell List

The SelectedCells property specifies the collection of all currently selected ranges in the
table, where each element is an instance of a JCCel1Range. SelectedCells is updated
dynamically as a user selects cells. It is also updated when an application
programmatically selects or deselects cells. Labels cannot be part of a selected range.1

Each range in the selected cell list is a JCCe11Range structure. Its variables include:

B start_column

W start_row

B end_column

m end_row

The start_column and start_row variables represent the first cell in the range (top-left

corner), while the end_column and end_row variables represent the last cell in the range
(bottom-right corner).

All members of the JCCel11Range structure can be a row and column index. end_row and
end_column can also be set to MAXINT, which specifies all of the cells in a row or column.
Because the user can make a selection at any point and in any direction within a table, the
start point is not necessarily the top-left corner of the range — it may be anywhere within
the table.

6.4.5 Working with Selected Ranges

To get a selected range, use getSelectedCells(). A table’s set of selected cells is a
collection of JCCel1Range instances. This method has the following prototype:

public Collection getSelectedCells()
Each element of the Collection is an instance of a JCCe11Range. This value is updated

dynamically as a user selects cells. The selection policy controls the amount of selection
allowed on the table, both by users and by the application.

1. Clicking a label selects all of the cells in the row or column, including the label.

Chapter 6 m Programming User Interactivity 125

6.4.6

6.4.7

6.5

Adding to the current selection requires the use of addRowSelection(),
addCoTumnSeTlection(), or addSelection().

An application can add a selection to the selected cell list by adding the new range to the
SelectedCells Collection, as shown by the following code fragment:

Collection col = table.getSelectedCells();
col.add(new JCCellRange(l, 1, 3, 3));

Removing Selections

To remove all selections from the table, call clearSelection().

Runtime Selection Control

You can use JCSelectListener (registered with
addSelectlistener(JCSelectlListener)) to control interactive cell selection at each
stage, on a case-by-case basis. JCSelectEvent has a number of methods and properties,
enabling the programmer to modify the JCSelectEvent. The getAction() method
retrieves one of the following to determine how the cell was selected:

B SELECT - selects the cell if SelectionPolicy is not SELECT_NONE.

m EXTEND - extends the selected region to include cell if SelectionPolicy is
SELECT_RANGE or SELECT_MULTIRANGE.

B ADD - selects the cell if SelectionPolicy is to SELECT_MULTIRANGE.
m END - finishes a selection.

m DESELECT - cancels the cell selection.

The setCancelled() method determines whether the selection (or unselection) should be
allowed (default is false). The Row and Column properties set or retrieve the respective
value of the row or column being selected or unselected.

JCSelectListener is called before selection begins (beforeSelect(JCSelectEvent)),
after the user’s selection is complete (select(JCSelectEvent)) and after all listeners have
been notified that the selection is complete (afterSelect(JCSelectEvent)).

Dragging Rows and Columns

You can configure your JClass LiveTable program to allow users to drag rows and
columns to a new position in the table. This feature is implemented using the RowTrigger
and ColumnTrigger properties to specify a key-mouse-click combination for dragging a
row or column by its label. For example, you can specify that when a user holds the Shift
key and clicks on a row label, the user can drag that row to another location in the table.
When dragging is enabled, the mouse pointer turns into a hand to indicate that the row or
column can be dragged.

126

Part | m Using JClass LiveTable

To enable users to drag rows and columns by holding down the Shift key and clicking on
row or column labels, first call addAction(), with which you define the action’s initiation,
as well as the action itself.

Here is a code snippet showing the addAction() method in use:

// Action for dragging columns

table.addAction(new TableAction(ini, JCTableEnum.COLUMN_DRAG_ACTION));
// Action for dragging rows

table.addAction(new TableAction(ini, JCTableEnum.ROW_DRAG_ACTION));

For dragging, the settings for TableAction are JCTableEnum.COLUMN_DRAG_ACTION and
JCTableEnum.ROW_DRAG_ACTION.

Dragging a row or column affects only the data view. It does not change the data source.

Sorting Columns

You can easily program your JClass LiveTable applications and applets to allow users to
sort columns in the table. Sorting columns rearranges the rows in the table display, but
does not affect the data source of the table. By default, sort behavior does not sort frozen
rows set with the setFrozenRows () method (see ‘Freezing’ Rows and Columns, in
Chapter 2).

The sortByColumn() method compares objects based on the type of data found in the
data source. As such, in some cases, sorting results may vary. For example, using
sortByColumn(0, Sort.ASCENDING), where the data used for column 1 are Strings, the
String “14” will be considered greater than “110.” However, if these same numerical
values are represented as integers, 110 will be greater than 14.

Sorting a single column
To sort a single column in the data view, call the sortByColumn() method, specifying the
column number to sort, and the direction (Sort.ASCENDING or Sort.DESCENDING):

sortByColumn(2, Sort.DESCENDING);
You can specify that only a particular range of rows is sorted using this variation on the
sortByColumn() method with the following construction:

table.sortByColumn(int col,
int direction,
int start_row,
int end_row)

The following code sorts rows 2 to 18 in column 2 in descending order.
sortByColumn(1l, Sort.DESCENDING, 1, 17);

Chapter 6 m Programming User Interactivity 127

Sorting Based on Multiple Columns
You can sort columns based on the values of cells in more than one column using the
following method construction:

table.sortByColumn(int col[],
int directionl[])

This method requires that you specify an array of columns on which to base the sorting,
and an array of directions in which to sort the columns.

When the sort begins, the rows are sorted based on the first column in the array. If two or
more rows contain the same value at the first column, the second column in the array is
used to sort the identical values. This process continues until there are no duplicate values
in a column, or until the end of the column array is reached.

Consider the following example:

Column0 | Column1 | Column2 | Column3
Row 0 A 20 4 2
Row 1 G 7 4
Row 2 Z 8 B 5
Row 3 B 11 4 4
Row 4 A 10 C 1

To sort based on the cell values in columns 0, 1, and 3, use the following code:

int [] columns = {0, 1, 3};
int [] direction = {Sort.ASCENDING, Sort.ASCENDING, Sort.ASCENDING};
table.sortByColumn(columns, direction);

In this case, the sort is first based on the data in the rows in column 0. Since column 0
contains two cells with values ‘A’ (Rows 0 and 4), the sort moves to the next column (1) in
the array to determine how to sort the two ‘A’ rows. Row 0 at Column 1 has a value of 20
and Row 4 at Column 1 has a value of 10. Since these are sorted in ascending order, the
outcome of the sort is:

Column0 | Column1 | Column2 | Column3
Row 4 A 10 C 1
Row 0 A 20 4 2
Row 3 B 11 Z 4

128

Part | m Using JClass LiveTable

6.6.1

6.6.2

Column0 | Column1 | Column2 | Column3
Row 1 G 7 A 4
Row 2 Z 8 B 5

If there had been duplicate values in column 1, these would have been sorted based on
the values in the third column in the array (3).

You can also specify that the sorting operation affect a given range of rows using the
following method:
table.sortByColumn(int col[],
int direction(],

int start_row,
int end_row)

To sort the example above from row 2 to row 4, use the following code:

int [] columns = {0, 1, 3};
int [] direction = {Sort.ASCENDING, Sort.ASCENDING, Sort.ASCENDING};
table.SortByColumn(columns, direction, 2, 4);

Sort by Clicking on a Column Label

With JClass LiveTable you can easily configure your table to sort columns based on a
key-mouse-click combination on the column’s label. For example, you can specify that
when a user holds the Ctrl key and clicks the column label, that column gets sorted in
ascending order.

To enable sorting by clicking, call addAction(), with which you define the action’s
initiation, as well as the action itself. For dragging, the settings for TableAction are
JCTableEnum.COLUMN_DRAG_ACTION and JCTableEnum.ROW_DRAG_ACTION.

Resetting the Tahle after Sorting

To clear all of the changes to the display resulting from column sorting, call the
resetSortedRows () method, which resets the display to match the data source.

Custom Mouse Pointers

When tracking the mouse pointer, JClass LiveTable considers the current settings of
AllowCel1Resize properties. The getAllowCel1Resize() method retrieves the table’s
AllowCel1Resize value. The setAllowCel1Resize() method sets how an end-user can
interactively resize rows/columns; valid values are JCTableEnum.RESIZE_ALL (default),
JCTableEnum.RESIZE_NONE, JCTableEnum.RESIZE_COLUMN, and JCTableEnum.RESIZE_ROW.

Chapter 6 m Programming User Interactivity 129

Disabling Pointer Tracking

To use an application-defined mouse pointer over the entire component, set TrackCursor
to false; JClass LiveTable will not track the position of the mouse over the component.
By default, TrackCursor is set to true.

130 Part | m Using JClass LiveTable

Events and Listeners

Displaying Cells wm Editing Cells wm Painting Tables wm Printing Tables wm Resizing Cells

Scrolling in Tables wm Selecting Cells wm Sorting Table Data wm Table Data Changes w Traversing Cells

7.1

The following sections explain how to generate and receive events in your
JClass LiveTable programs.

The descriptions are listed in sets of events and event listeners, with examples of when
you would use the event and listener, and sample code.

In order to register an event listener in your program, it must implement the listener’s
interface.

Displaying Cells

JCCellDisplayEvent
This event is posted for every cell that is displayed in the table. When you receive a
JCCel1DisplayEvent object, you can call following methods:

m getCellData() returns the object to be passed to the renderer of the given cell.
m getRow() retrieves the row number of the cell or label displayed.

m getColumn() retrieves the column number of the cell or label displayed.

m setDisplayData() lets you change the object that is displayed.

m getDisplayData() retrieves the object to be displayed.

A display request from JCTable generates a JCCel1DisplayEvent and notifies any
JCCel1DisplayListeners that they can customize the display object by calling

setDisplayData() on the event. JCTable does not generate the event if there are no
listeners registered with the table.

JCCellDisplayListener
To register the above event listener routine, use the following call (where (this) refers to
the class, which implements the JCCe11DisplayListener interface):

table.addCel1DisplayListener(this);

131

JCCel1DisplayListener requires the following method to be implemented:

public void cellDisplay(JCCellDisplayEvent e)

Calling JCCellDisplayEvent and JCCellDisplayListener methods
JCCel1DisplayListener’s method is called before each cell is rendered, and all
JCCel1DisplayEvent methods are available at all times during the display process. For
more information, please refer to Appendix A, which provides a complete event
summary.

Using JCCellDisplay Events and Listeners

JCCel1DisplayListener can be used to format the display String. Changing displayed
data does not affect either data source values or values passed to editors. As such,
JCCel1DisplayEvent does not provide any mechanism to store the displayed data in the
data source. The following example (see examples/table/listeners/BooleanDisplay.java)
displays objects as yes/no. Setting the display object does not have any effect during edit.

Eg’,i B ooleanDisplay !E
Qriginal |Fc|rmatled

[ralse | ro

true YES

Figure 14 Using JCCellDisplayEvent to display BooleanCellData objects as yes/no Strings.

import com.klg.jclass.table.JCTable;

import com.klg.jclass.table.JdCTableEnum;

import com.klg.jclass.table.data.JCEditableVectorDataSource;
import com.klg.jclass.table.JCCellDisplaylListener;

import com.klg.jclass.table.JCCellDisplayEvent;

import com.klg.jclass.util.swing.JCExitFrame;

import java.awt.Color;

import java.awt.GridlLayout;

import javax.swing.JPanel;

public class BooleanDisplay extends JPanel implements JCCellDisplayListener
{

// Table instance
protected JCTable table;

// Editable table data source
protected JCEditableVectorDataSource evds;

public BooleanDisplay() {
setBackground(Color.lightGray);

// Create table instance
table = new JCTable();

// Create and set up data source

132

Part | m Using JClass LiveTable

evds = new JCEditableVectorDataSource();

evds.setNumRows(2);

evds.setNumColumns(2);

evds.setColumnLabel (0, "Original");

evds.setColumnlLabel (1, "Formatted");

// Note that BooleanCellEditor will be automatically chosen by Table
evds.setCel1(0, 0, new Boolean(false));

evds.setCell1(0, 1, new Boolean(false));

evds.setCell (1, 0, new Boolean(true));

evds.setCell (1, 1, new Boolean(true));

// Connect table data source
table.setDataSource(evds);

// Turn off row labels because they are ugly.
table.setRowlLabelDisplay(false);

// Add everything to the panel
setlLayout(new GridLayout(1,1));
add(table);

// Add cell display listener.
table.addCellDisplayListener(this);
}

public void cellDisplay(JCCellDisplayEvent e) {
if(e.getColumn() == 1 && e.getRow() != JCTableEnum.LABEL) {
// Grab displayed data, in this case a boolean
Boolean dd = (Boolean)e.getDisplayData();
if(dd.equals(Boolean.TRUE)) {
e.setDisplayData("yes");
}

else {
e.setDisplayData("no");
}

}

public static void main(String args[]) {
JCExitFrame frame = new JCExitFrame("BooleanDisplay");
BooleanDisplay bd = new BooleanDisplay();
frame.getContentPane().add(bd);
frame.pack();
frame.setVisible(true);

Editing Cells

JCEditCellEvent
This event is posted whenever a user traverses into and edits a cell. When you receive a
JCEditCel1Event object, you can call the following methods:

Chapter 7 m Events and Listeners 133

getRow() — retrieves the row number of the cell that is being edited.
getColumn() — retrieves the column number of the cell that is being edited.

getType() —retrieves the type of edit event, where valid types are BEFORE_EDIT_CELL,
EDIT_CELL, and AFTER_EDIT_CELL.

getEditingComponent () — returns the editing component.
isCancelled() — retrieves the cancelled value.

setCancelled() — determines whether to allow an edit.

JCEditCellListener
To register the above event listener routine, use the following call (where (this) refers to
the class, which implements the JCEditCel1Listener interface):

table.addEditCellListener(this);

JCEditCellListener requires the following methods to be implemented:

public void beforeEditCell1(JCEnterCellEvent e)
public void editCell(JCEnterCellEvent e)
public void aftertEditCell(JCEnterCellEvent e)

Calling JCCellDisplayEvent and JCCellDisplayListener methods

JCEditCellListener’s beforeEditCel1() method is used before any cell edits by the
user occur. This is the only time an edit can be cancelled. editCe11() is used when the
editor is displayed to the user, and at this point, you cannot cancel the edit.

Once the user’s edit action has been completed, aftertditCell() is used, committing the
final changes on your part. For more information, please refer to Appendix A, which
provides a complete event summary.

Using JCEditCell Events and Listeners
The following example (see examples/table/listeners/EditCell.java) displays a status comment
whenever a user edits a cell.

import javax.swing.JlLabel;

import javax.swing.JPanel;

import javax.swing.JTextField;

import com.klg.jclass.table.JCTable;

import com.klg.jclass.table.JCEditCellListener;
import com.klg.jclass.table.JCEditCelTEvent;
import com.klg.jclass.table.data.JCEditableVectorDataSource;
import com.klg.jclass.util.swing.JCExitFrame;
import java.awt.BorderlLayout;

import java.awt.Color;

import java.awt.Component;

public class EditCell extends JPanel implements JCEditCellListener {

// Table instance
protected JCTable table;

134

Part | m Using JClass LiveTable

// Editable data source for table
protected JCEditableVectorDataSource evds;

// Label to track table column #
protected JlLabel message;

// Messages to appear in the Jlabel.
protected String messages[] = {

"This is the first column",
"This is the second column",
"This is the third column",
"This is the forth column" };

public EditCell() {

}

setBackground(Color.lightGray);

// Create table instance
table = new JCTable();

// Create and set up data source

evds = new JCEditableVectorDataSource();

evds.setNumRows(10);

evds.setNumColumns(4);

evds.setColumnLabel(0, "First");

evds.setColumnlLabel (1, "Second");

evds.setColumnLabel(2, "Third");

evds.setColumnlLabel (3, "Forth");

for(int r = 0; r < evds.getNumRows(); r++)

for(int ¢ = 0; ¢ < evds.getNumColumns(); c++)

evds.setCell(r, c, "R"+r+"C"+c);

// Connect table data source
table.setDataSource(evds);

// Turn off row labels because they are ugly
table.setRowlLabelDisplay(false);

// Add everything to the panel
this.setlayout(new BorderLayout());
this.add("North", table);
this.add("South", message = new JlLabel());

// Add cell Edit event listener
table.addEditCellListener(this);

public void beforeEditCel1(JCEditCellEvent event) {

}

message.setText(messages[event.getColumn()]);

public void editCell1(JCEditCellEvent event) {

// get the editing component and select all of the text if it
// is a JTextField component
Component ¢ = event.getEditingComponent();
if(c instanceof JTextField) f{
((JTextField)c).selectAl1();

Chapter 7 m Events and Listeners

135

}
}
public void afterEditCell(JCEditCellEvent event) {
}

public static void main(String args[]) f{
JCExitFrame frame = new JCExitFrame("EditCell");
EditCell ec = new EditCell();
frame.getContentPane().add(ec);
frame.pack();
frame.setVisible(true);

7.3 Painting Tables

JCPaintEvent
This event is posted before and after a portion of the table is painted. When you receive a
JCPaintEvent object, you can call the following methods:

W getStartRow() — retrieves the start row of the repainted region.
getStartColumn() — retrieves the start column of the repainted region.
getEndRow() — retrieves the end row of the repainted region.

getEndColumn() — retrieves the end column of the repainted region.

getType() —retrieves the paint event type, where valid types are BEFORE_PAINT and
AFTER_PAINT.

m getCellRange() —returns a JCCellRange containing the painted area.

JCPaintListener
To register the above event listener routine, use the following call (where (this) refers to
the class, which implements the JCPaintListener interface):

table.addPaintListener(this);

JCPaintListener requires the following methods to be implemented:

public void beforePaint(JCPaintEvent e)
public void afterPaint(JCPaintEvent e)

Calling JCPaintEvent and JCPaintListener Methods

JCPaintListener’s methods, beforePaint() and afterPaint(), can call JCPaintEvent
methods at any time, as you are not able to interrupt the cell painting process. For more
information, please refer to Appendix A, which provides a complete event summary.

Using JCPaint Events and Listeners
JCPaintListener allows you to monitor the repainting of table cells. Labels, frozen cells,
and scrollable cells are painted independently.

136 Part | m Using JClass LiveTable

1.4

Printing Tables

JGPrintEvent
This event is posted when your table is printed. When you receive a JCPrintEvent
object, you can call the following methods:

getGraphics() —retrieves the current graphics object.
getPage() —retrieves the page number.

getPageDimensions() — retrieves the page dimensions.
getPageMargins() —retrieves the page margins.
getPageResolution() — retrieves the page dpi resolution.
getMarginUnits() — retrieves the margin units (pixels or inches).

getNumPages () — retrieves the total number of pages (handy for page x of x footers).

getNumHorizontalPages() — retrieves the number of pages needed to print all of the
columns in the table.

B getNumVerticalPages() — retrieves the number of pages needed to print all of the rows
in the table.

m getTableDimensions() —retrieves the dimension needed to print the table on the
current page.

m getType() —retrieves the print event type, where valid types are PRINT_HEADER,
PRINT_BODY, and PRINT_FOOTER.

JCPrintListener
To register the above event listener routine, use the following call (where (this) refers to
the class, which implements the JCPrintListener interface):

table.addPrintListener(this);

JCPrintListener requires the following methods to be implemented:

public void printPageHeader(JCPrintEvent e)
public void printPageFooter(JCPrintEvent e)
public void printPageBody(JCPrintEvent e)

Using JCPrint Events and Listeners

JCPrintListener allows you to customize the header and footer regions for each page of
the printout. Table Printing, in Chapter 8, has details and examples for using the
JCPrintListener.

Chapter 7 m Events and Listeners 137

1.5

Resizing Cells

JCResizeCellEvent
This event is posted when a cell or label is resized. When you receive a
JCResizeCellEvent object, you can call the following methods:

m getRow() — retrieves the row being resized. Returns JCTableEnum.NOVALUE if only a
column is being resized.

m getColumn() - retrieves the column being resized. Returns JCTableEnum.NOVALUE if
only a row is being resized.

m getCurrentRowHeight() — retrieves the current row height. Returns
JCTbTEnum.NOVALUE if only a column is being resized.

m getCurrentColumnWidth() — retrieves the current column width. Returns
JCTbTEnum.NOVALUE if only a row is being resized.

m getType() - retrieves the type where valid types are BEFORE_RESIZE, RESIZE,
RESIZE_DRAG and AFTER_RESIZE.

m getNewRowHeight() —retrieves the new row height. Returns JCTableEnum.NOVALUE if
only a column is being resized.

setNewRowHeight () — sets the new row height.

getNewColumnWidth() — retrieves the new column width. Returns
JCTb1Enum.NOVALUE if only a row is being resized.

setNewColumnWidth() — sets the new column width.
isCancelled() — retrieves the cancelled value.

setCancelled() — determines whether to allow an interactive resize.

JCResizeCellListener
To register the above event listener routine, use the following call (where (this) refers to
the class, which implements the JCResizeCel1Listener interface):

table.addResizeCelllListener(this);

JCResizeCellListener requires the following methods to be implemented:

public void beforeResizeCell(JCResizeCellEvent e)
public void resizeCell(JCResizeCellEvent e)
public void afterResizeCell(JCResizeCellEvent e)

JCResizeCellMotionListener
To register the above event listener routine, use the following call (where (this) refers to
the class, which implements the JCResizeCelMotionListener interface):

table.addResizeCellMotionlListener(this);
JCResizeCellMotionListener requires the following methods to be implemented:

public void resizeCellDragged(JCResizeCellEvent e)

138

Part | m Using JClass LiveTable

Calling JCResizeCellEvent and JCResizeCellListener Methods

JCResizeCellListener’s beforeResizeCell() method is called once cell resizing begins,
and allows the opportunity to programmatically cancel the resize. resizeCel1() is called
once the user releases the mouse button, and the resize is complete from their
perspective. Programmatically, you can cancel the resize, or set new column widths or
row heights if the cell resize dimension is invalid, or outside the boundaries of predefined
maximum/minimum cell sizes.

Once the resize values have been set, afterResizeCel1() is used, committing the final
resize changes. For more information, please refer to Appendix A, which provides a
complete event summary.

Using JCResizeGell Events and Listeners

JCResizeCellListener allows you to customize how table resizes on a per-cell basis. The
following example (see examples/table/listeners/ResizeCell.java) restricts resize so that row
labels cannot be resized and no cell can be less than 100 pixels or greater than 200 pixels.

import com.klg.jclass.table.JCTable;

import com.klg.jclass.table.dCTableEnum;

import com.klg.jclass.table.data.JCEditableVectorDataSource;
import com.klg.jclass.table.JCResizeCelllListener;

import com.klg.jclass.table.JCResizeCellMotionListener;
import com.klg.jclass.table.JCResizeCellEvent;

import com.klg.jclass.util.swing.JCExitFrame;

import java.awt.Color;

import java.awt.GridlLayout;

import javax.swing.JPanel;

public class ResizeCell extends JPanel implements JCResizeCelllListener,
JCResizeCellMotionListener {

// Table instance
protected JCTable table;

// Editable table data source
protected JCEditableVectorDataSource evds;

public ResizeCell() ({
setBackground(Color.lightGray);

// Create table instance
table = new JCTable();

// Create and set up data source

evds = new JCEditableVectorDataSource();
evds.setNumRows (100);
evds.setNumColumns(2);

evds.setColumnlLabel (0, "End-Point");
evds.setColumnLabel(1l, "Drag");

for(int r = 0; r < evds.getNumRows(); r++) {
evds.setRowlLabel(r, "Row: "+r);

Chapter 7 m Events and Listeners 139

for(int ¢ = 0; ¢ < evds.getNumColumns(); ct++)
evds.setCell(r,c,"Cell: R"+r+"C"+c);
}
// Connect table data source
table.setDataSource(evds);

// Add everything to the panel
this.setlayout(new GridLayout(1l,1));
this.add(table);

// Add resize cell listener

table.addResizeCellListener(this);

// Add resize cell motion listener

table.addResizeCelTMotionListener(this);
}

public void beforeResizeCell(JCResizeCellEvent event) {
if (event.getColumn() == JCTableEnum.LABEL) {
event.setCancelled(true);
return;

}

public void resizeCell(JCResizeCellEvent event) {

// Width must be between 100 and 200

int width = event.getNewColumnWidth();

if (width < 100) {
event.setNewColumnWidth(100);

}

else if (width > 200) {
event.setNewColumnWidth(200);

}

// Height must be between 30 and 70

int height = event.getNewRowHeight();

if (height != JCTableEnum.NOVALUE && height < 30) {
event.setNewRowHeight(30);

}

else if (height > 70) {
event.setNewRowHeight(70);

}

}

public void afterResizeCell(JCResizeCellEvent event) {
}

public void resizeCellDragged(JCResizeCellEvent event) {
// restrict the range of motion for column 1 to 100 to 200
if(event.getColumn() == 1) {
int width = event.getNewColumnWidth();
if(width < 100) {
event.setNewColumnWidth(100);
}
else if(width > 200) {
event.setNewColumnWidth(200);
}

140 Part | m Using JClass LiveTable

7.6

}

public static void main(String args[]) f{
JCExitFrame frame = new JCExitFrame("ResizeCell");
ResizeCell rc = new ResizeCell();
frame.getContentPane().add(rc);
frame.pack();
frame.setSize(600, 400);
frame.setVisible(true);

Scrolling in Tables

JCScrollEvent
This event is posted when the table is scrolled by either the user or the application. When
you receive a JCScrollListener object, you can call the following methods:

m getAdjustable() - retrieves the affected adjustable object.

