
JClass LiveTable
Programmer’s Guide 

Version 6.3
for Java 2 (JDK 1.3.1 and higher)

The Essential Java Grid/Table Component

TM

8001 Irvine Center Drive
Irvine, CA 92618
949-754-8000
www.quest.com

April 2004 RefNo: PRGDE-JCTBL/630-04/2004



© Copyright Quest Software, Inc. 2004. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The software described in this 
guide is furnished under a software license or nondisclosure agreement. This software may be used or copied 
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or 
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording 
for any purpose other than the purchaser's personal use without the written permission of Quest Software, 
Inc. 

Warranty

The information contained in this document is subject to change without notice. Quest Software makes no 
warranty of any kind with respect to this information. QUEST SOFTWARE SPECIFICALLY 
DISCLAIMS THE IMPLIED WARRANTY OF THE MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. Quest Software shall not be liable for any direct, indirect, incidental, 
consequential, or other damage alleged in connection with the furnishing or use of this information.

Trademarks

JClass, JClass Chart, JClass Chart 3D, JClass DataSource, JClass Elements, JClass Field, JClass HiGrid, 
JClass JarMaster, JClass LiveTable, JClass PageLayout, JClass ServerChart, JClass ServerReport, 
JClass DesktopViews, and JClass ServerViews are trademarks of Quest Software, Inc. Other trademarks and 
registered trademarks used in this guide are property of their respective owners. 

World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com
e-mail: info@quest.com
U.S. and Canada: 949.754.8000

Please refer to our Web site for regional and international office information.

This product includes software developed by the Apache Software Foundation http://www.apache.org/.

The JPEG Encoder and its associated classes are Copyright © 1998, James R. Weeks and BioElectroMech. 
This product is based in part on the work of the Independent JPEG Group. 

Redistribution and use in source and binary forms, with or without modification, are permitted 
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, all 
files included with the source code, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of 
conditions and the following disclaimer in the documentation and/or other materials provided 
with the distribution. 

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 

http://www.quest.com
http://www.apache.org/


EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, 
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGE. 

This product includes software developed by the JDOM Project (http://www.jdom.org/). Copyright © 2000-
2002 Brett McLaughlin & Jason Hunter, all rights reserved. Redistribution and use in source and binary 
forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, 
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of 
conditions, and the disclaimer that follows these conditions in the documentation and/or other 
materials provided with the distribution.

3. The name "JDOM" must not be used to endorse or promote products derived from this 
software without prior written permission. For written permission, please contact 
license@jdom.org. 

4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in 
their name, without prior written permission from the JDOM Project Management 
(pm@jdom.org).

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED 
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, 
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGE.

http://www.jdom.org/
mailto:license@jdom.org
mailto:pm@jdom.org




i

Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Introducing JClass LiveTable .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  1
Assumptions    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  1
Typographical Conventions in this Manual   .   .   .   .   .   .   .   .   .   .   .   .  2
Overview of the Manual .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  2
API Reference .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  3
Licensing .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  3
Related Documents .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  4
About Quest    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  4
Contacting Quest Software .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  4
Customer Support   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  5
Product Feedback and Announcements .   .   .   .   .   .   .   .   .   .   .   .   .   .  6

Part I: Using JClass LiveTable

1 ‘Hello Table’ –
JClass LiveTable Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 The Basic Table    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    10
1.2 Overview of Table Changes .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    12
1.3 Improving the Table’s Appearance  .   .   .   .   .   .   .   .   .   .   .   .    13

Adding and Formatting Labels   .   .   .   .   .   .   .   .   .   .   .   .    13
Introduction to Cell Styles   .   .   .   .   .   .   .   .   .   .   .   .   .   .    15
Changing Foreground and Background Colors  .   .   .   .   .   .    15
Changing Alignment   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    16
Changing the Fonts .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    17
Adding Color to an Individual Cell    .   .   .   .   .   .   .   .   .   .    18
Changing the Cell Borders and Spacing .   .   .   .   .   .   .   .   .    19
Displaying More of the Cells  .   .   .   .   .   .   .   .   .   .   .   .   .    20

1.4 Adding Interactivity .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    21
Making the Cells Editable   .   .   .   .   .   .   .   .   .   .   .   .   .   .    21
Enabling Cell Selection   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    22
Resizing Using Labels Only    .   .   .   .   .   .   .   .   .   .   .   .   .    23
Enabling Column Sorting    .   .   .   .   .   .   .   .   .   .   .   .   .   .    24

1.5 Proceeding from Here  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    25



ii Contents

1.6 Internationalization .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  26

2 Building a Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 Table Anatomy 101    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  27
2.2 Setting and Getting Properties    .   .   .   .   .   .   .   .   .   .   .   .   .   .  28

Table Contexts   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  29
Setting Table Properties with Java Code   .   .   .   .   .   .   .   .   .  31
Setting Properties with a Java IDE at Design-Time   .   .   .   .   .  32

2.3 Preset Table Styles  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  32
2.4 Global Table Properties  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  32

Focus Rectangle Appearance .   .   .   .   .   .   .   .   .   .   .   .   .   .  33
Screen Cursor Type   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  33
Scrollbars    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  33
Cell Selection Colors  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  34
Row and Column Labels   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  35
Cell and Label Border Width    .   .   .   .   .   .   .   .   .   .   .   .   .  37
Cell and Label Margins  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  37
Component Borders   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  38
Frame Border Attributes    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  38
Row and Column Definition  .   .   .   .   .   .   .   .   .   .   .   .   .   .  40
Controlling Cell Editor Size   .   .   .   .   .   .   .   .   .   .   .   .   .   .  42

2.5 Column Width and Row Height Properties   .   .   .   .   .   .   .   .   .  43
Character Height and Width .   .   .   .   .   .   .   .   .   .   .   .   .   .  43
Absolute Pixel Height and Width  .   .   .   .   .   .   .   .   .   .   .   .  44
Variable Pixel Height and Width  .   .   .   .   .   .   .   .   .   .   .   .  45
Maximum and Minimum Pixel Height and Width   .   .   .   .   .  46
Displaying and Editing Multiple Lines in Cells .   .   .   .   .   .   .  46
Using Row Height and Width to Hide Rows and Columns  .   .  46

2.6 Cell Styles    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  47
Cell Style Properties and Implementation .   .   .   .   .   .   .   .   .  47
Defining Your Own or Changing Built-In Cell Styles   .   .   .   .  48
Using and Modifying JClass LiveTable’s Built-In Styles   .   .   .  50
Working with Colors  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  52
Text and Image Alignment    .   .   .   .   .   .   .   .   .   .   .   .   .   .  53
Cell and Label Fonts  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  54
Border Types  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  54
Cell and Label Border Sides  .   .   .   .   .   .   .   .   .   .   .   .   .   .  57
Text and Image Clipping   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  57
Displaying Images in Table Cells  .   .   .   .   .   .   .   .   .   .   .   .  58



Contents iii

2.7 Cell and Label Spanning  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    58
Using Spanning to Create Multiline Headers .   .   .   .   .   .   .    60

3 Working with Table Data  . . . . . . . . . . . . . . . . . . . . . . . . . . .61
3.1 Overview: Data Handling in JClass LiveTable    .   .   .   .   .   .   .    61

How the Table and Data Source Communicate .   .   .   .   .   .    61
3.2 Getting Data into your Table   .   .   .   .   .   .   .   .   .   .   .   .   .   .    62

Making the Data Source Editable   .   .   .   .   .   .   .   .   .   .   .    63
3.3 Using Stock Data Sources    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    63

JCVectorDataSource: the Data Source Workhorse  .   .   .  64

Getting Data from an Input Stream    .   .   .   .   .   .   .   .   .   .    64
Getting Data from a Database .   .   .   .   .   .   .   .   .   .   .   .   .    65
Caching Data with JCCachedDataSource  .   .   .   .   .   .   .   .    65
Using Swing TableModel Data Objects  .   .   .   .   .   .   .   .   .    66

3.4 Setting Stock Data Source Properties   .   .   .   .   .   .   .   .   .   .   .    66
Working with Rows and Columns  .   .   .   .   .   .   .   .   .   .   .    66
Working with Other Properties   .   .   .   .   .   .   .   .   .   .   .   .    69

3.5 Loading Data from an XML Source    .   .   .   .   .   .   .   .   .   .   .    69
XML Primer    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    69
Using XML in JClass   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    70
Example XML Files for JClass LiveTable  .   .   .   .   .   .   .   .    71
Tags .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    71
Creating a Swing TableModel class    .   .   .   .   .   .   .   .   .   .    71

3.6 Creating your own Data Sources .   .   .   .   .   .   .   .   .   .   .   .   .    72
3.7 Dynamically Updating Data    .   .   .   .   .   .   .   .   .   .   .   .   .   .    74

Adding and Removing Columns and Rows   .   .   .   .   .   .   .    78

4 Displaying and Editing Cells . . . . . . . . . . . . . . . . . . . . . . . . .79
4.1 Overview  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    79
4.2 Default Cell Rendering and Editing .   .   .   .   .   .   .   .   .   .   .   .    80
4.3 Rendering Cells    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    81

JClass Cell Renderers  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .    81
Setting a Cell Renderer for a Series    .   .   .   .   .   .   .   .   .   .    82
Mapping a Data Type to a Cell Renderer  .   .   .   .   .   .   .   .    83
Creating your own Cell Renderers .   .   .   .   .   .   .   .   .   .   .    84



iv Contents

4.4 Editing Cells    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  89
Default Cell Editors    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  90
Setting a Cell Editor for a Series    .   .   .   .   .   .   .   .   .   .   .   .  91
Mapping a Data Type to a Cell Editor  .   .   .   .   .   .   .   .   .   .  91
Creating Your Own Cell Editors   .   .   .   .   .   .   .   .   .   .   .   .  92

4.5 The JCCellInfo Interface    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   100

5 Adding Formulas to JClass LiveTable  . . . . . . . . . . . . . . . . . 103
5.1 Introduction    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   103
5.2 com.klg.jclass.util.formulae’s Hierarchy .   .   .   .   .   .   .   .   .   .   103
5.3 Expressions and Results  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   105
5.4 Math Values    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   105

MathScalar .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   106
MathVector    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   106
MathMatrix    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   107

5.5 Operations   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   108
The Defined Mathematical Operations .   .   .   .   .   .   .   .   .   109
Reducing Operations to Values .   .   .   .   .   .   .   .   .   .   .   .   111

5.6 Expression Lists   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   112
5.7 Events and Listeners   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   112
5.8 Exceptions   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   113
5.9 Using Formulae in JClass LiveTable  .   .   .   .   .   .   .   .   .   .   .   113

Registering a Cell Editor and a Cell Renderer with the JClass Central 
Registry  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   113
Performing a Mathematical Operation on a Range of Cells .   114

6 Programming User Interactivity . . . . . . . . . . . . . . . . . . . . . 115
6.1 Cell Traversal  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   115

Default Cell Traversal    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   115
Customizing Cell Traversal    .   .   .   .   .   .   .   .   .   .   .   .   .   115
Minimum Cell Visibility    .   .   .   .   .   .   .   .   .   .   .   .   .   .   116
Forcing Traversal   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   116
Controlling Interactive Traversal   .   .   .   .   .   .   .   .   .   .   .   117

6.2 Resizing Rows and Columns  .   .   .   .   .   .   .   .   .   .   .   .   .   .   118
Default Resizing Behavior  .   .   .   .   .   .   .   .   .   .   .   .   .   .   118
Disallowing Cell Resizing  .   .   .   .   .   .   .   .   .   .   .   .   .   .   118
Controlling Resizing  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   118



Contents v

6.3 Table Scrolling .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  120
Default Scrolling Behavior  .   .   .   .   .   .   .   .   .   .   .   .   .   .  120
Managing Table Scrolling   .   .   .   .   .   .   .   .   .   .   .   .   .   .  120
Scroll Listener Methods  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  122

6.4 Cell Selection   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  123
Default Cell Selection  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  123
Selection Colors   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  124
Customizing Cell Selection .   .   .   .   .   .   .   .   .   .   .   .   .   .  124
Selected Cell List .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  125
Working with Selected Ranges   .   .   .   .   .   .   .   .   .   .   .   .  125
Removing Selections   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  126
Runtime Selection Control  .   .   .   .   .   .   .   .   .   .   .   .   .   .  126

6.5 Dragging Rows and Columns  .   .   .   .   .   .   .   .   .   .   .   .   .   .  126
6.6 Sorting Columns   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  127

Sort by Clicking on a Column Label  .   .   .   .   .   .   .   .   .   .  129
Resetting the Table after Sorting .   .   .   .   .   .   .   .   .   .   .   .  129

6.7 Custom Mouse Pointers   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  129

7 Events and Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.1 Displaying Cells   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  131
7.2 Editing Cells .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  133
7.3 Painting Tables .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  136
7.4 Printing Tables .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  137
7.5 Resizing Cells   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  138
7.6 Scrolling in Tables    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  141
7.7 Selecting Cells  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  144
7.8 Sorting Table Data   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  147
7.9 Table Data Changes .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  149
7.10 Traversing Cells   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  151

8 Table Printing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.1 Printing .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  155

Setting Page Layout Properties    .   .   .   .   .   .   .   .   .   .   .   .  155
Page Resolution   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  156
Printing Headers and Footers  .   .   .   .   .   .   .   .   .   .   .   .   .  156

8.2 Print Preview    .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  157



vi Contents

9 JClass LiveTable Beans and IDEs . . . . . . . . . . . . . . . . . . . . 159
9.1 An Introduction to JavaBeans .   .   .   .   .   .   .   .   .   .   .   .   .   .   159

Properties   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   159
Setting Properties in a Java IDE at Design-Time   .   .   .   .   .   160
Setting Properties using Methods in the API .   .   .   .   .   .   .   160

9.2 JClass LiveTable and JavaBeans .   .   .   .   .   .   .   .   .   .   .   .   .   160
9.3 Setting Properties for the LiveTable Bean  .   .   .   .   .   .   .   .   .   161

JClass LiveTable Property Editors .   .   .   .   .   .   .   .   .   .   .   161
LiveTable Properties  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   164

9.4 Tutorial: Building a Table in an IDE  .   .   .   .   .   .   .   .   .   .   .   174
The Basic Table  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   175
Improving the Table’s Appearance   .   .   .   .   .   .   .   .   .   .   176
Adding Interactivity   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   181
The Final Program .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   183

9.5 Data Binding with IDEs  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   183
Data Binding LiveTable with a JBuilder Data Source   .   .   .   184
Data Binding Using JClass DataSource .   .   .   .   .   .   .   .   .   189

9.6 Interacting with Data Bound Tables   .   .   .   .   .   .   .   .   .   .   .   193
9.7 Property Differences Between the JClass LiveTable Beans    .   .   194

Part II: Reference Appendices

 A Event Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

 B JClass LiveTable Property Listing. . . . . . . . . . . . . . . . . . . . 203
B.1 Properties of com.klg.jclass.table.JCTable  .   .   .   .   .   .   .   .   .   203
B.2 Properties of com.klg.jclass.table.CellStyleModel  .   .   .   .   .   .   212
B.3 Properties of com.klg.jclass.table.beans.LiveTable .   .   .   .   .   .   214
B.4 Properties of com.klg.jclass.table.db.jbuilder.JBdbTable    .   .   .   215
B.5 Properties of com.klg.jclass.table.db.datasource.DSdbTable  .   .   217

 C Porting JClass 3.6.x Applications. . . . . . . . . . . . . . . . . . . . 219
C.1 Overview of Changes  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   219
C.2 Porting Strategies .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   220
C.3 Highlights of Main Changes   .   .   .   .   .   .   .   .   .   .   .   .   .   .   220

 D Colors and Fonts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
D.1 Colorname Values  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   223



Contents vii

D.2 RGB Color Values   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  223
D.3 Fonts .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  228

 E JClass LiveTable Inheritance Hierarchy . . . . . . . . . . . . . . . . 229

 F Distributing Applets and Applications  . . . . . . . . . . . . . . . . . 231
F.1 Using JarMaster to Customize the Deployment Archive    .   .   .  231

 G Overview of Examples and Demos . . . . . . . . . . . . . . . . . . . .233
G.1 JClass LiveTable Examples  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  233
G.2 JClass LiveTable Demos  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .  238

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241



viii Contents



1

Preface
Introducing JClass LiveTable ■ Assumptions ■ Typographical Conventions in this Manual

Overview of the Manual ■ API Reference ■ Licensing ■ Related Documents ■ About Quest

Contacting Quest Software ■ Customer Support ■ Product Feedback and Announcements

Introducing JClass LiveTable

JClass LiveTable is a Java GUI component that displays rows and columns of user-
interactive text, images, hypertext links, and other Java components in a scrollable 
window.

JClass LiveTable may be used in conjunction with Quest Software’s JClass Field, in that a 
Field component may be added to a JClass LiveTable cell.

All JClass LiveTable components are written entirely in Java; as long as the Java 
implementation for a particular platform works, JClass LiveTable will work. 

You can freely distribute Java applets and applications containing JClass components 
according to the terms of the License Agreement.

Feature Overview
You can set the properties of JClass LiveTable components to determine how the table 
will look and behave. You can control:

■ The data source for the table.

■ Preset and custom cell editing and display behavior for all types of data.

■ Labels for columns and rows.

■ Colors, fonts, borders (including custom borders), alignment, and spacing for cells 
and labels.

■ Row and column dragging.

■ Column sorting.

■ Adding, deleting, moving, and dragging rows and columns.

■ Scrolling and attaching default or custom scrollbars.

■ Cell selection and traversal.

Assumptions

This manual assumes that you have some experience with the Java programming 
language. You should have a basic understanding of object-oriented programming and 



2 Preface

Java programming concepts such as classes, methods, and packages before proceeding 
with this manual. See Related Documents later in this section of the manual for additional 
sources of Java-related information.

Typographical Conventions in this Manual

Overview of the Manual

Part I — Using JClass LiveTable – describes how to use the JClass LiveTable 
programming components.

Chapter 1, ‘Hello Table’ – JClass LiveTable Tutorial, provides a tutorial exercise to 
familiarize new users with the basics of writing a JClass LiveTable program.

Chapter 2, Building a Table, explains how to set most JClass LiveTable properties to 
customize the appearance and display of JClass LiveTable applications.

Chapter 3, Working with Table Data, gives details on getting data into and out of 
tables using the Model View Controller data handling in JClass LiveTable.

Chapter 4, Displaying and Editing Cells, describes how to configure JClass LiveTable 
so users can edit cells of any data type.

Chapter 5, Adding Formulas to JClass LiveTable, outlines the formulae package in 
com.klg.jclass.util, which has special capabilities for working with mathematical objects. 

Chapter 6, Programming User Interactivity, explains how to control how users 
interact with your table application, including cell traversal, selection, sorting, and 
more.

Typewriter Font ■ Java language source code and examples of file contents.
■ JClass LiveTable and Java classes, objects, methods, properties, constants, 

and events.
■ HTML documents, tags, and attributes.
■ Commands that you enter on the screen.

Italic Text ■ Pathnames, filenames, URLs, programs, and method parameters.
■ New terms as they are introduced, and to emphasize important words.
■ Figure and table titles.
■ The names of other documents referenced in this manual, such as Java in a 

Nutshell.

Bold ■ Keyboard key names and menu references.



Preface 3

Chapter 7, Events and Listeners, explains how to send events and register event 
listeners in your JClass LiveTable programs.

Chapter 8, Table Printing, describes the enhanced printing features of 
JClass LiveTable.

Chapter 9, JClass LiveTable Beans and IDEs, describes the JClass LiveTable 
JavaBeans and how to use them within a Java Development Environment.

Part II — Reference Appendices – provides quick access to detailed information on 
JClass LiveTable features and implementation.

Appendix A, Event Summary, lists events and corresponding event listeners. 

Appendix B, JClass LiveTable Property Listing, is a quick reference to properties, 
their functions, and settable values.

Appendix C, Porting JClass 3.6.x Applications, explains how to properly migrate 
existing LiveTable 3.x applications to LiveTable 4.x.

Appendix D, Colors and Fonts, lists all of the color names and RGB values available 
to JClass LiveTable applications. It also lists all of the available fonts and font style 
constants.

Appendix E, JClass LiveTable Inheritance Hierarchy, summarizes the 
com.klg.jclass.table package.

Appendix F, Distributing Applets and Applications, is a quick tutorial that 
demonstrates how to take a completed Java applet and deploy it on a Web page and 
Web server.

Appendix G, Overview of Examples and Demos, summarizes all JClass LiveTable 
examples and demos, and refers you to the chapter that covers the predominant 
feature(s) used in a particular example or demo. 

API Reference

The API reference documentation ( Javadoc) is installed automatically when you install 
JClass LiveTable and is found in the JCLASS_HOME/docs/api/ directory.

Licensing
In order to use JClass LiveTable, you need a valid license. Complete details about 
licensing are outlined in the Installation Guide, which is automatically installed when you 
install JClass LiveTable.

../api/index.html
../getstarted/index.html


4 Preface

Related Documents

The following is a sample of useful references to Java and JavaBeans programming:

■ “Java Tutorial” at http://java.sun.com/docs/books/tutorial/index.html from Sun 
Microsystems.

■ Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc.

■ Resources for using JavaBeans are at http://java.sun.com/beans/resources.html.

Please note that these documents are not required to develop applications using 
JClass LiveTable and Java.

About Quest

Quest Software, Inc. (NASDAQ: QSFT) is a leading provider of application management 
solutions. Quest provides customers with Application Confidencesm by delivering 
reliable software products to develop, deploy, manage and maintain enterprise 
applications without expensive downtime or business interruption. Targeting high 
availability, monitoring, database management and Microsoft infrastructure 
management, Quest products increase the performance and uptime of business-critical 
applications and enable IT professionals to achieve more with fewer resources. 
Headquartered in Irvine, Calif., Quest Software has offices around the globe and more 
than 18,000 global customers, including 75% of the Fortune 500. For more information on 
Quest Software, visit www.quest.com.

Contacting Quest Software

Please refer to our Web site for regional and international office information.

E-mail sales@quest.com

Address

Quest Software, Inc.
World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
USA

Web site www.quest.com

Phone 949.754.8000 (United States and Canada)

http://www.quest.com
mailto:sales@quest.com
http://www.quest.com
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/beans/resources.html


Preface 5

Customer Support

Quest Software’s world-class support team is dedicated to ensuring successful product 
installation and use for all Quest Software solutions.

You can use SupportLink to do the following:

■ Create, update, or view support requests

■ Search the knowledge base, a searchable collection of information including program 
samples and problem/resolution documents

■ Access FAQs

■ Download patches

■ Access product documentation, API reference, and demos and examples

Please note that many of the initial questions you may have will concern basic installation 
or configuration issues. Consult this product’s readme file and the Installation Guide 
(available in HTML and PDF formats) for help with these types of problems.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying the 
following information will help us serve you better:

■ Your name, email address, telephone number, company name, and country

■ The product name, version and serial number

■ The JDK (and IDE, if applicable) that you are using

■ The type and version of the operating system you are using

■ Your development environment and its version

■ A full description of the problem, including any error messages and the steps required 
to duplicate it

SupportLink www.quest.com/support

E-mail support@quest.com

JClass Direct Technical Support 

JClass Support Email support@quest.com

Telephone 949-754-8000

Fax 949-754-8999

http://www.quest.com/support
mailto:support@quest.com
../api/index.html
../../readme.html
../getstarted/index.html
mailto:support@quest.com


6 Preface

Product Feedback and Announcements
We are interested in hearing about how you use JClass LiveTable, any problems you 
encounter, or any additional features you would find helpful. The majority of 
enhancements to JClass products are the result of customer requests.

Please send your comments to: 
Quest Software
8001 Irvine Center Drive
Irvine, CA 92618

Telephone: 949-754-8000
Fax: 949-754-8999

European Customers
Contact Information

Telephone: +31 (0)20 510-6700
Fax: +31 (0)20 470-0326



Part
I

Using 
JClass 

LiveTable





9

1
‘Hello Table’ –

JClass LiveTable Tutorial
The Basic Table ■ Overview of Table Changes ■ Improving the Table’s Appearance

Adding Interactivity ■ Proceeding from Here ■ Internationalization

You can immediately learn about some fundamental JClass LiveTable programming 
concepts by compiling and running an example program1. This program displays 
information about orders for “The Musical Fruit”, a fictional wholesale coffee distributor, 
based on the following data: 

1. This exercise assumes that you are familiar with Java programming concepts and have previously written and compiled 
Java programs. It also begs forgiveness for yet another play on the coffee theme of Java.

Customer Name Order Date Item Quantity (lbs.) Price/lb.

The Cuppa 11/11/97 French Mocha 60 $7.01

The Underground Cafe 11/14/97 Brazilian 
Medium

112 $6.80

RocketFuel and Cake 
Cafe

10/30/97 Espresso Dark 300 $8.02

WideEyes Coffee House 11/12/97 Colombian/Ir
ish Cream 
Flavored

120 $5.30

Jitters Caffeine Cavern 10/01/97 Ethiopian 
Medium

80 $7.50

Twitchie’s on the Mall 12/06/97 French Roast 
Kona

160 $14.50

Quest Software Inc. 12/12/97 Colombian 22,000 $5.28



10 Part I ■ Using JClass LiveTable

1.1   The Basic Table

The following code is from ExampleTable1.java, found in the examples/table/intro directory 
of your JClass LiveTable installation directory. The code creates a very plain looking 
table, without column labels or any other JClass LiveTable features to improve usability 
and appearance.

package examples.table.intro;

// import the necessary java classes, including the Table package
import java.awt.Component;
import javax.swing.JPanel;
import com.klg.jclass.util.swing.JCExitFrame;
import com.klg.jclass.table.JCTable;
import com.klg.jclass.table.data.JCVectorDataSource;

// initiate the class declaration
public class ExampleTable1 extends JPanel {

// set the cell values as a matrix of strings
String cells[][] = {

{"The Cuppa","11/11/97","French Mocha","60","$7.01"},
{"The Underground Cafe","11/14/97", "Brazilian Medium", "112","$6.80"},
{"RocketFuel and Cake","10/30/97","Espresso Dark","300","$8.02"},
{"WideEyes Coffee House","11/12/97","Colombian/Irish Cream 

Flavored","120","$5.30"},
{"Jitters Caffeine Cavern","10/01/97","Ethiopian Medium 

Roast","80","$7.50"},
{"Twitchy's on the Mall","12/06/97","French Roast Kona","160","$14.50"},
{"Quest Software Inc.","12/12/97", "Colombian","22,000","$5.28"}

};

// initialize the Table object
protected JCTable table;

// Build the table, point to the data source and define the table 
properties.
public ExampleTable1() {

setLayout(new java.awt.GridLayout());

// Create a default table object
table = new JCTable();

// Create a vector data source to contain our data
JCVectorDataSource ds = new JCVectorDataSource();

// Turn off column labels
table.setColumnLabelDisplay(false);

// Turn off row labels
table.setRowLabelDisplay(false);

// Set the data source to the vector data source from earlier
table.setDataSource(ds);



Outliner

Chapter 1 ■ ‘Hello Table’ – JClass LiveTable Tutorial 11

// Set the number of rows in the data source.
ds.setNumRows(7);

// Set the number of columns in the data source.
ds.setNumColumns(5);
// Set the cell data in the data source.
ds.setCells(cells);

this.add(table);
}

public static void main(String args[]) {
JCExitFrame f = new JCExitFrame("ExampleTable1");
ExampleTable1 et = new ExampleTable1();
f.getContentPane().add(et);
f.setSize(600, 200);
f.setVisible(true);

}

}

Note: As you change the ExampleTable1.java file throughout this tutorial, it may be 
necessary to resize the frame to fit the content.

How the Table Handles Data
The table uses a Model-View-Controller (MVC) data mechanism; the table data is stored 
in a separate object. For this table example, we have used JCVectorDataSource, a class 
provided with JClass LiveTable that retrieves data from the data source and stores it in 
memory (see Using Stock Data Sources, in Chapter 3, for more information). 

The data source is set using the table.setDataSource() method: 

table.setDataSource(ds);
ds.setNumRows(7);
ds.setNumColumns(5);
ds.setCells(cells); 

Once the data source is set to the JCVectorDataSource (ds) object, that object handles the 
data, including setting the number of rows and columns, and accessing the cell values. 
The data in the cells is of type String. 



12 Part I ■ Using JClass LiveTable

What the Table Looks Like
If you compile and run the modified ExampleTable1.java program,1 the following table is 
displayed:

The clip arrows indicate that the cells are not large enough to display their entire 
contents. By default, users can resize rows and columns to view the contents of the cell. 
Notice that if you click a cell, a focus rectangle appears, showing the current cell.

1.2   Overview of Table Changes 

The following sections walk you through the modification of the example table. It is 
assumed that you are changing the code in the ExampleTable1.java file, compiling and then 
running it after each step to view the results. Of course, it is recommended that you make 
a copy of the original file. 

For each of the table’s modifications, all the code that needs to be added is provided. 
Since some code segments rely on the presence of code from previous steps, it is 
recommended that you perform all modifications in the order in which they appear in 
this chapter.

Additionally, all changes made in this tutorial are reflected in the other example files 
found in the examples/table/intro directory. You can also compile and run those files to 
compare and verify the changes you make to ExampleTable1.java. Throughout the chapter, 
you will be alerted when the cumulative changes can be seen in another example file. 

1. Note that the example programs in your JClass LiveTable distribution contain a package name. To run the compiled 
class, you must type the full package name, for example: java examples.table.intro.ExampleTable1

Change to ExampleTable1.java Example File that Encompasses Changes Made

defining and adding labels examples/table/intro/ExampleTable2.java

label colors examples/table/intro/ExampleTable3.java

label text alignment
examples/table/intro/ExampleTable4.java

label font



Outliner

Chapter 1 ■ ‘Hello Table’ – JClass LiveTable Tutorial 13

1.3   Improving the Table’s Appearance

Using some of the properties for modifying a table’s appearance, you can easily move 
from the basic, drab table in ExampleTable1.java, to a table that is easier to understand, 
easier to use, and more visually appealing. 

All properties for a table can be specified when you create the table, or they may be 
changed at any time as the program runs by using event listeners. Each property has two 
accessor methods: set and get. An example of a set method for a property is 
setBackground(), which sets the background color of a cell or label. You can retrieve the 
current value of any property using the property’s get method, as in getBackground(). 

1.3.1 Adding and Formatting Labels

Background
The table displayed by the ExampleTable1.java program is not very useful to an end-user. 
Not only is it uninteresting to look at, but you cannot tell what kinds of information the 
cells contain because there are no column labels. In the original data outline for the table 
(at the beginning of the chapter), we specified the following column headers or labels:

■ Customer Name

■ Order Date

■ Item

■ Quantity (lbs.)

■ Price/lb.

color of an individual non-label 
cell examples/table/intro/ExampleTable5.java

cell and frame borders and 
spacing

cell height and width
examples/table/intro/ExampleTable6.java

enabling cell editing

enabling cell selection
examples/table/intro/ExampleTable7.java

resize only with labels

enable column sorting examples/table/intro/ExampleTable8.java

Change to ExampleTable1.java Example File that Encompasses Changes Made



14 Part I ■ Using JClass LiveTable

Labels are cells that can never be edited and can contain any Object, (for example, 
Strings, images, integers). You can apply labels to rows and columns. The label values, 
like cell values, are set in the data source object. 

Procedure
In ExampleTable1.java, set the labels as a String by inserting this line immediately after the 
cell values String statement:

    String labels[] = {"Customer Name","Order Date","Item", "Quantity
(lbs.)","Price/lb."}; 

Once you have defined the values for the column labels, you have to instruct the Table 
object to display labels. The program currently contains the line: 

    table.setColumnLabelDisplay(false); 

By default, column labels are set to true. Change the label setting back to this default by 
entering this code: 

    table.setColumnLabelDisplay(true); 

Once the ColumnLabelDisplay property is set to true, you can set the column labels in 
the data source. After ds.setCells(cells);, add the line:

    ds.setColumnLabels(labels);

This uses the data source to set the values of the column labels from the data specified in 
the String cells.

Compile and run the modified ExampleTable1.java file. The table now looks like this:

Note: You can also run ExampleTable2.java, which already contains these changes.