B getDirection() —retrieves the scrolling direction (either Adjustable .HORIZONTAL or
Adjustable.VERTICAL).

getEvent () - retrieves the event that initiated the action.

getType() —retrieves the scroll event type, where valid types are
JCScrol1Event.SCROLL and JCScrollEvent .AFTER_SCROLL.

B getValue() —retrieves the scrollbar’s current value.
m setValue() - sets the scrollbar’s current value.
The JCScrolllistener (registered with addScrollListener(JCScrolllListener)) allows

you to define a procedure to be called when the table scrolls; this is useful if your
application is drawing into the table. The method is sent an instance of JCScrol1Event.

JCScrollListener
To register the above event listener routine, use the following call (where (this) refers to
the class, which implements the JCScrol1Listener interface):

table.addScrollListener(this);

JCScrollListener requires the following methods to be implemented:

public void scroll(JCScrollEvent e)
public void afterScroll1(JCScrollEvent e)

Calling JCScrollEvent and JCScrollListener Methods
JCScrollListener’s scroll() method is invoked when the user begins to scroll, during
which all JCScrol1Event methods are available. afterScrol1() is called when the user

Chapter 7 m Events and Listeners 141

has finished scrolling. For more information, please refer to Appendix A, which provides
a complete event summary.

Using JCScroll Events and Listeners

JCScrollListener allows you to synchronize table scrolling with another object. The
following example (see examples/table/listeners/TiwoTables.java) links two tables together with
one scrollbar. This example uses two tables inside another table to simulate a splitter

window.
Eg_;,aTonahles [_ (O]
oo I lc2
RO ROCO ROCA ROCZ (=]
=] R1CO R1C1 R1C2 k=
=] R2C0 R2C1 R2C2
R3 R3CO R3C1 R3C2 B
RO ROCO ROCA ROCZ (=]
=] R1CO R1C1 R1C2 k=
=] R2C0 R2C1 R2C2
R3 R3CO R3C1 R3C2 =
]

Figure 15 Example using JCScrollListener to synchronize scrolling between two tables.

import com.klg.jclass.table.JdCTable;

import com.klg.jclass.table.JCTableEnum;

import com.klg.jclass.table.data.JCVectorDataSource;
import com.klg.jclass.table.data.JCEditableVectorDataSource;
import com.klg.jclass.table.JdCScrollListener;

import com.klg.jclass.table.JCScrollEvent;

import com.klg.jclass.util.swing.JCExitFrame;

import java.awt.Color;

import java.awt.GridlLayout;

import java.awt.Adjustable;

import java.awt.Component;

import java.awt.Scrollbar;

import javax.swing.JPanel;

public class TwoTables extends JPanel implements JCScrolllListener {

// First table
protected JCTable tablel;

// Second table
protected JCTable tableZ;

// Common data source
protected JCEditableVectorDataSource evdsl;

// Local variable used to avoid infinite Toops in
// scroll event handler
protected boolean forcedScroll = false;

142 Part | m Using JClass LiveTable

public TwoTables() f

}

setBackground(Color.lightGray);

// Create first table
tablel = new JCTable();

// Create and set up data source for first table
evdsl = new JCEditableVectorDataSource();
evdsl.setNumRows(100);

evdsl.setNumColumns(6);

for (int ¢ = 0; ¢ < evdsl.getNumColumns(); ct++)
evdsl.setColumnLabel(c, "C"+c);
for (int r = 0; r < evdsl.getNumRows(); r++) {
evdsl.setRowlLabel(r, "R"+r);
for (int ¢ = 0; ¢ < evdsl.getNumColumns(); c++)
evdsl.setCell(r,c,"R"+r+"C"+c);
}

// Connect data source to first table.
tablel.setDataSource(evdsl);

// Set up visuals and interactions for table 1.
tablel.setAlTowCellResize(JCTableEnum.RESIZE_NONE);
tablel.setHorizSBDisplay(JCTableEnum.SBDISPLAY_NEVER);
tablel.getDefaultCellStyle().setTraversable(false);
tablel.setVisibleRows(2);

tablel.setVisibleColumns(3);

// Create second table
table2 = new JCTable();

// Connect second table to same data source as first table.
table2.setDataSource(evdsl);

// Set up visuals and interactions for table 2.
table2.setAlTowCellResize(JCTableEnum.RESIZE _NONE);
table2.setColumnlLabelDisplay(false);
table2.setTopRow(2);
table2.getDefaultCellStyle().setTraversable(false);
table2.setVisibleRows(5);
table2.setVisibleColumns(3);

// Add to panel

setLayout(new GridLayout(2,1));
add(tablel);

add(table2);

// Add scroll listeners for both tables
tablel.addScrollListener(this);
table2.addScrollListener(this);

public void scroll(JCScrollEvent event) {

Chapter 7 m Events and Listeners

143

// use forcedScroll to prevent an infinite loop, since
// calling setValue() on the scrollbar will generate another
// event.
if (event.getDirection() == Scrollbar.HORIZONTAL) {
if (forcedScroll == false) ({
// Scroll event not forced by this method, okay
// to continue

// Grab adjustable object
Adjustable adj = event.getAdjustable();
// We need for it to be a component. Should be -
// scroll events come from LiveTable’s scrollbar
if (adj != null && adj instanceof Component) {
Component ¢ = (Component)adj;
if (c.getParent() == table2) {
// 1f table 2 scrolled, synchronize table 2
forcedScroll = true;
tablel.getHorizSB().setValue(event.getValue());
}
else if (c.getParent() == tablel) {
// 1f table 1 scrolled, synchronize table 2
forcedScroll = true;
table2.getHorizSB().setValue(event.getValue());

}
} else {

forcedScroll = false;
}

}

public void afterScrol1(JCScrollEvent event) {
}

public static void main(String args[]) {
JCExitFrame frame = new JCExitFrame("TwoTables");
TwoTables tt = new TwoTables();
frame.getContentPane().add(tt);
frame.pack();
frame.setVisible(true);

1.7 Selecting Cells

This event is posted when the user selects cells, or cells are selected programmatically.
When you receive a JCSelectEvent object, you can call the following methods:

W getType() —returns the type of selection event, where valid types are
BEFORE_SELECTION, SELECTION, and AFTER_SELECTION

m getStartRow() — retrieves the start row of the selected or deselected cell range.

144

Part | m Using JClass LiveTable

B getStartColumn() — retrieves the start column of the selected or deselected cell
range.

getEndRow() — retrieves the end row of the selected or deselected cell range.
getEndColumn() — retrieves the end column of the selected or deselected cell range.
isCancelled() —returns true if any listener has rejected the selection.

setCancelled() — determines if selection is allowed.

getAction() — returns the type of selection action, where valid types are SELECT, ADD,
EXTEND, DESELECT, and END.

B getActionString() —returns a String representation of the action.

JCSelectListener
To register the above event listener routine, use the following call (where (this) refers to
the class, which implements the JCSelectListener interface):

table.addSelectListener(this);

JCSelectListener requires the following methods to be implemented:

public void beforeSelect(JCSelectEvent e)
public void select(JCSelectEvent e)
public void afterSelect(JCSelectEvent e)

Calling JCSelectEvent and JCSelectListener Methods

JCSelectListener’s methods are called when the user begins cell selection in a table.
beforeSelect() is invoked when the user selects or deselects a cell, and all
JCSelectEvent methods are available. For example, it is possible to cancel a selection in
beforeSelect() by calling setCancelled(true).

The select() and afterSelect() methods are called during and after the selection
process, meaning that at that point, the cell is now visually selected from the user’s
perspective. For more information, please refer to Appendix A, which provides a
complete event summary.

Using JCSelect Events and Listeners

JCSelectListener allows you to monitor scrolling actions in your table, either before or
after the scrolling event. The following example (see
examples/table/listeners/SelectListener.java) demonstrates the use of JCSelectListener
notifications to cancel out cell selection.

import java.awt.Color;

import java.awt.GridlLayout;

import java.applet.Applet;

import javax.swing.JPanel;

import com.klg.jclass.table.JCTable;

import com.klg.jclass.table.JCSelectListener;

import com.klg.jclass.table.JCSelectEvent;

import com.klg.jclass.table.JCTableEnum;

import com.klg.jclass.table.data.JCVectorDataSource;

Chapter 7 m Events and Listeners 145

import com.klg.jclass.util.swing.JCExitFrame;

public class SelectlListener extends JPanel implements JCSelectListener ({
// Table instance
protected JCTable table;

// Table data source
protected JCVectorDataSource ds;

public SelectListener() {
setBackground(Color.lightGray);

// Create table instance
table = new JCTable();

// Create and set up data source
ds = new JCVectorDataSource();
ds.setNumRows(10);
ds.setNumColumns(4);

for(int ¢ = 0; ¢ < ds.getNumColumns(); c++)
ds.setColumnlLabel(c, "Column: "+c);

ds.setColumnLabel (1, "Non Selectable Column");
for(int r = 0; r < ds.getNumRows(); r++) f
ds.setRowlLabel(r, "Row: "+r);
for(int ¢ = 0; ¢ < ds.getNumColumns(); c++)
ds.setCell(r,c,"Cell: R"+r+"C"+c);
}

// Connect table data source
table.setDataSource(ds);
table.setSelectionPolicy(JCTableEnum.SELECT_RANGE) ;

// Add everything to the panel
setlLayout(new GridLayout(1l,1));
add(table);

table.addSelectListener(this);
}

public void beforeSelect(JCSelectEvent e) {
if (e.getStartColumn() == 1) {
e.setCancelled(true);
System.out.printin("We don’t want selection starting from this
column");
return;
}
System.out.printIn("beforeSelect: startRow="+e.getStartRow()+
", startColumn="+e.getStartColumn());
}

public void select(JCSelectEvent e) {
if (e.getAction() == JCSelectEvent.EXTEND &&
Math.abs(e.getStartRow()-e.getEndRow())>1) {
e.setCancelled(true);

146 Part | m Using JClass LiveTable

7.8

System.out.printin("We don’t want selection extending for more than
2 rows");
return;
}
System.out.printin("select: startRow="+e.getStartRow()+
", startColumn="+e.getStartColumn()+", endRow="+e.getEndRow()+
", endColumn="+e.getEndColumn());
}

public void afterSelect(JdCSelectEvent e) {
System.out.printin("afterSelect: startRow="+e.getStartRow()+
", startColumn="+e.getStartColumn()+", endRow="+e.getEndRow()+
", endColumn="+e.getEndColumn());
}

public static void main(String args[]) f{
JCExitFrame frame = new JCExitFrame("SelectlListener");
SelectListener sn = new SelectlListener();
frame.getContentPane().add(sn);
frame.pack();
frame.setSize(600, 150);
frame.setVisible(true);

Sorting Table Data

JCSortEvent
This event is posted when the table is sorted. When you receive a JCSortEvent object,
you can call the following methods:

m getColumns() - retrieves an array of column indices that were sorted.

m getNewRows() — retrieves the newly sorted order.

JCSortListener
To register the above event listener routine, use the following call (where (this) refers to
the class, which implements the JCSortListener interface):

table.addSortListener(this);

JCSortListener requires the following method to be implemented:

public void sort(JCSortEvent e)

Using JCSort Events and Listeners

JCSortListener allows you to synchronize the sorted rows with another object (or to sort
the data source). The following example (see examples/table/listeners/Sorter.java) uses the
row sort array to pull out the top value.

Chapter 7 m Events and Listeners 147

Egjj'ﬁmlel [_ (O] x| Egjﬁmler [_ (O] x|
INTEGER |STRING | nTEGER | STRING |
|8 | g |1 0 I 10

9] ih 11

10 10 12 12

1 ih g 8

12 12 9 9

The first item in the INTEGER column is 8 | The first item in the STRING column is 10

Figure 16 Sorter.java, illustrating how to use JCSort Events and Listeners.

import javax.swing.Jlabel;

import com.klg.jclass.table.JCTable;

import com.klg.jclass.table.JdCTableEnum;

import com.klg.jclass.table.data.JCEditableVectorDataSource;
import com.klg.jclass.table.JdCSortlListener;
import com.klg.jclass.table.JCSortEvent;

import com.klg.jclass.table.MouseActionInitiator;
import com.klg.jclass.util.swing.JCExitFrame;
import java.awt.Color;

import java.awt.event.InputEvent;

import java.awt.Borderlayout;

import javax.swing.JPanel;

public class Sorter extends JPanel implements JCSortlListener ({

// Table instance
protected JCTable table;

// Table data source
protected JCEditableVectorDataSource ds;

// Label that will display column top value
protected JlLabel topltem;

public Sorter() {
setBackground(Color.lightGray);

// Create table instance
table = new JCTable();

// Create and set up data source

ds = new JCEditableVectorDataSource();
ds.setNumRows(5);

ds.setNumColumns(2);

// Column Tabels
ds.setColumnlLabel (0, "INTEGER");
ds.setColumnlLabel (1, "STRING");

// Populate data source with generated data.
int numrows = ds.getNumRows();
for(int r = 0; r < numrows; r++) {

148 Part | m Using JClass LiveTable

1.9

ds.setCell(r, 0, new Integer(r+8));
ds.setCell(r, 1, "" + (r+8));
}

// Connect table data source
table.setDataSource(ds);

// Turn off row Tabels because they are ugly.
table.setRowlabelDisplay(false);

// Allow column sorting using a shift-click combination
table.addAction(new
MouseActionInitiator(MouseActionInitiator.ANY_BUTTON_MASK,
InputEvent.SHIFT_MASK),
JCTableEnum.COLUMN_SORT_ACTION);

// Add everything to the panel
setlLayout(new BorderlLayout());
add(table, BorderlLayout.CENTER);
add(topltem = new Jlabel("Shift-click the Tabel to sort numeric or
string data"),
BorderLayout.SOUTH);

// Add sort listener
table.addSortlListener(this);
}

public void sort(JCSortEvent event) {
int columns[] = event.getColumns();
int rows[] = event.getNewRows();
topltem.setText("The first item in the " +
ds.getTableColumnlLabel(columns[0]) + " column is " +
ds.getTableDataltem(rows[0],columns[0]));
}

public static void main(String args[]) f{
JCExitFrame frame = new JCExitFrame("Sorter");
Sorter s = new Sorter();
frame.getContentPane().add(s);
frame.pack();
frame.setVisible(true);

Table Data Changes

JCTahleDataEvent

Unlike previous events, JCTableDataEvent objects are not thrown by JCTab1e; instead,
they come from the table’s data source. This event is posted when the TableDataModel
object has been modified. When you receive a JCTableDataEvent object, you can call the
following methods:

Chapter 7 m Events and Listeners 149

getColumn() — retrieves the column of the current cell.

getRow() — retrieves the row of the current cell.

getNumAffected() — retrieves the number of rows affected by TableDataModel object

changes.

getDestination() — indicates the destination location for MOVE events.

getCommand() — returns the command that initiated the event. Valid commands

include:

CHANGE_VALUE
CHANGE_ROW
ADD_ROW
REMOVE_ROW
CHANGE_COLUMN
ADD_COLUMN
REMOVE_COLUMN
CHANGE_ROW_LABEL
CHANGE_COLUMN_LABEL
MOVE_ROW
MOVE_COLUMN
NUM_ROWS
NUM_COLUMNS
RESET

Single cell value changed.

Single row changed.

New row added.

Row removed.

Single column changed.

New column added.

Column removed.

Single row label changed.

Single column label changed.

Row moved, new location in getDestination.
Column moved, new location in getDestination.
Number of rows changed.

Number of columns changed.

Data source significantly changed, should be re-read.

JCTableDataListener
To register the above event listener routine, use the following call (where (this) refers to

the class MyClass, which implements the JCTableDatalistener interface):
table.addTableDatalistener(this);

JCDataTablelistener requires the following method to be implemented:
public void dataChanged(JCTableDataEvent e)

Using JCTableData Events and Listeners
JCTableDataListener allows you to monitor any changes made to the TableDataModel
object. Valid changes are listed above with the getCommand() method.

150

Part | m Using JClass LiveTable

7.10

There are examples included with your JClass LiveTable distribution that demonstrate
the use of data with a table. See Creating your own Data Sources, in Chapter 3, to see
descriptions of the included sample code.

Traversing Cells

JCTraverseGCellEvent
This event is posted when cells in the table are traversed. When you receive a
JCTraverseCellEvent object, you can call the following methods:

m getColumn() — retrieves the column of the current cell.
getNextColumn() — retrieves the targeted column for traversal.
getRow() — retrieves the row of the current cell.

getNextRow() — retrieves the targeted row for traversal.

setNextRow() — sets the row of the cell to which the user will traverse.

setNextColumn() — sets the column of the cell to which the user will traverse.

getTraverseType() — returns the action that caused the traverse. Valid JCTabTeEnum
action values are: TRAVERSE_POINTER, TRAVERSE_DOWN, TRAVERSE_UP, TRAVERSE_LEFT,
TRAVERSE_RIGHT, TRAVERSE_PAGEUP, TRAVERSE_PAGEDOWN, TRAVERSE_HOME,
TRAVERSE_END, TRAVERSE_TOP, TRAVERSE_BOTTOM, and TRAVERSE_TO_CELL.

getTraverseTypeString() — returns a String value for the traverse type.
isCancelled() — retrieves the cancelled value.

setCancelled() - determines whether to allow an interactive resize.

getType() - retrieves valid event types, which are TRAVERSE_CELL and
AFTER_TRAVERSE_CELL.

m toString() —returns a String representation of the event.

JCTraverseCellListener
To register the above event listener routine, use the following call (where (this) refers to
the class, which implements the JCTraverseCellListener interface):

table.addTraverseCelllListener(this);

JCTraverseCelllistener requires the following methods to be implemented:

public void traverseCell(JCTraverseCellEvent e)
public void afterTraverseCell(JCTraverseCellEvent e)

Calling JCTraverseCellEvent and JCTraverseGellListener Methods
JCTraverseCelllistener’s traverse() method is invoked when the user begins to
traverse to a neighboring cell. Since this method is called before the actual traversal, all
JCTraverseCellEvent methods are available. For example, if setCancelled() is called,

Chapter 7 m Events and Listeners 151

and is set to true, the cell traversal is cancelled. You can also call methods that permit cell
skipping during traversal.

afterTraverseCel1() is invoked after valid cell traversal. The setNextRow(),
setNextColumn(), and setCancelled() methods are unavailable during
afterTraverseCell(). For more information, please refer to Appendix A, which
provides a complete event summary.

Using JCTraverse Events and Listeners

JCTraverseCelllistener allows you to control how cell traversal occurs in

JClass LiveTable. The following example (see examples/table/listeners/Skip Navigation.java)
uses a JCTraverseCellLlistener to skip the second column if navigating from the first
column. The column is not skipped if navigating from the third column.

import com.klg.jclass.table.JdCTable;

import com.klg.jclass.table.JCTableEnum;

import com.klg.jclass.table.data.JCVectorDataSource;
import com.klg.jclass.table.JCTraverseCelllListener;
import com.klg.jclass.table.JdCTraverseCellEvent;
import com.klg.jclass.util.swing.JCExitFrame;

import java.awt.Color;

import java.awt.GridlLayout;

import javax.swing.JPanel;

public class SkipNavigation extends JPanel implements
JCTraverseCellListener

// Table instance
protected JCTable table;

// Table data source
protected JCVectorDataSource ds;

public SkipNavigation() {
setBackground(Color.lightGray);

// Create table instance
table = new JCTable();

// Create and set up data source
ds = new JCVectorDataSource();
ds.setNumRows(10);
ds.setNumColumns(4);

for(int ¢ = 0; ¢ < ds.getNumColumns(); c++)
ds.setColumnLabel(c, "Column: "+c);

ds.setColumnLabel (1, "Skip from 0 to 2");
for(int r = 0; r < ds.getNumRows(); r++) {
ds.setRowlLabel(r, "Row: "+r);
for(int ¢ = 0; ¢ < ds.getNumColumns(); c++)
ds.setCell(r,c,"Cell: R"+r+"C"+c);

152

Part | m Using JClass LiveTable

// Connect table data source
table.setDataSource(ds);

// Add everything to the panel
setLayout(new GridLayout(1,1));
add(table);

// Add traverse cell listener
table.addTraverseCellListener(this);
}

public void traverseCell(JCTraverseCellEvent event) {
// Skip second column when approaching from the left
if (event.getColumn() == 0 && event.getNextColumn() == 1) {
event.setNextColumn(2);
}

// Skip second column in both directions.
// if(event.getNextColumn() == 1)
// event.setNextColumn(1l + event.getNextColumn() -
event.getColumn());
}

public void afterTraverseCell(JCTraverseCellEvent e) {
}

public static void main(String args[]) {
JCExitFrame frame = new JCExitFrame("SkipNavigation");
SkipNavigation sn = new SkipNavigation();
frame.getContentPane().add(sn);
frame.pack();
frame.setSize(600, 150);
frame.setVisible(true);

Chapter 7 m Events and Listeners 153

154 Part | m Using JClass LiveTable

8.1

Table Printing

Printing wm Print Preview

Although JClass LiveTable is a grid/table component, it still allows end users to print and
print—preview table applications. By using the JCPrintTable class, you can control
layout, formatting, and header/footer information.

Printing
The JCPrintTable class offers print functionality in JCTable. The following code creates
a JCPrintTable and prints JCTable with the default print options:

JCPrintTable pt = new JCPrintTable(myTable);
pt.print();

Default printed pages consist of:

® 1”7 margins

®m no header information

m a footer message: page x of y

m all table pages printed (which cannot be changed)

The JCPrintTable class creates a copy of the table’s visible properties and retrieves cell

contents from the data source. Cell height and width are copied by actual pixel size.
Scrollbars are not part of the printed table.

Using JCPrintTable offers controls over various aspects of your printed pages.

Setting Page Layout Properties

The JCPrintTable class provides methods for detailed control of print output from a
JClass LiveTable application or applet.

Page Size
The following methods define printed page sizes in pixels:
setPageDimensions();

setPageWidth();
setPageHeight();

155

8.1.2

Use the getPageDimensions (), getPageWidth(), and getPageHeight () methods to
retrieve page sizes by retrieving page information from the printer. By default, the
standard A4 page (8'2” x 11”) is used.

Page Margins
Page margins are set using the setPageMargins () method. This method uses the
java.awt.Insets class to set the margins as in the following example:

printtable.setPageMargins(new Insets(54,36,36,54));

By default, using the Insets object to respectively specify top, left, bottom and right insets
will set the margins in pixels. To specify margin units in inches, use the variable
MARGIN_IN_INCHES in the getMarginUnits() method:

setMarginUnits(JCPrintTable .MARGIN_IN_INCHES);

You can retrieve page margins based on the Insets of the page using the
getPageMargins () method. Use the getDefaultPageMargins() to retrieve the default
Insets.

Page Numbering

To control page numbering, use getNumHorizontalPages() and getNumVerticalPages()
to determine the number of pages across and down. Use getNumPages () to determine the
total number of pages required to print the table, based on how you have defined the
page and margin sizes.

Page Resolution

Use the getPageResolution() method to get the printer page resolution. The default is 72
pixels per inch. Use setPageResolution() to set the printer page resolution.

Printing Headers and Footers

Headers and footers are applied using JCPrintListener receiving JCPrintEvent events.
A JCPrintEvent is posted for each page during printing, and provides a graphic object
clipped to the allowable paint region, the page number of the current page, and the total
number of pages:

public JCPrintEvent

(Table table, Graphics gc, int page, intnumPages, int Type);
public Graphics getGraphics();
public Insets getPageMargins();
public int getMarginUnits();
public int getNumHorizontalPages();
public int getNumPages();
public int getNumVerticalPages();
public int getPage();
public Dimension getPageDimensions();
public int getPageResolution();
public Dimension getTableDimensions();

156

Part | m Using JClass LiveTable

8.2

getTableDimensions() can be used in the printPageBody () method of
JCPrintListener() to determine the size the table occupies on the page.

The JCPrintListener requires that three methods are defined:

public void printPageHeader(JCPrintEvent e);
public void printPageFooter(JCPrintEvent e);
public void printPageBody(JCPrintEvent e);

The printPageBody method is called after JClass LiveTable has finished setting up the
print of the page body, but just before it is actually sent to the printer.