Notice that the column labels are now part of the table. Also note that if you click a label, 
you do not get the focus rectangle that would appear on a selected cell, as labels cannot 
be edited and are not included in cell traversal. In certain situations, clicking a label 
performs an action (this will be discussed in Section 1.4, Adding Interactivity). However, 
in this case, the labels do not perform any interactive function.



Outliner

Chapter 1 ■ ‘Hello Table’ – JClass LiveTable Tutorial 15

1.3.2 Introduction to Cell Styles

Cell Styles provide a very flexible model for changing the appearance (and some 
behavior) of a table’s cells or labels. A style contains attributes that can be applied to cells 
and labels, including color, text properties, and text/image alignment. 

JClass LiveTable comes with several constructs that are part of Cell Styles: 

■ CellStyleModel: An interface that defines the methods required by an object to 
specify the attributes of a cell. 

■ JCCellStyle: The default implementation of the CellStyleModel interface. 

■ The default cell and label styles: These are preset styles (one for labels, one for cells) 
whose look and feel change with any changes to the pluggable look and feel (PLAF) 
implementation of a table. 

The visual table changes found in the next four sections are defined using these Cell Style 
constructs. 

For in-depth coverage of cells styles, please refer to Building a Table, in Chapter 2. 

1.3.3 Changing Foreground and Background Colors

Background
There are thirteen AWT color constants that can be used in Java. The color constant 
values are: 

Procedure
In order to make changes with AWT colors, you need to include the java.awt.Color 
package to the ExampleTable1.java file that you are modifying. Add this to your list of 
import statements: 

import java.awt.Color;

■ Color.black ■ Color.magenta

■ Color.blue ■ Color.orange

■ Color.cyan ■ Color.pink

■ Color.darkGray ■ Color.red

■ Color.gray ■ Color.white

■ Color.green ■ Color.yellow

■ Color.lightGray



16 Part I ■ Using JClass LiveTable

Since you are using default styles in the examples, you need to import the interface with 
which you implement the style. To do this, import the CellStyleModel class by adding 
this line to your list of import statements: 

import com.klg.jclass.table.CellStyleModel;

Now that the required AWT color and Cell Style classes are accessible, set the 
background color of the labels to blue, and the foreground color (text) to white. Do this 
by inserting the following lines into the file’s ExampleTable1 class: 

CellStyleModel labelStyle = table.getDefaultLabelStyle();
labelStyle.setBackground(Color.blue);
labelStyle.setForeground(Color.white);

Here, you acquire the default label style. You then tweak the default label color attributes 
by changing the default colors to blue and white. Recompile and run the modified 
ExampleTable1.java file. The table now looks like this:

Note: You can also run ExampleTable3.java, which already contains these changes.

1.3.4 Changing Alignment

Background
Another way to visually differentiate the text that appears within a table is to change its 
alignment within a cell relative to the text alignment in other cells. By default, text (or 
anything else you insert into specific cells in a table) is shifted to the top and left margins 
of the cell. With Cell Styles, the horizontal and vertical positioning of a cell’s contents can 
be defined. 

If you want to set the labels in the sample program to appear horizontally centered and at 
the top of the label, continue to modify the default label style that was set in the previous 
step. 

Procedure
Add this line to your set of import statements: 

import com.klg.jclass.table.JCTableEnum;

Then, append these lines to the labelStyle statements that were added in the previous 
step: 



Outliner

Chapter 1 ■ ‘Hello Table’ – JClass LiveTable Tutorial 17

labelStyle.setHorizontalAlignment(JCTableEnum.CENTER);
labelStyle.setVerticalAlignment(JCTableEnum.TOP);

1.3.5 Changing the Fonts

Background
It is also possible to change fonts and their appearance. This is another way to visually 
distinguish one part of a table from another, or to change the overall appearance of the 
table. 

Java defines five different platform-independent font names that are found (or have close 
equivalents) on most computer platforms. Valid Java AWT font names are: 

Note: Font names are case-sensitive.

There are also four standard font style constants that can be used. Valid Java AWT font 
style constants are: 

Procedure
We want to change the text column labels in the modified ExampleTable1.java, from their 
default to a 14 point, bold-italic, Times Roman text. In order to make changes with AWT 
fonts, you need to include the java.awt.Font package to the program. Add this to your 
list of import statements: 

import java.awt.Font;

Append this line to the labelStyle statements added in the last two steps: 

labelStyle.setFont(new Font("TimesRoman", Font.BOLD + 
Font.ITALIC, 14));

■ Courier ■ Dialog

■ DialogInput ■ Helvetica

■ TimesRoman

■ Font.BOLD ■ Font.PLAIN

■ Font.ITALIC ■ Font.BOLD + Font.ITALIC



18 Part I ■ Using JClass LiveTable

Recompile and run your modified ExampleTable1.java file. Having changed the text font 
and alignment, your table now looks like this:

Note: You can also run ExampleTable4.java, which already contains these changes.

The type of font displayed on a user’s system depends entirely on the fonts that are local 
to that user’s computer. If a font name specified in a Java program is not found on a user’s 
system, the closest possible match is used as determined by the Java AWT. 

1.3.6 Adding Color to an Individual Cell

Background
In some cases, you will want the information in a certain cell or range of cells to stand out 
from the rest. As previously mentioned, Cell Styles can be used with individual or ranges 
of cells. 

In our modified ExampleTable1.java file, we want to highlight the premium coffee order 
using different foreground and background colors — in this case, Twitchy’s on the Mall 
(row 6, column 1). 

When we originally made changes to the labels using Cell Styles (the first change made 
was to the label colors), we retrieved the default label style and implemented them into 
the CellStyleModel class. This made a change to all labels. Now that you are working 
with a single cell, using the default Cell Style for non-label cells requires a similar action, 
but with an added step.

Procedure
First, import JCCellStyle by adding this line to your set of import statements: 

import com.klg.jclass.table.JCCellStyle;

Then, similarly to what was done with the labels’ style, retrieve the default style for non-
label cells by adding this new line to the ExampleTable1 class: 

CellStyleModel cellStyle = table.getDefaultCellStyle();

Next, add this line to create a Cell Style for the single “Twitchy’s on the Mall” cell, which 
creates a new unique Cell Style that inherits all the style settings from the default Cell 
Style: 



Outliner

Chapter 1 ■ ‘Hello Table’ – JClass LiveTable Tutorial 19

CellStyleModel specialStyle = new JCCellStyle((JCCellStyle)cellStyle);

Since we want to change the specific cell’s color, but do not want these changes applied to 
all the cells, the specialStyle object was created. Now, change the colors of the cell by 
adding these lines: 

specialStyle.setForeground(Color.red); 
specialStyle.setBackground(Color.yellow); 
table.setCellStyle(5, 0, specialStyle); 

Note: The cell found at row 6, column 1 in the displayed table is designated as row 5, 
column 0 in the code. This is because row and column indexes begin at zero. The top left 
cell in the table is at location (0, 0).

Recompile and run the modified ExampleTable1.java file. The colors in cell (5, 0) have 
changed, and the table now looks like this:

1.3.7 Changing the Cell Borders and Spacing

Background
There are a number of properties that can be used to define cell/frame borders and cell 
spacing. These are outlined in Building a Table, in Chapter 2. For the example program, 
we are going to thicken the cell borders, as well as the table’s frame border. Also, the 
border style for the cells (not labels) and frame will be changed. 

Procedure
First, in order to work with borders, import the JCCellBorder class by adding this line to 
your list of import statements in your modified ExampleTable1.java: 

import com.klg.jclass.table.JCCellBorder;

Next, add these lines to the ExampleTable1 class: 

cellStyle.setCellBorder(new JCCellBorder(JCTableEnum.BORDER_OUT));
table.setCellBorderWidth(5);

table.setFrameBorderWidth(3);
table.setFrameBorder(new JCCellBorder(JCTableEnum.BORDER_OUT));



20 Part I ■ Using JClass LiveTable

Now that you have made these additions to the code, recompile and run the modified 
ExampleTable1.java file. Having changed the cell and frame border properties, the table 
now looks like this: 

Note: You can also run ExampleTable5.java, which already contains these changes.

1.3.8 Displaying More of the Cells

Background
The example table has come a long way after setting only a few properties, but there is 
still a small problem: the table may clip the cell’s contents. This means that the user has to 
resize the rows or columns in order to read the contents of some cells. By default, 
JClass LiveTable sets all of the cells to a width of 10 characters and a height of one 
character. You could specify the height and width of the cells in rows and columns in 
terms of lines and characters using the CharHeight and CharWidth properties. However, 
in this program we want the cells to size themselves to display the entire contents (if 
possible). 

Procedure
Add the following lines of code to the modified ExampleTable1.java: 

table.setPixelHeight(JCTableEnum.ALLCELLS, JCTableEnum.VARIABLE);
table.setPixelWidth(JCTableEnum.ALLCELLS, JCTableEnum.VARIABLE);



Outliner

Chapter 1 ■ ‘Hello Table’ – JClass LiveTable Tutorial 21

These lines set the PixelHeight and PixelWidth properties to a variable size for all rows 
and all columns, ensuring that the table will attempt to display the entire contents of each 
cell. Recompile and run the modified ExampleTable1.java. The table looks like this:

You can also set these properties to specific pixel values for rows and columns; see the 
section on how to set Column Width and Row Height Properties, in Chapter 2, for more 
details.

So far, all the changes that have been made to ExampleTable1.java have centered around a 
table’s set of visual properties. Keeping the changes made thus far, we will continue by 
making changes to some of ExampleTable1.java’s interactive properties. 

1.4   Adding Interactivity
In a hypothetical scenario, our example table could be used to track orders and accounts 
with a large number of customers. Your users will likely want to update the data, sort the 
information displayed in the table, and select sections of the table to perform operations 
on them. 

We will add some basic user-interactivity to our example table to give you a sense of some 
of the things you can do with JClass LiveTable. You can explore user-interactivity further 
in Programming User Interactivity, in Chapter 6.

1.4.1 Making the Cells Editable

Background
As far as user interaction goes, one of the problems with this example table is that it is not 
editable. If a user clicks a cell, the focus changes, but nothing else happens. To make the 
cell editable, we have to change the data source object to an editable data source. The 
JCVectorDataSource class we used as our data source has an editable counterpart called 
JCEditableVectorDataSource. 



22 Part I ■ Using JClass LiveTable

Procedure
The modified ExampleTable1.java currently contains the lines: 

import com.klg.jclass.table.data.JCVectorDataSource;
JCVectorDataSource ds = new JCVectorDataSource();

Change them to: 

import com.klg.jclass.table.data.JCEditableVectorDataSource;
JCEditableVectorDataSource ds = new JCEditableVectorDataSource();

Once you change these lines, recompile and run the modified ExampleTable1.java file. The 
table now looks like this:

Figure 1 The table with editable cells. Note cell (3, 2) is being edited.

Note: You can also run ExampleTable6.java, which already contains these changes.

Clicking a cell will bring up the editing component for the type of data in the cell. Since 
all of the cells contain Strings, the editing component is a text editor. For more 
information, see Displaying and Editing Cells, in Chapter 4.

1.4.2 Enabling Cell Selection

Background
JClass LiveTable provides methods that set how users can select cells, ranges of cells, and 
entire rows and columns. Selection is enabled by setting the SelectionPolicy property. 
By default, cell selection reverses the foreground and background colors of the cells to 
highlight the selection. 

Procedure
You can enable selection by adding the following code to the example program:

table.setSelectionPolicy(JCTableEnum.SELECT_RANGE);

This allows users to select one or more cells in rows or columns by clicking and dragging 
the mouse, or using keyboard combinations. 



Outliner

Chapter 1 ■ ‘Hello Table’ – JClass LiveTable Tutorial 23

By default, setting the SelectionPolicy property enables selection of entire rows or 
columns by clicking on the row or column label. When the user clicks on the column 
label, the column display (including the label) is reversed to highlight the selection. 
Similarly, when the user clicks on the row label, the row display (including the label) is 
reversed and the selection is highlighted. 

You can configure the table not to highlight the label by using the following line of code:

table.setSelectIncludeLabels(false);

You can also change the default highlighting colors by setting the SelectedForeground 
and SelectedBackground properties. See Customizing Cell Selection, in Chapter 6, for 
more information.

1.4.3 Resizing Using Labels Only

Background
By default, users can resize rows, columns, and labels by clicking their borders and 
dragging. You can change this functionality so that the resize capability is available only 
from the label. To resize a column, the user resizes its label instead of its cells. 
JClass LiveTable provides the AllowResizeBy property to enable this feature. 

Procedure
In the modified ExampleTable1.java, add this line to the ExampleTable1 class: 

    table.setAllowResizeBy(JCTableEnum.RESIZE_BY_LABELS);

Recompile and run the modified ExampleTable1.java file. The mouse cursor becomes a 
“resize” cursor only when it is located over the borders of the column labels.

Figure 2 A table with cell selection and exclusive label resizing. Note that the cell range of (2, 0) through (2, 
2) has been selected.

Note: You can also run ExampleTable7.java, which already contains these changes.



24 Part I ■ Using JClass LiveTable

1.4.4 Enabling Column Sorting

Background
It might be easier for your users to find certain information if they can sort the table based 
on cell values in a column. For example, that way they can find a customer name 
alphabetically or find large orders by sorting the “Quantity (lbs.)” column.

A simple way to allow your users to sort a row or column is to add a trigger that maps a 
column or row event onto a label. Since the program currently selects a column when 
you click its corresponding label, you need a way to differentiate between a selection and 
a call to sort the column. 

Procedure
You can allow users to sort the column by using a Shift-click combination. Add these 
lines to your list of import statements in the modified ExampleTable1.java: 

import com.klg.jclass.table.MouseActionInitiator;
import java.awt.event.InputEvent;

These will allow your program to work with different mouse events. Now, to add the 
action, add this line to the ExampleTable1 class: 

table.addAction(new MouseActionInitiator(
MouseActionInitiator.ANY_BUTTON_MASK,InputEvent.
SHIFT_MASK),JCTableEnum.COLUMN_SORT_ACTION);



Outliner

Chapter 1 ■ ‘Hello Table’ – JClass LiveTable Tutorial 25

When you recompile and run the program, you will see that holding down the Shift key 
and clicking a column label sorts the rows in ascending alphabetical/numerical order, 
based on the contents of the column.

Figure 3 Before enabling column sorting, when the third column’s label was clicked, all column cells were 
selected (left). After inserting the code, Shift-clicking the column’s label resulted in an alphabetical 
sort (right).

Note: You can also run ExampleTable8.java, which already contains these changes.

1.5   Proceeding from Here

This exercise has given you a simple overview of some of the types of things you can do 
with JClass LiveTable. 

■ For detailed information on the design elements of JClass LiveTable, see Building a 
Table, in Chapter 2. Appendix B, JClass LiveTable Property Listing, contains the 
JClass LiveTable Properties in table format.

■ To learn about using the new JClass LiveTable data model, see Working with Table 
Data, in Chapter 3, and Displaying and Editing Cells, in Chapter 4.



26 Part I ■ Using JClass LiveTable

■ To learn about the formulae package in com.klg.jclass.util, which has special 
capabilities for working with mathematical objects, see Adding Formulas to 
JClass LiveTable, in Chapter 5.

■ To learn about user-interaction with JClass LiveTable, see Programming User 
Interactivity, in Chapter 6.

■ To try this same tutorial in a JavaBeans development environment, see 
JClass LiveTable Beans and IDEs, in Chapter 9.

You can find many more examples of ways to customize and enhance applications and 
applets in the demos directory of your JClass LiveTable distribution. 

1.6   Internationalization 
Internationalization is the process of making software that is ready for adaptation to 
various languages and regions without engineering changes. JClass products have been 
internationalized. 

Localization is the process of making internationalized software run appropriately in a 
particular environment. All Strings used by JClass that need to be localized (that is, 
Strings that will be seen by a typical user) have been internationalized and are ready for 
localization. Thus, while localization stubs are in place for JClass, this step must be 
implemented by the developer of the localized software. These Strings are in resource 
bundles in every package that requires them. Therefore, the developer of the localized 
software who has purchased source code should augment all .java files within the 
/resources/ directory with the .java file specific for the relevant region; for example, for 
France, LocaleInfo.java becomes LocaleInfo_fr.java, and needs to contain the translated 
French versions of the Strings in the source LocaleInfo.java file. (Usually the file is called 
LocaleInfo.java, but can also have another name, such as LocaleBeanInfo.java or 
BeanLocaleInfo.java.) 

Essentially, developers of the localized software create their own resource bundles for 
their own locale. Developers should check every package for a /resources/ directory; if one 
is found, then the .java files in it will need to be localized. 

For more information on internationalization, go to: 
http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html. 

http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html


27

2
Building a Table

Table Anatomy 101 ■ Setting and Getting Properties ■ Preset Table Styles ■ Global Table Properties

Column Width and Row Height Properties ■ Cell Styles ■ Cell and Label Spanning

Using the JClass LiveTable API, you can customize the appearance of your tables with 
colors, borders, custom scrollbars, and other display properties. This chapter describes 
the properties you can set to define the structure and appearance of your tables. The 
properties are set for rows, columns, and cells. See Appendix B, JClass LiveTable 
Property Listing, for a reference summary of the properties.

Many of the table’s properties are set using methods of the JCTable class. However, some 
properties are set in the data source. For more information on setting properties using 
methods in the data source, see Working with Table Data, in Chapter 3, and Displaying 
and Editing Cells, in Chapter 4. The following descriptions note whether setting the 
property from the data source is applicable. 

JClass LiveTable property accessor methods are also exposed to JavaBeans-compatible 
IDEs through the LiveTable Bean. 

2.1   Table Anatomy 101
JClass LiveTable provides a scrollable viewing area for its cells and labels. 

Figure 4 The components of a Table.

The following list defines the terminology used with JClass LiveTable:



28 Part I ■ Using JClass LiveTable

Label
A label is a non-editable cell appearing in a row at the top or bottom of the table, or in a 
column at the left or right side of a table. Like cells, labels can contain text or 
components, or can display an image. Please refer to sections later in this chapter, starting 
with Section 2.4.5, Row and Column Labels, for more information about labels.

Scrollbar Components
These components are created and displayed if the number of rows or columns in the 
table is greater than the number of rows or columns visible on the screen. They provide 
end-users with the ability to scroll through the entire table. You can learn more about 
scrollbars in Programming User Interactivity, in Chapter 6.

Cell
A cell is an individual container of table data. A cell is visible if it is currently scrolled into 
view. The entire collection of displayed cells is called the cell area. You can find more 
information about defining cell appearance later in this chapter.

Current Cell
This is the cell that currently has the user input focus. End-users can enter and edit the 
value of this cell, unless this ability is disabled.

Cell Rendering, Editing and Management
Cell drawing and editing is handled by the com.klg.jclass.cell package. Specifically, 
cell rendering and editing are handled by the JCLightCellRenderer, 
JCComponentCellRenderer, and JCCellEditor interfaces. 

Cells are drawn into the cell area by either a JCLightCellRenderer object that 
understands how to draw that specific type of data, or a JCComponentCellRenderer object 
that uses a lightweight component such as JLabel to render data. 

If the user types or clicks a cell, and there is a JCCellEditor for the data type of the cell, 
the editor component is displayed over the cell. See Displaying and Editing Cells, in 
Chapter 4, for more information on cell editors and renderers.

2.2   Setting and Getting Properties

There are two ways to set and retrieve JClass LiveTable properties:

1. By calling property set and get methods in a Java program

2. By using a Java IDE at design-time ( JavaBeans)

Each method changes the same table property. This manual therefore uses properties to 
discuss how features work, rather than using the method or Property Editor you might use 
to set that property.



Outliner

Chapter 2 ■ Building a Table 29

2.2.1 Table Contexts

A context is composed of a row and column index, both zero-based. The current context 
specifies the portion of a table’s cells and labels for which an application sets and retrieves 
properties. Specifying a table context is part of any method that sets table 
properties.

The following table outlines all table contexts. The example set the background color to 
white for any cells encompassed by the defined context. 

Context selection Examples

a cell (0,1) (1,0)

Referenced by a row index 
and a column index.

 

all row or column cells (0,JCTableEnum.ALLCELLS) (JCTableEnum.ALLCELLS,0)

Referenced by the constant 
JCTableEnum.ALLCELLS in 
conjunction with a row or 
column index.

This does not include labels.

a range of cells (range); /* range defined as JCCellRange(0,1,1,2) */

Referenced by the location of 
the top-left cell/label and the 
location of the bottom-right 
cell/label in the range.
A range be referenced as one 
context when defining 
JCCellRange.

a row or column label (0,JCTableEnum.LABEL) (JCTableEnum.LABEL,0)

Referenced by the constant 
JCTableEnum.LABEL in 
conjunction with a row or 
column index.



30 Part I ■ Using JClass LiveTable

all row or column labels (JCTabelEnum.ALL,
JCTableEnum.LABEL)

(JCTableEnum.LABEL,
JCTableEnum.ALL)

Referenced by both 
JCTableEnum.ALL and 
JCTableEnum.LABEL, the 
order dependent on which 
set of labels is being 
referenced.

all labels (JCTableEnum.LABEL,JCTableEnum.LABEL)

Referenced using 
(JCTableEnum.LABEL, 
JCTableEnum.LABEL).

an entire row or column (1,JCTableEnum.ALL) (JCTableEnum.ALL,1)

Referenced by the constant 
JCTableEnum.ALL in 
conjunction with a row or 
column index.

The context includes labels.

all table cells (JCTableEnum.ALLCELLS,JCTableEnum.ALLCELLS)

Referenced by 
(JCTableEnum.ALLCELLS, 
JCTableEnum.ALLCELLS).

The context does not include 
labels.

an entire table (JCTableEnum.ALL,JCTableEnum.ALL)

Referenced by 
(JCTableEnum.ALL, 
JCTableEnum.ALL).

The context includes labels.

Context selection Examples



Outliner

Chapter 2 ■ Building a Table 31

2.2.2 Setting Table Properties with Java Code

When setting table properties, you work with either general table properties or Cell 
Styles. Cell Styles affect specific cell appearance and behavior settings for elements such 
as color, typefaces, border types, editability and cell text/image alignment. All other non-
cell properties are handled as table-wide settings. To learn what can be defined with Cell 
Styles, please refer to Section 2.6, Cell Styles, later in this chapter.

Setting Regular Cell and Label Properties
Setting cell and label properties that are not handled with Cell Styles involve the 
straightforward use of set and get methods. Every JClass LiveTable property has a set 
and get method associated with it.

For example, to set the value of the PixelHeight property to a value of 60 for all labels 
and the first non-label row, the setPixelHeight() method is called:

table.setPixelHeight(JCTableEnum.LABEL,60);
table.setPixelHeight(0,60);

As another example, to set the value of the PixelWidth property to a value of 90 for all 
labels and the first non-label row, the setPixelWidth() method is called:

table.setPixelWidth(JCTableEnum.LABEL,90);
table.setPixelWidth(0,90);

You can also set properties for the entire table. For example, use the MarginHeight() and 
MarginWidth() properties to set the distance between cell borders and cell contents: 

table.setMarginHeight(10);
table.setMarginWidth(10);

Setting Cell Style Properties
Setting Cell Style properties involves the implementation of the CellStyleModel 
interface. This interface provides all information that the cell editors/renderers use. 

JClass LiveTable includes the JCCellStyle class, which is the default implementation of 
CellStyleModel. Also included are default look and feel settings for labels and cells. 

For example, the following sample code adopts the default values set in JCCellStyle, but 
changes the cell colors to black (background) and yellow (text), and applies this change to 
cell(2, 2): 

JCCellStyle cellcolors = new JCCellStyle();
cellcolors.setBackground(Color.black);
cellcolors.setForeground(Color.yellow);
table.setCellStyle(1, 1, cellcolors);

In this example, the code acquires the default label look and feel for the particular 
operating system you are using. Then, the foreground and background colors are 
changed for all labels displayed in the table: 

CellStyleModel labelStyle = table.getDefaultLabelStyle();
labelStyle.setBackground(Color.blue);
labelStyle.setForeground(Color.white);



32 Part I ■ Using JClass LiveTable

Most properties can be applied to individual cells as well as ranges. You can also set 
properties for a range of cells defined by a JCCellRange. 

The following example sets a property to a range of cells using JCCellRange: 

JCCellRange range = new JCCellRange(0,3,2,4);
JCCellStyle cell = new JCCellStyle();
cell.setBackground(Color.red);
table.setCellStyle(range, cell);

For more information about Cell Styles, please see Section 2.6, Cell Styles, later in this 
chapter. 

2.2.3 Setting Properties with a Java IDE at Design-Time

JClass LiveTable can be used with a Java Integrated Development Environment (IDE), 
and its properties can be manipulated at design time. Consult the IDE documentation for 
details on how to load third-party Bean components into the IDE. 

See JClass LiveTable Beans and IDEs, in Chapter 9, for complete details on using 
JClass LiveTable’s JavaBeans in IDEs.

2.3   Preset Table Styles 

You can quickly build a standard table with a number of default settings by using the 
JCListTable class. The preset features of this class affect: 

■ Cell selection: when users click a single cell, the entire row is selected. 

■ Label selection: labels are not included in selections. 

■ Resizing: the table’s cell sizes can only be changed by dragging label borders. 

■ Traversal: individual cells are traversable. 

These settings are overridden by any properties you specifically set later on in your 
program.

To view the JCListTable class in action, please look at the Cars example in the 
JCLASS_HOME/examples/table/layout/ directory, and the Stocks demo in the 
JCLASS_HOME/demos/table/stocks/ directory.

2.4   Global Table Properties 

The following sections outline all properties that globally affect the appearance of your 
table. When any of these properties are set, they are set for the entire table. 



Outliner

Chapter 2 ■ Building a Table 33

2.4.1 Focus Rectangle Appearance

The focus rectangle visually informs the user which cell currently has the table’s focus. 
You can change the color of the focus rectangle by using the setFocusColor() method. 
For example:

setFocusColor(Color.blue);

Using the setFocusIndicator() method lets you set the type of focus indicator used. 
Valid indicators are: 

FOCUS_NONE
FOCUS_HIGHLIGHT
FOCUS_RECTANGLE
FOCUS_THIN_RECTANGLE
FOCUS_DASHED_RECTANGLE

2.4.2 Screen Cursor Type

Use the setCursor() method to determine which AWT cursor type is used in your table. 
If cursor tracking is set to false, then a constant cursor is used (cursor tracking can be 
used to change the cursor appearance, depending over which part of the table the cursor 
is). By default, TrackCursor is set to true. 

2.4.3 Scrollbars

JClass LiveTable offers control over the appearance and behavior of scrollbars. This 
section outlines how to program the appearance of scrollbars. For information about 
programming scrollbar behavior, please refer to Table Scrolling, in Chapter 6. 

Positioning Scrollbars 
The way scrollbars should be attached to the table depends on the style of table you need 
for your application. Standard-style tables attach the scrollbars to the cell/label area and 
move them to match changes to the size of the visible area. 

The HorizSBPosition property sets how the horizontal scrollbar is attached to the table. 
Similarly, VertSBPosition sets how the vertical scrollbar is attached to the table. 

■ When set to JCTableEnum.POSITION_BY_CELLS (default), the scrollbar is attached to 
the cell/label viewport (that is, the cells that are visible). 

■ When set to JCTableEnum.POSITION_BY_SIDE, the scrollbar is attached to the side of 
the table (that is, the whole of the table).

HorizSBAttachment sets how the end of the horizontal scrollbar is attached to the table. 
When set to JCTableEnum.SIZE_TO_CELLS (default), the scrollbar ends at the edge of the 
visible cells. When set to JCTableEnum.SIZE_TO_TABLE, the scrollbar ends at the edge of 
the table. 

To specify standard-style table scrollbars, leave the position and attachment properties at 
their default values.



34 Part I ■ Using JClass LiveTable

HorizSBOffset and VertSBOffset specify the offset between the scrollbars and the table 
(default: 0 pixels). This offset usually applies to the space between the scrollbars and the 
table’s cells/labels. However, when the scrollbars are attached to the side of the 
component, it can also apply to the space between the scrollbars and the side of the 
component, and only when there is space between the last row/column and the edge of 
the component. 

Setting the Top Row and Left Column 
When a table initially appears, you can set it so that a particular row and column are set 
as the top and left. Scrolling is set up automatically. Use setTopRow() and 
setLeftColumn() to define the top row and left-most column. This value is updated as a 
user scrolls through a table. 

Setting Scrollbar Display Conditions
By default, JClass LiveTable displays each scrollbar only when the table is larger than the 
number of rows/columns visible on the screen. To display a scrollbar at all times, set 
HorizSBDisplay and/or VertSBDisplay to JCTableEnum.SCROLLBAR_ALWAYS. Set them to 
JCTableEnum.SCROLLBAR_NEVER to completely disable the scrollbar display. To display 
scrollbars only when the table size is greater than the viewing area, set them to 
JCTableEnum.SCROLLBAR_AS_NEEDED. 

Note: Although scrollbars are removed, a user can still scroll with the keyboard. See 
Managing Table Scrolling, in Chapter 6, for complete information on disabling 
interactive scrolling. 

Using your own Scrollbar Component
You may want to use a scrollbar component other than the default provided with 
JClass LiveTable. To do this, use the setVertSB() and setHorizSB() methods. The 
scrollbar must be a JScrollBar instance. 

2.4.4 Cell Selection Colors

When users select a cell or a range of cells, it often helps to highlight them. This section 
outlines how to control the appearance of selected cells. For information about 
programming cell selection behavior, please refer to Cell Selection, in Chapter 6. 

Setting Cell Selection Colors
The background and foreground colors used for selected cells are specified by 
setSelectedBackground() and setSelectedForeground(). By default, selected cells are 
displayed in reverse video (i.e., the normal background and foreground color values have 
been swapped). The current cell displays the selection colors in its border. 

Using the previous methods requires you to select a specific foreground or background 
color. Instead of committing to one color, you can also use color mode methods that 
allow you to define selection colors by associating them with other foreground and 
background colors. 



Outliner

Chapter 2 ■ Building a Table 35

Use setSelectedBackgroundMode() to set how selected background colors are 
determined. Valid modes include: 

■ USE_SELECTED_BACKGROUND: the selected background color is the same as the color 
defined in the SelectedBackground property.

■ USE_CELL_BACKGROUND: the selected background is the same as the cell background 
color.

■ USE_CELL_FOREGROUND: the background and foreground colors are inverted.

Use setSelectedForegroundMode() to set how selected foreground colors are 
determined. Valid modes include: 

■ USE_SELECTED_FOREGROUND: the selected foreground color is the same as the color 
defined in the SelectedForeground property.

■ USE_CELL_FOREGROUND: the selected background is the same as the cell foreground 
color.

■ USE_CELL_BACKGROUND: the background and foreground colors are inverted.

2.4.5 Row and Column Labels 

A row or column label is a non-editable cell that identifies the row or column to the user. 
Row and column label values are set in the data source (see Working with Table Data, in 
Chapter 3). By default, row and column labels are displayed in your table, regardless of 
whether you have specified contents for the labels in the data source (they will be empty 
if there are no labels defined in the data source). To prevent row and column labels from 
displaying, you must use the methods:

table.setRowLabelDisplay(false); 
table.setColumnLabelDisplay(false); 

Placing Labels 
You can specify the positioning of row/column labels on the screen using the 
setRowLabelPlacement() and setColumnLabelPlacement() methods. If you insert the 
placement methods in the table.setColumnLabelPlacement(placement) or 
table.setRowLabelPlacement(placement) statements, valid values include: 

Column and Row Placement Example

JCTableEnum.PLACE_TOP
JCTableEnum.PLACE_RIGHT

The labels are displayed at the top and 
to the right of the table (default).



36 Part I ■ Using JClass LiveTable

Defining Label Spacing
Normally, there is no space between labels and the cell area. The RowLabelOffset 
property specifies the distance in pixels between the row labels and the cell area. 
Similarly, the ColumnLabelOffset property specifies the distance in pixels between the 
column labels and the cell area. If you specify a negative value, the cell area overlaps the 
labels. 

JCTableEnum.PLACE_TOP
JCTableEnum.PLACE_LEFT

The labels are displayed at top and to 
the left of the table.

JCTableEnum.PLACE_BOTTOM
JCTableEnum.PLACE_RIGHT

The labels are displayed at the bottom 
and to the right of table.

JCTableEnum.PLACE_BOTTOM
JCTableEnum.PLACE_LEFT

The labels are displayed at the bottom 
and to the left of the table (reversed 
default).