The following code produces the footer illustrated below:

public void printPagefFooter(JCPrintEvent e) {
Graphics gc = e.getGraphics();
Rectangle r = gc.getClipRect();

FontMetrics fm = gc.getFontMetrics();

String page "Page " + e.getPage();
String note "Use JCPrintlListener to customize the footer!";
// Pad the footer text to the right
gc.drawString(page, 0, r.height/2);
gc.drawString(note, r.width - fm.stringWidth(note), r.height/2);

Rom 20 I Cel:Rz8Co [Cell. FZac T Cell H2acs |

Pape 1 Uge JCPrntLIstener 1o customize the footan

Figure 17 A Page Footer.

If you don’t register a JCPrintListener for the table, the print engine will default to
printing a centered footer containing the text Page x, where x is the page number. If you
do register a JCPrintListener, however, then you are responsible for the placing the
page number either in the header or footer of the page.

Print Preview

Using JCPrintPreview

JClass LiveTable provides a class that displays a preview of the print job in a separate
frame. Using the print preview frame, end—users can flip through the pages of the print
job, and send the current page or all of the pages to the printer.

To add the print preview functionality, use JCPrintPreview:

JCPrintPreview(String title, JCPrintTable table)
showPage(int page)

Chapter 8 m Table Printing 157

For example, the following provides a preview beginning at the first page of the job:

JCPrintPreview pf = new JCPrintPreview("Table Print

Preview",pr
pf.showPage(0);

Using JCPrintTable

Alternatively, to allow users to preview a print job, you can use JCPrintTable’s

inttable);

showPrintPreview() method.

An example of print preview exists in the PrimeTime.java demo, located in the

demos/table/primetime directory.

E.*_:"g PrimeTime Printing

Cablet | Cehlel

&

The Outer _imits

The Preterder

Bahbyon 5

Buffy, Vamaire Slayer

MNews

hedicine YWarman

Sat. Repaon

Erpty Mest

Liberty St Liberty 5t

‘Wilderness

F'si Factor

Mews

College Foothal

Entetainrent Mow

Meditine Worman

Penosacola Wings

The Preterder

Bingo Srontsheat

Air Farce TEA

BEBCCeRTa

Entertainment Mow

Meditine Yoman

« [
Page 1 of 2.

Figure 18 The JClass LiveTable Print Preview Window.

158

Part | m Using JClass LiveTable

9.1

9.1.1

JGlass LiveTable Beans and IDEs

An Introduction to JavaBeans w JClass LiveTable and JavaBeans

Setting Properties for the LiveTable Bean w Tutorial: Building a Table in an IDE
Data Binding with IDEs wm Interacting with Data Bound Tables

Property Differences Between the JClass LiveTable Beans

JClass LiveTable complies with the JavaBeans specification and includes several Beans
that make it easy to create JClass LiveTable applications in an Integrated Development
Environment (IDE). The following sections outline some principles of JavaBeans, and
provide information about using JClass LiveTable in an IDE. All illustrations display the
BeanBox, JavaSoft’s test container for Beans included in the Beans Development Kit

(BDK).

An Introduction to JavaBeans

Introduced in JDK 1.1, JavaBeans is a specification for reusable, pre-built Java software
components. It is designed to be a fully platform-independent component model written
for the Java programming language. The JavaBeans specification (available at
http:/fjava.sun.com/beans/index.html) enables developers to write components that can be
combined in applications, reducing the total time needed to write entire applications.

The three main features of a Bean are:
m the set of properties it exposes
m the set of methods it allows other components to call

m and the set of events it fires

Properties

Under the JavaBeans model, properties are public attributes that affect a Bean’s appearance
or behavior. Properties can be read only, read/write, or write only. Properties that are

readable have a get method which enables you to retrieve the property’s value, and those
properties which are writable have a set method which allows you to change their values.

159

http://java.sun.com/beans/index.html

9.2

For example, JClass LiveTable has a property called FrameBorderType. This property
specifies the kind of border displayed around the table. To set the property value, use the
setFrameBorderType() method. To obtain the property value, use the
getFrameBorderType() method.

The main advantage of following the JavaBeans specification is that it makes it easy for a
Java IDE to “discover” the set of properties belonging to an object. Developers can then
manipulate the properties of the object easily through the graphical interface of the IDE
when constructing a program.

There are two ways to set (and retrieve) JClass LiveTable Bean properties; use the method
that applies best to your application:

m By using a Java IDE at design-time
m By calling property set and get methods in Java code

Each method changes the same table property. This manual, therefore, uses properties to
discuss how features work, rather than using the method, Property Editor, or HTML
parameter you might use to set that property.

Setting Properties in a Java IDE at Design-Time

JClass LiveTable can be used with a Java Integrated Development Environment (IDE),
and its properties can be manipulated at design time. If you install your IDE after you
have installed JClass LiveTable, you will have to manually add LiveTable to the IDE’s
component manager. Refer to the JClass and Your IDE section in the Installation Guide for
more information. Also, consult your IDE documentation for information on working
with third-party components.

Please see Section 9.7, Property Differences Between the JClass LiveTable Beans, for
information on the differences between the LiveTable Bean, and the data binding Beans.

Setting Properties using Methods in the API

With the exception of read-only properties (which only have a get method), every
property in JClass LiveTable has a set and get method associated with it. For example, to
retrieve the value of the FrameBorderType property of a given cell and label area:

getFrameBorderType();

To set the FrameBorderType property in the same object:
setFrameBorderType(JCTbleEnum.BORDER_IN);

JClass LiveTable and JavaBeans

The JavaBeans included with JClass LiveTable make it easy to create applications and
applets in an Integrated Development Environment. JClass LiveTable provides the
following Beans:

m LiveTable: the core JClass LiveTable Bean.

160

Part | m Using JClass LiveTable

../getstarted/index.html

9.3

9.3.1

m JBuilder Bean (JBdbTable): the same as the LiveTable Bean, but can bind LiveTable
to a database using Borland JBuilder’s DataSet (version 3.0 or greater).

m LiveTable DataSource Bean (DSdbTable): the same as the LiveTable Bean, but can
bind LiveTable to a database using Quest’s JClass DataSource.

Setting Properties for the LiveTable Bean

At design-time, most LiveTable properties are set using simple menu choices or text
entry boxes on the property sheet. Some properties that are set for individual cells or
labels, or ranges of cells or labels, are set using a property editor. The LiveTable property
editors provide a visual interface for setting the properties using a model of the table you

are creating, and a number of ways for selecting the cell(s) or ranges that you want to set
the property for.

To make it easier to use, the LiveTable Bean combines some properties into special
property groups that are set using a single editor. For example, the Style property

combines the Foreground, Background, and Font properties and presents them in a single
editor.

JClass LiveTable Property Editors

The following is a typical property editor with elements common to other LiveTable
property editors:

iclaas. baklc. boans. Coli izaCator

wilh Mais w| [15] eisels Dot [Rsis = [veels
el J & auren - coLr: 2 vewnn 3 Fuldedingiom
R zel Fa2C EEES ol Rie2 o | [u3
e =
T
1abia 1zs

[e] rowe [+ | cawmng

Reset All

Prwi s el m1Tr ralt 1 ral P
Rrw = IR Calb Ra Cal RACH

Each property editor has the same interface for selecting the cells to which a specific
property is applied. On the left is a view of the table (the data reflects the properties you
are setting). On the right are two groups of controls: Selected region provides an
alternate control of part of the table selected; Table Size controls the size of the table
view in the editor. Both of these interact with the table on the left.

It is important to note that the table view is provided only as a visual guide for setting

properties. Its size and contents may not necessarily reflect those of the actual table you
are building.

Chapter 9 m JClass LiveTable Beans and IDEs 161

Selecting a Cell or Cell Range

The purpose of the property editors is to apply a given property to a single cell or label,
or to a range of cells or labels. You can select cells interactively using the mouse or by

using the Selected region controls.

To select cells using the mouse:

Click an individual cell with the mouse to select that cell.

m Click and drag the mouse to select a range of cells.
m Click on a row or column label to select that row or column.
|

between the two.

Note that when you make selections with the mouse, the ranges you select are displayed

Click on a cell, hold down the Shift key and click another cell to select a range of cells

in the Selected region controls, as shown in the following diagram:

Soluvn 3 | o 5 ontuer |__Eolocte ragion

rel e e [P | |

Pime 1 | BTN anll el

How | Gell k1 CL [EE 1]

Fuor 2 Cull F2OC =37
Roww 1 Cell FI2C el TIe el T el 000

To select cells using the Selected region controls:

To select a single cell, choose Range from both the
row and column pull-down menus, then type the
row index and column index for the cell. For
example, the cell that intersects the fourth row and
the third column would be selected by typing 3 for
the Row range and 2 for the Column range
(remember, the rows and columns start at 0).

To select a range of cells, you must specify the row
and column index for the top-left and bottom-right
cells in the range (typically specifying a range is
easier to do with the mouse). Choose Range from
both the row and column pull-down menus, then
type the numbers of the top and bottom rows of the
range separated by a comma; then type the left and
right columns of the range separated by a comma.
This has specified a bounding box for the range.

Selecting Labels
To select labels using the mouse:

m Row labels: click the row label or select a range of row labels and choose Label from

el 3503 o [range = |[1/1] |

Selected region

Row ’rangT ,3—
Column ’rangT ,2—

Selected region

Row range | (0.2
Column ’rangT ,13—

the Column pull-down menu in the Selected region controls.

162

Part | m Using JClass LiveTable

m Column labels: click the column label or select a range of column labels and choose
Label from the Row pull-down menu in the Selected region controls.

It may seem odd to be choosing in the Column box for row labels and in the Row box for
column labels, but it is easier to understand if you consider that you are really specifying

the row of column labels or the column of row labels.

To select labels using the Selected region controls:

To select all row labels, choose all in the Row pull
down menu, and choose label in the Column pull
down menu.

To select a row label, choose label from the
Column pull-down menu. Then choose range in
the Row pull down menu, and type the desired row
number in the text field.

To select all column labels, choose all in the
Column pull down menu, and choose label in the
Row pull down menu.

To select a column label, choose label from the
Row pull down menu. Then choose range in the
Column pull down menu, and type the desired row
number in the text field.

Changing the Property Editor Table Size

Selected region

Row

Il -

&

Column |jahel

.

Selected region

D

Row range

Column |jahel

J

Selected region

Row label

Column | 5y

ilH

Selected region

Row label

Column

I
D

range v

The Table size controls set the working size of the table view in the editor. By default, the
property editors display a 10 row, 5 column table, which is sufficient for most selection. If
you need to edit properties for a specific row or column beyond this limit, use the Table
size controls to enlarge the working area in the property editor. To change table size,

Chapter 9 m JClass LiveTable Beans and IDEs

163

9.3.2

enter a new value in the Row or Column text field and press Enter (or traverse out of the
field); the table view will update to the new dimensions.

Tahle size

|1D rows |5 columns

Note: To change the actual size of the table you’re building, use the Table size controls
on the DataEditor. The DataEditor is the only editor that uses the Table size controls this
way.

You can undo any of your changes and reset the properties to the values they had when
you opened the editors by clicking the Reset All button.

LiveTable Properties

The LiveTable Bean exists because the current generation of Java IDEs do not support
properties in contained objects. While current Java IDEs allow properties in contained
objects to be modified, they cannot yet properly generate code for the property change.
LiveTable works around this problem by exposing many JClass LiveTable properties in
one object. While not all properties are provided, the most common properties are
available.

The following sections list the properties exposed in the LiveTable Bean. Many of the
properties can be set for individual cells/labels or ranges; these properties are set using
visual property editors (see Section 9.3.1, JClass LiveTable Property Editors, for a
description of a typical editor and how to select cells). Note that the illustrations are from
Sun’s BeanBox in the Beans Development Kit (BDK). The properties and editors are

164

Part | m Using JClass LiveTable

listed in alphabetical order; the BeanBox unfortunately does not list properties in
alphabetical order.

about

about ng|:u||\.klgil:luw.ld.l\ul.lr:ans.hlqudilul
displays the gyt yciass
component

version and LU k115 Ld0e

Crtinfirmmatine skt Class arccht=-
pomts to ~Ciass teneral It A BwaL e sLZor
other sources
OfJ01ass Fer oo decunentaicn and suenart

information Lacal: JCLAZS HOME/z0s
CRINC at Siraka Sottwore: bt guest comizoftwaredclass

Dwne

allowCellResize

Setting allowCel1Resize determines)

which part of a cell users can click and allowCellResize|RESIZE L M

drag to resize cells. The default setting, ig:ii‘zﬁrﬁm

RESIZE_ALL, allows resizing by clicking RESIZE ROW Ly

and dragging both row and column cell RESIZE_ALL

borders.

allowResizeBy

Setting a1lowResizeBy determines allowResizety| RESIZE_BY_ALL -

which part of the table can be used to FRa i L

resize rows and columns: cells, labels RESIZE_BY_CELLS

or both. This property works in RESIZE_BY_LABELS A

conjunction with allowCellResize.

autoScroll

The autoScroll property determines if

the table automatically scrolls when the autosCll A0S SCHONTEHONE |

user drags the mouse or traverses past :EIE_EEEE::::_:E:T

the borders of the table. T e AT ls
AUTO_SCROLL_BOTH

Chapter 9 m JClass LiveTable Beans and IDEs

165

cellBorderWidth
Entering a number into the ce11BorderWidth field specifies the thickness of the border
around each cell and label.

celiSize

The ce11S1ize editor lets you set row height and column width values as either fixed pixel
values or variable values. Changes made to cell dimensions are only applied to selected
cells, and cells found in the same rows and columns as the selection.

with Bais v [115] dsela lewnt [asin o+ [1 | nzels

el d Jesaturrn - ol el 3 Evhrded veyim

el Fa2C [E—] el 2020 o | 1
e
el BT ralt e ral b7 el 397 L T

“Fl LT Calt Raa Cal RACT [EETRS

12t aza

e rovs [+ coumne

Meset All

v |

data

The data property, exclusive to the LiveTable Bean and not available in the data binding
Beans, enables you to add and customize table data and row/column labels. There are
two ways to get data in a table — by entering data directly using the DataEditor, or by
specifying a data file (which can contain label information).

Ega com.klg. jclass_table beans D ataE ditor
Data source

® table | Clear Cells || Column Labels || Row Labels |

Cfile | || Browse

Column: 0 |Co|umn:1 |Co|umn: 2 |Co|umn: 3 |

Row: 0 [Celr oG call ROCT |Cell: ROCZ | Cell: ROCS
BN I
Rawe: 1| Cell- R1C0 |Cell: R1C1 |Cell R1C2|Cell: R1ca || 14| T0WS |¢ | columns

Row: 2| Cell: R2C0 | Cell: R2C1 | Cell: R2C2 | Cell: R2C3

Row: 3| Cell: R3CO | Cell: R3C1 |Cell: RAC2 | Cell: R3C3 Reset All
Done

The data file format is a space-delimited text file that can contain Strings, doubles, or
integers. This example file contains 4 rows and 4 columns with no labels:

TABLE 4 4 NOLABEL
0.0" Ty,

Table size

s s s

B

s s s s s

0,1 2° 70,3
1.0 1,1 1,2 1.3
2,07 2,17 2,27 72,3
3,07 ’3,17 ’3,27 3,3’

B B

166

Part | m Using JClass LiveTable

To include reserved characters (like spaces), enclose the data item in single quotation

marks, for example 'The Cuppa'. This example shows how to specify labels:

TABLE 4 3

editHeightPolicy

The table can control the height of a cell editing component using the editHeightPolicy
property. This property can take one of three values:

W EDIT_SIZE_TO_CELL resizes the

component to fit the table’s cell size.

W EDIT_ENSURE_MINIMUM_SIZE resizes

the component to its minimum size.

m EDIT_ENSURE_PREFERRED_SIZE
resizes the cell to the editing
component’s preferred size.

editWidthPolicy

The table can control the width of a
cell editing component using the
editWidthPolicy property. The valid
values this property takes are the same
as those associated with
editHeightPolicy.

focusColor

Choosing a color for the focusColor
property determines the color of the
focus rectangle. The focus rectangle is
the line drawn around the inside of the
cell that currently has focus.

editHeightPolicy) EDIT_SIZE_TO_CELL

hd |

EDIT_SIZE_TO_CELL
EDIT_ENSURE_MINIMUM_SIZE

EDIT_ENSURE_PREFERRED _SIZE [%

editWidthPolicy] EDIT_SIZE_TO_CELL

hd |

EDIT_SIZE_TO_CELL
EDIT_ENSURE_MINIMUM_SIZE

EDIT_ENSURE_PREFERRED _SIZE [%

[sun.beans_editors. ColorE ditor

- I 255,0,0 red

darkGray
Done |black

pink
orange
vellow
green
magenta

Chapter 9 m JClass LiveTable Beans and IDEs 167

focusIndicator

The focusIndicator property
determines how cell focus is shown to
the user. This indicator appears inside
the cell that currently has focus.

The default is FOCUS_RECTANGLE.

frameBorderType
Setting the frameBorderType

focusindicator| FOCUS_RECTANGLE

FOCUS_NONE
FOCUS_HIGHLIGHT
FOCUS_RECTANGLE
FOCUS_DASHED_RECTANGLE

property determines what type of frameBorderType|

BORDER_NONE

border is used for the frame
enclosing the cell and label areas.
Choose a border type from the pull-
down menu. Note that the
FrameBorderWidth property must be
set to greater than 5 in order for the

BORDER_ETCHED_OUT
BORDER_IN
BORDER_OUT
BORDER_PLAIN
BORDER_FRAME_IN
BORDER_FRAME_OUT
BORDER_THIN

etched border types to be visible.

frameBorderWidth

BORDER_NONE

Enter a value in the frameBorderWidth property field to determine the thickness of the
frame around the cell and label areas of the table in pixels.

frozenCellLayout

Working with the frozenCelllayout property editor sets whether there are any frozen
rows or columns, and specifies their position in the table. Frozen rows can be placed at
the top or bottom of the table, and frozen columns can be placed on the left or right side

of the table.

E‘g«; com_klg.jclazs table beans FrozenCellL ayoutE ditor

Frozen Cells Frozen Cells Placement
Rows m Row
Columns [o | Column

Colurmn: 0 | Column: 1 | Caolumn: 2 | Calumn: 3

Rawe: 0 |Cell: ROCO| Cell: ROC1

Table size
Cell: ROC2 | Cell: ROC3

Rawe: 1| Cell: R1C0 | Cell: R1C1
Row: 2| Cell R2C0 | Cell R2C1
Rowe: 3| Cell: R3C0 | Cell: R3C1

Cel: R1C2 | Cell: R1C3
Cell: R2C2 | Cell: R2C3
Cell: R3C2 | Cell: RIC3

D rows u columns
Reset Al

labelLayout

Working with the Tabellayout property editor offers full control over label attributes.
You determine if row or column labels exist, then specify offsets and label placement.

168

Part | m Using JClass LiveTable

Label offset is the distance in pixels between the edge of the table and the labels. You can
place row labels at the top or bottom of the table, and column labels at the right or left
side of the table.

Ega com.klg.jclass_table_beans.Labell ayoutE ditor

Label Display Labels Offset Labels Placement

[v] Row label display Row [o_ | pizels Row Left v
[v] Column label display Column E pizels Column | tgp v

Column: 0 |Co|umn:1 Column: 2 |Co|umn: 3 |

Raow: OfCell: ROCO| Cell: ROCT |(Cell: ROCZ |Cell: ROC3
] rows columns
Row: 1| Cell: R1CO | Cell: R1C1 [Cell R1C2 |Cell: R1C3 u u

Row: 2| Cell: R2C0 | Cell: R2C1 Cell: R2C2 | Cell: R2C3

Row: 3| Cell R3C0 | el R3IGT Cell R3G2 | Cell R3G3 Reset Al
Done

Table size

leftColumn
Enter the column number in this field to specify which is the left-most column when
displaying the table.

marginHeight
Enter a value in the marginHeight field to determine the height of the top and bottom
margins of each cell.

marginWidth
Enter a value in the marginWidth field to determine the width of the left and right margins
of each cell.

minCellVisibility

By default, when a user traverses to a cell that is not currently visible, LiveTable scrolls
the table to display the entire cell. Enter a percentage value in the minCel1Visibility
field to set the percentage of the cell that is scrolled into view when it is the target of a
traversal.

When MinCel1Visibility is set to 100, the entire cell is made visible. When
MinCel1Visibility is set to 10, only 10% of the cell is made visible. If
MinCel1Visibility is set to 0, the table will not scroll to reveal the cell.

sBLayout
Working with the sBLayout property editor offers full control over visual and behavioral
scrollbar attributes:

The Scrollbar Display settings determine if horizontal or vertical scrollbars exist. If so,
you can also determine if the scrollbars are displayed at all times, or only when the table’s
contents exceed the table’s size.

Chapter 9 m JClass LiveTable Beans and IDEs 169

The Scrollbar Position settings determine whether scrollbars are positioned by cells or at
sides. The former option places the scrollbar beside the cell/label viewport, while the
latter places the scrollbar beside the edge of the table area. Note that there is no visual
difference between the two options unless the cell/label area is smaller than the table
area.

The Scrollbar Attachment settings determine how far along the side of the table the
scrollbars extend. To cells (default) places the scrollbar along the edge of all visible, non-
frozen cells, while To table places the scrollbar along the edge of the entire table.

Scrollbar Offset sets the amount of space, in pixels, between the scrollbar and the table.

Scrollbar Tracking determines the type of feedback a user receives when they click and
drag a scrollbar. Live tracking refreshes the table as the user scrolls. The Column
number/Row number and Row/Column options do not redraw the table until the user
stops scrolling by releasing the mouse button.

However, to offer the user feedback, the Column number/Row number option
displays a box with the current cell number, while the Row/Column option displays the

170

Part | m Using JClass LiveTable

actual contents of the current cell. The row or column from which the displayed contents
are taken is determined by the number entered in the Row or Column fields.

Egj com.klg.jclass_table beans. SBLayoutEditor [x|

Scrollbar Display Scrollbar Position

Horizontal |pg needed Horizontal Bycells ¥
ertical As needed v ertical Bycells

Scrollbar Offset Scrollbar Tracking

Horizontal E pixels Horizontal |} e - row

Vertical [0 | pixels vertical [je

Calumn: 0 |Co|umn: 1| Column: 2 |Co|umn: 3 |
Row: 0||Cell: ROCO| Cell: ROCT |Cell: ROCZ | Cell: ROC3

Tows columns
Row: 1|Cell: R1CO|[Cell: R1C1 | Cell: R1C2 | Cell: R1C3 u u

Row: 2| Cell: R2C0O | Cell: R2C1 | Cell: R2C2 | Cell: R2C3
Row: 3| Cell: RICO | Cell: RICT | Cell RIC2 Cell: RICI

selectedBackground

Selecting a color for the
selectedBackground property determines
the background (highlight) color for cells
that have been selected. The default is the
foreground color for the cells.

selectedForeground

Selecting a color for the
selectedForeground property determines
the foreground (highlight) color for cells
that have been selected. The default is the
background color for the cells.

Table size

Scrollbar Attachment

Horizontal w
vertical[Tocells |

- column

Eé, sun_beans._editors. ColorE

- 255,0,0

ditor

Done

darkGray -
black

pink

orange

yellow

green

rnagenta A

[sun.beans. editors. ColorE

ditor

- I 265.0,0

red z

Done

darkGray
hlack

pink
orange
yellow
green

magenta -|

Chapter 9 m JClass LiveTable Beans and IDEs

m

selectIncludeLabels
By default, when a user clicks a label,
the entire row or column, including the

) A) . selectincludeLabels|True hd |
label, is highlighted. To change it so o
that the label is not highlighted with the False s
rest of the cells, set this property to
false.
selectionPolicy
The SelectionPolicy property
controls the amount of selection selectionPoicy) SELECT_NONE 4|
allowed on the table, both by end- g;t;g—:::;;
users and by the application. SELECT RANGE b

SELECT_MULTIRANGE

spannedCells

The spannedCel1s property editor lets you visually implement cell spanning with your
table. Use the displayed table to select which cells are to be combined. The cell found at
the top left corner of the spanned range becomes the new cell.

Ega com.klg.jclass_table beans 5pannedCellsE ditor
Spanning cells

Columm: O | Column: 1| Column: 2 | Column: 3 | Selected region

Row: 0|Cell: ROCO| Cell: ROCT | Cell: ROCZ | Cell: ROC3 | Row range w| [0

Row: 1|Cell: R1CO[Cell: R101 |Cell: R1C2|Cell R1C3
Row: 2| Cell: R2C0 |Cell: R2C1 |cell: R2c2 |cel: R2c3 | “OMMA |range w [|0

Row: 3| Cell: R3CO | Cell: R3C1 | Cell: R3C2 | Cell: R3C3

Table size

u rows u columns
Reset all

172 Part | m Using JClass LiveTable

styles

The styles property editor gives you control over cell style options, including: cell

colors, font attributes, editable and traversable states, and alignment in cells.