Offset value examples

ColumnLabelOffset(0);
RowLabelOffset(0);

Column and Row Placement Example



Outliner

Chapter 2 ■ Building a Table 37

2.4.6 Cell and Label Border Width
The width of the borders around the cells and labels is specified by the 
setCellBorderWidth() method. This method’s actions apply to the entire table. By 
default, the borders are 1 pixel wide. The following table demonstrates the effect of 
different bordercell widths: 

2.4.7 Cell and Label Margins
The MarginWidth and MarginHeight properties alter the space between the cell borders 
and the contents of cells. 

The MarginWidth property sets the distance (in pixels) between the inside edge of the cell 
border and the left and right edge of the cell’s contents (default: 2). The MarginHeight 
property specifies the margin (in pixels) between the inside edge of the cell border and 
the top and bottom edge of the cell’s contents (default: 1). 

ColumnLabelOffset(15);
RowLabelOffset(15);

ColumnLabelOffset(-10);
RowLabelOffset(-10);

CellBorderWidth Examples

table.setCellBorderWidth(2);

sets the bordercell width for all cells 
and labels to a value of two pixels

table.setCellBorderWidth(5);

sets the bordercell width for all cells 
and labels to a value of five pixels

Offset value examples



38 Part I ■ Using JClass LiveTable

These properties affect all cells and labels in the table — margins cannot be set for 
individual cells. 

The following table demonstrates the effect of different margin height and width settings: 

2.4.8 Component Borders 

The ComponentBorderWidth property sets the spacing between the border of a table’s cells 
and components that are inserted into them. By default, this property is set to 0.

2.4.9 Frame Border Attributes

The FrameBorder property is an instance of CellBorderModel, and sets the border 
surrounding the cell and label areas. 

The FrameBorderWidth property specifies the thickness of the border surrounding the cell 
and label areas. Its default value is 0 (no frame border).

Border colors are calculated using the table’s background color. 

The following table outlines all the valid frameborder types, and demonstrates 
frameborder widths. The FrameBorderWidth property, which specifies the thickness of the 
border surrounding the cell and label areas, has been set to a value of 6. The code in each 

Cell and Label Margin Examples

table.setMarginHeight(2);
table.setMarginWidth(5);

sets the margin height to 2 and the 
width to 5

table.setMarginHeight(10);
table.setMarginWidth(10);

sets the margin height and width to 10



Outliner

Chapter 2 ■ Building a Table 39

cell is the CellBorderModel value, which is used in the statement: 
table.setFrameBorder(new JCCellBorder(value)). 

FrameBorder Attribute Examples

JCTableEnum.BORDER_ETCHED_IN
creates a border that appears set in 

JCTableEnum.BORDER_ETCHED_OUT
creates a raised border 

JCTableEnum.BORDER_FRAME_IN
creates a frame border whose enclosed cells 
and labels appear set in 

JCTableEnum.BORDER_FRAME_OUT
creates a frame border whose enclosed 

cells and labels appear raised 

JCTableEnum.BORDER_IN
creates a border whose enclosed cells and 
labels appear set in 

JCTableEnum.BORDER_OUT
creates a border whose enclosed cells and 

labels appear raised 

JCTableEnum.BORDER_PLAIN
creates a plain frame border 

JCTableEnum.BORDER_THIN
creates a thin frame border 



40 Part I ■ Using JClass LiveTable

2.4.10 Row and Column Definition

Determining the Number of Rows/Columns
The NumRows and NumColumns properties are set using methods in the data source. To 
retrieve these values, use the JCVectorDataSource.getNumRows() and 
JCVectorDataSource.getNumColumns() methods. Please see Setting Stock Data Source 
Properties, in Chapter 3, for information on setting these properties in the data source. 

The number of rows/columns must be greater than the number of frozen rows/columns. 
For more information on frozen rows/columns, see ‘Freezing’ Rows and Columns.

Setting and Getting Visible Rows and Columns
The number of rows and columns currently visible in the window is specified by the 
VisibleRows and VisibleColumns properties.1 

You can force the table to display a particular number of rows or columns by calling 
setVisibleRows() and setVisibleColumns(). 

To retrieve the values of VisibleRows or VisibleColumns, call the getVisibleRows() and 
getVisibleColumns() methods. These methods return the number of visible non-frozen 
rows or columns. These values determine the preferred size of the table and are not 
updated dynamically as a user resizes the table.

To get live values of the table, use getNumVisibleRows() and getNumVisibleColumns(), 
which return the total number of visible rows or columns. 

To work with cells instead of rows or columns, use the getVisibleCells() method, 
which returns the range of non-frozen visible cells. 

JCTableEnum.BORDER_NONE
creates no frame border (default) 

1. Rows/columns that are only partially visible are also included in the value of these properties.

FrameBorder Attribute Examples



Outliner

Chapter 2 ■ Building a Table 41

Displaying the Entire Table
To display the entire table, set VisibleRows and VisibleColumns to 
JCTableEnum.NOVALUE. Setting either property to NOVALUE sets a special flag that causes 
the table to attempt to resize to make all rows or columns visible. 

Swapping Rows or Columns
You can make two rows or columns switch places by using the swapRows() and 
swapColumns() methods. For example, to swap rows 3 and 9:

table.swapRows(3,9)

These methods do not affect the data source, but use an internal mapping table to keep 
track of row and column locations. 

To reset the rows or columns to their original locations, based on the data source, use the 
resetSwappedRows() or resetSwappedColumns() methods.

‘Freezing’ Rows and Columns
An application can make rows and columns non-scrollable by using the FrozenRows and 
FrozenColumns properties. You can use frozen rows or columns to hold important 
information on the screen as a user scrolls through the table (such as totals at the bottom 
of a table). You could also use frozen rows or columns as additional rows or columns that 
act like labels; see Section 2.7.1, Using Spanning to Create Multiline Headers for an 
example. 

■ setFrozenRows() specifies the number of rows held at the top or bottom of the 
window and not scrolled. The default value is zero. 

■ setFrozenColumns() specifies the number of columns held at the left or right side of 
the window and not scrolled. The default is zero.

Frozen rows/columns always start from the beginning of the table. By default, they are 
editable and traversable, but not sorted and cannot be dragged. The following figure 
shows an example of frozen rows.

Figure 5 Visible and Frozen Rows and Columns- note absence of scrollbar to right of frozen rows.



42 Part I ■ Using JClass LiveTable

Setting frozen rows or columns sets the number of columns from the left or the number of 
rows from the top. For example:

table.setFrozenRows(2);

freezes the first two rows of the table, and 

table.setFrozenColumns(4);

freezes the first four columns of the table.

If you want to freeze a single column or row in the middle of the table, you can easily 
move the specified row or column to the beginning of the table by using the swapRows() 
or swapColumns() method (described above), then freeze the row or column. 

To move and freeze more than one column or row, you will have to call the moveRows() 
or moveColumns() method in the data source (see Using Stock Data Sources, in Chapter 3) 
to move the desired rows/columns to the beginning of the table, then set FrozenRows or 
FrozenColumns to the number of rows/columns that you want to freeze. 

Placing Frozen Rows/Columns
You can place frozen rows at either the top or bottom of the table. Frozen columns can be 
placed at either the left or right of the table. The placement of frozen rows/columns does 
not affect the location of the rows/columns in the data source.

To change the placement of the frozen rows, set the FrozenRowPlacement property to 
either JCTableEnum.PLACE_TOP or JCTableEnum.PLACE_BOTTOM.

To change the placement of all frozen columns, set the FrozenColumnPlacement property 
to either JCTableEnum.PLACE_LEFT or JCTableEnum.PLACE_RIGHT.

2.4.11 Controlling Cell Editor Size 

The table can control the size of a cell editing component using the EditHeightPolicy 
and EditWidthPolicy properties. Each of these properties can take one of three values:

■ JCTableEnum.EDIT_SIZE_TO_CELL: resize the component to fit the Table’s cell size.

■ JCTableEnum.EDIT_ENSURE_MINIMUM_SIZE: resize the component to its minimum size.

■ JCTableEnum.EDIT_ENSURE_PREFERRED_SIZE: resize the cell to editing component’s 
preferred size.

These properties allow the table to have better control over cell editors created using the 
com.klg.jclass.cell.JCCellEditor interface. For more information about cell editors, 
see Displaying and Editing Cells, in Chapter 4.



Outliner

Chapter 2 ■ Building a Table 43

2.5   Column Width and Row Height Properties

By default, JClass LiveTable sets the height of rows to display one line of text. The width 
of columns is set by default to display 10 characters of text. If a cell value, image file, or 
component does not fit in its cell, the cell displays clipping arrows by default. Each row 
can have its own height, and each column its own width.

JClass LiveTable provides two different ways to specify row height and column width: 
character and pixel. Character specification determines the height/width by the number of 
characters or lines that the row/column can display. Pixel specification determines the 
height/width by the explicit number of pixels. 

Only one method can be used for a row or column. Pixel specification overrides 
character specification.

Note: When users interactively resize rows/columns, the row height/column width is 
specified by pixel regardless of how your application specified it. 

Figure 6 The difference between Character and Pixel Row/Column specification.

2.5.1 Character Height and Width

The CharWidth property specifies the number of characters a column can display. 
CharHeight specifies the number of lines of text a row can display. For these properties to 
control row height/column width, PixelWidth and PixelHeight must be set to 
JCTableEnum.NOVALUE.

To determine the pixel dimensions of a row or column whose height/width was set by 
CharWidth or CharHeight, use the getColumnPixelWidth() or getColumnPixelHeight() 
methods.



44 Part I ■ Using JClass LiveTable

The following table demonstrates different character height and width settings: 

Character specification is convenient when you know how many characters you want a 
row/column to display. It works best with non-proportional1 fonts because 
JClass LiveTable uses the widest character along with the largest ascender/descender to 
guarantee that the specified number of characters will fit in the cell or label.

2.5.2 Absolute Pixel Height and Width

PixelWidth and PixelHeight specify column width and row height in pixels. You can set 
these properties to an explicit pixel value using JCTableEnum.NOVALUE or 
JCTableEnum.VARIABLE (this value is discussed in detail in the following section).

Unless set to JCTableEnum.NOVALUE (default), these properties override the CharWidth 
and CharHeight properties. The next illustration shows setting PixelHeight to a pixel 
value.

For Column Width: 

table.setCharHeight(0,1);
sets the first row’s height to 1 character

table.setCharHeight(0,4);
sets the first row’s height to four characters

For Row Height: 

table.setCharWidth(4,3);
sets the fifth column’s width to 3 
characters

table.setCharWidth(4,10);
sets the fifth column’s width to 10 
characters

1. All of the characters in a fixed-width font have the same width

Absolute Pixel Height Examples

table.setPixelHeight(4,15);
sets the fifth row’s height to 15 pixels



Outliner

Chapter 2 ■ Building a Table 45

2.5.3 Variable Pixel Height and Width

An application can have JClass LiveTable automatically size rows and columns to fit the 
contents of the table by setting PixelWidth and PixelHeight to JCTableEnum.VARIABLE. 
As your application changes table attributes affecting the cells’ contents, the table will 
resize the rows and columns to fit.1 

When a cell contains a component, JClass LiveTable sizes the cell to fit the component’s 
preferred size. 

To determine the pixel dimensions of a row or column with variable height or width, call 
the getRowPixelHeight() and getColumnPixelWidth() methods. 

Defining How Much of the Table is Used in Pixel Estimates
By default, the JCTableEnum.VARIABLE value, when used with PixelHeight and 
PixelWidth, uses the entire row or column to calculate pixel dimensions. 

Using VARIABLE with large tables can result in general table slowdowns due to the large 
number of cells involved in the height calculation. For large tables, use the 
JCTableEnum.VARIABLE_ESTIMATE value instead, which sets the pixel dimension to the 
highest value found in a range that you define. 

You can explicitly control the range of cells used in the variable height calculation by 
using setVariableEstimateCount(). Typically, this value is set to the number of cells 
expected to be visible at any time. 

Changing Variable Row and Height Dimensions to Fixed Values
Setting PixelHeight and PixelWidth to JCTableEnum.AS_IS does not change the pixel 
dimensions, and makes the current height and width settings fixed values. 

Additionally, if you have set your row and column dimensions to be of variable height 
and width, and the user interactively resizes a row or column, the PixelWidth and 
PixelHeight values are converted to fixed values. 

table.setPixelHeight(4,30);
sets the fifth row’s height to 30 pixels

1. When width are height are set to zero, the row/column becomes hidden.

Absolute Pixel Height Examples



46 Part I ■ Using JClass LiveTable

2.5.4 Maximum and Minimum Pixel Height and Width

While you can work with varying pixel height and width dimensions, you can still set the 
absolute maximum and minimum pixel dimensions for a table. 

Use setMaxHeight() and setMinHeight() to determine the maximum height of any or all 
rows, all column labels or the whole table. Likewise, use setMaxWidth() and 
setMinWidth() to determine the minimum width of any or all columns, all row labels, or 
the whole table. 

2.5.5 Displaying and Editing Multiple Lines in Cells

When you set the height and width of your cells, you adjust how much of the data can be 
displayed in the cell. If your cell contains text, then JClass LiveTable makes it possible for 
you to display and edit multiple lines. 

For cell rendering, if the data displayed in the cells contains a newline character (\n), the 
cell is automatically displayed as a multiline cell. 

For cell editing, by default, text is edited on a single line. For multiline editing, you must 
set the multiline editor. To set a multiline editor, you need to set the Cell Style’s editor 
properties. Create a Cell Style and set the editor for it, then call setCellStyle() with a 
row, column, or range. Please refer to Section 2.6, Cell Styles, for more information about 
setting editor properties. 

2.5.6 Using Row Height and Width to Hide Rows and Columns
An application can “hide” rows and columns from the end-user by setting the 
PixelHeight/PixelWidth properties to zero pixels (the current cell should not be in the 
hidden row/column). Though the row/column appears to have vanished, the application 
can set attributes or change cell values. 



Outliner

Chapter 2 ■ Building a Table 47

Note: The recommended way of hiding rows and columns is to set the boolean value of 
setRowHidden() and setColumnHidden() to true.

Figure 7 Hiding the “Order Date” column.

2.6   Cell Styles

While the classes and properties mentioned in previous sections define table-wide or 
row/column properties, you can use Cell Styles to set the properties of individual cells or 
labels, or ranges of cells. 

Every cell in a table is associated with a style that defines how the cell looks, how the data 
is edited, and whether the cell is traversable and editable. 

2.6.1 Cell Style Properties and Implementation
A Cell Style is any object that implements the CellStyleModel interface. With this 
interface, the style properties that you can define are:

■ background colors and foreground colors

■ repeating background and foreground color settings

■ font attributes

■ horizontal and vertical text alignment

■ cell border types

■ cell border sides

■ clip hints

■ boolean editable



48 Part I ■ Using JClass LiveTable

■ editor (JCCellEditor)

■ renderer (JCCellRenderer)

■ data types

■ cell traversal 

Cell Styles make it easier to define and manage the appearance of a table. Instead of 
working with a myriad of visual properties for ranges of cells, you can define a particular 
Cell Style (which encompasses all of these properties), and then apply the style to any 
cells or labels. 

Getting and setting Cell Styles
In order to set a Cell Style, you can use one of two methods: 

// this applies a style to a cell
setCellStyle(int row, int column, CellStyleModel csm);
// this applies a style to a range of cells
setCellStyle(JCCellRange cr, CellStyleModel csm);

To retrieve the style for a cell, use: 

CellStyleModel getCellStyle(int row, int column);

2.6.2 Defining Your Own or Changing Built-In Cell Styles

You can easily modify Cell Styles by making property changes to the JCCellStyle 
implementation, as well as default cell and label styles. 

Changing Cell Styles
You can change a Cell Style by creating a new JCCellStyle object, modifying the desired 
properties, and applying these changes with the setCellStyle() method. For example, 
the style for cell (2, 2) is changed by using this code: 

JCCellStyle cs = new JCCellStyle();
cs.setBackground(Color.blue);
table.setCellStyle(2, 2, cs);

You can also use the getCellStyle() method to retrieve the style properties from a 
particular cell. Consider this example, which gets the properties of cell (0, 0), then sets the 
background color to red: 

JCCellStyle cs = new JCCellStyle(); 
cs.setBackground(Color.blue); 
table.setCellStyle(JCTableEnum.ALL, JCTableEnum.ALL, cs); 

CellStyleModel csm = table.getCellStyle(0, 0); 
csm.setBackground(Color.red); 

The problem with using getCellStyle() is that the style obtained from an individual cell 
may not be unique to that cell. Styles can also be applied to ranges, or an entire table. In 
the above example, you might expect the code to produce a table whose cells have a blue 
background, with the exception of cell (0, 0) which should have a red background. 



Outliner

Chapter 2 ■ Building a Table 49

However, since the style you are retrieving from cell (0, 0) is used for the whole table, all 
cell backgrounds will be red. 

If you wanted to change the background color for cell (0, 0) to red, even though that cell’s 
style is also being used for the whole table, you can work with a unique Cell Style: 

CellStyleModel csm = table.getUniqueCellStyle(0, 0); 
csm.setBackground(Color.red); 
table.setCellStyle(0, 0, csm); 

The bottom line is that you do not need to apply specific style changes with 
setCellStyle() if you want to change all the cells that share the style. In other words, the 
first example which used: 

CellStyleModel csm = table.getCellStyle(0, 0); 
csm.setBackground(Color.red); 

is correct if your intention is to set the background color to red for all cells that share the 
same style as cell (0, 0). 

Retrieving all Styles Used in a Table
You can easily work through all Cell Styles found in a table (even without knowing what 
they all are) by calling Collection getCellStyles(). You can use this to change a 
property for all styles in your table. The following example performs this operation, as it 
retrieves all the table’s styles, and changes the foreground color to blue: 

Collection col = table.getCellStyle();
Iterator it = col.iterator();
while(it.hasNext()){

CellStyleModel csm = (CellStyleModel)it.next();
csm.setForeground(Color.blue);

}

Creating “Parent” Styles 
JClass LiveTable allows you to create styles that inherit property values from a parent 
style. For example, imagine you have a style (mySimpleStyle) with white background and 
black foreground (text) settings. If you want to change the style properties for a particular 
cell, or cell range, but retain the original properties for the other cells, you have two 
choices. 

■ The first choice involves the creation of a copy of the style in which you are 
interested, changing the property, and applying it back to the cell you want changed: 
CellStyleModel myNewStyle = (CellStyleModel)(mySimpleStyle.clone()); 
myNewStyle.setBackground(Color.red); 
table.setCellStyle(0, 0, myNewStyle); 

The problem with this approach is that if mySimpleStyle changes (for example, the 
font is changed), myNewStyle will not pick up this change. Updating styles to match 
changes in other styles can be tedious. 



50 Part I ■ Using JClass LiveTable

■ The second option makes updates automatic, as you implement mySimpleStyle as the 
“parent” of myNewStyle. 
CellStyleModel myNewStyle = new JCCellStyle(mySimpleStyle); 
myNewStyle.setBackground(Color.red); 
table.setCellStyle(0, 0, myNewStyle); 

By creating a JCCellStyle with another style as an argument, you create a link 
between the new style and the original one. Any property that is changed to the new 
style overrides the setting that comes from the original style, and any changes made 
to the original style (that are not overridden) are picked up by the new style. 

The following example demonstrates the relationship between parent and child styles. 
Here, both styles end up using the anotherFont typeface. However, since the foreground 
color in myNewStyle was changed to yellow, setting the myOldStyle foreground color to 
white will not affect myNewStyle. 

myNewStyle.setForeground(Color.yellow); 
myOldStyle.setFont(anotherFont); 
myOldStyle.setForeground(Color.white); 

The CellStyleModel has getParentStyle() and setParentStyle() methods in addition 
to using the special constructor. 

2.6.3 Using and Modifying JClass LiveTable’s Built-In Styles
To define Cell Styles, use the CellStyleModel interface. CellStyleModel is an interface 
that defines the methods required by an object to specify the attributes of a cell. 

JCCellStyle: the Default CellStyleModel Implementation
JClass LiveTable provides an implementation of the CellStyleModel interface in the 
JCCellStyle class. Creating an instance of this class in your table program is a quick way 
of setting up a Cell Style. It has the following defaults: 

Background System control color

Border BORDER_IN

BorderSides BORDERSIDE_ALL

CellBorderColor based on the background color of the cell

ClipHints SHOW_ALL

Data Type null

Editable true

Editor null

Foreground System control text color

Font Dialog-Plain-12



Outliner

Chapter 2 ■ Building a Table 51

JCCellStyle does not specify any DataType, CellEditor, or CellRenderer properties. 
Editors and renderers are determined by the type of data in the data source if an 
editor/renderer is not set. Please see Displaying and Editing Cells, in Chapter 4, for more 
information.

Pluggable Look and Feel (PLAF) Styles 
There are two default styles that are used and changed by the current system’s PLAF. Use 
these if you want your table to look and behave in accordance with the host machine’s 
properties (e.g. Swing Metal, Windows). DefaultLabelStyle is automatically applied to 
labels, while DefaultCellStyle is applied to all cells. Access the default styles as follows: 

CellStyleModel csm = table.getDefaultLabelStlye();
csm = table.getDefaultCellStyle();

JClass LiveTable handles PLAF through a “parenting” mechanism. When the PLAF 
changes, JCTableUI updates DefaultLabelStyle and DefaultCellStyle as required. 

If you create a cell that uses this default style, but want to change a cell property while 
maintaining PLAF support for all other cell properties, you have to create a unique style 
for a cell.

For example, you can create a style for your table that has PLAF support, but changes the 
text alignment: 

CellStyleModel csm = new JCCellStyle(table.getDefaultCellStyle();
csm.setHorizontalAlignment(JCTableEnum.CENTER);
table.setCellStyle(0, 0, csm);

Here, you have created a new style based on DefaultCellStyle, and changed one 
property HorizontalAlignment. Applying this to cell (0, 0) changes the text alignment, 
but the other properties (background/foreground color, font, border type) will only 
change if the host machine’s look and feel changes. 

To gain a better understanding of how JCTableUI works with default styles, imagine that 
you are applying this style change: 

CellStyleModel csm = table.getDefaultCellStyle();
csm.setBackground(Color.blue);

HorizontalAlignment LEFT

Renderer null

RepeatBackground NONE

RepeatForeground NONE

Traversable true

VerticalAlignment TOP



52 Part I ■ Using JClass LiveTable

You might think that when the user changes the PLAF, the blue background color will be 
cancelled out with the new PLAF defaults. This will not happen because JCTableUI uses 
special wrapper objects to set values (e.g. ColorUIResource), and checks the current value 
to see if it is an instance of a UI Resource. If so, the property value is changed because 
JCTableUI assumes the PLAF logic set it. If it is a regular object (in this case, Color), the 
value will not be updated by JCTableUI. 

2.6.4 Working with Colors

Setting Foreground and Background Colors
The foreground and background colors used for cells are specified by the Foreground and 
Background properties. The following example sets the background color of column 2 to 
blue:

JCCellStyle cell = new JCCellStyle();
cell.setBackground(Color.blue);
table.setCellStyle(JCTableEnum.ALL,2,cell);

In that example, the JCCellStyle default Cell Styles are used, with one overriding 
change for the background color. 

The same applies in the next example, in which the foreground color value for cell (1, 4) 
is set to the color white:

JCCellStyle cell2 = new JCCellStyle();
cell2.setForeground(Color.white);
table.setCellStyle(0,3,cell2)

In addition to the row, column indexed contexts, you can set the Foreground and 
Background properties for a range of cells specified by a JCCellRange object:

JCCellRange range = new JCCellRange(0,3,2,4);
JCCellStyle cell = new JCCellStyle();
cell.setBackground(Color.red);
table.setCellStyle(range,cell);

Repeating Colors
JClass LiveTable makes it easy to create rows or columns whose background and 
foreground colors alternate or cycle in a repeating pattern. To create a repeating pattern 
of background colors, set the RepeatBackgroundColors and RepeatBackground properties 
as shown in the following example:

JCCellStyle colors = new JCCellStyle();
Color[] repeating = {Color.orange, Color.green, Color.white};
colors.setRepeatBackgroundColors(repeating);
colors.setRepeatBackground(JCTableEnum.REPEAT_COLUMN);
table.setCellStyle(JCTableEnum.ALLCELLS, 

JCTableEnum.ALLCELLS, colors);



Outliner

Chapter 2 ■ Building a Table 53

You can define as many repeating colors as you like. The colors are always selected in the 
order listed. 

2.6.5 Text and Image Alignment

The horizontal and vertical alignment of text and images within cells and labels is 
specified by the HorizontalAlignment and VerticalAlignment properties. Cell/label 
values can be centered or positioned along any side of the cell/label. 

Repeating Color Property Example

JCTableEnum.REPEAT_COLUMN

sets repeating background or foreground colors 
by rows

use as value for setRepeatBackground or 
setRepeatForeground methods

JCTableEnum.REPEAT_ROW

sets repeating background or foreground colors 
by columns

use as value for setRepeatBackground or 
setRepeatForeground methods

Alignment Property Examples

setVerticalAlignment(JCTableEnum.TOP)
setHorizontalAlignment(JCTableEnum.LEFT)

setVerticalAlignment(JCTableEnum.TOP)
setHorizontalAlignment(JCTableEnum.CENTER)

setVerticalAlignment(JCTableEnum.TOP)
setHorizontalAlignment(JCTableEnum.RIGHT)

setVerticalAlignment(JCTableEnum.CENTER)
setHorizontalAlignment(JCTableEnum.LEFT)



54 Part I ■ Using JClass LiveTable

2.6.6 Cell and Label Fonts

You can specify the font for the text in a cell or label with the Font property. 
JClass LiveTable supports the use of one or more fonts in each cell/label. The example 
below sets a bold, serif font for all labels:

JCCellStyle labelfont = new JCCellStyle();
labelfont.setFont(new Font("TimesRoman",Font.BOLD,10));
table.setCellStyle(JCTableEnum.LABEL,JCTableEnum.LABEL,labelfont);

JClass LiveTable can use any of the fonts available to Java. See your Java documentation 
for details on finding and setting fonts, or refer to Appendix D.

2.6.7 Border Types

All cells and labels have a border around them, and the appearance of the cell or label 
border can be customized for individual cells and labels. 

The border width, as well as the border around the table’s frame, are not part of the Cell 
Style, as they are specified for the entire table. Please refer to Section 2.4, Global Table 
Properties, for information about setting table-wide properties. 

Cell and Label Border Types 
Cell and label border types are defined by the JCCellBorder class. JCCellBorder 
implements the CellBorderModel interface, and can be set like any other Cell Style 
property.

setVerticalAlignment(JCTableEnum.CENTER)
setHorizontalAlignment(JCTableEnum.CENTER)

setVerticalAlignment(JCTableEnum.CENTER)
setHorizontalAlignment(JCTableEnum.RIGHT)

setVerticalAlignment(JCTableEnum.BOTTOM)
setHorizontalAlignment(JCTableEnum.LEFT)

setVerticalAlignment(JCTableEnum.BOTTOM)
setHorizontalAlignment(JCTableEnum.CENTER)

setVerticalAlignment(JCTableEnum.BOTTOM)
setHorizontalAlignment(JCTableEnum.RIGHT)

Alignment Property Examples



Outliner

Chapter 2 ■ Building a Table 55

The following table outlines all the valid cell and label border types. The code in each cell 
is the JCCellBorderModel value, which is used in the statement: 
border.setCellBorder(new JCCellBorder(value)).

Note: In order for any different cell or label border type to be visible, the width of the 
border must be 5 pixels or greater (default: 1). 

Cell or Label Border Type Properties

JCTableEnum.ETCHED_IN
sets an etched border whose enclosed cells 
appear raised. 

JCTableEnum.ETCHED_OUT
sets an etched border whose enclosed cells 
appear set in. 

JCTableEnum.FRAME_IN
sets a framed border whose enclosed cells 
appear set in. 

JCTableEnum.FRAME_OUT
sets a framed border whose enclosed cells 

appear raised. 

JCTableEnum.IN
sets a plain border whose enclosed cell 
appears set in. 

JCTableEnum.OUT
sets a plain border whose enclosed cell 

appears raised. 

JCTableEnum.PLAIN
set a plain border. 

JCTableEnum.THIN
sets a plain border that appears thin. 

JCTableEnum.NONE
sets no border. 



56 Part I ■ Using JClass LiveTable

The following example sets a blank border for all cells in the first row:

JCCellStyle border = new JCCellStyle();
border.setCellBorder(new JCCellBorder(JCTableEnum.BORDER_NONE));
table.setCellStyle(0, JCTableEnum.ALLCELLS, border);

To retrieve the border style for a cell, use the getCellBorderType() method. This returns 
a CellBorder object (see below).

Custom Cell and Label Borders
JClass LiveTable includes an interface that allows you to define your own cell borders 
and backgrounds for cells and labels. The CellBorderModel interface has a single method 
called drawBackground(). The drawBackground() method allows you to specify the 
border width, the sides of the cell on which to draw the border, the colors of the border 
sides, and the dimensions of the rectangle that gets drawn. 

To define a new type of border, you have to create an Object that implements the 
CellBorderModel interface. The following (from the BorderTypes.java example in 
examples/table/style) defines a single-line border object called LiteBorder:

class LiteBorder implements CellBorderModel {

Color color;

public LiteBorder(Color color) {
this.color = color;

}

public void drawBackground(Graphics gc, int border_thickness, int 
border_sides, int x, int y, int width, int height,
Color top_color, Color bottom_color, Color plain_color) {

gc.setColor(color);
gc.drawRect(x, y, width, height);
}

};

Now that the new type of border has been defined, you can use it as you would any cell 
style property: 

JCCellStyle cellborder = new JCCellStyle();
cellborder.setCellBorder(new LiteBorder(Color.gray));
table.setCellStyle(JCTableEnum.ALLCELLS, 

JCTableEnum.ALLCELLS, cellborder);

The examples/table/style directory also contains a program called TextureTable.java, which 
illustrates how you can use the custom border features to insert a background graphic into 
cells.

Caution: If you create many different CellBorder objects, it will have an impact on your 
table’s performance. 



Outliner

Chapter 2 ■ Building a Table 57

2.6.8 Cell and Label Border Sides
The CellBorderSides property specifies the sides of a cell or label that display the border 
type (specified by the JCCellBorder class). By default, the border type is displayed on all 
sides of a cell or label. The following figure illustrates one of the visual effects that can be 
achieved.

Figure 8 Customized Cell Borders.

The valid values for CellBorderSides are: 

Specifying border sides is accomplished by OR-ing together all desired CellBorderSides 
values. The following example establishes cell borders on the left and top sides for all 
cells in column 3: 

JCCellStyle borderside = new JCCellStyle();
borderside.setCellBorderSides(JCTableEnum.BORDERSIDE_LEFT |

JCTableEnum.BORDERSIDE_TOP);
table.setCellStyle(JCTableEnum.ALL, 2, borderside);

2.6.9 Text and Image Clipping

When cell and label contents do not fit in their defined area, JClass LiveTable can clip the 
display of the cell value. The ClipHints property determines which method is used. The 
setClipHints() method can take the following values: 

■ JCTableEnum.BORDERSIDE_LEFT ■ JCTableEnum.BORDERSIDE_BOTTOM 

■ JCTableEnum.BORDERSIDE_RIGHT ■ JCTableEnum.BORDERSIDE_ALL

■ JCTableEnum.BORDERSIDE_TOP ■ JCTableEnum.BORDERSIDE_NONE 

Clip Hints Properties

JCTableEnum.SHOW_HORIZTONAL JCTableEnum.SHOW_VERTICAL 

JCTableEnum.SHOW_NONE JCTableEnum.SHOW_ALL (default) 



58 Part I ■ Using JClass LiveTable

2.6.10 Displaying Images in Table Cells

JClass LiveTable can display an image in each cell or label in the table. The image 
appears inside the margin of the cell. Images are displayed using the 
JCImageCellRenderer class in the com.klg.jclass.cell package. For more information, 
please see Displaying and Editing Cells, in Chapter 4.

JClass LiveTable supports the image file formats supported by the Java AWT: GIF and 
JPEG. For more information on available file formats, see your Java documentation.

The position of the image within the cell is specified in the same way as Strings, using 
HorizontalAlignment and VerticalAlignment. This aspect of displaying images is 
handled by the Styles property. This is covered in Section 2.6.5, Text and Image 
Alignment. 

2.7   Cell and Label Spanning

Spanning is a way to join a range of cells or labels together and treat them as a single 
cell/label. A spanned range looks and acts like one cell/label that covers several rows 
and/or columns. There are many potential uses for spanning, including designing 
complex forms, displaying large images or components, and creating multiline headers.

When you create a spanned range, the top-left cell in the range is extended over the 
entire range. The top-left cell is the source cell, and its value and attributes apply over the 
entire span, overriding any values or attributes set for the other cells/labels in the range. 
Spanned ranges must begin at the top-left corner of the range. A span cannot contain 
both cells and labels, or frozen and non-frozen elements. There must also be more than 
one cell/label in a spanned range. When a single-cell range is specified, it is removed 
from the list.

The next figure shows an example of a table containing spanned ranges.

Figure 9 Table design using spanned cells.



Outliner

Chapter 2 ■ Building a Table 59

JClass LiveTable handles spanning cells with the SpanHandler class. This class contains 
the setSpannedRanges() method, which sets a Collection of ranges of cells or labels. 
(Please note that a Collection is typically a vector.) Each element of the Vector is an 
instance of a JCCellRange. 

A spanned range is a range of cells or labels that appear joined and can be treated as one 
cell. The top-left cell (specified by the start_row and start_column members) is the 
source cell for the spanned range. The cell/label value and attributes of the source cell are 
displayed in the spanned cell. Attributes for the spanned range must be set on the source 
cell.

Note: Spanned ranges may not overlap. If you have overlapping Spans, you will get a 
System.err message similar to the following:

spanlist.overlap: Range R1C2:R1C4 overlaps R1C1:R1C2

Overlaps are determined by the order of cell ranges in the Span Vector.

To remove all of the spanned ranges, use the clearSpannedRanges() method.

The following example defines a cell that spans three columns and two rows (columns 2 
through 4, and rows 2 through 3):

JCCellRange spanrange = new JCCellRange(1,1,2,3);
table.addSpannedRange(spanrange); 

Figure 10 Color properties of source cell (1,1) in the original table (left) are retained over the spanned cells 
in the table after the listed code has been added (right).



60 Part I ■ Using JClass LiveTable

2.7.1 Using Spanning to Create Multiline Headers

You may want to create tables that contain multiline column headers where a top header 
is divided into two columns by sub-headers, as in the following illustration.

Figure 11 Multiline headers.

While JClass LiveTable does not support multi-row column labels, this effect can be 
achieved by setting some table-wide cell appearance and behavior properties, and some 
Cell Style properties. Use a frozen row at the top of the table to mimic the appearance of 
the column labels as follows:

■ The right-most column label has been set to span columns 3 and 4. This produces a 
heading for both columns.

■ The cell values for columns 3 and 4 in row zero have been set to contain the 
“subheadings” of the spanned label heading.

■ The cells in row zero, columns 0 to 2 are empty. 

■ Row zero has been frozen using setFrozenRows(1) so that it stays at the top of the 
table and acts like a label.

■ Row zero’s cells are not editable (using the setEditable(false) method) and not 
traversable (using setTraversable(false)).

■ The FrameBorderWidth property of the table must be set to zero, so that the labels 
blend seamlessly into the frozen row.

■ Finally, using Cell Styles, the CellBorderSides, Background, and Foreground 
properties for the column labels and row zero are all set to blend the two together.



61

3
Working with Table Data

Overview: Data Handling in JClass LiveTable ■ Getting Data into your Table

Using Stock Data Sources ■ Setting Stock Data Source Properties

Loading Data from an XML Source ■ Creating your own Data Sources ■ Dynamically Updating Data

3.1   Overview: Data Handling in JClass LiveTable
JClass LiveTable is a Java component that creates a table-formatted view of a given set of 
data. Data can come from many different types of sources; different applications can have 
different data storage needs. Since applications can generally store data more efficiently 
than a component, it is more practical for JClass LiveTable to use an external data object 
rather than storing the data internally. An external data model organizes the data in a way 
that is more convenient for the application, rather than for the component.

Consequently, JClass LiveTable uses a Model-View-Controller (MVC) architecture for 
data handling. The data in the table cells is stored in an external data source rather than 
the JCTable object itself. Either you create the data source object, or the data source can 
be a database. To use the latter, you need to use one of the LiveTable data-binding Beans. 
For more information about these Beans, please see JClass LiveTable Beans and IDEs, in 
Chapter 9.

With LiveTable’s MVC architecture, the data source object is the Model, which manages 
the underlying data being displayed and manipulated. The JCTable object acts as both 
the View (the object displaying the data to the user) and the Controller (the object that 
manipulates and modifies the data).

Because the JCTable object and the data source are separated, you are free to use 
whatever data storage mechanism you want; the JCTable object doesn’t need to know 
anything about the mechanism itself. The MVC architecture also helps improve the 
performance of JClass LiveTable programs by removing the need to load all of the table’s 
data into memory, then copy it to the JCTable object. The data source is able to copy 
only the data that is currently displayed by the JCTable object. An external data source 
can also manage large sets of data more efficiently than the JCTable object can.

3.1.1 How the Table and Data Source Communicate

Between the JCTable object and the data source lies an object that implements the 
DataViewModel and/or the SortableDataViewModel. The default implementation in the 



62 Part I ■ Using JClass LiveTable

table is TableDataView. While most developers will never have to work with it directly, 
it’s important to realize that the TableDataView monitors the data source for changes and 
notifies the JCTable object when they occur. Additionally, the TableDataView has a set of 
translation tables that allow it to re-map rows or columns from the data source to the 
table. This is how JClass LiveTable can support features like column sorting and row or 
column swapping, where the appearance of the table changes, without manipulating the 
data source itself.

3.2   Getting Data into your Table

To display data in a JClass LiveTable application or applet, you need to create a data 
source object. Any object that implements the TableDataModel interface can be a data 
source. This can either be one of the stock data sources included with LiveTable (see 
Section 3.3, Using Stock Data Sources) or one of your own data sources (see Section 3.6, 
Creating your own Data Sources).

The TableDataModel interface is as follows:

public interface TableDataModel {
public Object getTableDataItem(int row, int column);
public int getNumRows();
public int getNumColumns();
public Object getTableRowLabel(int row);
public Object getTableColumnLabel(int column);
public void addTableDataListener(TableDataListener l);
public void removeTableDataListener(TableDataListener l);
}

The primary method in the TableDataModel interface is getTableDataItem(), which 
retrieves the value of a specified cell. For more information on the types of cell data 
objects that Table understands, see Displaying and Editing Cells, in Chapter 4. In short, 
you can have any type of object (usually one of Integer, Double, String, or Image) in a 
cell. 

Table Size
The size of the table is also specified by the data source, using the getNumRows() and 
getNumColumns() methods. 

Row and Column Labels
If you want to display row or column labels, their values are provided using the 
getTableRowLabel() and getTableColumnLabel() methods. These methods return the 
same types of objects as getTableDataItem(), but labels are never editable or traversable. 

Data Format Detection
When using the JCInputStream stock data source, LiveTable automatically detects 
whether a data stream is in standard table or CSV format. So by default, 
JCInputStreamDataSource and JCFileDataSource attempt to determine the format of the 



Outliner

Chapter 3 ■ Working with Table Data 63

data source. To remove this automatic detection (and the overhead it creates), set a 
preferred data format type. 

Data Source Listeners
Any time the data inside the data source changes, it should notify all of its listeners. To 
add and remove listeners to and from the data source, use the methods 
addTableDataListener() and removeTableDataListener(). 

3.2.1 Making the Data Source Editable

If you want users to be able to edit the data, you must implement the 
EditableTableDataModel interface. EditableTableDataModel is derived from 
TableDataModel and adds one new method: setTableDataItem(). 

public interface EditableTableDataModel extends TableDataModel {
public boolean setTableDataItem(Object o, int row, int column);
}

When the user edits a cell in the table, the cell editor validates the data (for more 
information about cell editing, see Displaying and Editing Cells, in Chapter 4), and passes 
the new data to the data source using the setTableDataItem() method. If the data source 
does not accept the value of the object (for example, if the value is invalid in some way), it 
will return false to indicate that the edit has been rejected. If the new value is valid, then 
setTableDataItem() will return true and the data source will store the value.

The setEditable() Method
You can use the setEditable() method, which is part of the CellStyleModel 
implementation, to turn editing on and off for specific cells and ranges of cells. 
setEditable() has no effect on labels, as they can never be edited. For 
setEditable(true) to have any effect, the data source must be editable.

3.3   Using Stock Data Sources

While it isn’t hard to create a data source for a table, JClass LiveTable includes several 
stock data sources to save you the work of writing data sources for the most common data 
types. The following data sources are found in the com.klg.jclass.table.data package: 

Data Source Description

JCAppletDataSource Reads in data from the DATA tag of an applet.

JCCachedDataSource Caches previously read data from the data source.

JCEditableCachedDataSource Allows users to edit cell values in tables with the 
above data source.



64 Part I ■ Using JClass LiveTable

Most of the stock data sources extend the JCVectorDataSource class. Please see 
Appendix E, JClass LiveTable Inheritance Hierarchy, for a complete hierarchy diagram 
that outlines the relationship between the stock data source classes.

3.3.1 JCVectorDataSource: the Data Source Workhorse

A JCVectorDataSource simply stores all of its data in memory using vectors. The 
JCVectorDataSource class contains methods that allow you to set individual elements, or 
to set all of the data in the data source from a vector or an array of objects.

Since JCVectorDataSource implements TableDataModel, it can’t be edited by the 
JCTable object. If you want users to be able to edit the cell values through the table, you 
should use JCEditableVectorDataSource. The JCEditableVectorDataSource class is a 
subclass of JCVectorDataSource that implements the EdtitableTableDataModel interface 
model.

3.3.2 Getting Data from an Input Stream
JClass LiveTable provides the JCInputStreamDataSource class to read data in through a 
standard java.io.InputStream, and since it is derived from JCVectorDataSource, it has 
all of the same capabilities as a JCVectorDataSource (see Section 3.4, Setting Stock Data 

JCEditableFileDataSource Allows users to edit cell values in tables with the 
above data source.

JCEditableVectorDataSource Allows users to edit cell values in tables with the 
above data source.

JCFileDataSource Creates an input data stream from a file.

JCInputStreamDataSource Base class for any data source that relies on 
streamed input. This data source type can handle 
comma-separated value (CSV) data files.

JCResultSetDataSource Simple read-only JDBC database source.

JCSpreadLabel Contains convenience methods for creating 
spreadsheet labels.

JCTableModelDataSource Enables users to display and edit Swing TableModel 
data objects in JClass LiveTable. Swing TableModel 
objects are typically used by the Swing JTable 
component.

JCURLDataSource Uses URLs to create a data source object.

JCVectorDataSource General purpose data source: extended by almost all 
stock data sources.

Data Source Description



Outliner

Chapter 3 ■ Working with Table Data 65

Source Properties). JCInputStreamDataSource accepts both CSV and table format data 
files, and items read into the data source are stored as either String or double objects. The 
data format for a simple table would be similar to the following (the # symbol denotes the 
beginning of a comment):

TABLE 2 4 NOLABEL   # 2 rows, 4 columns
1 2 3 4             # row 1
1 2 3 4             # row 2

If you want to include labels, the data format would be:

TABLE 3 4
      'Column 1’ ’Column 2’ ’Column 3’ ’Column 4’
’Row 1’   1          2          3         4
’Row 2’   1          4          9         16
’Row 3’   1          16         81        256

The JCInputStreamDataSource class has the following subclasses that provide convenient 
constructors to create an InputStream from various sources:

■ JCFileDataSource, for reading data from a file.

■ JCURLDataSource, for reading data from a URL.

■ JCAppletDataSource, for reading data from the DATA <PARAM> tag associated with 
the specified applet.

3.3.3 Getting Data from a Database
The JCResultSetDataSource uses a JDBC database connection and an SQL query to 
create a data source. The JCResultSetDataSource is a rudimentary implementation of a 
data-bound data source to demonstrate that JClass LiveTable can be used with database 
applications quite easily.

Note: The JCResultSetDataSource is not a data source that can be edited; that is, it will 
not write to the database.

JClass LiveTable also comes with data-binding Beans that allow you to bind your table to 
any JDBC data source. For information about the data binding Beans, please refer to Data 
Binding with IDEs, in Chapter 9.

3.3.4 Caching Data with JCCachedDataSource
While JCVectorDataSource stores its memory using vectors, the JCCachedDataSource 
class stores its data in a vector of vectors. JCCachedDataSource uses another 
TableDataModel class to contain table cell and label information (“in between” the table 
and the data source). It will reference the cache first to see if the required data exists; if it 
does not, the call passes through to the original TableDataModel class, and the value is 
taken. When this happens, the retrieved value is also stored in JCCachedDataSource’s 
other TableDataModel class.

This method saves time by creating a second instance of previously retrieved data, 
outside of the actual data source. JCCachedDataSource should only be used when the 



66 Part I ■ Using JClass LiveTable

TableDataModel’s getTableItem, getTableRowLabel, and/or getTableColumnLabel are 
calculation–intensive or expensive to retrieve.

Use JCEditableCachedDataSource to bind to an editable data source and be able to edit 
the cell contents.

Note: A non-editable data source bound to JCEditableCachedDataSource will display an 
editor but reject all changes.

3.3.5 Using Swing TableModel Data Objects

The JCTableModelDataSource enables you to use any type of Swing TableModel data 
object in JClass LiveTable. JCTableModelDataSource is an editable data source.

JCTableModelDataSource interprets and reformats the TableModel data to the layout used 
by JClass LiveTable. This makes it easier to replace the Swing JTable component with 
JClass LiveTable because you do not have to reformat your data.

When you create a JCTableModelDataSource, you need to pass the constructor a valid 
Swing TableModel object.

3.4   Setting Stock Data Source Properties

The following properties are set using methods of the JCVectorDataSource class. Since 
the stock data sources are derived from the JCVectorDataSource class, you can set these 
properties from any of the stock data sources (though all of the properties may not be 
applicable to the specific data source).

Note: The JCVectorDataSource class contains properties that are not inherent to the 
TableDataModel interface. If you create your own data source, you will have to produce 
your own methods for such operations as adding and deleting rows and columns.

3.4.1 Working with Rows and Columns

Setting the Number of Rows/Columns
The setNumRows() and setNumColumns() methods specify the number of rows and 
columns in the data source (default is 5 columns and 10 rows). These values do not affect 
the internal CellValues Vector of the data source. The values of the NumRows and 
NumColumns properties are updated by the addRow(), addColumn(), deleteRows(), and 
deleteColumns() methods (see below). 

Specifying Row and Column Labels
You can set row and column labels by calling: 

■ setRowLabel() and setColumnLabel() for individual labels.

■ setRowLabels() and setColumnLabels() for all of the labels. 



Outliner

Chapter 3 ■ Working with Table Data 67

Column and row labels can be set as an array of Strings, or as a vector. Each element of 
the labels’ vector may be an instance of a String, Image, Component, or other object. To 
clear column or row labels, call the method with a null argument.

String clabels[] = { "Name", "Address", "Phone" };
...
JCVectorDataSource vds;
vds.setColumnLabels(clabels);

To retrieve the values, use: 

■ getTableRowLabel() and getTableColumnLabel() for individual labels.

■ getRowLabels() or getColumnLabels() for all of the labels. 

Adding Rows and Columns
You can insert new rows and columns into the data source using the addColumn() and 
addRow() methods. The addColumn() method inserts a new column into the data source, 
shifting any cell values to the right of the insertion. The addRow() method inserts a new 
row into the data source, shifting any cell values down. 

The addColumn() and addRow() methods are identical: 

■ public boolean addRow(int position,
                      Object label,
                      Vector values)

■ public boolean addColumn(int position,
                         Object label,
                         Vector values)

In the previous methods,

■ The position parameter is the initial column (or row) index, and the new columns or 
rows are added prior to this position. If the position is set to JCTableEnum.MAXINT, the 
column or row is added after the final existing column or row. 

■ The label parameter refers to the column or row label. This parameter can have a null 
value.

■ The values parameter refers to the array of objects that comprises the cell values. This 
parameter can have a null value.

■ Both the addColumn() and addRow() methods return false if any of the parameters 
are invalid; if they return false, the row or column will not be added.

When calling addRow() and addColumn(), note the following:

■ If you do not supply values for the new cells within the method, the cells are blank. 
Values for the new row or column labels must be specified separately. 

■ The initial row or column index cannot be greater than the values of NumRows or 
NumColumns.



68 Part I ■ Using JClass LiveTable

Deleting Rows and Columns
Use the deleteRows() and deleteColumns() methods to remove rows and columns from 
the data source. When you delete a column, remaining cell values shift to the left; when 
you delete a row, existing cell values shift up. 

The deleteRows() and deleteColumns() methods are identical:

■ public boolean deleteRows(int position,
                          int num_rows)

■ public boolean deleteColumns(int position,
                             int num_columns)

In the previous methods,

■ The position parameter specifies the first row or column number to delete from the 
data source.

■ The num_rows or num_columns parameter specifies the number of rows or columns to 
be deleted, starting from the row or column specified by position.

When calling deleteRows() and deleteColumns(), note the following:

■ The starting row or column cannot be greater than the NumRows or NumColumns 
properties.

■ Both the deleteRows() and deleteColumns() methods return false if any of the 
parameters are invalid.

Moving Rows and Columns
To move a range of rows or columns in the data source, use the moveRows() and 
moveColumns() methods. The moveRows() and moveColumns() methods take the 
following forms:

■ public boolean moveRows(int source,
                        int num_rows,
                        int destination)

■ public boolean moveColumns(int source,
                           int num_columns,
                           int destination)

In the previous methods, 

■ The source parameter specifies the first row or column to move.

■ The num_rows and num_columns parameters specify the number of rows or columns to 
move.

■ The destination parameter specifies the row number above which, or the column 
number to the left of which, to move the rows or columns. 

When calling moveRows() and moveColumns(), note the following:

■ The starting (source) row or column cannot be greater than the value of the NumRows() 
or NumColumns() properties.



Outliner

Chapter 3 ■ Working with Table Data 69

■ Both the moveRows() and moveColumns() methods return false if any of the 
parameters are invalid.

3.4.2 Working with Other Properties

Setting Cell Values
To set the cell values in the data source, use the setCell() or setCells() methods. The 
setCells() method can be a matrix of Strings or a vector of vectors. To remove all 
values, call clearCells().

Adding and Removing TableDataListeners
The JCVectorDataSource class contains methods for adding and removing listeners to the 
data source: addTableDataListener() and removeTableDataListener(). These methods 
monitor the data source for changes. For more information, see Section 3.7, Dynamically 
Updating Data.

3.5   Loading Data from an XML Source

3.5.1 XML Primer

XML – eXtensible Markup Language – is a scaled-down version of SGML (Standard 
Generalized Markup Language), the standard for creating a document structure. XML 
was designed especially for Web documents, and allows designers to create customized 
tags (“extensible”), thereby enabling a flexible approach to create common information 
formats for sharing both the format and the data on the Internet, intranets, and so on.

XML is similar to HTML in that both contain markup tags to describe the contents of a 
page or file. But HTML describes the content of a Web page (mainly text and graphic 
images) only in terms of how it is to be displayed and interacted with. XML, however, 
describes the content in terms of what data is being described. This means that an XML 
file can be used in various ways. For instance, an XML file can be utilized as a convenient 
way to exchange data across heterogeneous systems. As another example, an XML file 
can be processed (for example, via XSLT [Extensible Stylesheet Language 
Transformations]) in order to be visually displayed to the user by transforming it into 
HTML.

Here are links to more information on XML.

■ http://www.w3.org/XML/ – another W3C site; contains exhaustive information on 
standards. Of particular note are the XML schema 1 (structures) and XML schema 2 
(datatypes) working drafts. They make up an extension that specifies how to constrain 
XML documents to particular schema. This is important if you want to represent 
database data or object-oriented data as XML.

■ http://www.javasoft.com/xml/tutorial_intro.html – Sun’s XML site

http://www.w3.org/XML/
http://www.javasoft.com/xml/tutorial_intro.html


70 Part I ■ Using JClass LiveTable

■ http://www.oasis-open.org/cover/xml.html – thorough list of links to XML papers and 
ongoing work

3.5.2 Using XML in JClass
In order to work with XML in your programs, or even to compile our XML examples, 
you will need to have the JAR files jaxp.jar and crimson.jar1 in your CLASSPATH. These 
files are distributed with JClass LiveTable – you can find them in JCLASS_HOME/lib/.

JClass LiveTable can accept XML data formatted to the specifications outlined in 
com.klg.jclass.util.xml.JCTableXMLParser. This class takes in a stream of data and 
parses it under the assumption that it is in the defined XML format that JClass LiveTable 
uses. It then populates the specified table with the resulting data. 

Examples of XML in JClass
For XML data source examples, see the XMLFileData and XMLTableModelData 
examples in JCLASS_HOME/examples/table/datasource. These both use the colors.xml file in 
JCLASS_HOME/examples/table/datasource/.

You can also specify your own data parsing format. There are now constructors in the 
JCInputStreamDataSource, JCFileDataSource, JCURLDataSource, and 
JCAppletDataSource classes that take an object that implements the 
com.klg.jclass.table.data.JCFileFormatParser interface.

Interpreter
The interpreter, which lets JClass LiveTable interpret the incoming data via the defined 
XML format, must be explicitly set by the user. The interpreter to use for 
JClass LiveTable is com.klg.jclass.table.data.JCXMLFormatParser.

Many constructors in the various data sources in JClass LiveTable take the 
JCFileFormatParser interface that this class (JCXMLFormatParser) implements.

Here are a few code examples that load XML data using this interpreter:

TableDataModel tdm = new JCFileDataSource(fileName, 
new JCXMLFormatParser());

TableDataModel tdm = new JCURLDataSource(codeBase, fileName,
new JCXMLFormatParser());

Note: A user can create a custom data format and create a custom data interpreter by 
implementing JCFileFormatParser.

1. You may substitute for crimson.jar any parser that is compliant with Sun's JAXP 1.1 specification. See Sun's JAXP 
documentation for more information:

http://www.oasis-open.org/cover/xml.html


Outliner

Chapter 3 ■ Working with Table Data 71

3.5.3 Example XML Files for JClass LiveTable

Here is an XML file that contains data formatted to the specifications detailed in 
com.klg.jclass.util.xml.JCTableXMLParser:

<?xml version="1.0"?>
<!DOCTYPE JCTableData SYSTEM "JCTableData.dtd">
<JCTableData>

<Row>
<Cell>1</Cell> <Cell>2</Cell> <Cell>3</Cell> <Cell>4</Cell>

</Row>
<Row>

<Cell>1</Cell> <Cell>2</Cell> <Cell>3</Cell> <Cell>4</Cell>
</Row>

</JCTableData>

Here is another example XML file that contains data formatted to the specifications 
detailed in com.klg.jclass.util.xml.JCTableXMLParser, this one with row and column 
labels:

<?xml version="1.0"?>
<!DOCTYPE JCTableData SYSTEM "JCTableData.dtd">
<JCTableData>

<ColumnLabel>Column 1</ColumnLabel>
<ColumnLabel>Column 2</ColumnLabel>
<ColumnLabel>Column 3</ColumnLabel>
<ColumnLabel>Column 4</ColumnLabel>
<Row>

<RowLabel>Row 1</RowLabel>
<Cell>1</Cell> <Cell>2</Cell> <Cell>3</Cell> <Cell>4</Cell>

</Row>
<Row>

<RowLabel>Row 2</RowLabel>
<Cell>1</Cell> <Cell>4</Cell> <Cell>9</Cell> <Cell>16</Cell>

</Row>
<Row>

<RowLabel>Row 3</RowLabel>
<Cell>1</Cell> <Cell>16</Cell> <Cell>81</Cell> <Cell>256</Cell>

</Row>
</JCTableData>

3.5.4 Tags

<ColumnLabel> and <RowLabel> tags are optional. Every <Row> tag can contain any 
number of <Cell> tags. These <Cell> tags define the value of one cell within the row.

3.5.5 Creating a Swing TableModel class 

For details on how to use the above XML format to create a Swing TableModel class 
instead of a standard JClass LiveTable data source, please look at the 
com.klg.jclass.util.xml.JCXMLTableModel class. The user can pass an XML input 
stream to this object and use the resulting table model to populate a JClass LiveTable, a 
Swing JTable, a JClass Chart, or any other object that takes a Swing TableModel class.



72 Part I ■ Using JClass LiveTable

Also, the XMLTableModelData example in JCLASS_HOME/examples/table/datasource 
shows this.

3.6   Creating your own Data Sources
If the stock data sources provided with JClass LiveTable do not meet your needs, you can 
easily create your own data source objects by implementing the TableDataModel 
interface, as in the following example from examples/table/datasource/StaticDataSource.java:

import com.klg.jclass.table.TableDataModel;
import com.klg.jclass.table.JCTableDataListener;

public class StaticDataSource implements TableDataModel {

protected String data[];

public StaticDataSource(String strings[]) {
if(strings == null) 

data = new String[0];
else

data = strings;
}

public Object getTableDataItem(int row, int column) {
if(column == 0)

return data[row];
else

return null;
}

public int getNumRows() {
return data.length;

}

public int getNumColumns() {
return 1;

}

public Object getTableRowLabel(int row) {
return Integer.toString(row);

}

public Object getTableColumnLabel(int column) {
return "Some Data";

}

public void addTableDataListener(JCTableDataListener l) {
}

public void removeTableDataListener(JCTableDataListener l) {
}
}



Outliner

Chapter 3 ■ Working with Table Data 73

The StaticDataSource class takes a one-dimensional array of Strings and turns it into a 
read-only data source. The constructors take the array of Strings; the 
getTableDataItem() method supplies the data as it is needed. Note that the 
addTableDataListener() and removeTableDataListener() methods have been left 
empty because this data source is not going to be changing dynamically, and thus does 
not need to keep track of its listeners. You can attach this data source to a table quite 
easily. To see a demonstration of this, run the StaticTest.java file, found in the 
examples/table/datasource directory. 

To make the items in the table editable, you must implement the 
EditableTableDataModel interface, as in 
examples/table/datasource/StaticEditableDataSource.java: 

import com.klg.jclass.table.EditableTableDataModel;
import com.klg.jclass.table.JCTableDataListener;

public class StaticEditableDataSource implements EditableTableDataModel {

protected String data[];

public StaticEditableDataSource(String strings[]) {
if(strings == null) 

data = new String[0];
else

data = strings;
}

public Object getTableDataItem(int row, int column) {
if(column == 0)

return data[row];
else

return null;
}

public boolean setTableDataItem(Object o, int row, int column) {
if(column == 0) {

if (o instanceof String)
data[row] = (String)o;

else
data[row] = o.toString();

}

return true;
}

public int getNumRows() {
return data.length;

}

public int getNumColumns() {
return 1;

}

public Object getTableRowLabel(int row) {



74 Part I ■ Using JClass LiveTable

return Integer.toString(row);
}

public Object getTableColumnLabel(int column) {
return "Some Data";

}

public void addTableDataListener(JCTableDataListener l) {
}

public void removeTableDataListener(JCTableDataListener l) {
}
}

The StaticEditableDataSource class could have been a subclass of StaticDataSource, 
adding only the setTableDataItem() method, but in this example it was shown as a 
standalone class to make sure everything is as clear as possible. Note that the object that is 
passed back to the data source in setTableDataItem() is not a String.

To see a demonstration of the StaticEditableDataSource class, run the 
StaticEditableTest.java file, found in the examples/table/datasource directory.

3.7   Dynamically Updating Data

Sometimes the data in the data source changes all by itself — for example, you may have a 
table displaying stock prices with data arriving in real–time over a network socket. As 
new prices arrive, your users would like the table to update the values of the appropriate 
cells. 

To notify the table that the data has changed, send a JCTableDataEvent to all of the 
JCTableDataListener objects that have registered themselves with the data source. 

The following is a simple example that creates a background thread that automatically 
updates cell values. It can be found in the file 
examples/table/datasource/DynamicDataSource.java: 

import java.util.Enumeration;
import java.util.Random;
import com.klg.jclass.table.TableDataModel;
import com.klg.jclass.table.JCTableDataEvent;
import com.klg.jclass.table.JCTableDataListener;
import com.klg.jclass.util.JCListenerList;

public class DynamicDataSource implements TableDataModel, Runnable {

protected int data[] = {
1, 2, 3, 4, 5, 6, 7, 8, 9,

};

protected JCListenerList listeners;
protected Thread kicker;



Outliner

Chapter 3 ■ Working with Table Data 75

public DynamicDataSource() {
kicker = new Thread(this);
kicker.start();

}

public Object getTableDataItem(int row, int column) {
if (column == 0) {

return new Integer(data[row]);
}
return null;

}

public int getNumRows() {
return data.length;

}

public int getNumColumns() {
return 1;

}

public Object getTableRowLabel(int row) {
return Integer.toString(row);

}

public Object getTableColumnLabel(int column) {
return "Some Data";

}

public void addTableDataListener(JCTableDataListener l) {
listeners = JCListenerList.add(listeners,l);

}

public void removeTableDataListener(JCTableDataListener l) {
listeners = JCListenerList.remove(listeners,l);

}

public void run() {
Random random = new Random();
Enumeration e;
JCTableDataListener l;
JCTableDataEvent event;
int i;

for(;;) {
i = random.nextInt() % data.length;
if (i < 0) {

i = -i;
}
data[i] += (int)(random.nextGaussian()*10);
event = new JCTableDataEvent(this,i,0,0,0,

JCTableDataEvent.CHANGE_VALUE);

for(e = JCListenerList.elements(listeners); e.hasMoreElements(); ) {
l = (JCTableDataListener)e.nextElement();
l.dataChanged(event);

}



76 Part I ■ Using JClass LiveTable

try {
Thread.sleep(100);

}
catch(Exception ex) {
}

}
}
}

The DynamicDataSource class sends CHANGE_VALUE messages to all of its listeners 
whenever a value changes. When the JCTable object receives this message it retrieves the 
new value from the data source and repaints the appropriate cell. There are several other 
update commands available on the JCTableDataEvent class: 

All of the CHANGE_ messages cause the Table to reload the specified data and repaint the 
intersection of the data that has been changed and the data that is being shown on screen. 

The file examples/table/datasource/DynamicTest.java demonstrates the simple technique used 
in DynamicDataSource.java.

Easy Listener Management
If you do not want to have to manage the listeners, JClass LiveTable includes a class 
called AbstractDataSource. AbstractDataSource is an object provided by JCTable that 
implements TableDataModel, and has methods for adding and removing 
JCTableDataListeners. In addition, it contains several convenience methods for firing 
events, such as fireValueChanged() and fireRowLabelChanged() method. 

As an example, the DynamicDataSource.java program could be implemented again to use 
the AbstractDataSource as follows: 

import java.util.Enumeration;
import java.util.Random;
import com.klg.jclass.table.data.AbstractDataSource;
import com.klg.jclass.table.JCTableDataEvent;
import com.klg.jclass.table.JCTableDataListener;
import com.klg.jclass.util.JCListenerList;

■ CHANGE_VALUE ■ NUM_ROWS

■ CHANGE_ROW ■ NUM_COLUMNS

■ CHANGE_COLUMN ■ ADD_COLUMN 

■ CHANGE_ROW_LABEL ■ REMOVE_COLUMN

■ CHANGE_COLUMN_LABEL ■ MOVE_ROW

■ ADD_ROW ■ MOVE_COLUMN

■ REMOVE_ROW ■ RESET



Outliner

Chapter 3 ■ Working with Table Data 77

public class DynamicDataSource2 extends AbstractDataSource 
implements Runnable {

protected int data[] = {
1, 2, 3, 4, 5, 6, 7, 8, 9,

};

protected Thread kicker;

public DynamicDataSource2() {
kicker = new Thread(this);
kicker.start();

}
public Object getTableDataItem(int row, int column) {

if(column == 0)
return new Integer(data[row]);

else
return null;

}

public int getNumRows() {
return data.length;

}

public int getNumColumns() {
return 1;

}

public Object getTableRowLabel(int row) {
return Integer.toString(row);

}

public Object getTableColumnLabel(int column) {
return "Some Data";

}

public void run() {
Random random = new Random();
Enumeration e;
JCTableDataListener l;
JCTableDataEvent event;
int i;

for(;;) {
i = random.nextInt() % data.length;
if (i < 0) {

i = -i;
}

data[i] += (int)(random.nextGaussian()*10);

event = new JCTableDataEvent(this,i,0,0,0,
JCTableDataEvent.CHANGE_VALUE);

fireTableDataEvent(event);



78 Part I ■ Using JClass LiveTable

try {
Thread.sleep(100);

}
catch(Exception ex) {
}

}
}
}

Running examples/table/datasource/DynamicTest2.java demonstrates that the same results can 
be achieved more easily by using a subclass of AbstractDataSource. 