2 Lvw ki juloos.Lable. boowa. Stdol Tt

cator Bur et s Inlu ation
| rorearounn | wackrouna Sides Ctebls [Troversable
Ford “we sample
[seiit ~[[=| Ez Ip s Colwrre u|Salren:
Culur muile EERdY Coll sl

Algurment

call

Vortica Horizoma :“':l"' Pl
Calir T Calrat | Calia T Al 3 Selec ed receon
Howe L) el =IO Hl[::ll b (TRl PINCA a0 <00 Row rang: w |1
Rowe (Cel-R1CA Call BTG |Gl PAS2 | Cal 2700
B |Cel RICN ol RIEA | Gel PRR |0l 2903 Colren range v | [
Bow 3 el R Sl S0 el BP0 D 0
Table size
n ows |4 colimng

You can also use the styles property editor to work with and set all border properties for
cells in the selected area. By using the pull-down menus, you can set which cell sides have
borders, what type of border is used, whether clip hints are displayed (should the cell’s

contents exceed its size) and what the selected cells border color is.

Borders

Sides All -
Type Thin -
Clip hints all -
Color mode | Cell border - |

ICell background
ICell foreground
ICell border %

When choosing border or cell background/foreground colors, the color selection options

offer precise control. You can select a color by using the Hue/Saturation/Brightness

Chapter 9 m JClass LiveTable Beans and IDEs

173

9.4

(HSB) panel, the Red/Green/Blue (RGB) Panel, or the color swatch. All three methods
offer color previews for both text and objects.

F=4 Backaround Color

Swatches [HSB [RGB |

Red 101
o 85 170 255
[: 25 |

Green 154
1] 85 170 255
—Qi_

Blue 192

- 0 85 170 255

Preview
=

D Sample Text Sample Text

[ok || cancel || Reset

topRow
Enter the row number in this field to specify which is the topmost row when displaying

the table.

Tutorial: Building a Table in an IDE

The following exercise will guide you through the steps to produce a JClass LiveTable
program in an IDE. The exercise is the same as the one in ‘Hello Table’ -

JClass LiveTable Tutorial, in Chapter 1, which explains how to build a table using the
API The example uses JavaSoft’s BeanBox IDE in the Java BDK. This tutorial assumes
that you have some experience working with a Java IDE. If you are unsure how to get the
LiveTable Bean into your IDE, please consult the IDE documentation.

This program displays information about orders for ‘The Musical Fruit’}, a fictional
wholesale coffee distributor, based on the following data:

Customer Name Order Date ltem Quantity (Ibs.) | Price/Ib.

The Cuppa 11/11/97 French Mocha | 60 $7.01

The Underground Cafe 11/14/97 Brazilian 112 $6.80
Medium

RocketFuel and Cake Cafe | 10/30/97 Espresso Dark | 300 $8.02

1. We apologize for the addition of yet another coffee reference in an already crowded pantheon.

174

Part | m Using JClass LiveTable

Customer Name Order Date ltem Quantity (Ibs.) | Price/Ib.

WideEyes Coffee House 11/12/97 Colombian/Ir | 120 $5.30
ish Cream
Flavored

Jitters Caffeine Cavern 10/01/97 Ethiopian 80 $7.50
Medium

Twitchies on the Mall 12/06/97 French Roast | 160 $14.50
Kona

Quest Software 12/12/97 Colombian 22,000 $5.28

9.4.1 The Basic Table

The first step is to create a default table. In the BeanBox, click the LiveTable component
displayed in the ToolBox, then to insert the table component, click in the BeanBox
window. The BeanBox displays a default-sized (10 rows by 5 columns) table with visible
row and column labels:

Courn J Celuran: 1 Galurn; Salirn: calurrn 4
T 1 [EarFimn el Fac cHl-ne mal RACE call- RN 4
S 1 rall- R1 71 el R el R ~al Rt el R
Saw 2 ol R2T0 el R ol 2t ol RACY il 24
S 2 Cdl: ka0 coll p2Ct Cal: Rac? 2l RacE Coll: Faz
T # Gdl: 1420 Gl meC Gall: 457 S5l ReGa Gll: 454
e Gl o Celr a1 el LB FH TN GRSy
= 3 Cdl, R0 el RACT Gl FACE Sl ROGS il FOS4
Saw T L RT 20 ChllL RTC Gl RTCE ZalRIGH Al o4
= 2 LR LEIL Ry L8 by, 0y A EECS L3l E o
2w 4 el RY0 CEll HYCT Rl RMCY 2l Ry R4

Supplying the Data

The data for the table is contained in the data source. You can provide the data by
entering it into the table using the DataEditor, or by specifying that a file is the data
source. Start the DataEditor by clicking the data property on the property sheet. Notice
that the editor defaults to using the table as the data source.

Ega com.klg jclass table. beans D ataE ditor
Data source

® table | Clear Cells || Column Labels || Row Labels |
Cfile | || Browse

The data we want to display is stored in a file. To use this file as the data source:

1. Click Browse.

2. Navigate to the examples/table/datasource directory of your JClass LiveTable distribu-
tion.

Chapter 9 m JClass LiveTable Beans and IDEs 175

3. Choose the tutorialdat.ixt file.

When you choose the file, the table display in the editor populates with the data from
the data source. Also, the Table size fields should be disabled, as shown in the
following illustration:

Ega com.klg. jclass_table beans D ataE ditor

Data source
) table
® file |D:IexampIeS‘ttable\dataSource‘ttutorialdat.bcl | | Browse
he Cuppa 1111197 |French Mocha
The Underground Cafe |11/14/87 |Brazilian Medium Table size
RocketFuel and Cake 10430/97 |Espressa Dark
rows columns

WideEyes Coffee House | 111 2597 | Colombian-lrish Cream Flav'

Jitters Caffeine Cavern |10/01/97 |Ethiopian Medium Roast E‘
Reset all
[« []
| Done

4. To close the editor, click Done. The table displayed in the BeanBox now shows the
values from the data source:

141057 Frenzh Mocha ot .31
Tha Undemraime O 100 die7 RrzFllzn ednm 112 FF 30
PocketF il and Cag 1007 0ICF E=aressoDars o 2
WileEyes Coffea Hp1 10 21E7 Cooraian-risk T4 120 2
Attarz Caflainz > swi 1 CILTIET Etticpian Madfiur R 80 .50
Twdtekrrs nr the bal |1l RET rrench Poas Crra (100 Mean
Quisst Software Ine. |12 207 Coorian 2z,000 e.an

9.4.2 Improving the Table’s Appearance

Using some of the properties for modifying a table’s appearance, you can easily move
from the basic table to a more interesting table that’s easier to understand, and easier to
use. The following sections explain how to set these properties using an IDE.

Adding Column Labels

The table currently displayed in the BeanBox is not very useful to an end-user. Not only is
it not interesting to look at, but you cannot tell what kinds of information the various cells
contain because there are no column labels. In the original data outline for the table, we
indicated that we wanted the following column labels:

Customer Name
Order Date
Item

Quantity (Ibs)
Price/lb

176 Part | m Using JClass LiveTable

Labels are cells that can never be edited and can contain any Object (Strings, images,
Integers, and so on). Notice that since our data source contained no data for the labels, the
LiveTable Bean does not display any labels in the BeanBox.

If you had entered the table data directly into the Bean, you could add the labels using the
DataEditor. But since the file is the data source, adding the labels must be done by
editing the file. For convenience we have included the labels in another data file. Load
this data file using the DataEditor as before. The new file is called tutorialdat-labels.txt,
located in the examples/table/datasource directory of your JClass LiveTable distribution.

By default, the table displays row and column labels that have values. This is controlled
by the 1abellayout property. Now that you have column labels, the table in the IDE
should update to look something like the following illustration:

Customer Mame |CrderDaie |Item |I3uantity dhs) |Pricailb. |
he Cuppa 111087 French Mocha 1] 7.1
The Undergroand G, 11714597 Brazilian Medium 112 F6.£0
N RocketFuel ard Cak 10030097 Esprassao Dark 300 farcz
Il WideEyes Coffea Hg 11112097 Colomhian-lrsh Crg 120 §5.20
_.Jitters Caffeine Cavg 10/01/97 Ethiopian Medium R 80 §7.£0
D Twitchys on the Mall |12/06/97 French RoasiKona 160 §14 480
:QuestSof‘tware Inc.| 1201 2197 Colomhian 22,000 $5.28

Notice that if you click a label in your table, you do not get the focus rectangle the way
you do if you click a cell: labels cannot be edited and cannot be the target of a traversal.
In certain circumstances, clicking a label performs an action (see Section 9.4.3, Adding
Interactivity), but in this case the labels do not perform any interactive function.

Chapter 9 m JClass LiveTable Beans and IDEs 177

The labels have a default border and color set to make them stand out from the table. In
this exercise, we will take it one step further by changing the colors and fonts of the labels
using the StyleEditor, accessed by clicking the styles property on the property sheet:

Lumt Kl jidas . Lable_boans. Stel litu

Calor Bur i s Interation
| rorearaunn ‘ BACK OUNG Sides Coltablc: Traversakke
Font “we Sampie
[serir w[v [=| = _7]| vpnns Colurh: U Zalurc
L S
Culur mude o B el "
Algliment R Cell Zall
Vorticd Horiznma siog oW 2| Call Zall
Calir 1 Caleead [Calinee 2 Gl 3 SBIECTE MEp0N
R 1 CRCRTCI] G300 R 1GT GRE P2 G310 20 Row g = |
Ao |Crl-RICA G2l R1GT Crl P102| G310 3700 S —
Row 2 |Cal- RICN Call R2GA |Gl PR3 |Gl 3101 Coluran ranes v [J |
How: 2 |isel: RALU Call k207 | Cel BECL el <30
Tabe size
I ows |4 columns

To begin, select the column labels. In the Selected region box:

1.
2.

Choose label from the Row pull-down menu.

Choose all cells from the Column pull-down menu.

This applies any settings you choose to the column labels. Next, choose the font and
size of the label text. In the Font box:

Choose Times New Roman from the font pull-down menu.

Choose 14 from the point size pull-down menu.

Note: The type of font displayed on a user’s system depends entirely on the fonts that

are local to that user’s computer. If a font name specified in a Java program is not
found on a user’s system, the closest possible match is used (as determined by the

Java AWT).

Finally, change the color of the label text. In the Color box:

Choose Foreground, then select a white color from the Swatches tab.
Choose Background, then select a blue color from the Swatches tab.

You should be able to see these changes in the sample table in the StyleEditor. Click
Done to commit the changes and return to the BeanBox.

178

Part | m Using JClass LiveTable

Your changes are now visible in the BeanBox. You now have a basic table with labels
colored and text formatted to differentiate them from the rest of the table cells.

Castormer MNatne Cirder Diate A

[hecupps — J11anr7 Franch Mocha 63
The Underground Gafoc (110 4507 Brazilian Medium 12
RacketFLel and Cake (10030097 Espresso Dark 330
WideEyes Cullee Housy 1112097 Culurnibigrn-lris Creary, 120
Jiters Cemelne Cavern 1001487 Ethlaplzn mMedlum Roag) 82
Twitchys on te Mall 1206587 French Roast Kons 130
Cuest Software Inc 121297 Colombian 22,000

[A[E

Label Layout

You can change the position of the labels relative to the table, and control their distance
from the table to help make the labels even more distinctive. By default, labels are
displayed right against the table border. You can make it stand off by using the

Labellayout editor, accessed by clicking the 1abellayout property on the property
sheet:

Ega com.klg.jclass_table beans Labell ayoutE ditor

Label Display Labels Offset Labels Placement

[¥] Row label display Row [0 | pixels Row — jet =

[v] Column label display Column E pizels Column | 1gp -

Calumn: 0 |Co|umn:1 Calumn: 2 |Co|umn: 3 |
Row: 0[Cell ROGU| Cell: ROGT | Cell: ROGZ | Cell: ROC3
Row: 1| Cell- 10 | Call: R1G1 [Cell R1G2|Cell Rica | | 1| 1ows [+ | eolumns
Row: 2| Cell: R2C0| Cell: R2G1T | Cell: R2G2 | Cell: R2C3

Row: 3| Cell: R3CO | Cell: R3C1 |Cell: RAC2 | Cell: R3C3 Reset All
Done

For this exercise, you are going to add some space between the column labels and the top
of the table and take out the row labels. In the Labellayout editor:

Table size

1. Inthe Label Display box, both row and column labels are selected by default. Clear
the Row label display check box.

2. In the Labels Offset box, change the value in the Column field from 0 to 2 pixels.

The changes are immediately reflected in the editor and the BeanBox.

3. Click Done to commit the changes and return to the BeanBox.

Chapter 9 m JClass LiveTable Beans and IDEs 179

Having changed the alignment and font, your table should now look something like the
following illustration:

o tC U L 3.0
111097 renc Mocaa 3] .01

Tho Undzrgrou-d Cafo |1 41467 3rszilian Med um 112 FE20
Roelczi=ocl ane Cake (1 030097 Zapressd Cadl 310 He02
‘WideZves Cafes low. [11297 Sccmrhianrish Srea. . 120 SE20
itters Haffeive Cavern 100097 Zthiopian Mediur Re... 03 T7.50
Twilc 135 01 1= Wall 109y “rency Foastkons 130 450
Cuest Sulware e |1 d1zar SLLnibian 32000 $£.28

Changing the Cell Borders and Thickness
JClass LiveTable has properties that you can use to change the way the cell borders and
cell spacing appears.

There are a number of choices for cell borders, outlined earlier in the description of the
style property. For the example program, you’re going to thicken the cell borders and
change the border style. This involves working with the cel1BorderWidth and styles
properties on the property sheet.

1.

First, to change the cell border width value, simply edit the value in the text box for
the cel1BorderWidth property. Set the value to 2 instead of the default (1).

To change the cell border type for the table cells and labels, you need to call the
StyleEditor (again, click styles in the property sheet).

To begin, select all non-label cells. In the Selected region box, choose all cells from
the Row pull-down menu and choose all cells from the Column pull-down menu.

Now that you have selected all cells, change their border:
Click the Types drop-down list in the Borders box and select border in.

To change the border type for the column labels, you now need to select all column
labels. In the Selected Region box:

Choose label from the Row pull-down menu and choose all cells from the Column
pull-down menu.

This applies any settings you choose to the column labels. Now, change their border:

Click the Types drop-down list in the Borders box and select border out.

180

Part | m Using JClass LiveTable

The table should now resemble the following in the BeanBox:

Sustomer Mamz Gy = Quant;) Priceth.
1ne vupna e Frencn Moo a b]
The Unrietgnoind Ca'e |70 497 Nrz7ilian becfioem 1 Ll
Sezhefluzl ard Cake (1001097 Cepresso Datk 01 5112
FlideBres Calee Huc.. |17 287 Culurnbiarer s Zea. . | 2D $3.30
Jlers SaTere Cawert 10401787 Eliapicr Meciu-i Ry |80 &7.50
Tectohes omcho Mall - [1240807 Fronch Roccikons ‘81 %160
GQues. Sullwere lnu 13- 297 Colcmbian 22020 1.8

9.4.3 Adding Interactivity

In a real-world situation, our example table would likely be used to track orders and
accounts with a large number of customers. Your users will likely want to update the data,
sort the information displayed in the table, and select sections of the table to perform
operations on them.

We’ll add some basic user-interactivity to our example table to give you a sense of some
of the things JClass LiveTable can do. You can explore user-interactivity further in
Programming User Interactivity, in Chapter 6.

Controlling Cell Editability

Using the LiveTable Bean, the data source is editable by default. You can change the
editability of cells using the EditState property. Note that in the data source, Quest
Software has ordered 22,000 pounds of coffee. This is obviously a typographical error,
but we’re going to make sure Quest Software gets all 22,000 pounds of coffee by not
allowing that cell to be edited.

Invoke the style editor by clicking styles on the property sheet.

In our original data, the cell containing the value 22,000 was located at row 6, column 3.
(Recall that arrays in Java are zero-based — thus, the row and column indexes begin at
zero.) You can either select this cell with the mouse, or type these values in Row and
Column fields in the Selected region box.

Note that each cell in the editor’s table reflects its current traversable and editable state. A
cell that is editable must also be traversable, but a cell that is traversable does not
necessarily have to be editable. For this particular cell, leave traversability on, and simply
unset its editability:

1. In the Interaction box, clear the Editable checkbox. This makes the cell traversable
but not editable, as is displayed in the editor’s table.

2. Click Done.

Now we can be sure that nobody will change Quest Software’s coffee order!

Chapter 9 m JClass LiveTable Beans and IDEs 181

Enabling Cell Selection

JClass LiveTable provides methods that set how users can select cells, ranges of cells, and
entire rows and columns. Selection is enabled by setting the SelectionPolicy property.
By default, cell selection reverses the foreground and background colors of the cells to
highlight the selection. You can enable selection by choosing a value from the
SelectionPolicy pull-down menu in the LiveTable property sheet.

selectionPolicy |SELECT_NONE j
SELECT_MOME

SELECT_SIMGLE

SELECT_RAMGE

1. Choose SELECT_MULTIRANGE. This allows users to select one or more cells in rows or
columns by clicking and dragging the mouse, or using keyboard combinations.

By default, setting the SelectionPolicy property enables selection of entire rows or
columns by clicking on the row or column label. When the user clicks on the column
label, the column display, including the label, is reversed to highlight the selection. You
can configure the table not to highlight the label by setting the SelectIncludelabels
property to false.

Resizing using Labels Only

By default, users can resize rows, columns, and labels by clicking on their borders and
dragging to resize. You can change this functionality to have the resize capability
available only from the label; to resize a column, the user resizes its label rather than its
cells. LiveTable provides the allowResizeBy property to enable this feature. In the
property sheet, change the allowResizeBy property to RESIZE_BY_LABELS.

Changing the Focus Rectangle Color

Finally, some of your users have complained that it’s hard for them to see what cell
currently has focus because the focus rectangle is plain black. You can change the color of
the focus rectangle easily by setting the focusColor property:

Ega sun.beans. editors. ColorE ditor

- I 255,0,0 rod <]

hlack =
Done | CEEMMNY
pink

orange

yellow

green

magenta

cyan |
hlue hd

When you click on the FocusRectColor property, the default color chooser appears.

182

Part | m Using JClass LiveTable

9.4.4

9.5

Choose red from the color chooser. Now your users should be able to see the focus
rectangle clearly.

The Final Program

Your simple table program has evolved into an interactive, easy-to-understand utility.
Although it’s far from being a real order-tracking system, using a few more

JClass LiveTable features, it soon could be. The following illustration shows all of the
visual changes that you’ve accomplished. From here you can try out other properties and
see how they affect the table’s appearance and behavior.

Clastarsr M= Crder Tate - Cuantity {Th: 3 Priceth

Te GLEaa 111087 Ferch Yodha ali} ET.01
11e Urc2rgroond Zake 110 287 Hrazihan Mzdim 174 Bt HL
FockatFucl ard Cake|[112007 Ecprosco Dark 203 %205
WrideSees Coffes Hou. 114 287 Culnnibiar-lizh Crea.. |123 $3.30
Jiters Catiene Cavam (1101087 Ethiopiar Medunbkc . |80 b oal
[Twite1vs onthe Mzl 130607 Frarch Qo3ct Korma 161 ¥ 1.0
Cu=st Softwarslne 1242047 Galamkiar 220C0 §0.2%

Data Binding with IDEs

If you are using an IDE to develop Java applets and applications, the LiveTable data
binding Beans allow you to bind a table with a JDBC-compliant data source, an ODBC
data source (by using the JDBC-ODBC bridge), or an IDE-specific data source. The
data binding Beans are loosely based on a Model-View—Controller (MVC) data
mechanism. The direct link between the table component and the IDE’s data source
offers an easy and efficient way of representing and modifying data in your tables.

As outlined earlier in Section 9.2, JClass LiveTable and JavaBeans, LiveTable includes
data binding Beans: JBdbTable is used with JBuilder’s DataSet and DSdbTab1e is used
with any JDBC data source (and JClass DataSource) in any IDE.

The principles of data binding and connecting to a database in any environment are
similar. The following sections assume that you are:

m familiar enough with your IDE or other development environment to create and
work with basic application projects

m familiar with setting up database connectivity in your development environment’s
projects

Note: The examples used in the following sections use a sample JClassDemo database
(demo.mdp) that can be found in the JCLASS_HOME/demos/common/databases directory. As
such, these examples are primarily meant to illustrate data binding with IDEs, as you will
not be able to duplicate them if you do not have the sample database.

Chapter 9 m JClass LiveTable Beans and IDEs 183

9.5.1

Data Binding LiveTahle with a JBuilder Data Source

To data bind to a JBuilder’s DataSet using JBdbTab1e, you require:

m Borland JBuilder 3.0 or greater

m JDK 1.3.1 or greater

m JClass LiveTable’s JBdbTable Bean

m adata source properly set up in Windows’ ODBC Data Source Administrator
Creating a Java application that contains a data bound table in JBuilder requires an

understanding of database connectivity in a JBuilder project. Binding your table with a
database in this IDE involves:

m creating the project and laying out the UI

®m adding and configuring the Database component

m adding and configuring the QueryDataSet component

m adding and configuring the LiveTable data binding Bean (JBdbTable)

There are different methods and components with which a JBuilder project with database
connectivity can be created. The following provides a general overview of data binding,
as it is assumed that you are familiar with working with your IDE. For specific
information, please refer to your JBuilder documentation, where comprehensive tutorial
and reference information can be found about setting up an application project, adding
the Database and QueryDataSet components to manage the JDBC connection, and
communicating with the database.

184

Part | m Using JClass LiveTable

Let’s begin with a basic project in JBuilder, where the UI components are set up,
readying the project for the addition of the database and data binding components.

o Mojcct db_cxemple. jpr - D:\WDuilderdimyprajccti\db_exampleA ramc] .jova

A S

—
= 0 o esanpe.on & = |
& g

le. bernl

42 ub_szanpls Frans
F-Cam
[ER=1 -
; L@ = Root?anei-
el M
- Dera ccess
] Blher

Figure 19 Example project work space with defined Ul components, ready for database components.

Adding the Database Component to the Project

In the Data Express tab of the Component Palette, click the
borland.sql.dataset.Database object, designating it as the component to be added.
Next, click an empty area of the Component Tree. The database object is added to your
project.

swing | swihgCorahers Dats =iress |eoswing | More akSang | daswirg weters | JEcL | szclcomaners | son | Gues | cerer
| i I E EE E H i

! == [E=h [i 5 =

[LE2 R I E,F“_ ;‘) =

|conla-cr|urwl d= 2ql dataicd Dobabozc

Figure 20 Selecting the Database component on the Component Palette.

Setting the Connection Property for the Database Component

Now that the database object has been inserted into your project, you need to define the
JDBC Connection information for this object. This is done by setting the connection
property in the Inspector, when the database object is selected.

It is here that you select the data source that you want bound to your table component.
All available data sources and DataGateway sources recognized by JBuilder are listed and
available to be set as the main data source. These data sources are defined with Windows’
ODBC Administrator. In this example, the demo.mdb database (JClassDemo) is selected.

Chapter 9 m JClass LiveTable Beans and IDEs 185

Adding the Database component and setting the connection properties adds the following
lines of code to your project:

import borland.sql.dataset.*;
béﬁabase databasel = new Database();

déﬁabasel.setConnection(new com.borland.dx.sql.dataset.
ConnectionDescriptor("jdbc:odbc:JClassDemo", "", "", false,
"sun.jdbc.odbc.JddbcOdbcDriver"));

This code introduces the database component (in this example, it is named database]) and
points it to the data source that you define (in this example, the sample demo.mdb
database, JClassDemo is used).

Adding the QueryDataSet Component to the Project

Now that you have set up the link between your project and the desired database, you
need to interact with that database. In the Data Express tab of the Component Palette,
click the borland.sql.dataset.QueryDataSet object, designating it as the component to
be added. Next, click an empty area in the Component Tree. The database query
component is added to your project.

sung | swhgGoniahers Data Cguess | chsvery | viore Sy | abswingnozels | 3oL | BC_ cotarses | amT | Juest | ome |
! == [== [[Fity Tom] = - =5 5
(1 E‘ E EREJE @ — EJ_I-, o | @_s ﬁ?

L}JI vhola kol dsleasl Gun yDd cSel

Figure 21 Selecting the QueryDataSet component on the Component Palette.

Setting the Query Property for the QueryDataSet Component

Now that the QueryDataSet component has been added, you need to define which parts
of which database will be used. To do this, you need to query the database with an SQL
statement. This is done by setting the query property in the Inspector, when the
QueryDataSet object is selected.

186

Part | m Using JClass LiveTable

In the query property area, select the database you just added, and browse the tables if
you have to get the proper information for your table. Enter the SQL statement that
represents your needs. Test it to be sure that such a query will be successful.

[query [x]
Query |Parameters |

Database

Idatabase1 j SAL Builder | Elrowsetablesl

SAL Statement
zelect * from customer ;I

¥
A ¥

|7 Execute query immedistely when opened

I_ Place SGL text in resource bundle Test query |

Load Options
ILoad all rows j

QK | Cancell Help |

Figure 22 Entering the query statement to the selected database.

Adding the QueryDataSet component and setting the query property adds the following
lines of code to your project:

QueryDataSet queryDataSetl = new QueryDataSet();

dﬁéryDataSetl.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor
(databasel, "select * from customer", null,true,lLoad.ALL));

This code defines a new QueryDataSet component (in this example, named
queryDataSet1), which lets you read and write to and from the database by way of SQL
statements. It also defines which part of the database is extracted, and bound to your table
component. In this example, the Customer table is selected with the query statement.

Chapter 9 m JClass LiveTable Beans and IDEs 187

Once the project’s database and database connectivity components are in place and
properly defined, the table component can be added, and the data binding can occur.

o Fruject Uli_cxample.jn - D.\JBy T Wa_escnpk’ !
= {20 £ eeaTmEIT T

& b ousnpls hin

oy

PR —

Figure 23 The project is ready for the table data binding component.

Adding the LiveTahle Data Binding Bean to the Table

When you installed JClass LiveTable, its JBuilder components, including the LiveTable
data binding Bean, were installed on JBuilder’s Component Palette. If they are not there,
please refer to the JClass and Your IDE section in the Installation Guide for information
about manually adding JClass LiveTable components to JBuilder’s Palette.

Click the table data binding Bean on the Component Palette, designating it to be added.
Next, insert the data binding table component by clicking anywhere in the component
tree (the table will be its default size), or by dragging and defining its size in the UI
Designer.

Ssaanca | ~irgytntanees | ats bvpeess | choens | Were dasvang | roseerg des |40 | HD Cataners | s Ouest [orrer]

Tl P f
Y EC Y “;
|ca|n My cass baale o buildor 1JckTab cl

Figure 24 Selecting the data binding LiveTable component on the Component Palette.

Setting the Dataset Property for the LiveTable Data Binding Component

Now that the data binding table component is part of the project, you need to define its
DataSet. This is done by setting the dataSet property in the Inspector, when the table
component is selected in the Component Tree.

188

Part | m Using JClass LiveTable

It is here that you set the property to the QueryDataSet component name that is part of
your project. In this example, the name of the component is queryDataSet]. This action
adds these lines of code to your .java file:

import com.klg.jclass.table.db.jbuilder.*;

JBdbTable jBdbTablel = new JCdbTable():
jédeab]el.setDataSet(queryDataSetl);
this.getContentPane().add(jBdbTablel, BorderlLayout.NORTH):

This code introduces the LiveTable data binding Bean, and connects it to JBuilder’s
DataSet.

4 Prical d_aioaph.r D:JEukorenymrojootsh b_aranplduamnt jova

fi = R S5 u
B e I
T AL weaH 1 H Tame nare aiklress 5
"y 3 El [z 525 adin 14 F oneet dvi... |Romi 2
1 [et sz U3 o B Ma»"cj
8 1 = 11 [T g
1 11 Weifhan REETLY S sz tivas kel
9 eoanze hare L 1.2 _ars A ary AU chemyds [uame
ERsll] 3 1 e e NNy o | P
Ea? _] 177 Y srihen Im.T valirz= |[Pa=gl
'r ‘;‘i‘:::::’ﬁ T 1= dal il V&R Pl = [R
| ‘ £ ! Inerdn ol 71 Pk s in (M
ERE]ETEELS il 1z 1 e il [0 Smngc g [P Y|
[LV | | |
U et
et

Figure 25 The project now contains a data bound table.

Now that the table component has been linked to the QueryDataSet component, the data
bound table is part of the project. The project can now be compiled and run, or continued
to be developed.

9.5.2 Data Binding Using JClass DataSource

Using the DataSource data binding Bean (DSdbTab1e), you can bind a table component
with any JDBC-compliant data source. The DSdbTab1le Bean works in any IDE" but can
also be used if you are developing an applet or application without one. Data binding
with the DSdbTable Bean requires:

m Sun Microsystems’ Beans Development Kit (BDK) or an IDE
m JDK 1.3.1 or greater

m JClass DataSource

m JClass LiveTable’s DSdbTable Bean

1. If you are developing an application with JBuilder, you can use the specific data binding Bean, JBdbTable, that was
designed for use with it.

Chapter 9 m JClass LiveTable Beans and IDEs 189

m adata source properly set up in Windows’ ODBC Data Source Administrator

JClass DataSource is available as part of the JClass DesktopViews suite. Visit
http://www.quest.com for information and downloads.

When data binding your table component with a database, JClass DataSource manages
the connection and queries to the database in your development project. Using the
DSdbTable Bean creates a table component that connects with JClass DataSource, thus
completing the data binding link.

JClass DataSource uses two data binding Beans: the JCData Bean and the JCTreeData
Bean. JCData allows data binding to flat data models, while JCTreeData allows data
binding to hierarchical data models. The following example provides a general overview
of data binding a LiveTable component to a database in Sun’s Bean Development Kit.

It is assumed that you already are familiar with setting up a database connection with
JClass DataSource. For specific information, please refer to your JClass DataSource
documentation. Binding your table with a database involves:

m creating a project in an IDE or the Beans Development Kit
m establishing a database connection with JCData or JCTreeData

m inputting database query statements with either the JCData or the JCTreeData’s
NodePropertiesEditor or TreePropertiesEditor

m adding the DSdbTable data binding Bean to the work area

Establish a database connection with JCData
Insert JCData into the design area. Doing this will allow you to begin working with the
NodePropertiestditor in the BDK Properties window.

If desired, enter names in the Description and Model Name fields. In this example, we
will leave the BDK’s default names (Nodel and JCDatal). On the Serialization tab,
click Save As to save your serialization file. Next, click the Data Model tab to specify
which database you want to connect to.

You need to specify the Server Name and Driver on the Data Model / JDBC /
Connection tab. For the purposes of this example, we are using the demo.mdb (JClass
Demo) database. In the Server Name field, enter or select jdbc:odbc:JClassDemo, and
in the Driver field, enter or select sun. jdbc.odbc.JdbcOdbcDriver. Ensure that the
Prompt User For Login checkbox is note selected, and test the connection. When you

190

Part | m Using JClass LiveTable

http://www.quest.com

receive confirmation that the database connection is successful, you can begin to set up
the query statements.

Ega com.klg jclass datasource. customizer. ModePropertiesE ditor

idbe adbe:J Class Demo

sun jdbe.odbe.Jdbe Odbe Driver

Figure 26 Connecting to the demo.mdb database in Sun’s Beans Development Kit.

Inputting database query statements with the DataBean

In order to properly query the database you have connected to, you need to input your
query statement in the fields found on the Data Model / JDBC / SQL Statement tab.
For this example, the demo.mdb database contains various tables, one of which is
Customers. Enter select * from Customers in the SQL Statement window to take all of the
fields from the demo.mdb’s customers table, then click Set.

Chapter 9 m JClass LiveTable Beans and IDEs 191

Now that you’ve successfully connected to, and queried the database, click Done.

Ega com.klg jclass datasource. customizer. ModePropertiesE ditor

Description |Node1 |

Iodel Mame [JCDatat |

Data hiodel |
Joec

SOL Statement

——
[Flcustomers
CustomeriD %
BillingAddress
City
CompanyName
ContactName

SELECT
FROM customers

D Expert hode

| Add Table. .. | | Add Selected Column(s)| | Add Jain... | | Join To Parent...

Design-time haximum Number of Rows |10

Done |

Adding DSdbTable

The last step in creating a data bound table in your development project is adding the
actual table component. In the BDK’s Toolbox, click the DataSource data binding Bean
(DSdbTable) and drop it into the BeanBox design area. Doing this will allow you to begin
working with the DSdbTab1e properties in the Properties window. In the list of properties,
click the dataBinding property, and set the connection to the appropriate data source.
The data source is determined by what you entered in the Description and Model
Name fields in the DataBeanComponentEditor (if you used the defaults in this example,

192 Part | m Using JClass LiveTable

they will be Nodel and JCDatal). The table object will update to reflect the successful
binding to the data source.

Filz Edit “iew Help

rrsrerresy

: DataBean :
trorrcrrrsl

Eu;tomerlDl CampanyMama

CantactHame

[_[Ofx]

I

F= ===

Bike Pra

M ountain Bike Madness
Alpine Designs MTB
Cyele Direst

M ajo Wheels

Quick Stop Bikes

M artin Imparts

Wheeal World

Pierce, Bab
John Mitchell
Phil Coaper
Frank hojo
Sam Speed

BillingAddrass |E|ry
Gilmor, George 4356 Mewton Street Utica

2354 Wonge St Thomhill

503 Cedar Street Sandpoint

James Martin

Peg Breaker

2830 Bth Awe South | Birmingham
5790 W, Datmouth | Denver

1100 N Third 5t. 1100 N Third
2330 Bevelly Blvd | Los Angeles
4051 Sepulvada Blvd | Culver C ity

[

At this point, you have a table component in your design area, that is bound to the
designated data source. You can now continue developing the rest of your application.

Interacting with Data Bound Tables

When a data bound table component has been successfully placed into your applet or
application, you can interact with the table that takes advantage of the binding between
the component and the data source.

|contactName | Billingadd)

Customerl[)l CompanyMName

EEEEEEEEEE
RIS

11
12
12

Bike Fro

Alpine Designs b
Cyele Direct
Mojo Wheels
Quick Stop Bikes
Martin Imports

Gilmaor, George 4356 Nemﬂ:

Hicle: Column....
Show Column...

Goto Rowe...
Print...

Print Previews...

L]

MWheel Warld
Open Road Bike
Redmond Cyole

[«

I

FrrrrsrrrrrrrsrrErr.

Inzert Record
Delete Record(s)
Cancel Record((=)

Cancel All

Requery Record and Details

Recuery Al

Save Record(s)

Save Al

Figure 27 Interacting with the data bound table component.

Chapter 9 m JClass LiveTable Beans and IDEs 193

These actions are accessible through the table component’s pop—up menu. By right-
clicking a record, or multiple selected records, a list of possible actions is presented to the

user.

Pop-up Menu ltem

Function

Insert Record

Adds a new record to the current table and bound
data source.

Delete Record(s)

Removes the selected row(s) from the current table
and bound data source.

Cancel Record(s)

Cancels changes made to selected records.

Cancel ATl

Cancels all changes made to all records.

Requery Record and Details

Requeries the selected record(s) and any of its
children from the database.

Requery All

Requeries all records in the table from the database.

Save Record(s)

Commits changes to selected records in the table, and
updates the bound data source.

Save ATl

Commits all changes made in the table to the
database

9.7 Property Differences Between the JClass LiveTahle Beans

Most of the common properties of the data binding Beans (JBdbTable and DSdbTab1e),
are the same as the LiveTable Bean. By retaining most of the LiveTable Bean properties
(outlined in Section 9.3.2, LiveTable Properties), the new Beans provide feature-rich data

binding table components.

The following data binding Bean properties are either unavailable, or have a new editors.

Data binding Bean

Property difference from LiveTable Bean

CellSize Unavailable in the data binding Beans.

Data Unavailable: replaced by specific data binding
properties.

FrozenRow Unavailable in the data binding Beans.

LeftColumn

Unavailable: data bound table always starts at
column 0.

RowlLabelDisplay

Unavailable in the data binding Beans.

194

Part | m Using JClass LiveTable

Data binding Bean

Property difference from LiveTable Bean

SpanningCells

Unavailable in the data binding Beans.

Style

Same property; new editor.

TopRow

Unavailable: data bound table always starts at
row 0.

TraverseCycle

Unavailable: always on in the data binding
Beans.

Chapter 9 m JClass LiveTable Beans and IDEs

195

196 Part | m Using JClass LiveTable

Reference
Appendices

Appendix A

Event Summary

This table is a quick reference to JClass LiveTable’s events and their corresponding event
listeners. Event listeners may use up to three methods that are used during the process of
executing the event. The standard naming convention for these methods are
before<Event>, <event>, and after<Event>. For details on how to use events and
listeners in your programs, see Events and Listeners, in Chapter 7.

Action
Event and Event ® = Listener
Description Methods S| = | @ Interface
g 5 s

JCCel1DisplayEvent getRow ° JCCel1DisplayListener
getColumn)

Posted when a cell’s getCellData °

contents are to be getDisplayData °

displayed in a table. setDisplayData °

JCEditCellEvent getRow ® o o JCEditCelllistener
getColumn e o o

Posted when a cell’s getEditingComponent ¢ o o

contents are to be getType B

edited. isCancelled : e °
setCancelled T

JCPaintEvent getType ® ® | JCPaintListener
getStartRow °)

Posted when a portion | getStartColumn ° °

of the table is painted. getEndRow ° °
getEndCoTumn ® ®
getCellRange ® ®

199

Event and
Description

Event
Methods

on

Action

after

Listener
Interface

JCPrintEvent?

The event posted for
each page during the
printing process.

getGraphics
getMarginUnits
getNumHorizontalPages
getNumPages
getNumVerticalPages
getPage
getPageDimensions
getPageMargins
getPageResolution
getTableDimensions
getType

JCPrintListener

JCResizeCellEvent

Posted when a cell in
the table is resized.

getRow

getColumn
getCurrentRowHeight
getNewRowHeight
setNewRowHeight
getCurrentColumnWidth
getNewCoTumnWidth
setNewColumnWidth
isCancelled
setCancelled

® 0| 00| o000 o 06000000 00 hemre‘

JCResizeCellListener

JCResizeCellEvent

Posted while a cell is
being resized.

getRow

getColumn
getCurrentRowHeight
getNewRowHeight
setNewRowHeight
getCurrentColumnWidth
getNewColumnWidth
setNewColumnWidth
isCancelled
setCancelled

JCResizeCe]1MotionL15tenerb

JCScrollEvent

Posted when a user
resizes a row and/or
column.

getAdjustable
getDirection
getkEvent
getType
getValue
setValue

JCScrollListener

Part || m Reference Appendices

Action

Event and Event o | |] Listener
Description Methods 5 = 8 Interface
g ° %

JCSelectEvent getType ® | ® | ® | JCSelectListener
getStartRow oo o

Posted when a user getStartColumn e o o

selects one or more getEndRow o | o o

cells. getEndColumn e o o
isCancelled e o o
setCancelled e o -
getAction e o o
getActionString e o o

JCSortkvent getColumns ® JCSortlListener
getNewRows ®

Posted after a

sortByColumn call.

JCTableDataEvent getRow ® JCTableDatalistener®
getColumn)

Posted when the getNumAffected °

TableDataModel object getDestination ®

is modified. getCommand °

JCTraverseCellEvent getRow ® | ® | JCTraverseCellListener
getColumn [)

Posted when a user getNextRow e | o

traverses from one cell | getNextColumn o | o

to another. setNextRow o -
setNextColumn o | —
getTraverseType [I]
isCancelled [)
setCancelled o | —

a. JCPrintEvent actions are not before<Event>, on<Event> and after<Event> as they are with other
events; the action events are printPageHeader (), printPageBody () and printPageFooter().

b. JCResizeCelTMotionlListener has one method: resizeCell1Dragged(). Itis called repeatedly during

cell resizing.

c.JCTableDataEvents are posted by the table’s data source, and not by the table itself.

Appendix A m Event Summary

201

202 Part Il m Reference Appendices

B.1

Appendix B

JClass LiveTable Property Listing

Properties of com.klg.jclass.table.JCTable wm Properties of com.klg.jclass.table.CellStyleModel
Properties of com.klg.jclass.table.beans.LiveTable wm Properties of com.klg.jclass.table.db.jbuilder.JBdbTable
Properties of com.klg.jclass.table.db.datasource.DSdbTable

The following lists summarize all of the JClass LiveTable properties. Each of these
properties have two accessor methods: set and get. Methods are instantiated using
set(PropertyName), and you can retrieve the current value of any property using the

property’s get method.

The lists below are organized by the class that their accessor methods are called in, and
further by the type of property. The lists show the property, a brief description, and either
its enumerable value, defined by JCTableEnum or an example of a value for setting the
property. Default values are marked with an asterisk ().

Properties of com.klg.jclass.table.JCTable

Name

Description

Values/Examples

AllowCelTResize

The ATTowCel1Resize
property specifies
whether and how an end
user is able to resize rows
and columns.

JCTableEnum.
JCTabTleEnum.
JCTabTleEnum.
JCTabTleEnum.

RESIZE_ALL*
RESIZE_NONE
RESIZE_COLUMN
RESIZE_ROW

AlTowResizeBy

This property determines
whether row heights and
column widths can be
resized by labels.

JCTableEnum.
JCTableEnum.
JCTabTleEnum.

RESIZE_BY_LABELS*
RESIZE_BY_CELLS
RESIZE_BY_ALL

AutoEdit

Determines whether an
editor is automatically
displayed in a cell when it
is entered.

boolean value: default false

203

Name

Description

Values/Examples

AutoScroll

This property sets how
the table scrolls when the
user moves out of the
bounds of the displayed
table.

JCTableEnum.AUTO_SCROLL_NONE*
JCTableEnum.AUTO_SCROLL_ROW
JCTableEnum.AUTO_SCROLL_COLUMN
JCTableEnum.AUTO_SCROLL_BOTH

CellBorderWidth

Sets the shadow thickness
around each cell.

integer: number of pixels

CharHeight Height in characters of specific row number,
individual cells. JCTableEnum. LABEL, or
JCTableEnum.ALL, plus the number
of characters
CharWidth Width of column in specific column number,

characters.

JCTableEnum. LABEL, or
JCTableEnum.ALL, plus the number
of characters

CoTumnHidden

Determines if the column
is hidden.

boolean value: default false

ColumnlLabelDisplay

Determines whether the
column labels display in

the table.

boolean value: default false

ColumnlLabelOffset

Distance between column
labels and table cells.

pixels (default: 0). For example:
setColumnlLabelOffset(4)

Columnlabel
Placement

Location of the column
labels (top or bottom of
the table).

JCTabTeEnum.PLACE_TOP*
JCTableEnum.PLACE_BOTTOM

ColumnSelection

Selects a range of

int column range

columns.

Component Swing and lightweight row and column index, component
AWT components in
individual cells.

ComponentBorder This property determines | integer value (pixels)

Width the spacing between the

border of a cell and the
cell component.

204

Part || m Reference Appendices

Name

Description

Values/Examples

Cursor

Creates a cursor and
determines the cursor

type.

Cursor.CROSSHAIR_CURSOR
Cursor.DEFAULT_CURSOR
Cursor.E_RESIZE_CURSOR
Cursor.HAND_CURSOR
Cursor.MOVE_CURSOR
Cursor.N_RESIZE_CURSOR
Cursor.NE_RESIZE_CURSOR
Cursor.NW_RESIZE_CURSOR
Cursor.S_RESIZE_CURSOR
Cursor.SE_RESIZE_CURSOR
Cursor.SW_RESTIZE_CURSOR
Cursor.TEXT_CURSOR
Cursor.W_RESIZE_CURSOR
Cursor.WAIT_CURSOR

EditHeightPolicy

Vertical sizing policy for
cell editors.

JCTableEnum.EDIT_SIZE_TO_CELL*

JCTabTeEnum.EDIT_ENSURE_
MINIMUM_SIZE

JCTableEnum.EDIT_ENSURE_
PREFERRED_SIZE

EditWidthPolicy

Horizontal sizing policy
for cell editors.

JCTableEnum.EDIT_SIZE_TO_CELL*

JCTableEnum.EDIT_ENSURE_
MINIMUM_SIZE

JCTabTeEnum.EDIT_ENSURE_
PREFERRED_SIZE

FocusColor

Determines the color of
the focus indicator.

Any java.awt.Color object.

FocusIndicator

This property sets the
focus indicator.

JCTableEnum.FOCUS_RECTANGLE*
JCTabTleEnum.FOCUS_DASHED_
RECTANGLE
JCTabTleEnum.FOCUS_NONE
JCTableEnum.FOCUS_HIGHLIGHT

Font Sets the font for the entire | array of colors
table.

Foreground Sets the foreground color | array of colors
for the entire table.

FrameBorder Sets the border for the Cel1BorderModel

frame around the table.

Appendix B m JClass LiveTable Property Listing 205

Name

Description

Values/Examples

FrameBorderWidth

Sets the thickness of the
frame around the entire
table.

pixels (default:0). For example:
setFrameBorderWidth(5);

FrozenColumn
PTacement

Sets the location of all
frozen columns within the
component display.
Changing the placement
of frozen columns does
not change the location of
the columns in the table's
internal Cel1Values.

JCTabTeEnum.PLACE_LEFT*
JCTabTeEnum.PLACE_RIGHT

FrozenColumns

Specifies the number of
columns from the start of
the table that are not
horizontally scrollable.

number of columns to freeze. For
example: setFrozenColumns(3);

FrozenRow Specifies the location of JCTableEnum.PLACE_TOP*
Placement all frozen rows. JCTableEnum.PLACE_BOTTOM
FrozenRows Specifies the number of number of rows to freeze. For
rows from the start of the | example: setFrozenRows(2);
table that are not
vertically scrollable.

HorizSBAttachment Attach point for JCTableEnum.SIZE_TO_CELLS*
horizontal scrollbar. JCTableEnum.SIZE_TO_TABLE
When set to
SIZE_TO_CELLS, the
scrollbar ends at the edge
of the visible cells. When
set to SIZE_TO_TABLES,
the scrollbar is attached
to the whole side of the
table.

HorizSBDisplay Determines when to JCTableEnum.SBDISPLAY_ALWAYS
display horizontal JCTableEnum.SBDISPLAY_NEVER
scrollbar. JCTableEnum.SBDISPLAY_AS_

NEEDED*

HorizSBOffset Distance between the integer: number of pixels. For
table and horizontal example:
scrollbar in pixels. setHorizSBOffset(3);

206

Part || m Reference Appendices

Name

Description

Values/Examples

HorizSBPosition

Position of horizontal
scrollbar. When set to
POSITION_BY_CELLS, the
scrollbar is attached to
the visible cells. When set
to POSITION_AT_SIDE, the
scrollbar is attached to
the whole side of the
table.

JCTableEnum.POSITION_BY_CELLS*
JCTableEnum.POSITION__AT_SIDE

HorizSBTrack

Determines how the
horizontal scrollbar acts
during scroll tracking.

JCTableEnum. TRACK_LIVE*

JCTableEnum. TRACK_COLUMN_
NUMBER

JCTabTleEnum.TRACK_ROW

HorizSBTrackRow

Determines the row
number whose text is
displayed when
JCTabTleEnum. TRACK
ROW is used with
setHorizSBTrack()

JCTabTeEnum. LABEL
or
integer value (row number’s cell

data)

JumpScroll

Determines whether the
table will visually scroll
smoothly or whether the
display will jump’ to
display the cells scrolled
to.

JCTabTleEnum.JUMP_NONE*
JCTableEnum.JUMP_HORIZONTAL
JCTableEnum.JUMP_VERTICAL
JCTabTleEnum.JUMP_ALL

LeftColumn

Indicates the non-frozen
column at least partially
visible at the left side of
the window.

integer: column number

MarginHeight Specifies the distance (in | integer: pixels. For example:
pixels) between the inside | setMarginHeight(4);
edge of the cell border.

MarginWidth Specifies the distance (in | integer: pixels. For example:

pixels) between the inside
edge of the cell border
and the left/right edge of
the cell’s contents.

setMarginWidth(3);

Appendix B m JClass LiveTable Property Listing 207

Name

Description

Values/Examples

MaxHeight Sets the maximum integer value (pixels)
number of pixels for a
row’s height.

MaxWidth Sets the maximum integer value (pixels)

number of pixels for a
column’s width.

MinCellVisibility

Minimum visible
percentage of a cell.

integer: 1 to 100

MinHeight Sets the minimum integer value (pixels)
number of pixels for a
row’s height.
MinWidth Sets the minimum integer value (pixels)
number of pixels for
column’s width.
PixelHeight Row height in pixels. integer value (pixels)
This property controls Special values:
the height unless set to JCTableEnum.VARIABLE
JCTableEnum.NOVALUE. JCTabTeEnum.AS_IS
JCTableEnum.VARIABLE_ESTIMATE
PixelWidth Column width in pixels. | integer value (pixels)
This property controls Special values:
the width unless set to JCTableEnum.VARIABLE
JCTabTeEnum.NOVALUE. JCTableEnum.AS_IS
JCTableEnum.VARIABLE_ESTIMATE
PopupMenuEnabled Determines whether or boolean value
not to display the table default: false for LiveTable
popup menu. default: true for JBdbTable and
DSdbTable
RepaintEnabled Sets whether the table boolean value (default: true)

should be redrawn and
recomputed whenever

one of its properties is set.