3.7.1 Adding and Removing Columns and Rows

ADD_ROW, REMOVE_ROW, ADD_COLUMN, and REMOVE_COLUMN notify the table that a row or 
column has been added or removed so that the table can update its internal list of cell 
attributes. For example, if all your rows are different colors, and you delete a row, the 
remaining rows will still have the correct colors if you send a REMOVE_ROW message to the 
JCTable. Some of the event parameters may be ignored for row or column operations. 
For example, when you do an operation on an entire row or column, if you create an 
ADD_ROW event, the column parameter is ignored by the table. With the exception of the 
MOVE_ events, all of the events ignore the num_affected and destination parameters of the 
JCTableDataEvent. 

The MOVE_ROW and MOVE_COLUMN commands are the only commands that make use of the 
num_affected and destination parameters in the JCTableDataEvent. When you have a MOVE_ 
event, you can move multiple rows/columns (the num_affected parameter) and you must 
specify to which row/column you are moving (destination). 

The RESET message causes the JCTable object to re-initialize itself by re-reading the 
number of rows, number of columns and all the data from the data source. The table’s 
visual attributes, such as fonts and colors, are not affected. 

Note: When a user edits a cell in the table and the value is put back into the data source 
via setTableDataItem(), the table will automatically repaint the cell with a new value. 



79

4
Displaying and Editing Cells

Overview ■ Default Cell Rendering and Editing

Rendering Cells ■ Editing Cells ■ The JCCellInfo Interface

4.1   Overview

JClass LiveTable offers a flexible way to display and edit any type of data contained in a 
table’s cells. The following sections explain the techniques for displaying and editing cells 
in your programs.

In order to display a cell, JClass LiveTable has to know what type of data renderer is 
associated with the cell so it knows how to paint that data into the cell area. Similarly, in 
order for users to edit the cell values, LiveTable has to know what editor to return for that 
data type.

These operations are performed using the classes in the JClass cell package, which is 
structured as follows: 

JClass Cell Package Contents

com.klg.jclass.cell Contains editor/renderer interfaces and support 
classes, including these interfaces: 

JCCellEditor: used to define an editor
JCCellRenderer: the common and basic 
interface for renderers
JCComponentCellRenderer: allows the creation 
of renderers that are based on JComponent
JCLightCellRenderer: allows the creation of 
renderers based on direct drawing 

com.klg.jclass.cell.editors Contains editors for common data types. 

Please see Section 4.4.1, Default Cell Editors, for 
details. 



80 Part I ■ Using JClass LiveTable

This JClass cell package is generic; renderers and editors written for JClass LiveTable will 
work with other JClass products. In addition, JClass Field components can work as 
renderers and editors within JClass LiveTable, allowing very lightweight operation.

Note: For the JClass Field component to work as a renderer, you need to use a particular 
instance from the com.klg.jclass.field.cell package.

JClass LiveTable has been designed to identify the type of data being retrieved from the 
data source and to provide the appropriate cell renderer and cell editor for that data type. 
For example, if JClass LiveTable encounters an expression in a cell (for example, any 
formula from com.klg.jclass.util.formulae), the default JCExpressionCellRenderer will be 
used.

Often, however, you will want to control the way data in a particular area of the table is 
rendered, or assign a specific type of editor for that data. An example of this is rendering 
String data in multiple lines and using javax.swing.JTextArea as the editor, rather than 
rendering and editing single line Strings. 

The following sections describe the techniques for rendering and editing cells by 
beginning with the easiest default methods, followed by detailed explanations for setting 
specific renderers and editors, mapping renderers and editors to a particular data type, 
and creating your own renderers and editors. 

4.2   Default Cell Rendering and Editing

Basic Editors and Renderers
When the table draws itself, it accesses the data source and attempts to paint the contents 
of each cell. In doing so, it works through a two-stage process: 

1. The table checks to see if a renderer has been assigned to the cell or a series of cells 
by the CellRenderer property in the cell’s style. 

2. If the table can’t find a specific CellRenderer for the data, it uses the default mapping 
for that data type.

com.klg.jclass.cell.renderers Contains renderers for common data types, 
including expressions.

Please see Section 4.3.1, JClass Cell Renderers, 
for details. 

com.klg.jclass.cell.validate Contains data validation interfaces and support 
classes. 

JClass Cell Package Contents



Outliner

Chapter 4 ■ Displaying and Editing Cells 81

The following table lists the cell renderers and editors for common data types included 
with JClass LiveTable, which are found in the com.klg.jclass.cell.renderers and 
com.klg.jclass.cell.editors packages, respectively. When going through the above 
steps, JClass LiveTable uses these default mappings. 

Although these editors and renderers are included with JClass LiveTable, you might find 
that you need more control over the way data is displayed and edited than simply relying 
on these defaults. The following sections explain cell rendering and cell editing in detail.

4.3   Rendering Cells

Cell rendering is simply the way in which data is drawn into a cell. JClass LiveTable 
includes renderers that you can use in your table. Additionally, two rendering models, 
JCLightCellRenderer and JCComponentCellRenderer, are provided if you want to create 
your own renderer. Each model caters to different rendering needs. 

More information about included renderers is found in the next section, and information 
about the two rendering models on which you can base customized renderers is found in 
Section 4.3.4, Creating your own Cell Renderers. 

4.3.1 JClass Cell Renderers

As shown in the table above, JClass LiveTable maps standard data types to specific 
renderers when the program does not specify a renderer for that data type (either by 
setting for a series or mapping). This means that most tables are easily rendered without 
any special coding. The renderers are internally assigned. JClass LiveTable also contains 
several cell renderers for specific data types that you can set for a series (see Section 4.3.2, 
Setting a Cell Renderer for a Series) or as a mapping (see Section 4.3.3, Mapping a Data 

Data Type Renderer Editor

Boolean JCStringCellRenderer JCBooleanCellEditor

Date JCStringCellRenderer JCDateCellEditor

Double JCStringCellRenderer JCDoubleCellEditor

Expression JCExpressionCellRenderer none

Float JCStringCellRenderer JCFloatCellEditor

Image JCImageCellRenderer none

Integer JCStringCellRenderer JCIntegerCellEditor

Object JCStringCellRenderer none

String JCStringCellRenderer JCStringCellEditor



82 Part I ■ Using JClass LiveTable

Type to a Cell Renderer). These cell renderers are described in the following table and all 
of them are in com.klg.jclass.cell.renderers package.

The default mappings and these special renderer classes should provide rendering for 
most data types. Few programmers work under ideal conditions, however, and you may 
need to extend the capability of these renderers. JClass LiveTable includes ways for you 
to customize cell rendering as described in Section 4.3.4, Creating your own Cell 
Renderers.

4.3.2 Setting a Cell Renderer for a Series 

Often, the rows and columns that comprise a table are grouped by the type of data they 
contain. You may be creating an order form that has a product name (a String) in one 

Name Data Type Description

JCCheckBoxCellRenderer boolean Defines a JCComponentCellRenderer 
object that paints boolean objects in a 
table cell using Swing’s JCheckBox.

JCComboBoxCellRenderer integer Defines a JCComponentCellRenderer 
that paints integer objects in a table using 
Swing’s JComboBox.

JCImageCellRenderer image Defines a JCLightCellRenderer object 
that paints Image objects in a table cell.

JCExpressionCellRenderer expression Defines the result of a formula 
(com.klg.jclass.util.formulae.Expression).

JCLabelCellRenderer String and/or 
image

Defines a JCLabelCellRenderer object 
that uses Swing’s JLabel to render cell 
contents.

JCRawImageCellRenderer image Defines a JCLightCellRenderer object 
that paints unconverted Image objects in 
a table cell (extends 
JCScaledImageCellRenderer).

JCScaledImageCellRenderer image Defines a JCLightCellRenderer object 
that paints scaled Image objects in a table 
cell.

JCStringCellRenderer String, boolean, 
double, float, 
integer, object

Defines a JCLightCellRenderer object 
that can draw Strings.

JCWordWrapCellRenderer String Defines word-wrapping logic for 
multiline display of Strings in cells.



Outliner

Chapter 4 ■ Displaying and Editing Cells 83

column, a part number (an Integer) in another, and a check box (a special type of object) 
in the final column to indicate that you want that product. For example:

All of these columns take a different data type, so their data is all rendered differently. 
LiveTable will automatically detect the type of data found, and use one of the default 
renderers for that column (please see Section 4.2, Default Cell Rendering and Editing, for 
a list of default renderers). However, you can use your own renderer if the default does 
not suit your needs.

In the case of the Order check box, the default renderer for its Boolean data type will be 
the JCStringCellRenderer. With this default renderer, since the data type is boolean, 
instead of having a check (or no check) painted onto the cell, “true” or “false” will appear. 
This is not desirable, so you need to deviate from JClass LiveTable’s default renderer. 

To set a new cell renderer for a range of cells, use a cell style, which has its own cell 
renderer property (for more information, please refer to Cell Styles, in Chapter 2). 
Inserting these lines of code into your program will do this:

CellStyleModel style = table.getUniqueCellStyle(0,3);
style.setCellRenderer(new JCCheckBoxCellRenderer());
table.setCellStyle(JCTableEnum.ALL, 3, style);

The JCCheckBoxCellRenderer class defines an object that paints boolean objects in a 
table cell as checks. This way, the first two columns render automatically with the 
defaults, and the third column will use your defined renderer.

4.3.3 Mapping a Data Type to a Cell Renderer

Even though you can set the renderer series, your table may be designed in such a way 
that the data types within a row or column are not consistent, or will change depending 
on the data source. In this case you could decide not to set the renderer series at all, and 
allow the container to evaluate the data type and provide the appropriate renderer. 
Unfortunately, this means you have to use the default renderers for a given data type.

To use your own renderers without sacrificing flexibility, you can create a mapping. The 
mapping takes a data type and associates it with a JCCellRenderer object; whenever the 
container encounters that type of data, it uses the mapped JCCellRenderer object to 
render the data object in the cell.

Mapping a JCCellRenderer object to a data type takes the following construction:

table.setCellRenderer(Class cellType, Class renderer);

Contents Product Name Part Number Order Checkbox

Data Type String Integer Boolean



84 Part I ■ Using JClass LiveTable

For example, in the following code fragment (from TriangleTable.java in the 
examples/table/cell directory of the JClass distribution), the cell renderer is set for a 
particular data type, defined by java.awt.Polygon.

try {
table.setCellRenderer(Class.forName("java.awt.Polygon"),
Class.forName   
("examples.table.cell.TriangleCellRenderer"));

....

}
catch (ClassNotFoundException e) {

e.printStackTrace(System.out);
}

}

The table.setCellRenderer() method takes a class to define the data type and a class to 
define the renderer. In the case below, we have created a class called 
TriangleCellRenderer, which is identified using the Class.forName() method imported 
from java.lang.Class. (Creating your own cell renderers is explained in the next 
section.)

Normally, you would use these mappings in a construction that would test for the 
presence of the renderer you specify, and throw an exception if the renderer class was not 
found, as is the case in the above sample.

To “unmap” a renderer, set the renderer class parameter to null.

Alternatively, you can map a particular cell renderer instance to a data type using: 

table.setCellRenderer(Class cellType, JCCellRenderer renderer);

This method is useful if you want to reuse the same renderer instance, or if your renderer 
does not have a default construction. 

4.3.4 Creating your own Cell Renderers

Naturally, the renderer classes provided with JClass LiveTable will not meet every 
programmer’s specific needs. However, they can be convenient as bases for creating your 
own renderer objects by subclassing the original classes. If you want to create your own 
renderer classes, you can build your own renderer from scratch. Both techniques are 
discussed below. 

The examples/table/cell directory and the demos/table directories of your JClass LiveTable 
distribution contain a wide array of sample programs that use different approaches to cell 
rendering. You can use these examples and demos to help you refine your own renderers 
for whatever purpose you require.



Outliner

Chapter 4 ■ Displaying and Editing Cells 85

Subclassing the Default Renderers
A simple way to create your own renderer objects is to subclass one of the renderers 
provided with JClass LiveTable. For example, CurrencyRenderer.java, found in the 
examples/table/cell directory, is an example of subclassing from the JCStringCellRenderer 
in the com.klg.jclass.cell.renderers package: 

import com.klg.jclass.cell.renderers.JCStringCellRenderer;
import com.klg.jclass.cell.JCCellInfo;

import java.awt.Graphics;

public class CurrencyRenderer extends JCStringCellRenderer {

public void draw(Graphics gc, JCCellInfo cellInfo, 
 Object o, boolean selected) {

if (o instanceof Double) {
double d = ((Double)o).doubleValue();
o = formatLabel(d, 2);

}
super.draw(gc, cellInfo, o, selected);

}

Creating a Drawing-based Cell Renderer with JCLightCellRenderer
One way JClass LiveTable lets you write your own cell renderer is with 
JCLightCellRenderer. This model is used for drawing directly into a cell, which is ideal 
for custom painting and rendering text. 

To create a drawing-based renderer object of your own, you must implement 
com.klg.jclass.cell.JCLightCellRenderer: 

public interface JCLightCellRenderer {
public void draw(Graphics gc, JCCellInfo cellInfo, Object o, 

boolean selected);
public Dimension getPreferredSize(Graphics gc, JCCellInfo cellInfo,

Object o);
}

The JCLightCellRenderer interface requires that you create two methods: 

1. A draw() method, which is passed a JCCellInfo object (see Section 4.5, The JCCel-
lInfo Interface, for more details) containing information from the container about the 
cell, a java.awt.Graphics object, and the object to be rendered. The Graphics object 
is positioned at the origin of the cell (0,0), but is not clipped.

2. A getPreferredSize() method, which is used to allow the renderer to influence the 
container’s layout. The container may not honor the renderer’s request, depending 
on a number of factors.



86 Part I ■ Using JClass LiveTable

The following code, TriangleCellRenderer.java, draws a triangle into the cell area:

import java.awt.Polygon;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Rectangle;
import com.klg.jclass.cell.JCCellInfo;
import com.klg.jclass.cell.JCLightCellRenderer;

public class TriangleCellRenderer implements JCLightCellRenderer {

public void draw(Graphics gc, JCCellInfo cellInfo, 
Object o, boolean selected) {

Polygon p = makePolygon(o);
gc.setColor(selected ? cellInfo.getSelectedForeground()

:cellInfo.getForeground());
gc.fillPolygon(p);

}

public Dimension getPreferredSize(Graphics gc, JCCellInfo cellInfo, 
Object o) {

// Make a polygon from the object
Polygon p = makePolygon(o);
// Return no size if no polygon was created
if (p == null) {

return new Dimension(0,0);
}
// Bounds of the polygon determine size
Rectangle r = p.getBoundingBox();
return new Dimension(r.x+r.width,r.y+r.height);

}

private Polygon makePolygon(Object o) {
if (o == null) return null;
if (o instanceof Number) {

return makePolygon(((Number)o).intValue());
}
else if (o instanceof Polygon) {

return (Polygon)o;
}
return null;

}
public Polygon makePolygon(int s) {

Polygon p = new Polygon();
p.addPoint(0,0);
p.addPoint(0,s);
p.addPoint(s,0);
return p;

}
}

The above program creates a triangle renderer object that can handle both Integer and 
Polygon objects.



Outliner

Chapter 4 ■ Displaying and Editing Cells 87

As required by JCCellRenderer, the program contains a draw() method in the lines:

public void draw(Graphics gc, JCCellInfocellInfo, 
Object o boolean selected) {

Polygon p = makePolygon(o);
gc.getColor(selected ? cellInfo.getSelectedForeground():

cellInfo.getForeground());
gc.fillPolygon(p);
}

The draw() method renders the object o by making it into a polygon and drawing the 
polygon using the gc provided. Table, as the container, automatically translates and clips 
the gc, draws in the background of the cell, and sets the foreground color.

The parameter cellInfo can be used to retrieve other cell property information through 
the JCCellInfo interface (see Section 4.5, The JCCellInfo Interface).

The second required method, getPreferredSize(), is provided in the lines:

public Dimension getPreferredSize(Grahpics gc, JCCellInfo cellInfo, 
Object o) {

Polygon p = makePolygon(o);
if (p == null) {

return new Dimension(0,0);
}
Rectangle r = p.getBoundingBox();
return new Dimension(r.x+r.width,r.y+r.height);
}

Here, the object is used to create a polygon (using a local method called makePolygon()). 
If it doesn’t create a polygon from the object, the object is deemed to have no size (0,0) 
and will not be displayed by the renderer. If a polygon was created from the object, the 
polygon’s bounds determine the size of the rectangle in the drawing area of the cell. The 
size returned is only a suggestion; control of the cell size can be overridden by the Table 
container.

Creating a Component-based Cell Renderer with JCComponentCellRenderer
While JCLightCellRenderer is useful for drawing directly into cells (that is, text 
rendering and custom cell painting), it is a cumbersome model to use if you want to draw 
a component as part of an editor/renderer pair. For example, if you wanted to use a drop-
down list in a table cell, creating a renderer based on JCLightCellRenderer forces you to 
write the code that draws the arrow button. Obviously, it is more desirable to use the 
actual code for the component – this is exactly for what JCComponentCellRenderer is best 
suited.

Component-based cell renderers use an existing lightweight component for rendering the 
contents of a cell. As such, the JCComponentCellRenderer interface can be used to create 
a component-based cell renderer:

public interface JCComponentCellRenderer extends JCCellRenderer {
public Component getRendererComponent(JCCellInfo cellInfo, Object o,

boolean selected);
}



88 Part I ■ Using JClass LiveTable

The getRendererComponent() method returns the component that is to be used to render 
the cell. It is the responsibility of the implementor to use the information provided by 
getRendererComponent() to set up the component for rendering: 

■ cellInfo contains information from the container about the cell (see Section 4.5, The 
JCCellInfo Interface, for more details).

■ o is the object to be rendered.

■ selected is a boolean indicating whether the cell is selected. Many implementors use 
this information to modify the component appearance.

As an example, consider JCLabelCellRenderer.java from com.klg.jclass.cell.renderers, 
which uses a Swing JLabel for rendering String data. 

import com.klg.jclass.cell.JCComponentCellRenderer;
import com.klg.jclass.cell.JCCellInfo;
import javax.swing.JLabel;
import java.awt.Component;

public class JCLabelCellRenderer extends JLabel
implements JCComponentCellRenderer {

public JCLabelCellRenderer() {
super();

}

public Component getRendererComponent(JCCellInfo cellInfo, Object o,
boolean selected) {

if (o != null) {
if (o instanceof String) {

setText((String)o);
}
else {

setText(o.toString());
}

}
else {

setText("");
}
setFont(cellInfo.getFont());
setBackground(selected ? cellInfo.getSelectedBackground() :

cellInfo.getBackground());
setForeground(selected ? cellInfo.getSelectedForeground() :

cellInfo.getForeground());
setHorizontalAlignment(cellInfo.getHorizontalAlignment());
setVerticalAlignment(cellInfo.getVerticalAlignment());
return this;
}
}

In this example, note that JCLabelCellRenderer extends JLabel, which makes it easier 
for the renderer to control the label’s appearance.



Outliner

Chapter 4 ■ Displaying and Editing Cells 89

In getRendererComponent(), the object o is converted to a String and used to set the Text 
property of the label. Then, the font, foreground color, and background color are 
extracted from the cellInfo. Finally, the JLabel instance is passed back to the container.

JCComponentCellRenderer is a very powerful rendering model. While it is not as flexible 
as JCLightCellRenderer, it allows the reuse of code by using a lightweight component as 
a rubber stamp for painting in a cell. Any existing lightweight container can be used to 
render data inside of a cell — even other JClass components.

4.4   Editing Cells

While rendering cells is fairly straightforward, handling interactive cell editing is 
considerably more complex. Cell editing involves coordinating the user-interactions that 
begin and end the edit with cell data validation and connections to the data source. In 
JClass, cell editing is handled using the JCCellEditor interface. 

A typical cell edit works through the following process:

■ The container listens for events that come from the editor by implementing 
JCCellEditorListener.

■ When a user initiates a cell edit with either a mouse click or a key press, the container 
calls JCCellEditor.initialize() and passes a JCCellInfo object with information 
about the cell, and the object (data) that will be edited.

■ The JCCellEditor displays the data and changes it according to user input. 

■ If the user traverses out of the cell, then the container calls the stopCellEditing() 
method, which asks the JCCellEditor to validate the edit. If the edit is not valid — 
that is, stopCellEditing() returns false – the container then retrieves the original 
cell value from the data source. If the edit is valid, then the container calls 
getCellEditorValue() on the editor to retrieve the new value of the cell and send it 
to the data source.

■ If the user types a key that the editor interprets as “done” (for example, Enter), the 
editor will inform the table that the edit is complete by sending an editingStopped 
event to the table. Typical editors will validate the user’s changes before sending the 
event. 

■ If the user types a key that the editor interprets as “cancel” (for example, Esc), the 
editor will instruct the table to cancel the edit by sending an editingCanceled event. 

Because cell editing has been designed to be flexible, you can have as little or as much 
control over the editing process as you want. The following sections explain cell editing in 
further detail.



90 Part I ■ Using JClass LiveTable

4.4.1 Default Cell Editors

Cell editors are typically Swing components with extended functionality provided by the 
com.klg.jclass.table.cell.JCCellEditor interface. Although every data object is 
guaranteed to have a cell renderer, not every object is guaranteed to have an editor. 
Unless an object has an editor, the cell is not editable, regardless of whether the 
table.setEditable() method has a true value for that cell. Most of the standard data 
types have default editors which are internally associated with that data type. If the 
program does not specify an editor for a series or map a data type to an editor, the Table 
uses the default. The following editors are provided in the 
com.klg.jclass.cell.editors package:

Editor Description

BaseCellEditor Provides a base editing component for other editors.

JCBigDecimalCellEditor An editor using a simple text field for BigDecimal 
objects.

JCBooleanCellEditor Provides a simple text editing component that allows 
the user to set the boolean value as true, false, t, or f. 

JCByteCellEditor An editor using a simple text field for Byte objects.

JCCheckBoxCellEditor An editor for boolean data that automatically changes 
the checked state.

JCComboBoxEditor An editor using a simple Swing JComboBox for editing an 
enum.

JCDateCellEditor An editor using a simple text field for Date objects

JCDoubleCellEditor An editor using a simple text field for Double objects. 

JCFloatCellEditor An editor using a simple text field for Float objects. 

JCImageCellEditor An editor using a simple text field for Image objects.

JCIntegerCellEditor An editor using a simple text field for Integer objects. 

JCLongCellEditor An editor using a simple text field for Long objects.

JCMultilineCellEditor A simple text editing component for multiline data.

JCShortCellEditor An editor using a simple text field for Short objects.

JCSqlDateCellEditor An editor using a simple text field for SQL Date 
objects.

JCSqlTimeCellEditor An editor using a simple text field for SQL Time 
objects.



Outliner

Chapter 4 ■ Displaying and Editing Cells 91

While these classes provide editing capability for most data types, many real-world 
situations require greater control over cell editing, editing components, and their 
relationships to specific data types. The following sections explore how you can more 
minutely control the cell editing mechanism in your programs.

4.4.2 Setting a Cell Editor for a Series

As mentioned above, JClass LiveTable contains logic that will map data types to their 
default editors. If you want to override these defaults, you can set a specific editor for a 
series of cells in your table by setting the CellEditor property on a cell style, for a range 
of cells: 

CellStyleModel style = table.getUniqueCellStyle(0,3); 
style.setCellEditor(new JCStringCellEditor()); 
table.setCellStyle(JCTableEnum.ALL, 3, style); 

This code uses the same CellEditor (the default String editor in the 
com.klg.jclass.cell.editors package) for all of the cells in the fourth column in the 
table.

4.4.3 Mapping a Data Type to a Cell Editor

Even though you can set the editor series, your table may be designed in such a way that 
the data types within a row or column are not consistent, or will change depending on the 
data source. In this case you can create a mapping. The mapping takes a data type and 
associates it with a cell editor; whenever the container encounters that type of data, it uses 
the mapped JCCellEditor.

Mapping a CellEditor object to a data type takes the following construction:

table.setCellEditor(Class cellType, Class Editor);

JCSqlTimestampCellEditor An editor using a simple text field for SQL Timestamp 
objects.

JCStringCellEdtitor Provides a simple text editing component. 

JCWordWrapCellEditor Provides a simple text editing component that wraps 
text. 

Editor Description



92 Part I ■ Using JClass LiveTable

Consider the following sample from TriangleTable.java in the examples/table/cell directory of 
the JClass LiveTable distribution:

try {
  table.setCellEditor(Class.forName("java.awt.Polygon"),
  Class.forName   
   ("examples.table.cell.TriangleCellEditor"));
}
catch (ClassNotFoundException e) {
  e.printStackTrace(System.out);
}

The table.setCellEditor() method takes a class to define the data type and a class to 
define the editor. In the case above, we have created a class called TriangleCellEditor, 
which is identified using the Class.forName() method imported from java.lang.Class. 
(Creating your own cell editors is explained in the next section).

To “unmap” an editor, set the editor class parameter to null.

Alternatively, you can map a cell editor to a data type using:

table.setCellEditor(Class cellType, JCCellEditor editor);

This method is useful if you want to reuse the same editor instance, or if your editor does 
not have a default constructor. 

Note: If the value for a particular cell is null, JClass LiveTable has no way of determining 
its type. This can cause problems if mapping a null value to an editor. To work around 
this, use the DataType property that is used with cell styles. LiveTable refers to DataType 
when it encounters a null in the data source.

4.4.4 Creating Your Own Cell Editors

To create a cell editor object, you must implement the com.klg.cell.JCCellEditor 
interface. The following code comprises the JCCellEditor interface:

public interface CellEditor extends JCCellEditorEventSource,
serializable{

public void initialize(AWTEvent ev, JCCellInfo info, Object o);
public Component getComponent();
public Object getCellEditorValue();
public boolean stopCellEditing();
public boolean isModified();
public void cancelCellEditing();
public JCKeyModifier[] getReservedKeys();
}



Outliner

Chapter 4 ■ Displaying and Editing Cells 93

This chart describes each of the methods in JCCellEditor: 

Method and Description

public void initialize(AWTEvent ev, JCCellInfo info, Object o); 

The table calls initialize() before the edit starts to let the editor know what kind of 
event started the edit, using java.awt.AWTEventObject. The size of the cell comes from 
the JCCellInfo interface (detailed below). The initialize() method also provides the 
data object (Object o).

public Component getComponent(); 

Returns the AWT component that does the editing. The component should be 
lightweight.

public Object getCellEditorValue(); 

Returns the value contained in the editor. This method is called by the table when the edit 
is complete. The value will be sent to the data source.

public boolean stopCellEditing(); 

When this method is called by the table, the editor can refuse to commit invalid values by 
returning false. This tells the container that the edit is not valid.

public boolean isModified(); 

The container uses this method to check whether the data has changed. This can save 
unnecessary access to the data source when the data has not actually changed.

public void cancelCellEditing();

Called by the table to stop editing and restore the cell’s original contents.

public JCKeyModifier[] getReservedKeys();

Retrieves the keys the editor would like to reserve for itself. In order to avoid the 
container overriding key processing in the editor, the editor can pass back a list of keys it 
wishes to reserve. The container can refuse the editor’s request to reserve keys. Most 
editors can simply return null for this method.



94 Part I ■ Using JClass LiveTable

Because the JCCellEditor interface extends JCCellEditorEventSource, the following 
two methods are required to manage JCCellEditor event listeners:

In addition to implementing the methods of JCCellEditor, an editor is responsible for 
monitoring events and sending editingStopped and editingCanceled events to the 
table. This functionality is further explained in Creating Your Own Cell Editors.

Subclassing the Default Editors
One easy way to create your own editor is to subclass one of the editors provided in the 
com.klg.jclass.cell.editors package. The following code is from 
examples/table/cell/MoneyCellEditor.java. It creates a simple editor that extends the 
JCStringCellEditor class. The MoneyCellEditor class formats the data as money (two 
digits to the right of the decimal point) instead of a raw String; but JCStringCellEditor 
does most of the work. 

Method and Description

public abstract void addCellEditorListener(JCCellEditorListener l);

Adds a listener to the list that's notified when the editor starts, stops, or cancels editing.

public abstract void removeCellEditorListener(JCCellEditorListener l);

Removes the listener.



Outliner

Chapter 4 ■ Displaying and Editing Cells 95

The initialize() method in MoneyCellEditor takes the object passed in and creates a 
Money value for it. The getCellEditorValue() method will pass the Money value back 
to the container. 

import java.awt.Dimension;
import com.klg.jclass.cell.editors.JCStringCellEditor;
import com.klg.jclass.cell.JCCellInfo;
import java.awt.AWTEvent;

public class MoneyCellEditor extends JCStringCellEditor {

Money initial = null;

public void initialize(AWTEvent ev, JCCellInfo info, Object o) {
if (o instanceof Money) {

Money data = (Money)o;
initial = new Money(data.dollars, data.cents);

}
super.initialize(ev, info, initial.dollars+"."+initial.cents);

}
public Object getCellEditorValue() {

int d, c;
String text = getText().trim();
Money new_data = new Money(initial.dollars, initial.cents);

try {
// one of these will probably throw an exception if
// the number format is wrong
d = Integer.parseInt(text.substring(0,text.indexOf('.')));
c = Integer.parseInt(text.substring(text.indexOf('.')+1));

new_data.setDollars(d);
// this will throw an exception if there's an invalid
// number of cents
new_data.setCents(c);

}
catch(Exception e) {

return null;
}

return new_data;
}

public boolean isModified() {
if (initial == null) return false;
Money nv = (Money)getCellEditorValue();
if (nv == null) return false;
return (initial.dollars != nv.dollars || initial.cents != nv.cents);

}
}

Starting with one of the cell editors provided with the com.klg.cell.editors package 
can save you a lot of work coding entire editors on your own.



96 Part I ■ Using JClass LiveTable

Writing Your Own Editors 
Of course, you may not want to subclass any of the editors provided with the 
com.klg.jclass.cell.editors package. The following is from an editor that was written 
without subclassing an existing editor. By implementing the JCCellEditor interface, we 
have written an editor that will edit triangles. The code is in 
examples/table/cell/TriangleCellEditor.java. You can see it work by running 
examples.table.cellTriangeTable.

The editor handles both Integer and Polygon data types. It initializes the editor with the 
object to be edited, either a Number or a Polygon: 

....

public void initialize(AWTEvent ev, CellInfo info, Object o) {
  if (o instanceof Polygon) {
    orig_poly = (Polygon)o;
  }
  else if (o instanceof Number) {
    // Create polygon from the number
    int s = ((Number)o).intValue();
    orig_poly = new Polygon();
    orig_poly.addPoint(0,0);
    orig_poly.addPoint(0,s);
    orig_poly.addPoint(s,0);
  }

  new_poly = null;
  
  margin = info.getMarginSize();
}

The editor also needs to retrieve the AWT component that will be associated with it. In 
this case the editor is an a javax.swing.JComponent object.

....
public Component getComponent() {
  return this;
}

The isModified() method checks to see if the editor has changed the data, and 
getCellEditorValue() which returns the new Polygon created. 

....
public boolean isModified() {
  return new_poly != null;
}

public Object getCellEditorValue() {
  return new_poly;
}

The JCCellEditor interface defines the stopCellEditing() method, which stops and 
commits the editing operation. In the case of this example, there isn’t any validation 



Outliner

Chapter 4 ■ Displaying and Editing Cells 97

taking place, so the stopCellEditing() method will be unconditionally obeyed. The 
TriangleCellEditor also defines a cancelCellEditing() method, which resets the new 
Polygon. 

....
public boolean stopCellEditing() {
  return true;
}

public void cancelCellEditing() {
  new_poly = null;
  return;
}

The editor contains a local method for retrieving a non-null polygon for drawing:

....
private Polygon getDrawPoly() {
  if (new_poly == null)
    return orig_poly;
  return new_poly;
}

The editor also has to determine the minimum size for the cell. 

....
public Dimension minimumSize() {
  Rectangle r = getDrawPoly().getBoundingBox();
  return new Dimension(r.width+r.x,r.height+r.y);
}



98 Part I ■ Using JClass LiveTable

Finally, the editor needs to know how to paint the current polygon into the cell: 

....
public void paintComponent(Graphics gc) {

// No L&F, so paint your own background.
if (isOpaque()) {

if (!gc.getColor().equals(getBackground())) {
gc.setColor(getBackground());

}
Rectangle r = getBounds();
gc.fillRect(0, 0, r.width, r.height);

}

int x, y;

Polygon local_poly = getDrawPoly();
gc.setColor(cellInfo.getForeground());
gc.translate(margin.left, margin.top);
gc.fillPolygon(local_poly);

for(int i = 0; i < local_poly.npoints; i++) {
x = local_poly.xpoints[i];
y = local_poly.ypoints[i];
gc.drawOval(x-2,y-2,4,4);

}

gc.translate(-margin.left, -margin.top);
}

Much of the rest of the editor handles mouse events to drag the triangle points, or to 
move the whole triangle inside the cell. See the example file for this code.

Finally, the editor contains event listener methods that add and remove listeners from the 
listener list. These listeners are notified when the editor starts, stops, or cancels an edit.

JCCellEditorSupport support = new JCCellEditorSupport();
....
public void addCellEditorListener(CellEditorListener l) {
  support.addCellEditorListener(l);
}

public void removeCellEditorListener(CellEditorListener l) {
  support.removeCellEditorListener(l);
}

Note that an instance of com.klg.jclass.cell.JCCellEditorSupport is used to manage 
the listener list. JCCellEditorSupport is a useful convenience class for editors that want 
to send events to JClass LiveTable programs. 

The TriangleCellEditor is an example of a fairly complex implementation of the 
JCCellEditor interface. It contains all of the core methods of the interface, and extends 
the capabilities for an interesting type of data. You can use this example to help you to 
write your own JCCellEditor classes that handle any type of data you care to display and 
edit.



Outliner

Chapter 4 ■ Displaying and Editing Cells 99

Handling Editor Events
The com.klg.jclass.cell package contains several event and listener classes that enable 
cell editors and their containers to inform each other of changes to the cell contents, and 
allow you to control validation of the cell’s edited contents.

The simplest way to handle JCCellEditor events is to use the JCCellEditorSupport 
convenience class. JCCellEditorSupport makes it easy for cell editors to implement 
standard editor event handling by registering event listeners and providing easy methods 
for sending events. 

JCCellEditorSupport methods include: 

For example, consider the TriangleCellEditor. The changes made are not actually sent 
to the data source until the user clicks on another cell. It is more useful to have the editor 
send an editingStopped event when the mouse button is released:

public void mouseReleased(MouseEvent e) {
  support.fireStopEditing(new JCCellEditorEvent(e));
}

For more complete control, however, you will have to use the other event handling 
classes provided in the com.klg.jclass.cell package: 

Editor Key Control
Sometimes, you may want your cell editor to be able to accept keystrokes that have 
already been reserved for a specific purpose in the container (a Tab key in LiveTable, for 

Method Description

addCellEditorListener() Adds a new JCCellEditorListener to the listener list

removeCellEditorListener() Removes a JCCellEditorListener from the list

fireStopEditing() Sends an editingStopped event to all listeners

fireCancelEditing() Sends an editingCanceled event to all listeners

Method Description

JCCellEditorEvent Sent when the JCCellEditor finishes an operation. 
The JCCellEditorEvent contains the event that 
originated the operation in the editor.

JCCellEditorListener The container registers a JCCellEditorListener to 
let the JCCellEditor inform it when editing has 
stopped or been canceled.

JCCellEditorEventSource This class defines the add and remove methods for 
an object that posts JCCellEditorEvents. 



100 Part I ■ Using JClass LiveTable

example). To do this, you need to use the JCKeyModifier class to reserve a key/modifier 
combination: 

JCKeyModifier(int key, int modifier, boolean canInitializeEdit);

Using this class, you can reserve a key for a particular modifier or for all modifiers. To 
reserve Ctrl-Tab and Shift-Tab you would specify two JCKeyModifier objects with 
standard KeyEvent modifiers, for example KeyEvent.ALT_MASK.

If you want to reserve all Tab keys for the editor, you can use either of the following:

■ new JCKeyModifier(KeyEvent.VK_TAB, KeyModifier.ALL);

■ new JCKeyModifier(KeyEvent.VK_TAB);

Note that the container can still choose to ignore reserved keys.

4.5   The JCCellInfo Interface

You can see that JCComponentCellRenderer, JCLightCellRenderer and JCCellEditor 
use the JCCellInfo interface to get information about the cell. The JCCellInfo interface 
provides information about how the container wants to show the cell. The renderer and 
editor determine whether or not to honor the container’s request.

The JCCellInfo interface gives the renderer and editor access to cell formatting 
information from the Table, including:

■ foreground color

■ background color

■ selected foreground color

■ selected background color

■ font

■ font metrics

■ horizontal and vertical alignment

This information is fairly generic. The com.klg.jclass.table package also contains an 
object called TableCellInfoModel, which extends JCCellInfo to include more detailed 
information from the Table. TableCellInfoModel is useful for retrieving Table-specific 
information for use in the editor or renderer. 

Note that editors and renderers that rely on TableCellInfoModel can only be used with 
JClass LiveTable.



Outliner

Chapter 4 ■ Displaying and Editing Cells 101

Figure 12 The relationship of border sides, margins, and drawing 
area provided by JCCellInfo.

For more information, please see the JCCellInfo API documentation.



102 Part I ■ Using JClass LiveTable



103

5
Adding Formulas to JClass LiveTable

Introduction ■ com.klg.jclass.util.formulae’s Hierarchy ■ Expressions and Results ■ Math Values

Operations ■ Exceptions ■ Using Formulae in JClass LiveTable

5.1   Introduction

The formulae package in com.klg.jclass.util has special capabilities for evaluating 
mathematical objects. Similar to the way that objects such as java.lang.Double wrap a 
primitive type, those in com.klg.jclass.util.formulae encapsulate mathematical 
expressions (operators) whose operands may be scalars, vectors (in the mathematical 
sense), and matrices. These objects may then be stored as the generalized values of cells 
in a JClass LiveTable, or in a JClass PageLayout table, where they may be evaluated at 
run time to produce results based on the then-current data.

In addition, subclasses of MathValue, which are wrappers for generalized scalars, vectors, 
and matrices, provide several methods for converting an expression to a value and to a 
String, as well as other methods useful when dealing with these objects. 

5.2   com.klg.jclass.util.formulae’s Hierarchy

The interfaces, abstract classes, and derived classes, including possible exception classes, 
are shown in Figure 13.



104 Part I ■ Using JClass LiveTable

Figure 13 The inheritance hierarchy for com.klg.jclass.util.formulae.

The diverse set of mathematical operations permit you to compose complex 
mathematical formulas and provide references to them. Dynamic updating of the value 



Outliner

Chapter 5 ■ Adding Formulas to JClass LiveTable 105

represented by the expression is made possible through callbacks to the mathematical 
expression object.

5.3   Expressions and Results

The top-level interface for the com.klg.jclass.util.formulae package is Expression, 
whose sole method is evaluate(). Any object that functions as an expression must have 
an evaluate() method that knows how to operate on data that might be a scalar, a 
vector, or a matrix. Applying the evaluate() method to an Expression produces a 
Result, which is a marker interface that identifies Expression types that are valid return 
types from the evaluation of other Expressions.

An Expression may be an Operation, as in:

Expression f = new Add(op1, op2);

which, after evaluation, returns a Result.

5.4   Math Values

The abstract class MathValue forms the root for all derived constant-based result/data 
classes. It satisfies the Expression interface by defining an evaluate() method, which 
simply returns the MathValue as a Result. Its concrete subclasses are MathMatrix, 
MathScalar, and MathVector. Because MathValue has an evaluate() method it is an 
Expression. Thus, MathValues may be passed as Expression objects.

MathValue Methods

Note: The subclasses of MathValue override all but the first method. Since, for example, 
matrixValue() is not appropriate to a MathScalar, it throws an 

MathValue Method Description

evaluate() Satisfies the Expression interface by returning the stored 
value. No evaluation is required because no operation is 
implied.

getDataFormat() Retrieves the NumberFormat associated with this data.

matrixValue() Gets the contents of this MathValue as a matrix of Numbers.

numberValue() Gets the contents of this MathValue as a Number.

setDataFormat() Sets a NumberFormat to use on the contents of this MathValue.

vectorValue() Gets the contents of this MathValue as a vector of Numbers.



106 Part I ■ Using JClass LiveTable

UnsupportedOperationException if it is called. Other method-data type mismatches also 
throw UnsupportedOperationExceptions. The method tables for the subclasses indicate 
which methods are data type mismatches for the given class.

5.4.1 MathScalar

MathScalar is a scalar constant represented as a MathValue. By encapsulating it in this 
fashion it can support integer and real numbers, and it can be extended if necessary to 
support other types of scalar numbers. Its data field is a realValue, a Number that is output 
based on the current dataFormat kept in MathValue. 

Example:

double s1 = 10.0; MathValue ss1 = new MathScalar(s1);

MathScalar Constructors
The no-argument constructor MathScalar() creates an instance that encapsulates the 
value 0.0, while the other three constructors take a double, an int, or a 
java.lang.Number argument.

MathScalar Methods

5.4.2 MathVector

MathVector is a representation of the class of vectors in a linear algebra sense. They may 
also be used as operands in matrix multiplication. A MathVector encapsulates a list of 
values which may be integers, doubles, or more generally, objects of type Number. It has 
methods for retrieval or modification of a value at a particular index, and for outputting 
the list as a String. The operators discussed in the next section accept these objects as 
operands.

Example:

double[] ed = {2.71828, 3.1415927, 1.6020505};
MathValue mv = new MathVector(ed);

MathVector Constructors
The constructors for MathVector parallel those for MathScalar, except they take arrays as 
parameters rather than single values.

MathScalar Method Description

matrixValue() Throws an UnsupportedOperationException.

numberValue() Gets the contents of this MathValue as a Number.

toString() Returns a String representation of this value.

vectorValue() Throws an UnsupportedOperationException.



Outliner

Chapter 5 ■ Adding Formulas to JClass LiveTable 107

MathVector Methods

5.4.3 MathMatrix

MathMatrix is a representation of the class of matrices, again in the sense of linear 
algebra. The package implements the basic addition and multiplication operations in 
matrix algebra, including multiplying a matrix by a vector. It has methods for retrieval or 
modification of a value at a particular pair of indices, and for outputting the matrix as a 
String. The operators discussed in the next section accept these objects as operands.

Example:

double[][] m1 = {{1.1, 1.2, 1.3},
 {2.1, 2.2, 2.3},
 {3.1, 3.2, 3.3}};

MathValue mm = new MathMatrix(m1);

MathMatrix Constructors
The constructors for MathMatrix parallel those for MathScalar, except they take 2D 
arrays as parameters rather than single values.

MathVector Method Description

getValueAt() Retrieves the value at a particular index in the vector.

matrixValue() Throws an UnsupportedOperationException.

numberValue() Throws an UnsupportedOperationException.

setValueAt() Sets the value at a particular index in the vector.

toString() Outputs the value of this vector as a String.

vectorValue() Gets the contents of this MathValue as a vector of Numbers.



108 Part I ■ Using JClass LiveTable

MathMatrix Methods

5.5   Operations

The abstract Operation class defines the basic elements of an operator. Binary operators 
have a left and right operand, which enables the correct ordering to be applied to matrix 
operations and any other non-commutative operators. Unary operators have a single 
operand.

Example:

double[] ed = {2.71828, 3.1415927, 1.6020505};
double[] rd = {(Math.sqrt(5.0) + 1.0) / 2.0, 4.0, 32.0};

MathValue e = new MathVector(ed);
MathValue r = new MathVector(rd);

Expression add = new Add(e, r);

Operation Constructors
There is a no-argument constructor that creates a generic operator, and there are 
constructors for every unary and binary permutation of Expressions and Numbers. 
A sample constructor is: Operation(Expression left, Expression right).

Operation Methods
The two non-inherited methods in Operation are evaluate(), which returns a Result 
containing the evaluation of the expression, and clone(), which returns a deep-copy 
clone of the operation and of all operands.

MathMatrix Method Description

getValueAt() Retrieves the value at a particular row, column pair of index 
values in the matrix.

matrixValue() Gets the contents of this MathValue as an array of Numbers.

numberValue() Throws an UnsupportedOperationException.

setValueAt() Sets the value at a particular row, column pair of index values 
in the matrix.

toString() Outputs the value of this vector as a String.

vectorValue() Throws an UnsupportedOperationException.



Outliner

Chapter 5 ■ Adding Formulas to JClass LiveTable 109

5.5.1 The Defined Mathematical Operations

Unary Operators
Unary operators take one parameter, which is either an Expression or a Number. Because 
they are Expressions they all have an evaluate() method which returns a Result. 

Binary Operators
Binary operators take two parameters, which are Expressions, Numbers, or one of each. 
Because they are Expressions they all have an evaluate() method which returns a 
Result. 

Operator Description

Abs The class for the absolute value operation. The operand may be a 
Number or an Expression, which may be a MathScalar or an 
ExpressionList, but not a vector or a matrix.

Ceiling Ceiling is defined as the least integer greater than or equal to the 
operand, which may be a MathValue.

Floor Floor is defined as the greatest integer less than or equal to the 
operand.

Root Returns the positive square root of its operand.

Round Round is defined as nearest integer to the operand. Rounding is done 
to an even number if the operand is exactly midway between two 
integers.

Trunc Takes the integer part of a number. Equivalent to rounding to the 
nearest integer closer to zero. Example: trunc(-3.5) = -3.

Operator Description

Add Adds two Expressions. If the Expressions are vectors of the 
same length, pairwise addition is performed. Matrices may be 
added providing the two operands have the same number of 
rows and columns. Unary addition is possible, and returns the 
evaluated operand.

Average Average (arithmetic mean) is defined as the sum of all 
elements divided by the number of elements. Its one-
parameter constructor is an Expression, usually a list. Its two-
parameter constructors are combinations of Expressions and 
Numbers.



110 Part I ■ Using JClass LiveTable

Count Count determines the total number of elements in its 
operands. Its one- and two-parameter constructors take one or 
two Expressions (usually a list or lists) and count their 
elements.

Divide Division is the ratio of two operands. The left operand is the 
numerator and the right operand is the denominator.

GeometricMean Geometric mean is defined as the nth root of the product of a 
set of n numbers. Its one-parameter constructor takes an 
Expression, usually a list. Its two-parameter constructors take 
combinations of Expressions and Numbers, multiplying all 
elements together and taking the nth root.

Max Max is defined for a pair of elements or across a list. It selects 
the largest element. Its one-parameter constructor takes an 
Expression, usually a list. Its two-parameter constructors take 
combinations of Expressions and Numbers, examining all 
elements and selecting the largest.

Median The Median of a list is the middle element of a sorted list, or 
the average of the two middle values if the list has an even 
number of elements. Its one- and two-parameter constructors 
take one or two Expressions.

Min Min is defined for a pair of elements or across a list. It selects 
the smallest element. Its one-parameter constructor takes an 
Expression, usually a list. Its two-parameter constructors take 
combinations of Expressions and Numbers, examining all 
elements and selecting the smallest.

Multiply Multiplication is the product of a pair of elements. Its two-
parameter constructors take combinations of Expressions and 
Numbers, examining all elements and selecting the smallest.

Power The exponentiation (^) operation. Its two-parameter 
constructors take combinations of Expressions and Numbers. 
The left operand is the base and the right operand is the 
exponent.

Product A product can be performed on a pair of elements or across a 
list. The product of an ExpressionList is the product of its 
individual members. Multiplication order is left-to-right, and 
first element of a list to last element. The result of a matrix 
multiplication may depend on the order of the operands.

Operator Description



Outliner

Chapter 5 ■ Adding Formulas to JClass LiveTable 111

5.5.2 Reducing Operations to Values

Since Operations are Expressions, they all have an evaluate() method. Evaluation 
returns a Result, which may be converted to a String for printing. Here is an example:

double edd = 2.0;
double exp = 8.0;
MathValue eddy = new MathScalar(edd);
MathScalar expy = new MathScalar(exp);

double[] ed = {2.71828, 3.1415927, 1.6020505};
MathValue e = new MathVector(ed);

Expression pow = new Power(eddy, expy);
Expression powr = pow.evaluate();
// Either one of these has a toString() method
System.out.println("Power without evaluate(): " + pow);
System.out.println("Power with    evaluate(): " + powr);

After which the following is written on the output:

Power without evaluate(): com.klg.jclass.util.formulae.Power@eb4f3b8c
Power with    evaluate(): 256.0

You see that calling evaluate() is necessary to have a value returned by the implicit 
toString() call.

Sort This operation returns a sorted list of the given elements. 
Any secondary or nested lists are flattened.

StdDeviation The sample standard deviation, given by sd = root( (sum(1 
to n)(element - average)^2) / (n - 1)), where n is the 
number of samples and average is the sample average. It has 
one- and two-parameter constructors consisting of 
Expressions.

Subtract The difference between two numbers. It has two-parameter 
constructors that take combinations of Expressions and 
Numbers. 

Sum A sum can be performed on a pair of elements or across a list. 
Its two-parameter constructors take combinations of 
Expressions and Numbers. Its one-parameter constructor 
usually takes an ExpressionList.

Operator Description



112 Part I ■ Using JClass LiveTable

5.6   Expression Lists

Expression lists are handy containers that permit you to perform an operation on a group 
of values. 

MathExpressionList
The example shown here uses the binary form of Add to find the grand total of all the 
elements in two ExpressionLists.

// Expression Lists
Expression[] exprs1 = {null, null, null, null, null, null, null, 

null, null, null};
for (int i = 0; i < 10; i++){

exprs1[i] = new MathScalar(95 + i);
}
ExpressionList explist1 = new MathExpressionList(exprs1);

Expression[] exprs2 = {null, null, null, null, null, null, null 
null, null, null};

for (int i = 0; i < 10; i++){
exprs2[i] = new MathScalar(95 + i);

}
ExpressionList explist2 = new MathExpressionList(exprs2);

sss1 = new Sum(explist1, explist2);
ssss1 = sss1.evaluate();
System.out.println(

"Summing ExpressionLists with    evaluate(): " + ssss1);

Here’s the output:

Summing ExpressionLists with    evaluate(): 1990

QueryExpressionList
A QueryExpressionList is designed as a wrapper for a set of Expressions stored in a 
JDBC-type ResultSet; that is, the result of a database query. Users of JClass DataSource 
may also use this facility.

TableExpressionList
Expression lists may be used to extend data from portions of a JClass LiveTable to 
produce summary reports. For details, see Section 5.9, Using Formulae in 
JClass LiveTable.

5.7   Events and Listeners

TableListenerPropagator
The TableListenerPropagator listener, which implements the JCTableDataListener 
interface, wraps a formula and listens for changes to table cells that are operands for this 
formula, and propagates the changes so that other interested listeners can re-evaluate 



Outliner

Chapter 5 ■ Adding Formulas to JClass LiveTable 113

themselves. The TableListenerPropagator listener automatically updates the whole 
dependency hierarchy of com.klg.jclass.util.formulae when a suboperation has been 
modified. 

5.8   Exceptions

OperandMismatchException
Various operations such as adding a number to a vector are not defined, whereas other 
operations, for example, multiplying a vector by a number, can be interpreted as a scaling 
operation. At compile time, numbers, vectors, and matrices can be declared as generic 
Expressions, making it impossible to predetermine which operations are not permitted. 
A run time check of the validity of an operation must be made. If a mathematical 
construct is evaluated and found to be illegal, the class throws an 
OperandMismatchException. 

ClassCastException
There are cases where a run time class cast exception may occur. While most of these 
should be avoidable by selecting the correct class (such as using Product rather than 
Multiply when multiplying two vectors) the fact that both take Expressions as their 
parameters makes it difficult to avoid the possibility of an end-user passing in an incorrect 
type if your application permits flexible user input. You may permit substitution of one 
arithmetic class for another, since they are all Operations. This also opens the door to 
class cast exceptions.

If the possibility exists for either of these exceptions, your code should attempt to handle 
it.

5.9   Using Formulae in JClass LiveTable

5.9.1 Registering a Cell Editor and a Cell Renderer with the JClass Central Registry

If you are planning to allow your end-users to specify mathematical operations, you may 
make use of the editor/renderer registry in com.klg.jclass.cell. Note that if a cell is 
placed in a JClass LiveTable, the ExpressionCellRenderer will be used by default.

The following code snippet, taken from the SpreadSheet demo, registers a cell editor that 
takes a value in the form of a util.formulae.Expression from a table cell and copies its 
String equivalent in a text box. In the SpreadSheet demo, formulas are entered by 
beginning them with an equal sign (=), for example, =SUM(A1:A5). The class called 



114 Part I ■ Using JClass LiveTable

MyFormulaCellEditor recognizes this syntax and translates a String of this form to an 
Expression, then stores it in a table cell. 

EditorRendererRegistry.getCentralRegistry().addClass(
"java.lang.String",
 null,
"demos.table.spreadsheet.MyFormulaCellEditor",
"com.klg.jclass.cell.renderers.JCStringCellRenderer");

See the SpreadSheet demo for a complete code listing.

5.9.2 Performing a Mathematical Operation on a Range of Cells

Expression Lists and Expression References
Expression list objects hold a group of Expressions. ExpressionList is an abstract class 
whose methods permit the inclusion of additional elements to those already present, a 
method for removing elements or clearing all elements, for retrieving an element, and for 
comparing with another list. These operations are common to the concrete classes 
MathExpressionList, QueryExpressionList, and TableExpressionList. 

Expression lists may be used as arguments for all mathematical operations. When given 
an expression list, evaluating a unary operator such as ABS returns a list containing the 
absolute values of its input list. Binary operators may return a single result or a list. Given 
expression lists, the mathematical operators Abs, Add, Ceiling, Divide, Floor, Multiply, 
Power, Remainder, Root, Round, Sort, and Subtract return lists, while Average, Count, 
GeometricMean, Max, Median, Min, Product, and Sum all return a single result after 
evaluate() has been called.

Use TableExpressionList to perform an operation over a range of cells in a table. The 
following code snippet shows that the required parameters are a table data model and a 
block of cells.

Expression expression = new TableExpressionList(
table.getDataSource(),
new MathScalar(startRow), // first row
new MathScalar(endRow), // last row
new MathScalar(startColumn), // first column
new MathScalar(endColumn) // last column
);

Sum sum = new Sum(expression);

The next code fragment places the formula for the sum in the last column, just below the 
last row. With the proper cell renderer/editor combination, such as the one listed in the 
previous section, the formula or the numerical value of the sum is shown, depending on 
whether the cell is selected or not.

((EditableTableDataModel)table.getDataSource()).setTableDataItem(sum, 
endRow + 1, endColumn);

The advantage of using TableExpressionLists is that the formulas containing them know 
to update themselves when a cell’s value is altered.

../../demos/table/spreadsheet/MyFormulaCellEditor.java


115

6
Programming User Interactivity

Cell Traversal ■ Cell Selection ■ Resizing Rows and Columns ■ Table Scrolling

Dragging Rows and Columns ■ Sorting Columns ■ Custom Mouse Pointers

JClass LiveTable makes it easy to allow users to interact with the tables you create. You 
can control how users can manipulate the table, and how a JClass LiveTable application 
can control this interaction. The following sections describe the types of user interactivity 
supported by JClass LiveTable, its default behavior, and how to customize that behavior. 
Note that programming cell editing behavior is discussed separately in Displaying and 
Editing Cells, in Chapter 4.

6.1   Cell Traversal

Traversal is the act of moving the current cell indicator from one location to another. A 
traversal passes through three stages: validating the edited current cell, determining the 
new current cell location, and entering that cell. 

The Traversable property, which is part of the CellStyleModel interface, determines 
whether or not a cell is traversable. You set this property when you are setting a cell style 
(for more information about cell styles, please see Cell Styles, in Chapter 2).

6.1.1 Default Cell Traversal

Users can traverse cells by clicking the primary mouse button when the mouse pointer is 
over a cell. This changes the focus to that cell (a focus rectangle appears around the inside 
of the cell borders). Users can traverse cells from the keyboard by using the cursor keys 
(up, down, left, and right) and the Tab key to traverse right and Shift+Tab key to traverse 
left.

6.1.2 Customizing Cell Traversal

By default, all cells are traversable. To prevent users from traversing to a cell, set 
Traversable cell style property to false. Making a cell non-traversable also prevents it 
from being traversed to programmatically.



116 Part I ■ Using JClass LiveTable

Disabling traversal also disables cell editability regardless of whether the cell’s data source 
is editable.

The following code fragment sets all cells in row 3 to be non-traversable:

JCCellStyle traverserow = new JCCellStyle
traverserow.setTraversable(false);
table.setCellStyle(3, JCTableEnum.ALLCELLS, traverserow);

You can also set the Traversable property for a range of cells specified by a JCCellRange 
object:

JCCellRange range = new JCCellRange(2, 3, 2, 8);
JCCellStyle traverserange = new JCCellStyle;
traverserange.setTraversable(false);
table.setCellStyle(range, traverserange);

Use the setTraverseCycle() method, part of the JCTable class, to determine whether the 
traversal moves to the opposite side when the left, top, right or bottom cell is reached 
(that is, when the user traverses to the bottom of the table, the next traversal down will 
bring them to the top of the table). The TraverseCycle property takes a boolean value, 
and the default is true.

6.1.3 Minimum Cell Visibility

By default, when a user traverses to a cell that is not currently visible, JClass LiveTable 
scrolls the table to display the entire cell. 

The setMinCellVisibility() method sets the minimum amount of a cell made visible 
when it is entered. When the table scrolls to edit a non-visible cell, the 
MinCellVisibility property determines the percentage of the cell that is scrolled into 
view. When MinCellVisibility is set to 100, the entire cell is made visible. When 
MinCellVisibility is set to 10, only 10% of the cell is made visible. If 
MinCellVisibility is set to 0, the table will not scroll to reveal the cell. 

The value of the MinCellVisibility property also affects the behavior of the 
makeVisible() methods described in Section 6.3.2, Managing Table Scrolling.

6.1.4 Forcing Traversal

An application can force the current cell to traverse to a particular cell by calling 
traverse(). If the cell is non-traversable (specified by Traversable), this method returns 
false. 

Calling the traverse() method to force cell traversal requires that you define these 
parameters: 

■ row: the row to which the current cell will traverse 

■ column: the column to which the current cell will traverse 



Outliner

Chapter 6 ■ Programming User Interactivity 117

■ show_editor: a boolean value that determines if the editing component will be 
displayed in the cell. The default is false.

■ select: a boolean value that determines the cell will be selected (if the 
SelectionPolicy allows it). The default is false.

6.1.5 Controlling Interactive Traversal

You can use the TRAVERSE_CELL action in JCTraverseCellEvent to control interactive 
traversal. As a user traverses from one cell to another, this event is posted after a user has 
committed a cell edit, and before moving to the next cell. Each event listener is passed an 
object of type JCTraverseCellEvent. 

JCTraverseCellEvent uses the getTraverseType() method to retrieve information on 
the direction of the traversal. getTraverseType() retrieves one of the following integers 
indicating the direction of traversal: 

■ TRAVERSE_POINTER – traverse to the cell the user clicked.

■ TRAVERSE_LEFT – traverse left to the first traversable cell.

■ TRAVERSE_RIGHT – traverse right to the first traversable cell.

■ TRAVERSE_UP – traverse up to the first traversable cell.

■ TRAVERSE_DOWN – traverse down to the first traversable cell.

■ TRAVERSE_HOME – traverse to the top-left corner of the table (0, 0).

■ TRAVERSE_END – traverse to the bottom-right corner of the table.

■ TRAVERSE_TOP – traverse to the top of the table column.

■ TRAVERSE_BOTTOM – traverse to the bottom of the table column.

■ TRAVERSE_PAGEUP – traverse up to the next off-screen or partially visible row.

■ TRAVERSE_PAGEDOWN – traverse down to the next off-screen or partially visible row

■ TRAVERSE_TO_CELL – traverse programmatically.

The getColumn() and getRow() methods get the column and row of the current cell 
respectively. Finally, the NextColumn and NextRow properties respectively set or retrieve 
the column and row of the cell to traverse to. 

The TRAVERSE_CELL action attempts to traverse to the cell specified by these members. 
Note that if NextColumn and NextRow reference a non-traversable cell, the traversal 



118 Part I ■ Using JClass LiveTable

attempt will be unsuccessful. The following example code prevents the user from 
traversing outside of column 0:

public void traverseCell(JCTraverseCellEvent ev) {
if (ev.getNextColumn() > 0) {

if (ev.getRow() >= table.getNumRows()) {
ev.setNextRow(0);

}
            else {

ev.setNextRow(ev.getRow() + 1);
}
ev.setNextColumn(0);

        }
}

6.2   Resizing Rows and Columns

6.2.1 Default Resizing Behavior

JClass LiveTable allows a user to interactively resize a row and/or column (when allowed 
by AllowCellResize). This action routine alters the PixelHeight property when resizing 
rows, and the PixelWidth property when resizing columns. 

Users can position the mouse pointer over a cell/label border and click-and-drag to resize 
the row/column. If users position the mouse pointer over the corner of a cell/label, the 
mouse drag will resize the row and column simultaneously.

6.2.2 Disallowing Cell Resizing

Use the setAllowCellResize() method to control interactive row/column resizing over 
the entire table. The valid parameters of the AllowCellResize property are:

■ JCTableEnum.RESIZE_ALL: user resizing of cell permitted (default).

■ JCTableEnum.RESIZE_NONE: no row/column resizing is allowed.

■ JCTableEnum.RESIZE_COLUMN: only columns may be resized.

■ JCTableEnum.RESIZE_ROW: only rows may be resized.

6.2.3 Controlling Resizing

You can use a JCResizeCellListener (registered with 
addResizeCellListener(JCResizeCellListener)) to control interactive row/column 
resizing on a case-by-case basis. JCResizeCellEvent is the event posted as a user resizes a 
row and/or column, with valid stages being BEFORE_RESIZE, RESIZE, and AFTER_RESIZE. 

The getColumn() method gets the column being resized. The getCurrentColumnWidth() 
and getCurrentRowHeight() methods get the current column width and the current row 



Outliner

Chapter 6 ■ Programming User Interactivity 119

height respectively. The NewColumnWidth and NewRowHeight properties can set and 
retrieve information on the new column width and the new row height respectively.

As a cell is resized by the user, a JCResizeCellEvent is triggered, which passes objects to 
JCResizeCellMotionListener during the event. 
beforeResizeCell(JCResizeCellEvent) is sent the initial values (as specified by 
getCurrentColumnWidth() and getCurrentColumnHeight()). When the user commits the 
change by releasing the mouse button, the end value from 
resizeCell(JCResizeCellEvent) is available for retrieval (by getNewColumnWidth() or 
getNewRowHeight()) or changing (by setNewColumnWidth() and setNewRowHeight()), 
and afterResizeCell() is called with final results. 

Note: Interactively resizing cannot exceed the set minimum and maximum cell sizes.

The following example event listener routine sets the width of any resized column to an 
increment of 10 pixels:

public class MyTable extends Frame implements JCResizeCellListener {
...
public void beforeResizeCell(JCResizeCellEvent ev) {}
public void resizeCell(JCResizeCellEvent ev) {

ev.setNewColumnWidth(ev.getNewColumnWidth() / 10 * 10);
}
public void afterResizeCell(JCResizeCellEvent ev) {};

To register the above event listener routine, use the following call (where this refers to 
the class MyTable, which implements the JCResizeCellListener interface):

table.addResizeCellListener(this);

Resizing all Rows or Columns at Once
You can configure your JClass LiveTable program so that when a user interactively 
resizes a row or column, all of the other rows or columns in the table resize to the same 
value. This is achieved by setting the ResizeEven property to true using the following 
method:

table.setResizeEven(true);

Setting this property overrides row and column height and width properties, since the 
rows and columns are all set to the same value as the row and column the user resized. 