ResizeEven

Specifies that when a user
resizes a row or column,
all of the rows or columns
also resize the same
amount.

boolean value (default: false)

208

Part || m Reference Appendices

Name

Description

Values/Examples

Resizelnteractive

Determines if a table is
repainted to reflect
column width or row
height changes if they are
resized interactively.

boolean value (default: false)

RowHidden

Determines if the row is

hidden.

boolean value (default: false)

RowlLabelDisplay

This property has a
boolean value to
determine whether the
row labels display in the
table

boolean value (default: true)

RowlLabelOffset

Offset between row labels
and table.

integer: number of pixels

RowlLabelPTacement

Location of the row
labels.

JCTableEnum.PLACE_LEFT*
JCTabTeEnum.PLACE_RIGHT

RowSelection

Selects a range of rows.

integer range

SelectIncludelabels

Sets the selection
behavior for row and
column labels. When
true, full column or row
selections do not change
the visible properties of
the label. When false,
the row or column label is
changed.

boolean (default: true)

SelectedBackground

Background color for
cells that have been
selected. The default is
the cells’ foreground
color.

Color value. For example:

setSelectedBackground(Color.

yellow);

SelectedBackground | Sets the table’s JCTableEnum.USE_SELECTED_
Mode background color for BACKGROUND
selected cells. JCTableEnum.USE_CELL_
BACKGROUND
JCTableEnum.USE_CELL_
FOREGROUND
SelectedCells List of selected cells. Vector or JCCel1Range

Appendix B m JClass LiveTable Property Listing

209

Name

Description

Values/Examples

SelectedForeground

Foreground color for cells
that have been selected.
The default is the cells’
background color.

Color value. For example:
setSelectedForeground
(Color.blue);

SelectedForeground
Mode

Sets the table’s
foreground color for
selected cells.

JCTableEnum.USE_SELECTED_
FOREGROUND

JCTableEnum.USE_CELL_
BACKGROUND

JCTableEnum.USE_CELL_
FOREGROUND

SelectionModel

Specifies the mode for
selecting, based on cells,
rows, or columns.

SelectionModel

SelectionPolicy

Sets the type of allowable
selection.

JCTableEnum.SELECT_NONE
JCTableEnum.SELECT_SINGLE
JCTableEnum. SELECT_RANGE
JCTableEnum.SELECT_MULTIRANGE

SeriesDataSorted

Specifies if series are
sorted when the table is
sorted. If set as true, the
series information sorts
with the table data.

boolean (default: true)

StorelmageEnabled

Determines whether an
image of the table is
maintained off-screen.

boolean (default: false)

TopRow

Indicates the non-frozen
row at least partially
visible at the top of the
table.

integer: row number

TrackBackground

Determines the
background color of the
track component.

Color value

TrackCursor

Determines whether the
cursor changes.

boolean (default: true)

TrackForeground

Determines the
foreground color of the
track component.

Color value

210

Part || m Reference Appendices

Name

Description

Values/Examples

TrackSize

Returns the size of the
track component.

Dimension value

TraverseCycle

Specifies that when a user
traverses to past the top,
bottom, left, or right of
the table, the traversal
wraps to the opposite
side.

boolean (default: true)

VariableEstimate
Count

Sets the number of cells
to use in estimating
variable pixel
calculations.

default: JCTabTeEnum.ALL

VertSBAttachment

Attach point for vertical
scrollbar. When set to
SIZE_TO_CELLS, the
scrollbar ends at the edge
of the visible cells. When
set to SIZE_TO_TABLE, the
scrollbar is attached to
the whole side of the
table.

JCTableEnum.SIZE_TO_CELLS
JCTableEnum.SIZE_TO_TABLE

VertSBDisplay

Determines when to
display vertical scrollbar.

JCTabTeEnum.SBDISPLAY_AS_
NEEDED*

JCTableEnum.SBDISPLAY_ALWAYS
JCTableEnum.SBDISPLAY_NEVER

VertSBOffset Distance between the integer: number of pixels. For
table and vertical example:
scrollbar. setVertSBOffset(4);
VertSBPosition Position of vertical JCTableEnum.POSITION_BY_CELLS

scrollbar. When set to
POSITION_BY_CELLS, the
scrollbar is attached to
the visible cells. When set
to POSITION__AT_SIDE,
the scrollbar is attached
to the whole side of the
table.

JCTableEnum.POSITION_AT_SIDE

Appendix B m JClass LiveTable Property Listing

211

Name

Description

Values/Examples

VertSBTrack

This property determines
how the vertical scrollbar
acts during scroll
tracking.

JCTabTleEnum.TRACK_LIVE*
JCTableEnum.TRACK_ROW_NUMBER
JCTableEnum.TRACK_COLUMN

VertSBTrackColumn

Determines the column
number whose text is
displayed when
JCTableEnum. TRACK_
ROW is used with
setVertSBTrack().

JCTableEnum. LABEL

or

integer value (row number’s cell
data)

VisibleColumns

Sets the number of
columns used to
determine the initial table
size. This value is not
updated when columns
or the table are resized.

integer: number of visible columns

VisibleRows

Sets the number of rows
used to determine the
initial table size. This
value is not updated
when rows or the table
are resized.

integer: number of visible rows

B.2

Properties of com.klg.jclass.table.CellStyleModel

Name

Description

Values/Examples

Background

Sets the background color
of the cell.

Color value

CellBorder

Sets the cell border object
for the cell.

CellBorderModel

Cell1BorderColor

Sets the cell’s border color.

Color value

Cel1BorderColorMode

Sets the mode used to
determine cell border
color.

JCTableEnum.USE_CELL_
BORDER_COLOR

JCTabTeEnum.BASE_ON_
BACKGROUND

JCTabTeEnum.BASE_ON_
FOREGROUND

212

Part || m Reference Appendices

Name

Description

Values/Examples

Cell1BorderSides Visible border sides JCTabTeEnum.BORDERSIDE_NONE
(deﬁned]Dy JCTabTeEnum.BORDERSIDE_ALL*
Cell BorderType) for JCTableEnum.BORDERSIDE_LEFT
individual cells. JCTableEnum.BORDERSIDE_
RIGHT
JCTableEnum.BORDERSIDE_TOP
JCTabTeEnum.BORDERSIDE
BOTTOM
ClipHints Determines whether clip JCTableEnum. SHOW_NONE
arrows are shown, and JCTableEnum.SHOW_HORIZONTAL
where, when the contents | JCTableEnum.SHOW_VERTICAL
of the cell do not fit in the | JCTableEnum.SHOW_ALL
cell frame.
Editable Editable attribute for boolean value (default: true)
individual cells.
Font Sets the cell’s font. Font value
Foreground Sets the foreground color | Color value

of the cell.

HorizontalAlignment | Sets the horizontal JCTableEnum. LEFT*
alignment for the contents | JCTableEnum.CENTER
of the cell. JCTableEnum.RIGHT

RepeatBackground Determines if the JCTableEnum.REPEAT_NONE*
background color repeats JCTableEnum.REPEAT_ROW
for rows or columns. JCTableEnum.REPEAT_COLUMN

RepeatBackground Repeats pattern for array of colors

Colors background colors.

RepeatForeground Determines if the JCTableEnum.REPEAT_NONE*
foreground color repeats JCTableEnum.REPEAT_ROW
for rows or columns. JCTableEnum.REPEAT_COLUMN

RepeatForeground Repeats pattern for array of colors

Colors foreground colors.

Traversable

Allows traversal of
individual cells.

boolean (default: true)

VerticalAlignment

Sets the vertical alignment
for the contents of the cell.

JCTableEnum. TOP*
JCTabTleEnum.CENTER
JCTableEnum.RIGHT

Appendix B m JClass LiveTable Property Listing

213

B.3

Properties of com.klg.jclass.table.heans.LiveTahle

Name

Description

about

Displays component version and contact information.

allowCellResize

Determines whether end-user can resize cells at run-
time.

allowResizeBy

Sets how cells can be resized.

autokdit

Determines whether the table automatically displays an
editor when entering a cell.

autoScroll

Determines whether table scrolls during
selection/traversal.

cellBorderWidth Specifies width of cell/label borders.
cellSize Specifies row heights and column widths.
data Specifies table data, data source, and row/column

labels.

editHeightPolicy

Determines height control of cell editing components.

editWidthPolicy

Determines width control of cell editing components.

frameBorderType

Specifies frame border type.

frameBorderWidth

Specifies frame border width.

frozenCellLayout

Determines the position of frozen rows/columns.

focusColor

Sets the color of the focus indicator.

focusIndicator

Determines the type of focus indicator used.

jumpScroll

Determines whether jump scrolling is turned on.

Tabellayout

Determines the position of row/column labels.

TeftCoTumn

Specifies first column displayed on screen.

marginHeight

Specifies top and bottom cell margins.

marginWidth

Specifies left and right cell margins.

minCellVisibility

Determines amount of cell scrolled into view during
traversal.

popupMenuEnabTled

Determines whether the pop-up menu is enabled.

resizekven

Determines whether cell resizing is applied evenly to
non-label cells.

214

Part || m Reference Appendices

Name

Description

resizelnteractive

Determines whether cell resizing is interactively

displayed.

sBlLayout

Determines the space between scrollbars and cells.

selectedBackground

Determines the background color of selected cells.

selectedForeground

Determines the foreground color of selected cells.

selectIncludelabels

Determines whether selection includes row and
column labels.

selectionPolicy

Determines type of cell selection allowed.

spannedCells

Specifies cell ranges to treat as spanned cells.

styles Sets the styles property, which defines visual aspects of
the table.

swingDataModel Sets the table’s data source to use a specified Swing
TableModel object, instead of using the data property.

topRow Specifies first row displayed on screen.

trackCursor Sets whether the mouse pointer movements are

tracked.

traverseCycle

Determines whether cell traversal cycles on the same
row or moves to the next row.

Properties of com.klg.jclass.table.db.jbuilder.JBdhTable

Name

Description

about

Displays component version and contact information.

allowCellResize

Determines whether end-user can resize cells at run-
time.

allowResizeBy

Sets how cells can be resized.

autokdit

Determines whether the table automatically displays an
editor when entering a cell.

autoScroll

Determines whether table scrolls during
selection/traversal.

cellBorderWidth

Specifies width of cell/label borders.

Appendix B m JClass LiveTable Property Listing 215

Name Description

cellSize Specifies row heights and column widths.

dataSet Specifies the table data source.

editHeightPolicy Determines height control of cell editing components.

editWidthPolicy Determines width control of cell editing components.

frameBorderType Specifies frame border type.

frameBorderWidth Specifies frame border width.

frozenCelllayout Determines the position of frozen rows/columns.

focusColor Sets the color of the focus indicator.

focusIndicator Determines the type of focus indicator used.

Tabellayout Determines the position of row/column labels.

TeftColumn Specifies first column displayed on screen.

marginHeight Specifies top and bottom cell margins.

marginWidth Specifies left and right cell margins.

minCel1Visibility Determines amount of cell scrolled into view during
traversal.

popupMenuEnabled Determines whether the pop-up menu is enabled.

resizeEven Determines whether cell resizing is applied evenly to

non-label cells.

resizelnteractive Determines whether cell resizing is interactively
displayed.

sBLayout Determines the space between scrollbars and cells.

selectedBackground Determines the background color of selected cells.

selectedForeground Determines the foreground color of selected cells.

selectIncludelabels Determines whether selection includes row and column
labels.

selectionPolicy Determines type of cell selection allowed.

spannedCells Specifies cell ranges to treat as spanned cells.

styles Sets the styles property, which defines visual aspects of
the table.

216 Part Il m Reference Appendices

Name

Description

swingDataModel Sets the table’s data source to use a specified Swing
TableModel object, instead of using the data property.

topRow Specifies first row displayed on screen.

trackCursor Sets whether the mouse pointer movements are tracked.

traverseCycle

Determines whether cell traversal cycles on the same
row or moves to the next row.

Properties of com.klg.jclass.table.dh.datasource.DSdhTable

Name

Description

about

Displays component version and contact information.

allowCellResize

Determines whether end-user can resize cells at run-
time.

allowResizeBy

Sets how cells can be resized.

autoEdit

Determines whether the table automatically displays an
editor when entering a cell.

autoScroll

Determines whether table scrolls during
selection/traversal.

cellBorderWidth

Specifies width of cell/label borders.

cellSize

Specifies row heights and column widths.

dataBinding

Specifies the table data source.

editHeightPolicy

Determines height control of cell editing components.

editWidthPolicy

Determines width control of cell editing components.

frameBorderType

Specifies frame border type.

frameBorderWidth

Specifies frame border width.

frozenCellLayout

Determines the position of frozen rows/columns.

focusColor

Sets the color of the focus indicator.

focusIndicator

Determines the type of focus indicator used.

Tabellayout

Determines the position of row/column labels.

lTeftColumn

Specifies first column displayed on screen.

Appendix B m JClass LiveTable Property Listing 217

Name Description
marginHeight Specifies top and bottom cell margins.
marginWidth Specifies left and right cell margins.

minCellVisibility

Determines amount of cell scrolled into view during
traversal.

popupMenuknabled

Determines whether the pop-up menu is enabled.

resizekven

Determines whether cell resizing is applied evenly to
non-label cells.

resizelnteractive

Determines whether cell resizing is interactively

displayed.

sBLayout

Determines the space between scrollbars and cells.

selectedBackground

Determines the background color of selected cells.

selectedForeground

Determines the foreground color of selected cells.

selectIncludelabels

Determines whether selection includes row and column

labels.

selectionPolicy

Determines type of cell selection allowed.

styles Sets the styles property, which defines visual aspects of
the table.

swingDataMode] Sets the table’s data source to use a specified Swing
TableModel object, instead of using the data property.

topRow Specifies first row displayed on screen.

trackCursor Sets whether the mouse pointer movements are

tracked.

traverseCycle

Determines whether cell traversal cycles on the same
row or moves to the next row.

useDatasourceEditable

Determines whether the editable column state is
defined by the data source or the table.

Part || m Reference Appendices

C.1

Appendix C

Porting JClass 3.6.x Applications

Overview of Changes wm Porting Strategies w Highlights of Main Changes

JClass LiveTable for Java2 is significantly different from previous versions. The focus of
JClass LiveTable for Java2 is to make any changes necessary to take full advantage of
Swing, and to restructure the product for future expansion.

Overview of Changes

The major changes are listed in the following table. Each change is discussed in more
detail later in this appendix.

Change Rationale

package name change Old package name pre-dated naming standard.
(com.klg.jclass.table)

Swing-like API JClass 4 is Swing-based.

data subpackage Makes it easier to find stock data sources. Stock data

sources now include the JC prefix.

beans subpackage Makes it easier to find Beans. Important for users who
wish to remove the Beans from deployment JARs.

no more JCString JCString has been replaced by HTML in cells.

JCTable and Table In LiveTable 3.*, Tab1e was the core class and JCTab1e was
a backwards-compatibility class for LiveTable 2.*
customers.

In LiveTable 4.*%, JCTable is the core class, and Tableis a
backwards-compatibility class for LiveTable 3.* customers.

beans APIs Various bean properties have been modified. Essentially,
the LiveTable 4.* Beans are not backwards compatible.
This porting guide does not talk about the Beans.

new events The events fired by LiveTable have been rationalized
based on user feedback. The listener methods have been
renamed to be consistent across all methods.

219

C.2

C.3

Change Rationale

cell changes LiveTable now supports two different rendering models.
Many renderers and editors were updated to make use of
Swing and of the new rendering model. All stock editors
and renderers use the JC prefix.

Porting Strategies

LiveTable 4.x comes with two tools designed to help you move from LiveTable 3.x to 4.x:

m com/klg/jclass/util/scripts/table3to4.plis a Perl conversion script. It is designed to convert
about 60-80% of table code.

m com.klg.jclass.table.Table is a subclass of JCTable that supports the old
LiveTable 3 API.

Highlights of Main Changes

New Beans Subpackage
All the Beans have been moved to the beans subpackage. There have been many Bean
property changes.

No More JCString
JCStrings have been replaced by HTML in cells. This is supported by Swing, and has
been added to LiveTable where appropriate.

You can now put raw HTML into headers and footers, as long as the text starts with
<htm1>. HTML is also valid in axis annotations, axis titles, and legend elements.

Style-based Property Setting
Styles are objects that encapsulate all the visual attributes of cells. You set the property for
the style object, then apply it to a range of cells.

In LiveTable 3.*, each visual attribute was set individually on a range of cells.
For example, the following code sets the foreground and background color on a range of
cells:
table.setForeground(1l, JCTableEnum.ALL, Color.blue);
table.setBackground(1l, JCTableEnum.ALL, Color.black);

Using styles, the attribute is set on the style, and the style is applied to the cells:

JCCellStyle style;
style.setForeground(Color.blue);
style.setBackground(Color.blue);
table.setCel1Style(l, JCTableEnum.ALL, style);

220

Part || m Reference Appendices

In general, styles are easier to use for tables that tend to set multiple attributes on ranges
of cells (the majority of cases for table users).

Please refer to Building a Table, in Chapter 2, for details on style-based property setting.

JCTable and Table

In LiveTable 4.x, JCTab1e is the core class. Table is a subclass of JCTab1e that is to be
used if you want to use LiveTable 3.x API calls. Table does not support all the LiveTable
3.x APL

Beans APIs
Many of the Bean properties are the same. The Appearance property has been replaced
by Styles.

New events

The new event structure has been rationalized, and is documented in Events and
Listeners, in Chapter 7. It is recommended that you rewrite your event handling code
based on the new events.

Cell Editors and Renderers
Most classes now begin with JC.

The drawing-based rendering model (formerly called Cel1Renderer) is now called
JCLightCel1Renderer. The getPreferredSize() method now takes a Graphics object:

Old New
jclass.cel1l.CellRenderer com.k1g.jclass.cel1.JCLightCell
Renderer
getPreferredSize(CellInfo, getPreferredSize(Graphics, JCCellInfo,
Object) Object)

There is now a new rendering model based on a component called
JCComponentCel1Renderer. Some of the default renderers now use this component
instead of JCLightCel1Renderer.

JCComponentCellRenderer and JCLightCel1Renderer have a common base class called
JCCellRenderer.

Not all of the renderers are still around.

old New
ButtonCellRenderer None
CheckboxCellRenderer JCCheckBoxCellRenderer

Appendix C m Porting JClass 3.6.x Applications 221

Old

New

ChoiceCellRenderer

JCComboBoxCellRenderer

ETlipsisCelTRenderer

None

ImageCell1Renderer

JCImageCelTRenderer

RawImageCellRenderer

JCRawImageCellRenderer

ScaledImageCellRenderer

JCScaledImageCellRenderer

StringCellRenderer

JCStringCellRenderer

WordWrapCellRenderer

JCWordWrapCellRenderer

None

JCHTMLCeT1Renderer

None

JCLabelCell1Renderer

The advanced cell editors and renderers have been removed. Users are expected to use

JClass Field for this purpose.

The editing interface has changed slightly:

old

New

initialize(InitialEvent,
CellInfo,0bject)

initialize(AWTEvent, JCCelllInfo,
Object)

getPreferredSize(Celllnfo,
Object)

None. Use component preferred size.

KeyModifier[]
getReservedKeys()

JCKeyModifier[] getReservedKeys()

222

Part || m Reference Appendices

D.1

D.2

Appendix D

Colors and Fonts

Colorname Values wm RGB Color Values m Fonts

This section provides information on common colorname values, specific RGB color
values, and fonts applicable to all Java programs.

Colorname Values

The following lists all the colornames that can be used within Java programs. The
majority of these colors will appear the same (or similar) across different computing
platforms.

m black m lightGray
m blue m lightBlue
B cyan B magenta
m darkGray W orange

m darkGrey m pink

m gray m red

m grey m white

W green m yellow

m lightGray

RGB Color Values

The following lists all the main RGB color values that can be used within
JClass LiveTable. RGB color values are specified as three numeric values representing
the red, green, and blue color components; these values are separated by dashes (“-”).

The following RGB color values describe the colors available to Unix systems. It is
recommended that you test these color values in a JClass program on a Windows or
Macintosh system before utilizing them.

223

The list begins with all of the variations of white, then blacks and greys, and then

describes the full color spectrum ranging from reds to violets.

Example code from an HTML file:
<PARAM NAME=backgroundList VALUE="(4, 5 255-255-0)">

RGB Value
255-250-250
248-248-255
245-245-245
220-220-220
255-250-240
253-245-230
250-240-230
250-235-215
255-239-213
255-235-205
255-228-196
255-218-185
255-222-173
255-228-181
255 248-220
255-255-240
255-250-205
255-245-238
240-255-240
245-255-250
240-255-255
240-248-255
230-230-250
255-240-245
255-228-225
255-255-255
0-0-0

Description
Snow

Ghost White
White Smoke
Gainsboro
Floral White
Old Lace
Linen

Antique White
Papaya Whip
Blanched Almond
Bisque

Peach Puff
Navajo White
Moccasin
Cornsilk

Ivory

Lemon Chiffon
Seashell
Honeydew
Mint Cream
Azure

Alice Blue
Lavender
Lavender Blush
Misty Rose
White

Black

224

Part || m Reference Appendices

RGB Value
47-79-79
105-105-105
112- 128-144
119- 136-153
190- 190-190
211- 211-211
25-25-112
0-0-128

100- 149 237
72-61-139
106-90-205
123- 104 238
132-112- 255
0-0-205
65-105-225
0-0-255
30-144-255
0-19 -255
135-206-235
135-206-250
70-130-180
176-196- 222
173-216-230
176-224-230
175-238-238
0-206-209
72-209-204
64-224-208
0-255-255
224-255-255
95-158-160
102-205-170

Description
Dark Slate Grey
Dim Gray

Slate Grey
Light Slate Grey
Grey

Light Gray
Midnight Blue
Navy Blue
Cornflower Blue
Dark Slate Blue
Slate Blue
Medium Slate Blue
Light Slate Blue
Medium Blue
Royal Blue

Blue

Dodger Blue
Deep Sky Blue
Sky Blue

Light Sky Blue
Steel Blue

Light Steel Blue
Light Blue
Powder Blue
Pale Turquoise
Dark Turquoise
Medium Turquoise
Turquoise

Cyan

Light Cyan
Cadet Blue

Medium Aquamarine

Appendix D m Colors and Fonts

225

RGB Value
127-255-212
0-100-0
85-107-47
143-188-143
46-139-87
60-179-113
32-178-170
152-251-152
0-255-127
124-252- 0
0-255-0
127-255- 0
0-250-154
173-255-47
50-205-50
154-205-50
34-139-34
107-142-35
189-183-107
240-230-140
238-232-170
250-250-210
255-255-224
255-255-0
255-215-0
238-221-130
218-165-32
184-134-11
188-143-143
205-92-92
139-69-19
160-82-45

Description
Aquamarine

Dark Green

Dark Olive Green
Dark Sea Green
Sea Green
Medium Sea Green
Light Sea Green
Pale Green
Spring Green
Lawn Green
Green

Chartreuse
Medium Spring Green
Green Yellow
Lime Green
Yellow Green
Forest Green
Olive Drab

Dark Khaki
Khaki

Pale Goldenrod
Light Goldenrod Yellow
Light Yellow
Yellow

Gold

Light Goldenrod
Goldenrod

Dark Goldenrod
Rosy Brown
Indian Red
Saddle Brown

Sienna

226

Part || m Reference Appendices

RGB Value
205-133-63
222-184- 135
245-245-220
245-222-179
244-164-96
210-180-140
210-105-30
178-34-34
165-42-42
233-150-122
250-128-114
255-160-122
255-165- 0
255-140-0
255-127-80
240-128-128
255-99-71
255-69-0
255-0-0
255-105-180
255-20-147
255-192-203
255-182-193
219-112-147
176-48-96
199-21-133
208-32-144
255-0-255
238-130-238
221-160-221
218-112-214
186-85-211

Description
Peru
Burlywood
Beige

Wheat
SandyBrown
Tan
Chocolate
Firebrick
Brown

Dark Salmon
Salmon
Light Salmon
Orange

Dark Orange
Coral

Light Coral
Tomato
Orange Red
Red

Hot Pink
Deep Pink
Pink

Light Pink
Pale Violet Red
Maroon
Medium Violet Red
Violet Red
Magenta
Violet

Plum

Orchid
Medium Orchid

Appendix D m Colors and Fonts

221

D.3

RGB Value Description

153-50-204 Dark Orchid
148-0-211 Dark Violet
138-43-226 Blue Violet
160- 32-240 Purple
147-112-219 Medium Purple
216-191-216 Thistle
Fonts
There are five different font names that can be specified in any Java program. They are:
m Courier
m Dialog
m Dialoglnput
m Helvetica
m TimesRoman

Note: Font names are case-sensitive.