Resizing Using Only Labels or Cells
As you’ve seen above, you can control how users can resize cells, rows, columns, and 
labels. JClass LiveTable also allows you to set the resizing capability so that users can only 
resize rows and/or columns using the row and column labels. 

The setAllowResizeBy() method determines how table rows and columns are resized. 
Use RESIZE_BY_LABELS to allow resizing only with labels. The mouse pointer will not 
change to a resize arrow over cell borders in the body of the table. 



120 Part I ■ Using JClass LiveTable

Using RESIZE_BY_CELLS achieves the opposite, while the default, RESIZE_BY_ALL allows 
resizing with both cells and labels. 

6.3   Table Scrolling

6.3.1 Default Scrolling Behavior
When a table is larger than the rows/columns visible on the screen, an end-user can scroll 
through the table with the mouse or keyboard. JClass LiveTable uses two scrollbar 
components (one horizontal, one vertical) to implement table scrolling. 

JClass LiveTable can also scroll the table when requested by other interactions, such as 
cell traversal, mouse dragging, or cell selection. Scrolling does not change the location of 
the current cell.

You can control how and where scrollbars are attached to the component, when they are 
displayed, and how they behave. The following sections outline programming scrollbar 
behavior. For information about displaying scrollbars, and setting scrollbar display 
properties, please refer to Scrollbars, in Chapter 2. 

6.3.2 Managing Table Scrolling

Jump Scrolling
You can configure the table to scroll smoothly (by pixel) through the table or to use jump 
scrolling, which is scrolling the table one whole row or column at a time. This behavior is 
controlled by calling setJumpScroll() with one of the following parameters:

■ JCTableEnum.JUMP_NONE: neither horizontal nor vertical scrollbars will use jump 
scrolling (default)

■ JCTableEnum.JUMP_HORIZONTAL: only the horizontal scrollbar will use jump scrolling

■ JCTableEnum.JUMP_VERTICAL: only the vertical scrollbar will use jump scrolling

■ JCTableEnum.JUMP_ALL: both the vertical and horizontal scrollbars will use jump 
scrolling

Using Automatic Scrolling
You can configure the table to scroll automatically whenever a user selects cells or drags 
the mouse past the edge of the visible table area. To do this, you must call the 
setAutoScroll() method, specifying one of the following parameters:

■ JCTableEnum.AUTO_SCROLL_NONE (default)

■ JCTableEnum.AUTO_SCROLL_ROW

■ JCTableEnum.AUTO_SCROLL_COLUMN

■ JCTableEnum.AUTO_SCROLL_BOTH



Outliner

Chapter 6 ■ Programming User Interactivity 121

Note that automatic scrolling is disabled when no scrollbars are visible and when jump 
scrolling is enabled.

Disabling Interactive Scrolling
Scrolling can be disabled in one or both directions. Mouse and keyboard scrolling cannot 
be disabled separately.

Remove the scrollbars from the screen by setting HorizSBDisplay and/or VertSBDisplay 
to JCTblEnum.SCROLLBAR_NEVER.

To fully disable any and all scrolling, an application should also ensure that the user 
cannot select cells or traverse to cells outside the visible area.

Forcing Scrolling
An application can force the table to scroll in any of the following four ways.

■ First, to scroll a particular row to the top of the display, set the TopRow property to the 
number of the row you want to display at the top. For example, to display the fifth 
row at the top of the table: 
setTopRow(4)

■ Second, to scroll a particular column to the left side of the display, set the LeftColumn 
property to the column number that you want to display. For instance, to display the 
thirteenth column at the left of the table: 
setLeftColumn(12)

■ Third, to determine whether a row or column is visible, call the 
JCTable.isRowVisible() or JCTable.isColumnVisible() methods. To check 
whether a particular cell is visible, use JCTable.isCellVisible().

■ Finally, to scroll to display a particular cell, call the makeVisible() method for that 
cell’s context. For example: makeVisible(4, 21)
(You can also call the makeRowVisible() and makeColumnVisible() methods for 
entire rows and columns.) 

Mouse Wheel Support
JClass LiveTable has built in mouse wheel support, if mouse wheel support is available in 
the underlying JDK ( JDK 1.4 or higher). By default, a table adds a 
TableMouseWheelListener which listens for MouseWheelEvents and changes the value of 
the vertical or horizontal scrollbar, depending on which ones are visible. The vertical 
scrollbar is used if visible; otherwise, the horizontal scrollbar is used if visible. Mouse 
wheel support can be disabled by calling removeTableMouseWheelListener(), or the 
default listener can be replaced by calling addTableMouseWheelListener() with a new 
MouseWheelListener.

A table scrolls one unit for every click of a scrollbar arrow. This unit value can be set by 
calling getVertSB() or getHorizSB() and setting the appropriate property on the 
JScrollBar object that is returned. By default, JClass LiveTable sets the unit to 20 pixels 
for a horizontal scrollbar and 21 pixels for a vertical scrollbar. If mouse wheel support is 



122 Part I ■ Using JClass LiveTable

enabled, rolling the mouse wheel one click will scroll the table the number of units that 
your mouse software has been configured to scroll. For example, if this value is set to 
three and the unit value of the scrollbar is set to 20 pixels, rolling the mouse one click will 
cause the table to scroll 60 pixels, the equivalent of clicking the corresponding scrollbar 
arrow three times.

If jumpScroll is set on the scrollbar, scrolling the mouse wheel one click will cause 
exactly one row or column to be scrolled in the appropriate direction. In this case, one 
mouse wheel click is exactly the same as clicking once on the corresponding scrollbar 
arrow.

Tracking Scrollbars
The behavior of scrollbars during tracking can be set by using setHorizSBTrack() for 
horizontal scrollbars and setVertSBTrack() for vertical scrollbars. Scrolling behavior can 
be set two ways. 

Using JCTableEnum.TRACK_LIVE, the table redisplays while the user scrolls. This type of 
scrollbar tracking can be resource intensive, particularly with larger tables. 

An alternate way of tracking scrollbars is to use JCTableEnum.TRACK_COLUMN_NUMBER for 
horizontal scrollbar tracking, and JCTableEnum.TRACK_ROW_NUMBER for vertical scrollbar 
tracking. In these cases, the table does not redisplay until scrollbar tracking is complete, 
but an indicator appears beside the scrollbar that informs the user where in the table the 
scrolling has taken them. 

When using this kind of tracking, the indicator’s appearance is set using 
setTrackBackground(), setTrackForeground(), and setTrackSize(). The contents of 
the indicator can either be the row/column number, or the contents of a cell or label. 

To display the contents of a cell or label, use setHorizSBTrackRow() and 
setVertSBTrackColumn() to specify which row or column’s data will be used in the scroll 
tracking indicator, and use JCTableEnum.TRACK_ROW, JCTableEnum.TRACK_COLUMN, or 
JCTableEnum.LABEL to specify the specific row number (for vertical scrolling), column 
number (for horizontal scrolling), or label whose data will be used in the indicator. 

For example, the following line of code sets the vertical tracking so that it displays the 
contents of the second column: 

table.setVertSBTrackColumn(1);

6.3.3 Scroll Listener Methods

JClass LiveTable provides a way for your application to be notified when the table is 
scrolled by either the end-user or the application. The JCScrollListener (registered with 
addScrollListener(JCScrollListener)) allows you to define a procedure to be called 
when the table scrolls; this is useful if your application is drawing into the table. The 
method is sent an instance of JCScrollEvent.



Outliner

Chapter 6 ■ Programming User Interactivity 123

The example below shows how to use the scroll(JCScrollEvent) and 
afterScroll(JCScrollEvent) scrollbar interface methods to store an internal state:

public MyClass extends Frame implements JCScrollListener {
....

public void scroll(JCScrollEvent ev) {
if (ev.getDirection() == TableScrollbar.HORIZONTAL) 
hScrollingActive = true;
else if (ev.getDirection() == TableScrollbar.VERTICAL) 
vScrollingActive = true;
}

public void afterScroll(JCScrollEvent ev) {
if (ev.getDirection() == TableScrollbar.HORIZONTAL) 
hScrollingActive = false;
else if (ev.getDirection() == TableScrollbar.VERTICAL) 
vScrollingActive = false;

}

To register the above event listener routine, use the following call (where (this) refers to 
the class MyClass, which implements the JCScrollListener interface):

table.addScrollListener(this);

6.4   Cell Selection

6.4.1 Default Cell Selection
Cell selection is not enabled by default. When cell selection is enabled (see Section 6.4.3, 
Customizing Cell Selection), the default selection behavior is as follows:

■ Clicking a cell, holding the mouse button down, and dragging selects those cells.

■ Clicking a label selects all the cells in the column or row.

■ Holding down the Shift key while clicking and dragging modifies the selection (that 
is, it does not clear the previous selection).

■ Holding down the Ctrl key and making a sequence of selections adds the selections 
together.

■ Clicking a cell, traversing out of the cell, then traversing back to the clicked cell 
selects the cell without editing it.

JClass LiveTable allows a user to interactively select one or more ranges of cells. An 
application can retrieve each range to manipulate the cells within it. An application can 
also be notified of each user selection to control what and how the user selects cells. 

JClass LiveTable supports a number of selection policies, including:

■ JCTableEnum.SELECT_MULTIRANGE: multirange selection (selecting multiple ranges of 
cells)

■ JCTableEnum.SELECT_RANGE: single range

■ JCTableEnum.SELECT_SINGLE: single cell



124 Part I ■ Using JClass LiveTable

■ JCTableEnum.SELECT_NONE: no selection. 

6.4.2 Selection Colors

By default, selected cells and labels display with reversed colors, that is, the background 
and foreground colors are inverted under selection. When programming the appearance 
of your table, you can set the colors for selected cells. For more information, please see 
Cell Selection Colors, in Chapter 2. 

6.4.3 Customizing Cell Selection

The SelectionPolicy property controls the amount of selection allowed on the table, 
both by end-users and by the application. Changing the selection policy affects 
subsequent selection attempts; it does not affect current selections. The following 
illustration shows the valid values, and the amount of selection they allow. 

When SelectionPolicy is set to JCTableEnum.SELECT_NONE (default), JCSelectEvent 
events are not posted as a user edits or attempts to select cells. Note that setting this 
property does not change the selected cell list – this means that if a cell is already selected, 
then changing this property won’t clear the list. As an example, if your selection policy 
was set to MULTI_RANGE and you selected multiple ranges of cells, a change to RANGE, 

Selection Policy Example

selection disabled 
JCTableEnum.SELECT_NONE

single cell selection
JCTableEnum.SELECT_SINGLE

single range selection
JCTableEnum.SELECT_RANGE

multiple range selection
JCTableEnum.SELECT_MULTIRANGE



Outliner

Chapter 6 ■ Programming User Interactivity 125

SINGLE or NONE will not modify the current selection, that is, the current selection will not 
honour the selection policy.

Selecting Row/Column Labels
By default, when a user clicks on a row or column label, the entire row or column, 
including the label is highlighted. To change it so that the label is not highlighted with the 
rest of the cells, set SelectIncludeLabels to false:

table.setSelectIncludeLabels(false);

6.4.4 Selected Cell List

The SelectedCells property specifies the collection of all currently selected ranges in the 
table, where each element is an instance of a JCCellRange. SelectedCells is updated 
dynamically as a user selects cells. It is also updated when an application 
programmatically selects or deselects cells. Labels cannot be part of a selected range.1

Each range in the selected cell list is a JCCellRange structure. Its variables include:

■ start_column

■ start_row

■ end_column

■ end_row

The start_column and start_row variables represent the first cell in the range (top-left 
corner), while the end_column and end_row variables represent the last cell in the range 
(bottom-right corner).

All members of the JCCellRange structure can be a row and column index. end_row and 
end_column can also be set to MAXINT, which specifies all of the cells in a row or column. 
Because the user can make a selection at any point and in any direction within a table, the 
start point is not necessarily the top-left corner of the range — it may be anywhere within 
the table.

6.4.5 Working with Selected Ranges

To get a selected range, use getSelectedCells(). A table’s set of selected cells is a 
collection of JCCellRange instances. This method has the following prototype:

public Collection getSelectedCells()

Each element of the Collection is an instance of a JCCellRange. This value is updated 
dynamically as a user selects cells. The selection policy controls the amount of selection 
allowed on the table, both by users and by the application.

1. Clicking a label selects all of the cells in the row or column, including the label.



126 Part I ■ Using JClass LiveTable

Adding to the current selection requires the use of addRowSelection(), 
addColumnSelection(), or addSelection(). 

An application can add a selection to the selected cell list by adding the new range to the 
SelectedCells Collection, as shown by the following code fragment:

Collection col = table.getSelectedCells();
col.add(new JCCellRange(1, 1, 3, 3));

6.4.6 Removing Selections

To remove all selections from the table, call clearSelection().

6.4.7 Runtime Selection Control

You can use JCSelectListener (registered with 
addSelectListener(JCSelectListener)) to control interactive cell selection at each 
stage, on a case-by-case basis. JCSelectEvent has a number of methods and properties, 
enabling the programmer to modify the JCSelectEvent. The getAction() method 
retrieves one of the following to determine how the cell was selected: 

■ SELECT – selects the cell if SelectionPolicy is not SELECT_NONE.

■ EXTEND – extends the selected region to include cell if SelectionPolicy is 
SELECT_RANGE or SELECT_MULTIRANGE.

■ ADD – selects the cell if SelectionPolicy is to SELECT_MULTIRANGE.

■ END – finishes a selection.

■ DESELECT – cancels the cell selection.

The setCancelled() method determines whether the selection (or unselection) should be 
allowed (default is false). The Row and Column properties set or retrieve the respective 
value of the row or column being selected or unselected. 

JCSelectListener is called before selection begins (beforeSelect(JCSelectEvent)), 
after the user’s selection is complete (select(JCSelectEvent)) and after all listeners have 
been notified that the selection is complete (afterSelect(JCSelectEvent)). 

6.5   Dragging Rows and Columns

You can configure your JClass LiveTable program to allow users to drag rows and 
columns to a new position in the table. This feature is implemented using the RowTrigger 
and ColumnTrigger properties to specify a key-mouse-click combination for dragging a 
row or column by its label. For example, you can specify that when a user holds the Shift 
key and clicks on a row label, the user can drag that row to another location in the table. 
When dragging is enabled, the mouse pointer turns into a hand to indicate that the row or 
column can be dragged.



Outliner

Chapter 6 ■ Programming User Interactivity 127

To enable users to drag rows and columns by holding down the Shift key and clicking on 
row or column labels, first call addAction(), with which you define the action’s initiation, 
as well as the action itself. 

Here is a code snippet showing the addAction() method in use:

// Action for dragging columns
table.addAction(new TableAction(ini, JCTableEnum.COLUMN_DRAG_ACTION));
// Action for dragging rows
table.addAction(new TableAction(ini, JCTableEnum.ROW_DRAG_ACTION));

For dragging, the settings for TableAction are JCTableEnum.COLUMN_DRAG_ACTION and 
JCTableEnum.ROW_DRAG_ACTION. 

Dragging a row or column affects only the data view. It does not change the data source. 

6.6   Sorting Columns

You can easily program your JClass LiveTable applications and applets to allow users to 
sort columns in the table. Sorting columns rearranges the rows in the table display, but 
does not affect the data source of the table. By default, sort behavior does not sort frozen 
rows set with the setFrozenRows() method (see ‘Freezing’ Rows and Columns, in 
Chapter 2).

The sortByColumn() method compares objects based on the type of data found in the 
data source. As such, in some cases, sorting results may vary. For example, using 
sortByColumn(0, Sort.ASCENDING), where the data used for column 1 are Strings, the 
String “14” will be considered greater than “110.” However, if these same numerical 
values are represented as integers, 110 will be greater than 14.

Sorting a single column
To sort a single column in the data view, call the sortByColumn() method, specifying the 
column number to sort, and the direction (Sort.ASCENDING or Sort.DESCENDING):

sortByColumn(2, Sort.DESCENDING);

You can specify that only a particular range of rows is sorted using this variation on the 
sortByColumn() method with the following construction:

table.sortByColumn(int col,
                   int direction,
                   int start_row,
                   int end_row)

The following code sorts rows 2 to 18 in column 2 in descending order.

sortByColumn(1, Sort.DESCENDING, 1, 17);



128 Part I ■ Using JClass LiveTable

Sorting Based on Multiple Columns
You can sort columns based on the values of cells in more than one column using the 
following method construction:

table.sortByColumn(int col[],
                   int direction[])

This method requires that you specify an array of columns on which to base the sorting, 
and an array of directions in which to sort the columns. 

When the sort begins, the rows are sorted based on the first column in the array. If two or 
more rows contain the same value at the first column, the second column in the array is 
used to sort the identical values. This process continues until there are no duplicate values 
in a column, or until the end of the column array is reached.

Consider the following example:

To sort based on the cell values in columns 0, 1, and 3, use the following code:

int [] columns = {0, 1, 3};
int [] direction = {Sort.ASCENDING, Sort.ASCENDING, Sort.ASCENDING};
table.sortByColumn(columns, direction);

In this case, the sort is first based on the data in the rows in column 0. Since column 0 
contains two cells with values ‘A’ (Rows 0 and 4), the sort moves to the next column (1) in 
the array to determine how to sort the two ‘A’ rows. Row 0 at Column 1 has a value of 20 
and Row 4 at Column 1 has a value of 10. Since these are sorted in ascending order, the 
outcome of the sort is:

Column 0 Column 1 Column 2 Column 3

Row 0 A 20 Z 2

Row 1 G 7 A 4

Row 2 Z 8 B 5

Row 3 B 11 Z 4

Row 4 A 10 C 1

Column 0 Column 1 Column 2 Column 3

Row 4 A 10 C 1

Row 0 A 20 Z 2

Row 3 B 11 Z 4



Outliner

Chapter 6 ■ Programming User Interactivity 129

If there had been duplicate values in column 1, these would have been sorted based on 
the values in the third column in the array (3).

You can also specify that the sorting operation affect a given range of rows using the 
following method:

table.sortByColumn(int col[],
                 int direction[],
                 int start_row,
                 int end_row)

To sort the example above from row 2 to row 4, use the following code:

int [] columns = {0, 1, 3};
int [] direction = {Sort.ASCENDING, Sort.ASCENDING, Sort.ASCENDING};
table.SortByColumn(columns, direction, 2, 4);

6.6.1 Sort by Clicking on a Column Label

With JClass LiveTable you can easily configure your table to sort columns based on a 
key-mouse-click combination on the column’s label. For example, you can specify that 
when a user holds the Ctrl key and clicks the column label, that column gets sorted in 
ascending order. 

To enable sorting by clicking, call addAction(), with which you define the action’s 
initiation, as well as the action itself. For dragging, the settings for TableAction are 
JCTableEnum.COLUMN_DRAG_ACTION and JCTableEnum.ROW_DRAG_ACTION.

6.6.2 Resetting the Table after Sorting

To clear all of the changes to the display resulting from column sorting, call the 
resetSortedRows() method, which resets the display to match the data source.

6.7   Custom Mouse Pointers

When tracking the mouse pointer, JClass LiveTable considers the current settings of 
AllowCellResize properties. The getAllowCellResize() method retrieves the table’s 
AllowCellResize value. The setAllowCellResize() method sets how an end-user can 
interactively resize rows/columns; valid values are JCTableEnum.RESIZE_ALL (default), 
JCTableEnum.RESIZE_NONE, JCTableEnum.RESIZE_COLUMN, and JCTableEnum.RESIZE_ROW.

Row 1 G 7 A 4

Row 2 Z 8 B 5

Column 0 Column 1 Column 2 Column 3



130 Part I ■ Using JClass LiveTable

Disabling Pointer Tracking
To use an application-defined mouse pointer over the entire component, set TrackCursor 
to false; JClass LiveTable will not track the position of the mouse over the component. 
By default, TrackCursor is set to true. 



131

7
Events and Listeners

Displaying Cells ■ Editing Cells ■ Painting Tables ■ Printing Tables ■ Resizing Cells

Scrolling in Tables ■ Selecting Cells ■ Sorting Table Data ■ Table Data Changes ■ Traversing Cells

The following sections explain how to generate and receive events in your 
JClass LiveTable programs. 

The descriptions are listed in sets of events and event listeners, with examples of when 
you would use the event and listener, and sample code.

In order to register an event listener in your program, it must implement the listener’s 
interface. 

7.1   Displaying Cells

JCCellDisplayEvent
This event is posted for every cell that is displayed in the table. When you receive a 
JCCellDisplayEvent object, you can call following methods: 

■ getCellData() returns the object to be passed to the renderer of the given cell. 

■ getRow() retrieves the row number of the cell or label displayed.

■ getColumn() retrieves the column number of the cell or label displayed.

■ setDisplayData() lets you change the object that is displayed. 

■ getDisplayData() retrieves the object to be displayed.

A display request from JCTable generates a JCCellDisplayEvent and notifies any 
JCCellDisplayListeners that they can customize the display object by calling 
setDisplayData() on the event. JCTable does not generate the event if there are no 
listeners registered with the table. 

JCCellDisplayListener
To register the above event listener routine, use the following call (where (this) refers to 
the class, which implements the JCCellDisplayListener interface): 

table.addCellDisplayListener(this);



132 Part I ■ Using JClass LiveTable

JCCellDisplayListener requires the following method to be implemented:

public void cellDisplay(JCCellDisplayEvent e)

Calling JCCellDisplayEvent and JCCellDisplayListener methods
JCCellDisplayListener’s method is called before each cell is rendered, and all 
JCCellDisplayEvent methods are available at all times during the display process. For 
more information, please refer to Appendix A, which provides a complete event 
summary. 

Using JCCellDisplay Events and Listeners 
JCCellDisplayListener can be used to format the display String. Changing displayed 
data does not affect either data source values or values passed to editors. As such, 
JCCellDisplayEvent does not provide any mechanism to store the displayed data in the 
data source. The following example (see examples/table/listeners/BooleanDisplay.java) 
displays objects as yes/no. Setting the display object does not have any effect during edit. 

Figure 14 Using JCCellDisplayEvent to display BooleanCellData objects as yes/no Strings.

import com.klg.jclass.table.JCTable;
import com.klg.jclass.table.JCTableEnum;
import com.klg.jclass.table.data.JCEditableVectorDataSource;
import com.klg.jclass.table.JCCellDisplayListener;
import com.klg.jclass.table.JCCellDisplayEvent;
import com.klg.jclass.util.swing.JCExitFrame;
import java.awt.Color;
import java.awt.GridLayout;
import javax.swing.JPanel;

public class BooleanDisplay extends JPanel implements JCCellDisplayListener 
{

// Table instance
protected JCTable table;

// Editable table data source
protected JCEditableVectorDataSource evds;

public BooleanDisplay() {
setBackground(Color.lightGray);

// Create table instance
table = new JCTable();

// Create and set up data source



Outliner

Chapter 7 ■ Events and Listeners 133

evds = new JCEditableVectorDataSource();
evds.setNumRows(2);
evds.setNumColumns(2);
evds.setColumnLabel(0, "Original");
evds.setColumnLabel(1, "Formatted");
// Note that BooleanCellEditor will be automatically chosen by Table
evds.setCell(0, 0, new Boolean(false));
evds.setCell(0, 1, new Boolean(false));
evds.setCell(1, 0, new Boolean(true));
evds.setCell(1, 1, new Boolean(true));

// Connect table data source
table.setDataSource(evds);

// Turn off row labels because they are ugly.
table.setRowLabelDisplay(false);

// Add everything to the panel
setLayout(new GridLayout(1,1));

    add(table);

// Add cell display listener.
table.addCellDisplayListener(this);

}

public void cellDisplay(JCCellDisplayEvent e) {
if(e.getColumn() == 1 && e.getRow() != JCTableEnum.LABEL) {

// Grab displayed data, in this case a boolean
Boolean dd = (Boolean)e.getDisplayData();
if(dd.equals(Boolean.TRUE)) {

e.setDisplayData("yes");
}
else {

e.setDisplayData("no");
}

}
}

public static void main(String args[]) {
JCExitFrame frame = new JCExitFrame("BooleanDisplay");
BooleanDisplay bd = new BooleanDisplay();
frame.getContentPane().add(bd);
frame.pack();
frame.setVisible(true);

}
}

7.2   Editing Cells

JCEditCellEvent
This event is posted whenever a user traverses into and edits a cell. When you receive a 
JCEditCellEvent object, you can call the following methods: 



134 Part I ■ Using JClass LiveTable

■ getRow() – retrieves the row number of the cell that is being edited. 

■ getColumn() – retrieves the column number of the cell that is being edited. 

■ getType() – retrieves the type of edit event, where valid types are BEFORE_EDIT_CELL, 
EDIT_CELL, and AFTER_EDIT_CELL.

■ getEditingComponent() – returns the editing component.

■ isCancelled() – retrieves the cancelled value.

■ setCancelled() – determines whether to allow an edit.

JCEditCellListener
To register the above event listener routine, use the following call (where (this) refers to 
the class, which implements the JCEditCellListener interface): 

table.addEditCellListener(this);

JCEditCellListener requires the following methods to be implemented:

public void beforeEditCell(JCEnterCellEvent e)
public void editCell(JCEnterCellEvent e)
public void afterEditCell(JCEnterCellEvent e)

Calling JCCellDisplayEvent and JCCellDisplayListener methods
JCEditCellListener’s beforeEditCell() method is used before any cell edits by the 
user occur. This is the only time an edit can be cancelled. editCell() is used when the 
editor is displayed to the user, and at this point, you cannot cancel the edit.

Once the user’s edit action has been completed, afterEditCell() is used, committing the 
final changes on your part. For more information, please refer to Appendix A, which 
provides a complete event summary. 

Using JCEditCell Events and Listeners
The following example (see examples/table/listeners/EditCell.java) displays a status comment 
whenever a user edits a cell. 

import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;
import com.klg.jclass.table.JCTable;
import com.klg.jclass.table.JCEditCellListener;
import com.klg.jclass.table.JCEditCellEvent;
import com.klg.jclass.table.data.JCEditableVectorDataSource;
import com.klg.jclass.util.swing.JCExitFrame;
import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Component;

public class EditCell extends JPanel implements JCEditCellListener {

// Table instance
protected JCTable table;



Outliner

Chapter 7 ■ Events and Listeners 135

// Editable data source for table
protected JCEditableVectorDataSource evds;

// Label to track table column #
protected JLabel message;

// Messages to appear in the JLabel.
protected String messages[] = {

"This is the first column",
"This is the second column",
"This is the third column",
"This is the forth column" };

public EditCell() {
setBackground(Color.lightGray);

// Create table instance
table = new JCTable();

// Create and set up data source
evds = new JCEditableVectorDataSource();
evds.setNumRows(10);
evds.setNumColumns(4);
evds.setColumnLabel(0, "First");
evds.setColumnLabel(1, "Second");
evds.setColumnLabel(2, "Third");
evds.setColumnLabel(3, "Forth");
for(int r = 0; r < evds.getNumRows(); r++)

for(int c = 0; c < evds.getNumColumns(); c++)
evds.setCell(r, c, "R"+r+"C"+c);

// Connect table data source
table.setDataSource(evds);

// Turn off row labels because they are ugly
table.setRowLabelDisplay(false);

// Add everything to the panel
this.setLayout(new BorderLayout());
this.add("North", table);
this.add("South", message = new JLabel());

// Add cell Edit event listener
table.addEditCellListener(this);

}

public void beforeEditCell(JCEditCellEvent event) {
message.setText(messages[event.getColumn()]);

}

public void editCell(JCEditCellEvent event) {
// get the editing component and select all of the text if it
// is a JTextField component
Component c = event.getEditingComponent();
if(c instanceof JTextField) {

((JTextField)c).selectAll();



136 Part I ■ Using JClass LiveTable

}
}
public void afterEditCell(JCEditCellEvent event) {
}

public static void main(String args[]) {
JCExitFrame frame = new JCExitFrame("EditCell");

    EditCell ec = new EditCell();
frame.getContentPane().add(ec);
frame.pack();
frame.setVisible(true);

}
}

7.3   Painting Tables

JCPaintEvent
This event is posted before and after a portion of the table is painted. When you receive a 
JCPaintEvent object, you can call the following methods: 

■ getStartRow() – retrieves the start row of the repainted region. 

■ getStartColumn() – retrieves the start column of the repainted region. 

■ getEndRow() – retrieves the end row of the repainted region. 

■ getEndColumn() – retrieves the end column of the repainted region. 

■ getType() – retrieves the paint event type, where valid types are BEFORE_PAINT and 
AFTER_PAINT. 

■ getCellRange() – returns a JCCellRange containing the painted area. 

JCPaintListener
To register the above event listener routine, use the following call (where (this) refers to 
the class, which implements the JCPaintListener interface): 

table.addPaintListener(this);

JCPaintListener requires the following methods to be implemented:

public void beforePaint(JCPaintEvent e)
public void afterPaint(JCPaintEvent e)

Calling JCPaintEvent and JCPaintListener Methods
JCPaintListener’s methods, beforePaint() and afterPaint(), can call JCPaintEvent 
methods at any time, as you are not able to interrupt the cell painting process. For more 
information, please refer to Appendix A, which provides a complete event summary.

Using JCPaint Events and Listeners
JCPaintListener allows you to monitor the repainting of table cells. Labels, frozen cells, 
and scrollable cells are painted independently. 



Outliner

Chapter 7 ■ Events and Listeners 137

7.4   Printing Tables

JCPrintEvent
This event is posted when your table is printed. When you receive a JCPrintEvent 
object, you can call the following methods: 

■ getGraphics() – retrieves the current graphics object. 

■ getPage() – retrieves the page number. 

■ getPageDimensions() – retrieves the page dimensions.

■ getPageMargins() – retrieves the page margins. 

■ getPageResolution() – retrieves the page dpi resolution.

■ getMarginUnits() – retrieves the margin units (pixels or inches).

■ getNumPages() – retrieves the total number of pages (handy for page x of x footers).

■ getNumHorizontalPages() – retrieves the number of pages needed to print all of the 
columns in the table.

■ getNumVerticalPages() – retrieves the number of pages needed to print all of the rows 
in the table.

■ getTableDimensions() – retrieves the dimension needed to print the table on the 
current page. 

■ getType() – retrieves the print event type, where valid types are PRINT_HEADER, 
PRINT_BODY, and PRINT_FOOTER.

JCPrintListener
To register the above event listener routine, use the following call (where (this) refers to 
the class, which implements the JCPrintListener interface): 

table.addPrintListener(this);

JCPrintListener requires the following methods to be implemented:

public void printPageHeader(JCPrintEvent e)
public void printPageFooter(JCPrintEvent e)
public void printPageBody(JCPrintEvent e)

Using JCPrint Events and Listeners
JCPrintListener allows you to customize the header and footer regions for each page of 
the printout. Table Printing, in Chapter 8, has details and examples for using the 
JCPrintListener. 



138 Part I ■ Using JClass LiveTable

7.5   Resizing Cells

JCResizeCellEvent
This event is posted when a cell or label is resized. When you receive a 
JCResizeCellEvent object, you can call the following methods: 

■ getRow() – retrieves the row being resized. Returns JCTableEnum.NOVALUE if only a 
column is being resized. 

■ getColumn() – retrieves the column being resized. Returns JCTableEnum.NOVALUE if 
only a row is being resized. 

■ getCurrentRowHeight() – retrieves the current row height. Returns 
JCTblEnum.NOVALUE if only a column is being resized. 

■ getCurrentColumnWidth() – retrieves the current column width. Returns 
JCTblEnum.NOVALUE if only a row is being resized. 

■ getType() – retrieves the type where valid types are BEFORE_RESIZE, RESIZE, 
RESIZE_DRAG and AFTER_RESIZE. 

■ getNewRowHeight() – retrieves the new row height. Returns JCTableEnum.NOVALUE if 
only a column is being resized. 

■ setNewRowHeight() – sets the new row height. 

■ getNewColumnWidth() – retrieves the new column width. Returns 
JCTblEnum.NOVALUE if only a row is being resized. 

■ setNewColumnWidth() – sets the new column width. 

■ isCancelled() – retrieves the cancelled value. 

■ setCancelled() – determines whether to allow an interactive resize. 