There are also four standard font style constants that can be used. The valid Java font
style constants are:

m bold

m Dbold+italic

B italic

H plain

These values are strung together with dashes (“-”) when used with the VALUE attribute.

You must also specify a point size by adding it to other font elements. To display a text
using a 12-point italic Helvetica font, use the following:

Helvetica-italic-12

All three elements (font name, font style, and point size) must be used to specify a
particular font display; otherwise, the default font is used instead.

Note: Font display may vary from system to system. If a font does not exist on a system,
the default font is displayed instead.

228

Part || m Reference Appendices

Appendix E

JClass LiveTable Inheritance Hierarchy

General JClass LiveTable Classes
The following figure gives an overview of class inheritance for table creation in
JClass LiveTable.

]
|

com. kiy.jefass table.data

AbetractDaazource | JCTablzModelData=owrce |»——--

[
| AbatratVertiDaraSnuree

JiCachechata=ource H JoEotateCschedUstasource |-----.........................._...

JovectorJatasource JCEHMALIEY 2O DAASOUICE | me ommemee oo e emme e i

ICAppletDaraSource ;
JCBeanFieDataSource i
JCInputStreambateSolrce .

!
JCURLDStESOLNCE
JCFlleDatasouce

JCRezukSetDstaSource |

extencs

| — — —— implemerts

r
KEY ‘ CLASS ‘ }/AE!STRACT CLASS /

JCTable is the core JClass LiveTable class, with which most table programming is
performed, and from which all LiveTable Beans are extended. The JCListTable class

229

extends JCTable and provides a quick way of formatting a table to look and act like a list.
The data binding Beans allow you to bind your table application to an IDE-specific or
ODBC/]JDBC-compliant data source.

JClass LiveTable Data Classes
The following figure provides an overview of class inheritance for data handling in
JClass LiveTable.

favax.swing .

i
E JComponernt
I

| DSdhTable
I

/ com.kig fclass.table.db jbuilder

JBdbTahle

KEY CLASS | /AEISTRACT CLASS /

extends

—— —— implements

TableDataModel is the core data source interface, and EditableTableDataModel extends
this interface to allow editing of the data. JCVectorDataSource stores table data in a series
of vectors. JCInputStreamDataSource extends JCVectorDataSource to read from any
stream, and JCAppletDataSource, JCBeanFileDataSource, JCFileDataSource, and
JCURLDataSource further extend it to read from specific stream types. The other stock
data sources exist for other, more specific, situations.

230 Part Il m Reference Appendices

Appendix F

Distributing Applets and Applications

F.1

Using JarMaster to Customize the Deployment Archive

Using JarMaster to Customize the Deployment Archive

The size of the archive and its related download time are important factors to consider
when deploying your applet or application.

When you create an applet or an application using third-party classes such as JClass
components, your deployment archive will contain many unused class files unless you
customize your JAR. Optimally, the deployment JAR should contain only your classes
and the third-party classes you actually use. For example, the jctable.jar, which you used to
develop your applet or application, contains classes and packages that are only useful
during the development process and that are not referenced by your application. These
classes include the Property Editors and BeanInfo classes. JClass JarMaster helps you
create a deployment JAR that contains only the class files required to run your
application.

JClass JarMaster is a robust utility that allows you to customize and reduce the size of the
deployment archive quickly and easily. Using JClass JarMaster you can select the classes
you know must belong in your JAR, and JarMaster will automatically search for all of the
direct and indirect dependencies (supporting classes).

When you optimize the size of the deployment JAR with JClass JarMaster, you save
yourself the time and trouble of building a JAR manually and determining the necessity
of each class or package. Your deployment JAR will take less time to load and will use less
space on your server as a direct result of excluding all of the classes that are never used by
your applet or application.

For more information about using JarMaster to create and edit JARs, please consult its
online documentation.

JClass JarMaster is included in the JClass DesktopViews suite of products. For more
details please refer to Quest’s Web site.

231

http://www.quest.com

232 Part Il m Reference Appendices

G.1

Appendix G

Overview of Examples and Demos

JClass LiveTable Examples wm JClass LiveTable Demos

JClass LiveTable Examples

The following sections offer an overview of the examples included with JClass LiveTable.
These examples demonstrate the various concepts that can be used to create a table. The
examples vary in depth and complexity, but all are helpful in showing you how to
implement some of JClass LiveTable’s features.

Note: Please consult the Installation Guide to ensure that you are properly set up to run
these examples.

Introductory Examples

The introductory JClass LiveTable examples are part of the tutorial found in ‘Hello Table’
—JClass LiveTable Tutorial, in Chapter 1, that walk you through the construction and
modification of a basic table. These examples are part of the examples.table.intro
package, and are found in the examples/table/intro directory:

Examplelable].java A table with basic visual and interactive properties.

Examplelable2.java A table based on the previous example, but with labels.

Examplelable3.java The previous example table’s label colors have been
changed.

Examplelabled.java The label fonts and text alignment have been modified.

Examplelabled. java Cell and frame borders and spacing have been
changed. One table cell’s colors have been changed.

Examplelable6.java Cell editing has been enabled. Cell width and height
have been changed.

ExampleTable7java Table resizing only with labels has been set.

Examplelable8.java Column sorting has been enabled.

233

../getstarted/index.html

G.1.3

Tahle Layout Examples

The layout examples demonstrate how to build tables that go beyond the basic grid
design for tables. These are part of the examples.table.layout package, and are found in
the examples/table/layout directory:

Cars.java A table that contains tables. This example also
demonstrates cell spanning and visual property settings.

Flexible.java Columns resize dynamically, depending on how the
whole table is resized.

Cell Style Examples

The cell style examples demonstrate how style properties affect the appearance of
individual or groups of cells. You can find more information about cell style properties in
Cell Styles, in Chapter 2. These examples are part of the examples.table.styles
package, and are found in the examples/table/styles directory:

Animated.java Displays animated cells.

BorderTypes.java Showcases the cell border options available, including
some customized cell borders.

CellBorders.java Demonstrates various cell border appearance attributes,
including border type, border width, and cell side
coverage. The table updates with each selection.

RepeatColor.java Uses alternating background colors for rows or
columns, to improve readability.

TextureTable.java Uses a customized border type that tiles a background
image onto table cells.

UpdateStyle.java Continuously updates the background color property
for a particular table row’s style.

Cell Examples

The cell editing and rendering examples demonstrate specific applications for

JClass LiveTable’s editors and renderers. For more information about cell editors and
renderers, please refer to Displaying and Editing Cells, in Chapter 4. These examples are
part of the examples.table.cell package, and are found in the examples/table/cell
directory:

Currencylable.java Uses CurrencyRenderer to take all data, regardless of its
original type, and render it as dollar values in the table.

234

Part || m Reference Appendices

Histogram.java

MoneyTable.java
TriangleTable.java

WordWrap.java

Table Listener Examples

Uses a custom cell renderer to take randomized integer
data, and render them as horizontal bars in a table.

Uses a custom cell editor and a custom data type.

A demonstration of a non-text based editor and
renderer for Integer and Polygon types.

Uses a word wrapping renderer to handle long String
data in cells.

The event and listener examples demonstrate how you can work with events that your
table receives. For more information about the types of events and listeners available,
please refer to Events and Listeners, in Chapter 7. These examples are part of the
examples.table.listeners package, and are found in the examples/table/listeners

directory:

BooleanDisplay.java

CancelEdit.java

DoubleClickEdit.java

EditCell java

ResizeCell.java

SelectListener.java

SkipNavigation.java

Uses the JCCe11Display listener to intercept the display
event and change it before rendering (changes the
boolean from true/false to yes/no).

Shows how to use JCTableDataEdit and
JCTableDatalistener to cancel active edits when the
data source changes.

Demonstrates the use of JCEditCel1 events by
requiring a user to double click a cell in order to edit it.
A single click, or click and drag, only selects cells.

Demonstrates the use of JCEditCel1 events by placing
a message in the table’s pane, telling you which
column’s cell is being edited.

Uses JCResizeCell events to ensure that the maximum
and minimum set values for row heights and column
widths are adhered to when the user resizes rows and
columns. These maximum and minimum values are
defined in the table’s code.

Uses JCSelectListener events to make sure that the
portion of the table that is defined as non-selectable are
not included in cell range selections, and cannot be
initially selected.

Cell traversal events are used to listen for and skip a
column. When the user traverses to the right from
column 0, cell focus skips column 1 and moves to
column 2.

Appendix G m Overview of Examples and Demos 235

Sorter.java

TwoTlables.java

G.1.6 Table Interaction Examples

Demonstrates column sorting by performing a String
and numerical sort on a column of integers.

JCScroll events are used to sync the horizontal
scrolling for two separate tables.

The interaction examples show you how to improve the usability of your table
applications by enhancing some of your table’s interactive features. For information about
table interactions, please refer to Programming User Interactivity, in Chapter 6. These
examples are part of the examples.table.interactions package, and are found in the
examples/table/interactions directory:

ColumnLabelPopUp java
DragDrop.java

ExcellableExample.java

TableAutoColumnResize.java

TraverseOnEnter.java

G.1.7 Data Source Examples

Shows how to use column labels as tool tips.

Demonstrates the use of drag and drop by allowing the
user to interactively reorder rows and columns. This is
done by clicking and dragging labels.

Demonstrates how to copy and paste selected cells from
a JCTable to a Microsoft Excel spreadsheet and vice-
versa.

Depicts how to emulate JTable auto column resizing in
JCTable.

Displays how cell traversal (across rows) can optionally
be handled by using the Enter key.

The data source examples demonstrate how you can customize and use data sources with
your table application. These examples are part of the examples.table.datasource
package, and are found in the examples/table/datasource directory:

DynamicTest.java
DynamicTest2. java

FileData.java

This example table continually updates the data it
displays, as its data source’s values randomly change.

This example is the same as DynamicIest.java, except
that it uses AbstractDataSource.

Demonstrates how to load data from an external file by
using JCFileDataSource. Both a CSV and table format
file are loaded and displayed side by side.

236

Part || m Reference Appendices

FontList.java Uses the getFont () method to access AWT’s available
fonts and use it as the data source. Displays the name,
appearance, and other information pertaining to the
available fonts.

Pivot.java Shows how to create a data source instance that can
transpose itself. You can use a customized data source
or create your own.

StaticEditableTest.java A basic, custom data source that is built on editable
String values.

StaticTest.java This example is the same as the previous example,
except that the table data is not editable.

XMLFileData.java Demonstrates how to load XML-formatted data from
an external file by using JCFileDataSource.

Please note that in order to run this example, you will
need to have the jaxp.jar and crimson.jar files in your
CLASSPATH. For more information, please see
Loading Data from an XML Source, in Chapter 3.

XMLTableModelData.java Demonstrates how to load XM L-formatted data into a
Swing TableModel class.

Please note that in order to run this example, you will
need to have the jaxp.jar and crimson.jar files in your
CLASSPATH. For more information, please see
Loading Data from an XML Source, in Chapter 3.

DataSource Data Binding Examples

The data binding examples demonstrate the use of data binding in tables. Binding your
table to a ODBC, JDBC, or IDE-specific data source gives you live control over a robust
data source. These examples are part of the examples.table.db.* package, and are
based in the examples/table/db/ directory:

datasource/SimpleData.java Shows how to bind DSdbTab1e to JClass DataSource.

jbuilder/JBuilderDBTable.java This example shows how to bind JBdbTable to a
JBuilder QueryDataSet.

Appendix G m Overview of Examples and Demos 2317

G.2

Advanced JClass LiveTahle Examples

The advanced examples combine two or more concepts demonstrated in previous
examples. They are found in the examples.table.advanced package, and are in the
examples/table/advanced directory:

DecimallableCellDisplay.java This example assigns each column to take on a different
format of the same number. It uses
CellDisplayListener to format the rendered text, and
it uses UserData to store the numeric format of the cells.

DecimallableCellStyle.java This example shows how to achieve the same results as
DecimallableCellDisplay.java, except that
Cel1StyleModel object is used.

Gradient.java Creates a color whose value is incrementally changed
from cell to cell. This example uses the cell style
defaults, but shows how to bypass some properties for
particular cells.

JClass LiveTable Demos

The JClass LiveTable demos showcase different types of complete table solutions. They
combine several table concepts that are explained in this manual, including cell spanning,
user interaction, and editors and renderers.

The following table offers an overview of each demo that comes with JClass LiveTable,
including demo name, package, description, and sample screen shot.

Note: Please consult the Installing JClass Products section in the Installation Guide to
ensure that you are properly set up to run these demos.

BeanSweeper.java
demos.table.beanSweeper

DT T T T This demo recreates the well known minesweeper

game. In the creation of this table, cell styles are
used extensively. Style properties that affect cell
and border colors, border types, and image use,
give the game its look.

238

Part || m Reference Appendices

../getstarted/index.html

Calculator.java
demos.table.calculator

55378008 This basic calculator demo is a simple yet effective
demonstration of how cell styles can be used to customize the

Del C CE

- m) w look of your table. In this case, cell border and color

) e) %) properties are set to make this look like an authentic $2

2) s)) calculator. This demo also implements a data source that

) w)) =) gathers information that is input by the user.

CustomCells.java
demos.table.customCells

sting -~ |Dite |Dowie |Bar |check | Color| comboBox An effective demonstration of using
Al 1970 |java.utilGregoy 7915947557751 5 Il (] & |[omEnce = .

Al 1971 |java.util Gregoy 46.001452631933 [l O [) lwme—": custom cell renderers, Wthh take
Apl1972 |java.util Gregoy 30 591596929945 (] & [ween w0 :

April 1973 |java.util.Gregoy. 15.08504789678¢) O @ |[oeen ¥ various data types and converts

ApI 1974 |Jave.ull Gregoy|99 979000833445 O & [mme =] them to the standard desired

April 1975 |java.util Gregoy 70.447350717003) (] @ [oaree) .

April 1976 |java.util Gregoy 36.103457235365) (] @ [oaree) forma.ts. AlSO, COlumn Sortlng and
April 1877 |java util Gregoy 94 8910485811 75/l (] & [elow =] s 3 ;

April 1978 |java.util Gregoy 708632232791 23 (] @ |[back =] JClaSS Fleld Component 1ntegrat10n
Aunust 1970 |java.util Greqoy 5575769189162 Il (73 [3 rr— are showcased.

August1871 |java.util Gregoy 64,881 48932565 (] & [be ¥

August1872 |java.util Gregoy 23.082718498803) (] @ [ween v

August1873 |java util Gregoy 60.2676705047 33 I (] & [oume)

August1874 |java.util Gregoy 5530375039599 (] & [oume)

August1875 |java.util Gregoy 76.725200513223 | [} & [[mite ~l=

Matrix.java
demos.table.matrix

| Markenaae Suess Lot

Su Ll o2

: This information matrix shows how a
i Pt e custom JCCel1Renderer can be used to
"y add properties that are not built into
JClass LiveTable. Here, an
implementation of the Ce11StyleModel

Imiat

interface, RotatedCel1Style, adds the
LN e ees Rotation property to render text at any
NHEHEHENHNEH bl given angle.

Appendix G m Overview of Examples and Demos 239

PrimeTime.java
demos.table.primetime

5

15 [The Quler Liris The Preksnden Prufiler
< | [eaoons EUTY, Yamote Slayar | Baywaten [rens
16| 1 |news Wedice womzn Eany Eotan Crears

Sal Renort_|Empty Nes:

LibertySt [_iaerhs 3t

Wilderness

Fs Fachr Farly Frifin Hews

12

R ews

College Foathall

Eniaitzirmanthow

Waceins woman | Figh nadart [smin iy

no
ERE]

BECOERE

Poncazcle Wiy
Dingo Sportsbeat

Tho Protendor Profior Opeation |

Airfare |TOA

2 |Enteairmenthow

Medicite Waman High Incident Ope-ation

Print

SpreadSheet.java
demos.table.spreadsheet

This demo presents television
listings, and shows what can be
achieved with cell styles and cell
spanning. This demo also
incorporates printing functionality
into a table.

i This spreadsheet demo

Ej' JClass SpreadShest Demo

(EEEEE

emulates an Excel-style

recaie| | X [rsumpzas

A

B

G o]

|| spreadsheet. It supports a

12765

subset of spreadsheet

13.07

k4 Class Chart

23776

=SUM(A3:A3)

DataView #4
@ series1

functionality and is intended to
demonstrate formulae
||| || integration with table.

Within this demo you can also
|| chart a selected region of the

- spreadsheet.

=l oo~ @ ;e w] =

=

T
Sheet 1

13
.
J—
[

Stocks.java
demos.table.stocks

Stock Monitor

Symbol: ’7 Search

Symbol ‘H\gh ‘Luw

‘C\USB ‘Vulume ‘Chaﬂge

This stock information demo provides the
user with quick data updates and colors

AAPR

12112 4 304 15 1045.0 14

8373.0

Legen: ERGH 50% oron [N 20% ain

rows according to changes in value. Custom
-| cell rendering and cell styles are
emphasized with this demo.

240

Part || m Reference Appendices

A

about property 165, 214—215, 217
Abstract Windowing Toolkit, see AWT 15
AbstractDataSource 76
adding labels 35
alignment

cells 53

changing, tutorial 16
AllowCellResize property 118, 165, 203, 214—215,

217

effect on mouse pointers 129
AllowResizeBy property 165, 203, 214215, 217
API 3

programming 27

setting properties 160
applets 231

JarMaster 231
applications

distributing 231

JarMaster 231
attaching scrollbars 33
autoEdit property 203, 214—215, 217
automatic scrolling 120
autoScroll property 165, 204, 214215, 217
AWT

color constants 15

font styles, tutorial 17

image file formats supported 58

background
colors 15, 52
repeating 52
property 52, 212
basic table 10
Bean 159
LiveTable 161, 164
about property 165
allowCellResize property 165
allowResizeBy property 165
autoScroll property 165
CellBorderWidth property 166
CellSize property 166
data property 166

Index

editHeightPolicy property 167
editWidthPolicy property 167
focusColor property 167
focusIndicator property 168
frameBorderType property 168
frameBorderWidth property 168
frozenCellLayout property 168
LabelLayout property 168
leftColumn property 169
marginHeight property 169
marginWidth property 169
minCellVisibility property 169
sBLayout property 169
selectedBackground property 171
selectedForeground property 171
selectIncludeLabels property 172
selectionPolicy property 172
spannedCells property 172
styles property 173
topRow property 174
LiveTable, changing property editor table size 163
LiveTable, property
editors 161
LiveTable, selecting cell 162
LiveTable, selecting labels 162
property differences 194
setting properties 161
BeanBox 159
Beans Development Kit 159
borders
colors 38
component 38
custom 56
frame attributes 162, 172
sides
specifying 57
table frame 38
type 54
width 37
Borland JBuilder
data binding 184
built-in styles, using and modifying 50

C

CellBorder property 212

241

CellBorderColor property 212
CellBorderColorMode property 212
CellBorderSides property 57, 213
CellBorderType property 19

CellBorderWidth property 19, 37, 204
cellBorderWidth property 166, 214215, 217

CellInfo interface 100

cells
adding color to one cell, tutorial 18
alignment 53
alignment, tutorial 16
area

spacing from labels 36

border sides 57
border types 54
border width 37
border, IDE tutorial 180
borders, tutorial 19
CellEditor interface 79
CellInfo interface 100
CellRenderer interface 79
clipping arrows 43
controlling editor size 42

controlling selection at runtime 126

current 28
custom borders 56
customizing traversal 115
default editors 90
default selection 123
default traversal 115
definition 28
determining visibility 121
dimensions 43
displaying 79, 131
displaying images 58
displaying multiple lines 46
editable, tutorial 21
editing 28, 63, 79, 89, 133
default 80
editors
and CellInfo interface 100
controlling size 42
creating 92
default 90
defined 90
getting reserved keys 93
handling events 99
key control 99
mapping a data type 91
registering 113
reserving keys 93, 99
setting for a series 91
subclassing 94
writing 96
fonts 54
forcing traversal 116

image alignment 53
image layout 58
interactive traversal 117
making visible 121
margins 37
mathematical operation 114
maximum height/width 46
minimum height/width 46
minimum visibility 116
multiline 46
newline characters 46
preset styles, selection 32
range

referencing 29
referencing, all 30
referencing, one 29
removing a selection range 126
renderers 84

component based 87

creating 84

data type 83

mapping 83

mapping a data type 83

registering 113

setting 82

subclassing 85

writing 85
rendering 28, 81

default 80
reserving keys for editors 93
resizing 118
selected cell list 125
selecting 144
selecting ranges 125
selection

customizing 124
selection colors 34
selection, row and column labels 125
selection, tutorial 22
setting dimensions 43
setting properties 31
setting renderers 82
setting selection colors 34
setting values 69
size

absolute 44

character height/width 43

character width/height 43

pixel width/height 44

variable 45

changing to fixed values 45
size, tutorial 20
spacing 19
spanning 58
specific data types 80
styles 47

242 Index

built-in, modifying 50
built-in, using 50
changing default 48
defining 48
getting and setting 48
parent styles 49
pluggable look and feel 51
properties 47
retrieving from table 49
setting properties 31
tutorial 15
text alignment 53
thickness, IDE tutorial 180
traversal 115
traversing 151
values
setting 69
variable dimensions 45
changing to fixed values 45
cellSize property 166, 214, 216—217
CellStyleModel 15, 50
central registry 113
change values 76
changing default cells
styles 48
character
determining cells
size 43
height 43
width 43
CharHeight property 43, 204
tutorial 20
CharWidth property 43, 204
tutorial 20
ClassCastException 113
clip arrows
tutorial 12
clip hints
displaying 57
ClipHints property 57, 213
clipping
arrows 43
image 57
text 57
colors 52
AWT constants 15
background 52
colorname values 223
focus rectangle 33
foreground 52
repeating 52
RGB 223
RGB color value list 223
selection 124
setting 52
setting, tutorial 15

colors, selection 34

setting 34
ColumnHidden property 47, 204
ColumnLabelDisplay property 204

tutorial 14
ColumnLabelOffset property 36, 204
ColumnLabelPlacement property 35, 204
columns

adding 67, 78

adding labels, IDE tutorial 176

controlling resizing 118

default resizing behavior 118

deleting 68

determining number 40

determining visibility 121

disallowing resizing 118

displaying 41

dragging 126

freezing 41—42

hiding 46

labels 35, 62, 129

displaying 14

labels, placement 35

making visible 121

moving 68

placement of frozen 42

referencing, all 29—30

referencing, entire 30

referencing, one 29

removing 78

resizing 118

resizing all at once 119

resizing with labels 119

selecting labels 125

set as left 34

setting the number 66

sorting 127, 129

sorting frozen 127

sorting multiple 128

sorting, tutorial 24

specifying labels 66

swapping 41

visible, getting 40

visible, setting 40

width

pixel value 43

width property 43

width, setting 43
ColumnSelection property 204
ColumnTrigger property

and dragging 126

and sorting 129
com.klg jclass.table.beans.LiveTable 214
com.klg jclass.table.CellStyleModel 212
com.klg jclass.table.db.datasource. DSdbTable 217
com.klg jclass.table.db.jbuilder.JBdbTable 215

Index 243

com.klg jclass.table, JCTable 203
com.klg jclass.util.formulae 103
comments on product 6
component borders 38

Component property 204

ComponentBorderWidth property 38, 204

context 29
creating a cell editor 92
creating cell renderers 84
CSV 62
current cell 28

definition 28
current context 29
Cursor property 205
cursor type 33

tracking 33

data
caching 65
cell editor 80
cell renderer 80
data source 62
data storage 61
editing 63
format, detection 62
from an input stream 64
getting from database 65
getting into a table 62
handling 61
property 166, 214
storing 64—65
Swing TableModel objects 66
updating dynamically 74
data binding
examples 237
IDE 183
JBuilder 184
JClass DataSource 189
data bound
interacting 193
data source
adding and removing listeners 63, 69
and table size 62
communication with the table 61
creating 72
editable 63
editable, tutorial 21
event listeners 63
examples 236
IDE tutorial 175
JBuilder 184
JClass DataSource 189
JCVectorDataSource 64

model-view-controller 61

object 61

retrieving data 62

setting cell values 69

setting properties 66

stock data properties 66

stock data sources 63

tutorial 11
data type

cell renderers 83

mapping 83

mapping to a cell editor 91
database

getting data 65
dataBinding property 217
dataSet property 216
default

cell editors 90

scrolling 120
defaultCellStyle 51
defaultLabelStyle 51
deleting rows and columns 68
demos 238

BeanSweeper.java 238

Calculator.java 239

CustomCells java 239

Matrix.java 239

overview 233

PrimeTime.java 240

SpreadSheet.java 240

Stocks.java 240
destination parameter 68
dimensions

cell 43
displaying

cells 131

clip hints 57

rows and columns 41
distributing 231

applets and applications 231

JarMaster 231
dragging rows and columns 126
drawBackground 56
drawing cells 80
dynamically updating data 74

editable cells 63

Editable property 63, 213
EditableTableDataModel 63

EditHeightPolicy property 205

editHeightPolicy property 42, 167, 214, 216—217
editing cells 63, 80, 89

editors

244 Index

LiveTable 161
setting 91
EditWidthPolicy property 42
editWidthPolicy property 167, 205, 214, 216—217
evaluate
method in MathValue 105
event listeners 131
adding and removing 69
cell display 132
data source 63
entering cells 134
JCCellDisplayListener 131
JCEnterCellListener 134
JCPaintListener 136
JCPrintListener 137
JCResizeListener 138
JCScrollListener 141
painting 136
printing 137
resizing 138
events 112, 131
cell display events 132
cell editors 99
editing cells 133
JCCellDisplayEvent 131
JCEditCellEvent 133
JCPaintEvent 136
JCPrintEvent 137
JCResizeEvent 138
JCScrollEvent 141
JCSortEvent 147
JCTraverseCellEvent 149, 151
painting 136
printing 137
resizing 138
scrolling 141
sorting 147
summary 199
TableListenerPropagator 112
traversal 149, 151
examples 233
advanced 238
cell 234
cell style 234
data binding 237
data source 236
introductory 233
overview 233
table interaction 236
table layout 234
table listener examples 235
exceptions 113
ClassCastException 113
OperandMismatchException 113
expression 105
interface 105

lists 112, 114
MathExpressionList 112
QueryExpressionList 112
TableExpressionList 112

mathematical 103

references 114

F

FAQs 5
feature overview 1
fixed values 45
focus rectangle
color 33
focusColor property 167, 205, 214, 216—217
focusIndicator property 168, 205, 214, 216—217
FocusRectColor property 33
Font property 205, 213
font styles
AWT 17
fonts
cells 54
labels 54
matched by AWT 18
names 228
point size 228
setting, tutorial 17
size, tutorial 17
style constants 228
footers
printing 156
foreground
colors 15, 52
repeating 52
property 52
Foreground property 205, 213
format, RGB 223
formulae hierarchy 103
formulae package 103
formulas
adding to JClass LiveTable 103
using in JClass LiveTable 113
frame
border 162, 172
FrameBorder property 38, 205
FrameBorderType property
in IDEs 168
frameBorderType property 168, 214, 216—217

frameBorderWidth property 38, 168, 206, 214, 216—

217
freezing
columns 42
rows 42
frozen
column placement 42

Index

columns 41
and sorting 127
row placement 42
rows 41
frozenCellLayout property 168, 214, 216—217
FrozenColumnPlacement property 206
FrozenColumns property 206
properties
FrozenColumns 41
FrozenRowPlacement property 206
FrozenRows property 41, 206

get method 203
getDataFormat

method in MathValue 105
getValueAt

method in MathMatrix 108

method in MathVector 107
GIF

image file formats supported 58
global table properties 32

headers

printing 156
hiding

columns 46

rows 46
HorizontalAlignment property 58, 213
HorizSBAttachment property 33, 206
HorizSBDisplay property 121, 206
HorizSBOffset property 206
HorizSBPosition property 207
HorizSBTrack property 207
HorizSBTrackRow property 207

IDEs 159
data binding 183
setting properties 32, 160
tutorial 174
image
alignment in cell 53
clipping 57
displaying in cells 58
formats supported 58
layout 58
layout in cell 58
inheritance hierarchy 229

input stream
getting data from 64
Integrated Development Environment (IDE) 160
interactivity 115
IDE tutorial 181
interacting with data bound tables 193
tutorial 21
internationalization 26
introduction
JClass LiveTable 1

J

JAR 231

JarMaster 231
JarMaster 231

JAR 231
JavaBeans

features of 159
JBuilder 184

data binding 184
JCCachedDataSource 65
JCCellBorder class 54
JCCellDisplayEvent 131, 199
JCCellDisplayListeners 131
JCCellRange

in cell selection 125
JCCellRenderer 83
JCCellStyle 15, 48, 50
JCComponentCellRenderer 87
JCEditCellEvent 199
JCExpressionCellRenderer 80
JClInputStream 62
JClnputStreamDataSource 64
JClass 3.6.x applications

porting 219
JClass DataSource 189
JClass JarMaster 231
JClass LiveTable, introduction 1
JClass technical support 5

contacting 5
jclass.cell package 79
JClListTable 32
JCPaintEvent 136, 199
JCPaintListener 136
JCPrintEvent 137, 200
JCPrintListener 137
JCPrintPreview 157
JCPrintTable 155, 158
JCResizeCellEvent 118, 138, 200
JCResizeCellListener 138
JCResizeCellMotionListener 138
JCScrollEvent 122, 141, 200
JCScrollListener 122, 141
JCSelectEvent 201

246 Index

JCSelectListener 145
JCSortEvent 147, 201
JCSortListener 147
JCTable 27
JCTableDataEvent 149, 201
JCTableDataListener 150
JCTraversalCellEvent 151
JCTraverseCellEvent 117, 201
JCTraverseCellListener 151
JCVectorDataSource 11
editing 64
JDBC 183
JPEG
image file formats supported 58
JumpScroll property 207, 214

keys
control 99
reserving for cell editors 93, 99

L

label parameter 67
labelLayout property 168, 214, 216—217
labels
adding 13, 35
border sides 57
border width 37
column, IDE tutorial 176
columns 62
custom borders 56
definition 28
displaying, tutorial 14
fonts 54
formatting 13
layout, IDE tutorial 179
margins 37
offset from table 36
placement 35
preset styles, selection 32
referencing, all 30
referencing, all columns 30
referencing, all rows 30
referencing, column 29
referencing, row 29
resize, tutorial 23
rows 62
selecting 125
setting properties 31
spacing from cell area 36
spanning 58
specifying row and column 66

using for resizing 119
leftColumn property 34, 121, 169, 207, 214, 216217
list of cell editors 90
listeners 112, 131

examples 235

management 76

scroll 122

TableListenerPropagator 112
LiveTable

general classes, inheritance 229
LiveTable Bean

about property 165

allowCellResize property 165

allowResizeBy property 165

autoScroll property 165

CellBorderWidth property 166

CellSize property 166

data property 166

editHeightPolicy property 167

editWidthPolicy property 167

focusColor property 167

focusIndicator property 168

frameBorderType property 168

frameBorderWidth property 168

frozenCellLayout property 168

LabelLayout property 168

leftColumn property 169

marginHeight property 169

marginWidth property 169

minCellVisibility property 169

properties 164

sBLayout property 169

selectedBackground property 171

selectedForeground property 171

selectIncludeLabels property 172

selectionPolicy property 172

setting properties 161

spannedCells property 172

styles property 173

topRow property 174
LiveTable Data

classes, inheritance 230
loading data 69

localization 26

mapping 83

a data type 83
marginHeight property 37, 169, 207, 214, 216, 218
margins

cell and label 37

setting 37
marginWidth property 37, 169, 207, 214, 216, 218
math values 105

Index 247

mathematical expressions 103
Mathematical operations 109
binary 109
range of cells 114
unary 109
MathExpressionList 112
MathMatrix 107
constructors 107
getValueAt method 108
matrixValue method 108
methods 108
numberValue method 108
setValueAt method 108
toString method 108
VectorValue method 108
MathScalar 106
constructors 106
matrixValue method 106
methods 106
numberValue method 106
toString method 106
vectorValue method 106
MathValue 103
class 105
evaluate method 105
getDataFormat method 105
matrixValue method 105
methods 105
numberValue method 105
setDataFormat method 105
vectorValue method 105
MathVector 106
constructors 106
getValueAt method 107
matrixValue method 107
methods 107
numberValue method 107
setValueAt method 107
toString method 107
vectorValue method 107
matrixValue
method in MathMatrix 108
method in MathScalar 106
method in MathValue 105
method in MathVector 107
MaxHeight property 208
maximum pixel
height 46
width 46
MaxWidth property 208
methods
accessor 203

minCellVisibility property 169, 208, 214, 216, 218

MinHeight property 208
minimum

cell visibility 116

pixel height 46

pixel width 46
MinWidth property 208
model-view-controller 11, 61

data source 61
mouse pointers

custom 129

disabling tracking 130
multiline 46

headers, spanning 60
multiple

columns, sorting 128

lines in cells 46
MVC, see model-view-controller 61

newline character

and Multiline property 46
num_columns parameter 68
num_rows parameter 68
numberValue

method in MathMatrix 108

method in MathScalar 106

method in MathValue 105

method in MathVector 107
NumColumns property 40, 62
NumRows property 40, 62

ODBC 183
offset of labels 36
OperandMismatchException 113
Operation class 108
operations

constructor 108

mathematical 109

binary 109
unary 109

methods 108

reducing values 111
operators

Abs 109

Add 109

Average 109

Ceiling 109

Count 110

Divide 110

Floor 109

GeometricMean 110

in com.klg.jclass.util.formulae 109

Max 110

Median 110

248 Index

Min 110
Multiply 110
Power 110
Product 110
Root 109
Round 109
Sort 111
StdDeviation 111
Subtract 111
Sum 111
Trunc 109

P

page layout
page size 155
setting, for printing 155
page margins
setting, for printing 156
page numbering
setting, for printing 156
page resolution 156
painting 136
parent cell styles
creating 49
PixelHeight property 44, 208
setting, tutorial 20
user row resizing 118
using to hide rows 46
pixels
absolute height and width 44
estimate 45
maximum height/width 46
minimum height/width 46
variable height and width 45
changing to fixed values 45
PixelWidth property 44, 208
column resizing 118
setting, tutorial 20
using to hide columns 46
pluggable look and feel (PLAF) 51
popupMenuEnabled property 208, 214, 216, 218
porting
JClass 3.6.x applications 219
position parameter 67—68
PreferredSize 87
preset styles 32
print preview 157
printing 137, 155
events 137
headers and footers 156
page layout 155
page margins 156
page numbering 156
page resolution 156

page size 155
preview 157

product feedback 6
programming the API 27
properties

about 214—215, 217

access in IDE 32

accessor methods 203

allowCellResize 203, 214—215, 217
effect on mouse pointers 129

allowResizeBy 203, 214215, 217

autoEdit 203, 214215, 217

autoScroll 204, 214215, 217

Background 212

cell style 47

CellBorder 212

CellBorderColor 212

CellBorderColorMode 212

CellBorderSides 57, 213

CellBorderWidth 37, 204, 214—215, 217

cellSize 214, 216—217

CharHeight 20, 43, 204

CharWidth 20, 43, 204

ClipHints 57, 213

Color 223

column width 43

ColumnHidden 47, 204

ColumnLabelDisplay 204

ColumnLabelOffset 36, 204

ColumnLabelPlacement 35, 204

ColumnSelection 204

ColumnTrigger 126, 129

com.klg jclass.table.beans.LiveTable 214

com.klg jclass.table.CellStyleModel 212

com.klg jclass.table.db.datasource.DSdbTable 217

com.klg jclass.table.db.jbuilder,JBdbTable 215
com.klg jclass.table, JCTable 203
ComponentBorderWidth 38, 204

Cursor 205

data 214

dataBinding 217

dataSet 216

Editable 213

EditHeightPolicy 42, 205, 214, 216—217
EditWidthPolicy 42, 205, 214, 216—217
focusColor 205, 214, 216—217
focusIndicator 205, 214, 216—217

Font 205, 213, 228

Foreground 205, 213

FrameBorder 38, 205

frameBorderType 160, 214, 216—217
frameBorderWidth 38, 206, 214, 216—217
frozenCellLayout 214, 216—217
FrozenColumnPlacement 206
FrozenColumns 206
FrozenRowPlacement 206

Index

249

FrozenRows 41, 206
getting 28
global 32
HorizontalAlignment 213
HorizSBAttachment 206
HorizSBDisplay 206
HorizSBOffset 206
HorizSBPosition 207
HorizSBTrack 207
HorizSBTrackRow 207
JumpScroll 207, 214
labelLayout 214, 216—217
leftColumn 34, 207, 214, 216—217
marginHeight 37, 207, 214, 216, 218
marginWidth 37, 207, 214, 216, 218
MaxHeight 208
MaxWidth 208
minCellVisibility 208, 214, 216, 218
MinHeight 208
MinWidth 208
NumColumns 40, 62
NumRows 40, 62
PixelHeight 20, 44, 208

using to hide rows 46
PixelWidth 20, 44, 208

using to hide columns 46
popupMenuEnabled 208, 214, 216, 218
RepaintEnabled 208
RepeatBackground 213
RepeatBackgroundColors 213
RepeatForeground 213
RepeatForegroundColors 213
ResizeByLabelsOnly 23, 119
resizeEven 119, 208, 214, 216, 218
resizelnteractive 209, 215—216, 218
row height 43
RowHidden 47, 209
RowLabelDisplay 209
RowLabelOffset 36, 209
RowLabelPlacement 35, 209
RowSelection 209
RowTrigger 126
sBLayout 215—216, 218

selectedBackground 34, 209, 215—216, 218

SelectedBackgroundMode 209
SelectedCells 209

selectedForeground 34, 210, 215—216, 218

SelectedForegroundMode 210
selectIncludeLabels 209, 215—216, 218
SelectionModel 210

selectionPolicy 22, 210, 215216, 218
SeriesDataSorted 210

setting 28

setting cell styles 31

setting for a cell 29

setting for a cell range 32

setting for a range 30
setting for all cells 30
setting for all columns 29—30
setting for all labels 30
setting for all rows 29
setting for cells and labels 31
setting for column 29
setting for entire column 30
setting for entire row 30
setting for entire table 30
setting for labels 29—30
setting for range of cells 29
setting in the API 13
SortBy Column 127
spannedCells 215—216
stock data source 66
StoreImageEnabled 210
styles 215216, 218
summary of 203
swingDataModel 215, 217—218
topRow 34, 210, 215, 217218
TrackBackground 210
trackCursor 210, 215, 217—218
TrackForeground 210
TrackSize 211
Traversable 213
traverseCycle 211, 215, 217—218
useDatasourceEditable 218
VariableEstimateCount 211
Vertical Alignment 213
VertSBAttachment 211
VertSBDisplay 211
VertSBOffset 211
VertSBPosition 211
VertSBTrack 212
VertSBTrackColumn 212
VisibleColumns 40—41, 212
VisibleRows 40—41, 212
property
definition 159
difference between JClass LiveTable Beans 194
LiveTable properties 164
setting in Java IDE 160
setting using API 160
property editors
LiveTable 161

Q

QueryExpressionList 112
Quest Software technical support
contacting 5

250 Index

ranges

in cell selection 125

referencing 30

selected 125

used in cell spanning 59
references

expression 114
registry

JClass central 113
removing cell selections 126
renderers 83—84

component based 87

default 85

editors 28

subclassing 85

unmap 84

writing 85
rendering cells 80—81
RepaintEnabled property 208
RepeatBackground property 213
RepeatBackgroundColors property 213
RepeatForeground property 213
RepeatForegroundColors property 213
repeating colors 52
reset 78
resetSortedRows() method 129
ResizeByLabelsOnly property 119

tutorial 23
ResizeEven property 119, 208
resizeEven property 214, 216, 218
Resizelnteractive property 209
resizelnteractive property 215—216, 218
resizing 138

columns 118

default behavior 118

disabling 118

events and listeners 138

pixel width 118

preset styles 32

rows 118

rows and columns 118—119

using labels only 119

using labels, tutorial 23
results 105
RGB color values 223
RowHidden property 47, 209
RowLabelDisplay property 209
RowLabelOffset property 36, 209
RowLabelPlacement property 35, 209
rows

adding 67, 78

controlling resizing 118

default resizing behavior 118

definition

columns
definition 40
deleting 68
determining number 40
disallowing resizing 118
displaying 41
dragging 126
freezing 41—42
height
pixel value 43
height property 43
height, setting 43
hiding 46
labels 35, 62
labels, placement 35
making visible 121
moving 68
placement of frozen 42
referencing, all 29—30
referencing, entire 30
referencing, one 29
removing 78
resizing 118
resizing all at once 119
resizing with labels 119
selecting labels 125
set as top 34
setting the number 66
specifying labels 66
swapping 41
visible, getting 40
visible, setting 40
RowSelection property 209
RowTrigger property
and dragging 126
runtime
cell selection 126

S

sBLayout property 169, 215—216, 218
scroll listener methods 122
scrollbars 33
attaching 33
component 34
definition 28
disabling interactive 121
display 34
force scrolling by an application 121
jump scrolling 120
options 34
positioning 33
programming 120
tracking 122
scrolling 120, 141

Index

251

automatic 120
disabling interactive 121
forcing 121
jump scrolling 120
listener 122
managing 120
mouse wheel support 121
tracking scrollbars 122
selected cells
list 125
selectedBackground property 34, 171, 209, 215216,
218
SelectedBackgroundMode property 209
SelectedCells property 209
selectedForeground property 34, 171, 210, 215216,
218
SelectedForegroundMode property 210
selectIncludeLabels property 172, 209, 215-216, 218
selection
cells 144
cells, default 123
colors 34, 124
setting 34
customizing 124
enabling cell selection, tutorial 22
SelectionModel property 210
selectionPolicy property 124, 172, 210, 215-216, 218
tutorial 22
SeriesDataSorted property 210
set method 203
setAutoScroll() method 120
setDataFormat
method in MathValue 105
setEditable method 63
setting
cell renderers, for a series 82
properties in an IDE 32
scrollbar options 34
setValueAt
method in MathMatrix 108
method in MathVector 107
SortableDataViewModel 61
SortByColumn property 127
sorting
and ColumnTrigger property 129
columns 127
columns, tutorial 24
events and listeners 147
frozen columns 127
multiple columns 128
resetting 129
SortByColumn property 127
source parameter 68
SpanHandler 59
spannedCells property 172, 215—216

spanning

cells 58

create multiline headers 60

using JCCellRange 59
StaticDataSource 73
stock data sources

using 63
StoreImageEnabled property 210
storing data 64—65
styles

preset 32

property 173, 215—216, 218
subclassing

cell editors 94

cells

renderers 85

summary of properties 203
support 5

contacting 5

FAQs 5
swapColumns method 41
swapping rows and columns 41
swapRows method 41
Swing TableModel class 71
Swing, using TableModel data objects 66
swingDataModel property 215, 217—218

table
basic 10
frame border 38
preset styles 32
printing 137
referencing, entire 30
resize events 138
resizing 138
scrolling 141
size defined by data source 62
sorting 147
table anatomy
cell 28
current cell 28
current context 29
label 28
renderers 28
scrollbars 28
table context 29
table frame
border 162, 172
table layout
examples 234
table scrolling
attaching scrollbars 33
default 120
different component 34

252 Index

setting options 34
Table.isRowVisible() 121
TableDataEvent 74
TableDataltem 62
TableDataListener 74
TableDataModel interface 62
TableDataView 62
TableExpressionList 112
TableListenerPropagator 112
TableModel, using in table 66
TableSwingDataSource 66
technical support 5

contacting 5

FAQs 5
text

alignment in cell 53

clipping 57

topRow propert , —
P property 34, 121, 174, 210, 215, 217218

toString
method in MathMatrix 108
method in MathScalar 106
method in MathVector 107
TrackBackground property 210

trackCursor property 130, 210, 215, 217218

TrackForeground property 210
tracking

cursor type 33

mouse pointers, disabling 130

scrollbars 122
TrackSize property 211
Traversable property 213
traversal

cell 115

customizing cell 115

default 115

events 149, 151

forcing 116

interactive 117

preset styles 32
traverseCycle property 211, 215, 217218
trigger 24
tutorial

adding color to an individual cell 18

adding interactivity 21

background colors 15

basic table 10

cell borders 19

cell selection 22

cell size 20

cell spacing 19

cell styles 15

changing alignment 16

clip arrows 12

fonts, setting 17

foreground color 15

improving table appearance 13

making a table editable 21

PixelHeight property 20

PixelWidth property 20

resize using labels 23

ResizeByLabelsOnly property 23

resizing cells 12

SelectionPolicy property 22

setting a data source 11

setting colors 15

setting properties in the API 13

sorting columns 24

table appearance 12

table changes 12
typographical conventions 2

useDatasourceEditable property 218
user interactivity 115

vV

values

change 76

parameter 67
variable cell size 20
VariableEstimateCount property 211
vectorValue

method in MathMatrix 108

method in MathScalar 106

method in MathValue 105

method in MathVector 107
VerticalAlignment 58
VerticalAlignment property 213
VertSBAttachment property 211
VertSBDisplay 121
VertSBDisplay property 211
VertSBOffset property 211
VertSBPosition property 211
VertSBTrack property 212
VertSBTrackColumn property 212
visibility

cells 116, 121

columns 121

forcing 121
VisibleColumns property 40—41, 212
VisibleRows property 40—41, 212

w

writing a cell renderer 85

Index

253

XML
examples 70
in JClass 70
interpreter 70
loading data 69
primer 69
Swing TableModel class 71
tags 71

254 Index

	JClass LiveTable
	Preface
	Introducing JClass LiveTable
	Assumptions
	Typographical Conventions in this Manual
	Overview of the Manual
	API Reference
	Licensing
	Related Documents
	About Quest
	Contacting Quest Software
	Customer Support
	Product Feedback and Announcements

	Using JClass LiveTable
	‘Hello Table’ - JClass LiveTable Tutorial
	1.1 The Basic Table
	1.2 Overview of Table Changes
	1.3 Improving the Table’s Appearance
	1.4 Adding Interactivity
	1.5 Proceeding from Here
	1.6 Internationalization

	Building a Table
	2.1 Table Anatomy 101
	2.2 Setting and Getting Properties
	2.3 Preset Table Styles
	2.4 Global Table Properties
	2.5 Column Width and Row Height Properties
	2.6 Cell Styles
	2.7 Cell and Label Spanning

	Working with Table Data
	3.1 Overview: Data Handling in JClass LiveTable
	3.2 Getting Data into your Table
	3.3 Using Stock Data Sources
	3.4 Setting Stock Data Source Properties
	3.5 Loading Data from an XML Source
	3.6 Creating your own Data Sources
	3.7 Dynamically Updating Data

	Displaying and Editing Cells
	4.1 Overview
	4.2 Default Cell Rendering and Editing
	4.3 Rendering Cells
	4.4 Editing Cells
	4.5 The JCCellInfo Interface

	Adding Formulas to JClass LiveTable
	5.1 Introduction
	5.2 com.klg.jclass.util.formulae’s Hierarchy
	5.3 Expressions and Results
	5.4 Math Values
	5.5 Operations
	5.6 Expression Lists
	5.7 Events and Listeners
	5.8 Exceptions
	5.9 Using Formulae in JClass LiveTable

	Programming User Interactivity
	6.1 Cell Traversal
	6.2 Resizing Rows and Columns
	6.3 Table Scrolling
	6.4 Cell Selection
	6.5 Dragging Rows and Columns
	6.6 Sorting Columns
	6.7 Custom Mouse Pointers

	Events and Listeners
	7.1 Displaying Cells
	7.2 Editing Cells
	7.3 Painting Tables
	7.4 Printing Tables
	7.5 Resizing Cells
	7.6 Scrolling in Tables
	7.7 Selecting Cells
	7.8 Sorting Table Data
	7.9 Table Data Changes
	7.10 Traversing Cells

	Table Printing
	8.1 Printing
	8.2 Print Preview

	JClass LiveTable Beans and IDEs
	9.1 An Introduction to JavaBeans
	9.2 JClass LiveTable and JavaBeans
	9.3 Setting Properties for the LiveTable Bean
	9.4 Tutorial: Building a Table in an IDE
	9.5 Data Binding with IDEs
	9.6 Interacting with Data Bound Tables
	9.7 Property Differences Between the JClass LiveTable Beans

	Reference Appendices
	Event Summary
	JClass LiveTable Property Listing
	B.1 Properties of com.klg.jclass.table.JCTable
	B.2 Properties of com.klg.jclass.table.CellStyleModel
	B.3 Properties of com.klg.jclass.table.beans.LiveTable
	B.4 Properties of com.klg.jclass.table.db.jbuilder.JBdbTable
	B.5 Properties of com.klg.jclass.table.db.datasource.DSdbTable

	Porting JClass 3.6.x Applications
	C.1 Overview of Changes
	C.2 Porting Strategies
	C.3 Highlights of Main Changes

	Colors and Fonts
	D.1 Colorname Values
	D.2 RGB Color Values
	D.3 Fonts

	JClass LiveTable Inheritance Hierarchy
	Distributing Applets and Applications
	F.1 Using JarMaster to Customize the Deployment Archive

	Overview of Examples and Demos
	G.1 JClass LiveTable Examples
	G.2 JClass LiveTable Demos

	Index