JCResizeCellListener
To register the above event listener routine, use the following call (where (this) refers to 
the class, which implements the JCResizeCellListener interface): 

table.addResizeCellListener(this);

JCResizeCellListener requires the following methods to be implemented:

public void beforeResizeCell(JCResizeCellEvent e)
public void resizeCell(JCResizeCellEvent e)
public void afterResizeCell(JCResizeCellEvent e)

JCResizeCellMotionListener
To register the above event listener routine, use the following call (where (this) refers to 
the class, which implements the JCResizeCellMotionListener interface): 

table.addResizeCellMotionListener(this);

JCResizeCellMotionListener requires the following methods to be implemented:

public void resizeCellDragged(JCResizeCellEvent e)



Outliner

Chapter 7 ■ Events and Listeners 139

Calling JCResizeCellEvent and JCResizeCellListener Methods
JCResizeCellListener’s beforeResizeCell() method is called once cell resizing begins, 
and allows the opportunity to programmatically cancel the resize. resizeCell() is called 
once the user releases the mouse button, and the resize is complete from their 
perspective. Programmatically, you can cancel the resize, or set new column widths or 
row heights if the cell resize dimension is invalid, or outside the boundaries of predefined 
maximum/minimum cell sizes. 

Once the resize values have been set, afterResizeCell() is used, committing the final 
resize changes. For more information, please refer to Appendix A, which provides a 
complete event summary.

Using JCResizeCell Events and Listeners
JCResizeCellListener allows you to customize how table resizes on a per-cell basis. The 
following example (see examples/table/listeners/ResizeCell.java) restricts resize so that row 
labels cannot be resized and no cell can be less than 100 pixels or greater than 200 pixels. 

import com.klg.jclass.table.JCTable;
import com.klg.jclass.table.JCTableEnum;
import com.klg.jclass.table.data.JCEditableVectorDataSource;
import com.klg.jclass.table.JCResizeCellListener;
import com.klg.jclass.table.JCResizeCellMotionListener;
import com.klg.jclass.table.JCResizeCellEvent;
import com.klg.jclass.util.swing.JCExitFrame;
import java.awt.Color;
import java.awt.GridLayout;
import javax.swing.JPanel;

public class ResizeCell extends JPanel implements JCResizeCellListener, 
JCResizeCellMotionListener {

// Table instance
protected JCTable table;

// Editable table data source
protected JCEditableVectorDataSource evds;

public ResizeCell() {
setBackground(Color.lightGray);

// Create table instance
table = new JCTable();

// Create and set up data source
evds = new JCEditableVectorDataSource();
evds.setNumRows(100);
evds.setNumColumns(2);

evds.setColumnLabel(0, "End-Point");
evds.setColumnLabel(1, "Drag");

for(int r = 0; r < evds.getNumRows(); r++) {
evds.setRowLabel(r, "Row: "+r);



140 Part I ■ Using JClass LiveTable

for(int c = 0; c < evds.getNumColumns(); c++) 
evds.setCell(r,c,"Cell: R"+r+"C"+c);

}
// Connect table data source
table.setDataSource(evds);

// Add everything to the panel
this.setLayout(new GridLayout(1,1));
this.add(table);

// Add resize cell listener
table.addResizeCellListener(this);
// Add resize cell motion listener
table.addResizeCellMotionListener(this);

}

public void beforeResizeCell(JCResizeCellEvent event) {
if (event.getColumn() == JCTableEnum.LABEL) {

event.setCancelled(true);
return;

}
}

public void resizeCell(JCResizeCellEvent event) {
// Width must be between 100 and 200
int width = event.getNewColumnWidth();
if (width < 100) {

event.setNewColumnWidth(100);
}
else if (width > 200) {

event.setNewColumnWidth(200);
}

// Height must be between 30 and 70
int height = event.getNewRowHeight();
if (height != JCTableEnum.NOVALUE && height < 30) {

event.setNewRowHeight(30);
}
else if (height > 70) {

event.setNewRowHeight(70);
}

}

public void afterResizeCell(JCResizeCellEvent event) {
}

public void resizeCellDragged(JCResizeCellEvent event) {
// restrict the range of motion for column 1 to 100 to 200
if(event.getColumn() == 1) {

int width = event.getNewColumnWidth();
if(width < 100) {

event.setNewColumnWidth(100);
}
else if(width > 200) {

event.setNewColumnWidth(200);
}



Outliner

Chapter 7 ■ Events and Listeners 141

}
}

public static void main(String args[]) {
JCExitFrame frame = new JCExitFrame("ResizeCell");
ResizeCell rc = new ResizeCell();
frame.getContentPane().add(rc);
frame.pack();
frame.setSize(600, 400);
frame.setVisible(true);

}
}

7.6   Scrolling in Tables

JCScrollEvent
This event is posted when the table is scrolled by either the user or the application. When 
you receive a JCScrollListener object, you can call the following methods: 

■ getAdjustable() – retrieves the affected adjustable object.

■ getDirection() – retrieves the scrolling direction (either Adjustable.HORIZONTAL or 
Adjustable.VERTICAL).

■ getEvent() – retrieves the event that initiated the action.

■ getType() – retrieves the scroll event type, where valid types are 
JCScrollEvent.SCROLL and JCScrollEvent.AFTER_SCROLL.

■ getValue() – retrieves the scrollbar’s current value.

■ setValue() – sets the scrollbar’s current value.

The JCScrollListener (registered with addScrollListener(JCScrollListener)) allows 
you to define a procedure to be called when the table scrolls; this is useful if your 
application is drawing into the table. The method is sent an instance of JCScrollEvent.

JCScrollListener
To register the above event listener routine, use the following call (where (this) refers to 
the class, which implements the JCScrollListener interface):

    table.addScrollListener(this);

JCScrollListener requires the following methods to be implemented:

    public void scroll(JCScrollEvent e)
    public void afterScroll(JCScrollEvent e)

Calling JCScrollEvent and JCScrollListener Methods
JCScrollListener’s scroll() method is invoked when the user begins to scroll, during 
which all JCScrollEvent methods are available. afterScroll() is called when the user 



142 Part I ■ Using JClass LiveTable

has finished scrolling. For more information, please refer to Appendix A, which provides 
a complete event summary.

Using JCScroll Events and Listeners
JCScrollListener allows you to synchronize table scrolling with another object. The 
following example (see examples/table/listeners/TwoTables.java) links two tables together with 
one scrollbar. This example uses two tables inside another table to simulate a splitter 
window.

Figure 15 Example using JCScrollListener to synchronize scrolling between two tables.

import com.klg.jclass.table.JCTable;
import com.klg.jclass.table.JCTableEnum;
import com.klg.jclass.table.data.JCVectorDataSource;
import com.klg.jclass.table.data.JCEditableVectorDataSource;
import com.klg.jclass.table.JCScrollListener;
import com.klg.jclass.table.JCScrollEvent;
import com.klg.jclass.util.swing.JCExitFrame;
import java.awt.Color;
import java.awt.GridLayout;
import java.awt.Adjustable;
import java.awt.Component;
import java.awt.Scrollbar;
import javax.swing.JPanel;

public class TwoTables extends JPanel implements JCScrollListener {

// First table 
protected JCTable table1;

// Second table
protected JCTable table2;

// Common data source
protected JCEditableVectorDataSource evds1;

// Local variable used to avoid infinite loops in
// scroll event handler
protected boolean forcedScroll = false;



Outliner

Chapter 7 ■ Events and Listeners 143

public TwoTables() {
setBackground(Color.lightGray);

// Create first table
table1 = new JCTable();

// Create and set up data source for first table
evds1 = new JCEditableVectorDataSource();
evds1.setNumRows(100);
evds1.setNumColumns(6);

for (int c = 0; c < evds1.getNumColumns(); c++)
evds1.setColumnLabel(c, "C"+c);

for (int r = 0; r < evds1.getNumRows(); r++) {
evds1.setRowLabel(r, "R"+r);
for (int c = 0; c < evds1.getNumColumns(); c++)

evds1.setCell(r,c,"R"+r+"C"+c);
}

// Connect data source to first table.
table1.setDataSource(evds1);

// Set up visuals and interactions for table 1.
table1.setAllowCellResize(JCTableEnum.RESIZE_NONE);
table1.setHorizSBDisplay(JCTableEnum.SBDISPLAY_NEVER);
table1.getDefaultCellStyle().setTraversable(false);
table1.setVisibleRows(2);
table1.setVisibleColumns(3);

// Create second table
table2 = new JCTable();

// Connect second table to same data source as first table.
table2.setDataSource(evds1);

// Set up visuals and interactions for table 2.
table2.setAllowCellResize(JCTableEnum.RESIZE_NONE);
table2.setColumnLabelDisplay(false);
table2.setTopRow(2);
table2.getDefaultCellStyle().setTraversable(false);
table2.setVisibleRows(5);
table2.setVisibleColumns(3);

// Add to panel
setLayout(new GridLayout(2,1));
add(table1);
add(table2);

// Add scroll listeners for both tables
table1.addScrollListener(this);
table2.addScrollListener(this);

}

public void scroll(JCScrollEvent event) {



144 Part I ■ Using JClass LiveTable

// use forcedScroll to prevent an infinite loop, since
// calling setValue() on the scrollbar will generate another
// event.
if (event.getDirection() == Scrollbar.HORIZONTAL) {

if (forcedScroll == false) {
// Scroll event not forced by this method, okay
// to continue

// Grab adjustable object
Adjustable adj = event.getAdjustable();
// We need for it to be a component. Should be - 
// scroll events come from LiveTable's scrollbar
if (adj != null && adj instanceof Component) {

Component c = (Component)adj;
if (c.getParent() == table2) {

// If table 2 scrolled, synchronize table 2
forcedScroll = true;
table1.getHorizSB().setValue(event.getValue());

}
else if (c.getParent() == table1) {

// If table 1 scrolled, synchronize table 2
forcedScroll = true;
table2.getHorizSB().setValue(event.getValue());

}
}

} else {
forcedScroll = false;

}
}

}

public void afterScroll(JCScrollEvent event) {
}

public static void main(String args[]) {
JCExitFrame frame = new JCExitFrame("TwoTables");
TwoTables tt = new TwoTables();
frame.getContentPane().add(tt);
frame.pack();
frame.setVisible(true);

}

}

7.7   Selecting Cells
This event is posted when the user selects cells, or cells are selected programmatically. 
When you receive a JCSelectEvent object, you can call the following methods: 

■ getType() – returns the type of selection event, where valid types are 
BEFORE_SELECTION, SELECTION, and AFTER_SELECTION.

■ getStartRow() – retrieves the start row of the selected or deselected cell range.



Outliner

Chapter 7 ■ Events and Listeners 145

■ getStartColumn() – retrieves the start column of the selected or deselected cell 
range.

■ getEndRow() – retrieves the end row of the selected or deselected cell range.

■ getEndColumn() – retrieves the end column of the selected or deselected cell range.

■ isCancelled() – returns true if any listener has rejected the selection. 

■ setCancelled() – determines if selection is allowed. 

■ getAction() – returns the type of selection action, where valid types are SELECT, ADD, 
EXTEND, DESELECT, and END.

■ getActionString() – returns a String representation of the action.

JCSelectListener
To register the above event listener routine, use the following call (where (this) refers to 
the class, which implements the JCSelectListener interface):

    table.addSelectListener(this);

JCSelectListener requires the following methods to be implemented:

public void beforeSelect(JCSelectEvent e)
public void select(JCSelectEvent e)
public void afterSelect(JCSelectEvent e)

Calling JCSelectEvent and JCSelectListener Methods
JCSelectListener’s methods are called when the user begins cell selection in a table. 
beforeSelect() is invoked when the user selects or deselects a cell, and all 
JCSelectEvent methods are available. For example, it is possible to cancel a selection in 
beforeSelect() by calling setCancelled(true).

The select() and afterSelect() methods are called during and after the selection 
process, meaning that at that point, the cell is now visually selected from the user’s 
perspective. For more information, please refer to Appendix A, which provides a 
complete event summary.

Using JCSelect Events and Listeners
JCSelectListener allows you to monitor scrolling actions in your table, either before or 
after the scrolling event. The following example (see 
examples/table/listeners/SelectListener.java) demonstrates the use of JCSelectListener 
notifications to cancel out cell selection. 

import java.awt.Color;
import java.awt.GridLayout;
import java.applet.Applet;
import javax.swing.JPanel;
import com.klg.jclass.table.JCTable;
import com.klg.jclass.table.JCSelectListener;
import com.klg.jclass.table.JCSelectEvent;
import com.klg.jclass.table.JCTableEnum;
import com.klg.jclass.table.data.JCVectorDataSource;



146 Part I ■ Using JClass LiveTable

import com.klg.jclass.util.swing.JCExitFrame;

public class SelectListener extends JPanel implements JCSelectListener {
// Table instance
protected JCTable table;

// Table data source
protected JCVectorDataSource ds;

public SelectListener() {
setBackground(Color.lightGray);

// Create table instance
table = new JCTable();

// Create and set up data source
ds = new JCVectorDataSource();
ds.setNumRows(10);
ds.setNumColumns(4);

for(int c = 0; c < ds.getNumColumns(); c++)
ds.setColumnLabel(c, "Column: "+c);

ds.setColumnLabel(1, "Non Selectable Column");
for(int r = 0; r < ds.getNumRows(); r++) {

ds.setRowLabel(r, "Row: "+r);
for(int c = 0; c < ds.getNumColumns(); c++)

ds.setCell(r,c,"Cell: R"+r+"C"+c);
}

// Connect table data source
table.setDataSource(ds);

    table.setSelectionPolicy(JCTableEnum.SELECT_RANGE);

// Add everything to the panel
setLayout(new GridLayout(1,1));
add(table);

table.addSelectListener(this);
}

public void beforeSelect(JCSelectEvent e) {
    if (e.getStartColumn() == 1) {
        e.setCancelled(true);
        System.out.println("We don't want selection starting from this 
column");
        return;
    }
    System.out.println("beforeSelect: startRow="+e.getStartRow()+
        ", startColumn="+e.getStartColumn());
}

public void select(JCSelectEvent e) {
    if (e.getAction() == JCSelectEvent.EXTEND &&
            Math.abs(e.getStartRow()-e.getEndRow())>1) {
        e.setCancelled(true);



Outliner

Chapter 7 ■ Events and Listeners 147

        System.out.println("We don't want selection extending for more than 
2 rows");
        return;
    }
    System.out.println("select: startRow="+e.getStartRow()+
        ", startColumn="+e.getStartColumn()+", endRow="+e.getEndRow()+
        ", endColumn="+e.getEndColumn());
}

public void afterSelect(JCSelectEvent e) {
    System.out.println("afterSelect: startRow="+e.getStartRow()+
        ", startColumn="+e.getStartColumn()+", endRow="+e.getEndRow()+
        ", endColumn="+e.getEndColumn());
}

public static void main(String args[]) {
JCExitFrame frame = new JCExitFrame("SelectListener");
SelectListener sn = new SelectListener();
frame.getContentPane().add(sn);
frame.pack();
frame.setSize(600, 150);
frame.setVisible(true);

}
}

7.8   Sorting Table Data

JCSortEvent
This event is posted when the table is sorted. When you receive a JCSortEvent object, 
you can call the following methods: 

■ getColumns() – retrieves an array of column indices that were sorted. 

■ getNewRows() – retrieves the newly sorted order. 

JCSortListener
To register the above event listener routine, use the following call (where (this) refers to 
the class, which implements the JCSortListener interface): 

table.addSortListener(this);

JCSortListener requires the following method to be implemented:

public void sort(JCSortEvent e)

Using JCSort Events and Listeners
JCSortListener allows you to synchronize the sorted rows with another object (or to sort 
the data source). The following example (see examples/table/listeners/Sorter.java) uses the 
row sort array to pull out the top value.



148 Part I ■ Using JClass LiveTable

Figure 16 Sorter.java, illustrating how to use JCSort Events and Listeners.

import javax.swing.JLabel;
import com.klg.jclass.table.JCTable;
import com.klg.jclass.table.JCTableEnum;
import com.klg.jclass.table.data.JCEditableVectorDataSource;
import com.klg.jclass.table.JCSortListener;
import com.klg.jclass.table.JCSortEvent;
import com.klg.jclass.table.MouseActionInitiator;
import com.klg.jclass.util.swing.JCExitFrame;
import java.awt.Color;
import java.awt.event.InputEvent;
import java.awt.BorderLayout;
import javax.swing.JPanel;

public class Sorter extends JPanel implements JCSortListener {

// Table instance
protected JCTable table;

// Table data source
protected JCEditableVectorDataSource ds;

// Label that will display column top value
protected JLabel topItem;

public Sorter() {
setBackground(Color.lightGray);

// Create table instance
table = new JCTable();

// Create and set up data source
ds = new JCEditableVectorDataSource();
ds.setNumRows(5);
ds.setNumColumns(2);

// Column labels
ds.setColumnLabel(0, "INTEGER");
ds.setColumnLabel(1, "STRING");

// Populate data source with generated data.
int numrows = ds.getNumRows();
for(int r = 0; r < numrows; r++) {



Outliner

Chapter 7 ■ Events and Listeners 149

ds.setCell(r, 0, new Integer(r+8));
ds.setCell(r, 1, "" + (r+8));

}

// Connect table data source
table.setDataSource(ds);

// Turn off row labels because they are ugly.
table.setRowLabelDisplay(false);

// Allow column sorting using a shift-click combination
table.addAction(new 

MouseActionInitiator(MouseActionInitiator.ANY_BUTTON_MASK, 
InputEvent.SHIFT_MASK), 

JCTableEnum.COLUMN_SORT_ACTION);

// Add everything to the panel
setLayout(new BorderLayout());

    add(table, BorderLayout.CENTER);
add(topItem = new JLabel("Shift-click the label to sort numeric or 

string data"),
BorderLayout.SOUTH);

// Add sort listener
table.addSortListener(this);

}

public void sort(JCSortEvent event) {
int columns[] = event.getColumns();
int rows[] = event.getNewRows();
topItem.setText("The first item in the " + 

ds.getTableColumnLabel(columns[0]) + " column is " + 
ds.getTableDataItem(rows[0],columns[0]));

}

public static void main(String args[]) {
JCExitFrame frame = new JCExitFrame("Sorter");
Sorter s = new Sorter();
frame.getContentPane().add(s);
frame.pack();
frame.setVisible(true);

}

}

7.9   Table Data Changes

JCTableDataEvent
Unlike previous events, JCTableDataEvent objects are not thrown by JCTable; instead, 
they come from the table’s data source. This event is posted when the TableDataModel 
object has been modified. When you receive a JCTableDataEvent object, you can call the 
following methods: 



150 Part I ■ Using JClass LiveTable

■ getColumn() – retrieves the column of the current cell. 

■ getRow() – retrieves the row of the current cell. 

■ getNumAffected() – retrieves the number of rows affected by TableDataModel object 
changes. 

■ getDestination() – indicates the destination location for MOVE events.

■ getCommand() – returns the command that initiated the event. Valid commands 
include: 

JCTableDataListener
To register the above event listener routine, use the following call (where (this) refers to 
the class MyClass, which implements the JCTableDataListener interface): 

table.addTableDataListener(this);

JCDataTableListener requires the following method to be implemented:

public void dataChanged(JCTableDataEvent e)

Using JCTableData Events and Listeners
JCTableDataListener allows you to monitor any changes made to the TableDataModel 
object. Valid changes are listed above with the getCommand() method. 

CHANGE_VALUE Single cell value changed.

CHANGE_ROW Single row changed.

ADD_ROW New row added.

REMOVE_ROW Row removed.

CHANGE_COLUMN Single column changed.

ADD_COLUMN New column added.

REMOVE_COLUMN Column removed.

CHANGE_ROW_LABEL Single row label changed.

CHANGE_COLUMN_LABEL Single column label changed.

MOVE_ROW Row moved, new location in getDestination.

MOVE_COLUMN Column moved, new location in getDestination.

NUM_ROWS Number of rows changed.

NUM_COLUMNS Number of columns changed.

RESET Data source significantly changed, should be re-read.



Outliner

Chapter 7 ■ Events and Listeners 151

There are examples included with your JClass LiveTable distribution that demonstrate 
the use of data with a table. See Creating your own Data Sources, in Chapter 3, to see 
descriptions of the included sample code. 

7.10   Traversing Cells

JCTraverseCellEvent
This event is posted when cells in the table are traversed. When you receive a 
JCTraverseCellEvent object, you can call the following methods: 

■ getColumn() – retrieves the column of the current cell. 

■ getNextColumn() – retrieves the targeted column for traversal. 

■ getRow() – retrieves the row of the current cell. 

■ getNextRow() – retrieves the targeted row for traversal. 

■ setNextRow() – sets the row of the cell to which the user will traverse.

■ setNextColumn() – sets the column of the cell to which the user will traverse.

■ getTraverseType() – returns the action that caused the traverse. Valid JCTableEnum 
action values are: TRAVERSE_POINTER, TRAVERSE_DOWN, TRAVERSE_UP, TRAVERSE_LEFT, 
TRAVERSE_RIGHT, TRAVERSE_PAGEUP, TRAVERSE_PAGEDOWN, TRAVERSE_HOME, 
TRAVERSE_END, TRAVERSE_TOP, TRAVERSE_BOTTOM, and TRAVERSE_TO_CELL.

■ getTraverseTypeString() – returns a String value for the traverse type.

■ isCancelled() – retrieves the cancelled value. 

■ setCancelled() – determines whether to allow an interactive resize. 

■ getType() – retrieves valid event types, which are TRAVERSE_CELL and 
AFTER_TRAVERSE_CELL.

■ toString() – returns a String representation of the event.

JCTraverseCellListener
To register the above event listener routine, use the following call (where (this) refers to 
the class, which implements the JCTraverseCellListener interface): 

table.addTraverseCellListener(this);

JCTraverseCellListener requires the following methods to be implemented:

public void traverseCell(JCTraverseCellEvent e)
public void afterTraverseCell(JCTraverseCellEvent e)

Calling JCTraverseCellEvent and JCTraverseCellListener Methods
JCTraverseCellListener’s traverse() method is invoked when the user begins to 
traverse to a neighboring cell. Since this method is called before the actual traversal, all 
JCTraverseCellEvent methods are available. For example, if setCancelled() is called, 



152 Part I ■ Using JClass LiveTable

and is set to true, the cell traversal is cancelled. You can also call methods that permit cell 
skipping during traversal. 

afterTraverseCell() is invoked after valid cell traversal. The setNextRow(), 
setNextColumn(), and setCancelled() methods are unavailable during 
afterTraverseCell(). For more information, please refer to Appendix A, which 
provides a complete event summary.

Using JCTraverse Events and Listeners
JCTraverseCellListener allows you to control how cell traversal occurs in 
JClass LiveTable. The following example (see examples/table/listeners/SkipNavigation.java) 
uses a JCTraverseCellListener to skip the second column if navigating from the first 
column. The column is not skipped if navigating from the third column. 

import com.klg.jclass.table.JCTable;
import com.klg.jclass.table.JCTableEnum;
import com.klg.jclass.table.data.JCVectorDataSource;
import com.klg.jclass.table.JCTraverseCellListener;
import com.klg.jclass.table.JCTraverseCellEvent;
import com.klg.jclass.util.swing.JCExitFrame;
import java.awt.Color;
import java.awt.GridLayout;
import javax.swing.JPanel;

public class SkipNavigation extends JPanel implements 
JCTraverseCellListener {

// Table instance
protected JCTable table;

// Table data source
protected JCVectorDataSource ds;

public SkipNavigation() {
setBackground(Color.lightGray);

// Create table instance
table = new JCTable();

// Create and set up data source
ds = new JCVectorDataSource();
ds.setNumRows(10);
ds.setNumColumns(4);

for(int c = 0; c < ds.getNumColumns(); c++)
ds.setColumnLabel(c, "Column: "+c);

ds.setColumnLabel(1, "Skip from 0 to 2");
for(int r = 0; r < ds.getNumRows(); r++) {

ds.setRowLabel(r, "Row: "+r);
for(int c = 0; c < ds.getNumColumns(); c++)

ds.setCell(r,c,"Cell: R"+r+"C"+c);
}



Outliner

Chapter 7 ■ Events and Listeners 153

// Connect table data source
table.setDataSource(ds);

// Add everything to the panel
setLayout(new GridLayout(1,1));
add(table);

// Add traverse cell listener
table.addTraverseCellListener(this);

}

public void traverseCell(JCTraverseCellEvent event) {
// Skip second column when approaching from the left
if (event.getColumn() == 0 && event.getNextColumn() == 1) {

event.setNextColumn(2);
}

// Skip second column in both directions.
//  if(event.getNextColumn() == 1)
//    event.setNextColumn(1 + event.getNextColumn() - 

event.getColumn());
}

public void afterTraverseCell(JCTraverseCellEvent e) {
}

public static void main(String args[]) {
JCExitFrame frame = new JCExitFrame("SkipNavigation");
SkipNavigation sn = new SkipNavigation();
frame.getContentPane().add(sn);
frame.pack();
frame.setSize(600, 150);
frame.setVisible(true);

}
}



154 Part I ■ Using JClass LiveTable



155

8
Table Printing

Printing ■  Print Preview

Although JClass LiveTable is a grid/table component, it still allows end users to print and 
print–preview table applications. By using the JCPrintTable class, you can control 
layout, formatting, and header/footer information. 

8.1   Printing

The JCPrintTable class offers print functionality in JCTable. The following code creates 
a JCPrintTable and prints JCTable with the default print options: 

JCPrintTable pt = new JCPrintTable(myTable);
pt.print();

Default printed pages consist of:

■ 1” margins

■ no header information

■ a footer message: page x of y

■ all table pages printed (which cannot be changed)

The JCPrintTable class creates a copy of the table’s visible properties and retrieves cell 
contents from the data source. Cell height and width are copied by actual pixel size. 
Scrollbars are not part of the printed table.

Using JCPrintTable offers controls over various aspects of your printed pages.

8.1.1 Setting Page Layout Properties

The JCPrintTable class provides methods for detailed control of print output from a 
JClass LiveTable application or applet.

Page Size
The following methods define printed page sizes in pixels:

setPageDimensions();
setPageWidth();
setPageHeight();



156 Part I ■ Using JClass LiveTable

Use the getPageDimensions(), getPageWidth(), and getPageHeight() methods to 
retrieve page sizes by retrieving page information from the printer. By default, the 
standard A4 page (8½” x 11”) is used.

Page Margins
Page margins are set using the setPageMargins() method. This method uses the 
java.awt.Insets class to set the margins as in the following example:

printtable.setPageMargins(new Insets(54,36,36,54));

By default, using the Insets object to respectively specify top, left, bottom and right insets 
will set the margins in pixels. To specify margin units in inches, use the variable 
MARGIN_IN_INCHES in the getMarginUnits() method:

setMarginUnits(JCPrintTable.MARGIN_IN_INCHES);

You can retrieve page margins based on the Insets of the page using the 
getPageMargins() method. Use the getDefaultPageMargins() to retrieve the default 
Insets.

Page Numbering
To control page numbering, use getNumHorizontalPages() and getNumVerticalPages() 
to determine the number of pages across and down. Use getNumPages() to determine the 
total number of pages required to print the table, based on how you have defined the 
page and margin sizes.

8.1.2 Page Resolution

Use the getPageResolution() method to get the printer page resolution. The default is 72 
pixels per inch. Use setPageResolution() to set the printer page resolution.

8.1.3 Printing Headers and Footers

Headers and footers are applied using JCPrintListener receiving JCPrintEvent events. 
A JCPrintEvent is posted for each page during printing, and provides a graphic object 
clipped to the allowable paint region, the page number of the current page, and the total 
number of pages:

public JCPrintEvent
(Table table, Graphics gc, int page, intnumPages, int Type);

public Graphics getGraphics();
public Insets getPageMargins();
public int getMarginUnits();
public int getNumHorizontalPages();
public int getNumPages();
public int getNumVerticalPages();
public int getPage();
public Dimension getPageDimensions();
public int getPageResolution();
public Dimension getTableDimensions();



Outliner

Chapter 8 ■ Table Printing 157

getTableDimensions() can be used in the printPageBody() method of 
JCPrintListener() to determine the size the table occupies on the page.

The JCPrintListener requires that three methods are defined: 

public void printPageHeader(JCPrintEvent e);
public void printPageFooter(JCPrintEvent e);
public void printPageBody(JCPrintEvent e);

The printPageBody method is called after JClass LiveTable has finished setting up the 
print of the page body, but just before it is actually sent to the printer.

The following code produces the footer illustrated below:

public void printPageFooter(JCPrintEvent e) {
Graphics gc = e.getGraphics();
Rectangle r = gc.getClipRect();

FontMetrics fm = gc.getFontMetrics();

String page = "Page " + e.getPage();
String note = "Use JCPrintListener to customize the footer!";

// Pad the footer text to the right
gc.drawString(page, 0, r.height/2);
gc.drawString(note, r.width - fm.stringWidth(note), r.height/2);

}

Figure 17 A Page Footer.

If you don’t register a JCPrintListener for the table, the print engine will default to 
printing a centered footer containing the text Page x, where x is the page number. If you 
do register a JCPrintListener, however, then you are responsible for the placing the 
page number either in the header or footer of the page.

8.2   Print Preview

Using JCPrintPreview
JClass LiveTable provides a class that displays a preview of the print job in a separate 
frame. Using the print preview frame, end–users can flip through the pages of the print 
job, and send the current page or all of the pages to the printer.

To add the print preview functionality, use JCPrintPreview:

JCPrintPreview(String title, JCPrintTable table)
showPage(int page)



158 Part I ■ Using JClass LiveTable

For example, the following provides a preview beginning at the first page of the job:

JCPrintPreview pf = new JCPrintPreview("Table Print 
Preview",printtable);

pf.showPage(0);

Using JCPrintTable
Alternatively, to allow users to preview a print job, you can use JCPrintTable’s 
showPrintPreview() method. 

An example of print preview exists in the PrimeTime.java demo, located in the 
demos/table/primetime directory.

 

Figure 18 The JClass LiveTable Print Preview Window.



159

9
JClass LiveTable Beans and IDEs

An Introduction to JavaBeans ■ JClass LiveTable and JavaBeans

Setting Properties for the LiveTable Bean ■ Tutorial: Building a Table in an IDE

Data Binding with IDEs ■ Interacting with Data Bound Tables

Property Differences Between the JClass LiveTable Beans

JClass LiveTable complies with the JavaBeans specification and includes several Beans 
that make it easy to create JClass LiveTable applications in an Integrated Development 
Environment (IDE). The following sections outline some principles of JavaBeans, and 
provide information about using JClass LiveTable in an IDE. All illustrations display the 
BeanBox, JavaSoft’s test container for Beans included in the Beans Development Kit 
(BDK).

9.1   An Introduction to JavaBeans

Introduced in JDK 1.1, JavaBeans is a specification for reusable, pre-built Java software 
components. It is designed to be a fully platform-independent component model written 
for the Java programming language. The JavaBeans specification (available at 
http://java.sun.com/beans/index.html) enables developers to write components that can be 
combined in applications, reducing the total time needed to write entire applications. 

The three main features of a Bean are: 

■ the set of properties it exposes

■ the set of methods it allows other components to call

■ and the set of events it fires

9.1.1 Properties

Under the JavaBeans model, properties are public attributes that affect a Bean’s appearance 
or behavior. Properties can be read only, read/write, or write only. Properties that are 
readable have a get method which enables you to retrieve the property’s value, and those 
properties which are writable have a set method which allows you to change their values.

http://java.sun.com/beans/index.html


160 Part I ■ Using JClass LiveTable

For example, JClass LiveTable has a property called FrameBorderType. This property 
specifies the kind of border displayed around the table. To set the property value, use the 
setFrameBorderType() method. To obtain the property value, use the 
getFrameBorderType() method.

The main advantage of following the JavaBeans specification is that it makes it easy for a 
Java IDE to “discover” the set of properties belonging to an object. Developers can then 
manipulate the properties of the object easily through the graphical interface of the IDE 
when constructing a program.

There are two ways to set (and retrieve) JClass LiveTable Bean properties; use the method 
that applies best to your application:

■ By using a Java IDE at design-time 

■ By calling property set and get methods in Java code 

Each method changes the same table property. This manual, therefore, uses properties to 
discuss how features work, rather than using the method, Property Editor, or HTML 
parameter you might use to set that property. 

9.1.2 Setting Properties in a Java IDE at Design-Time
JClass LiveTable can be used with a Java Integrated Development Environment (IDE), 
and its properties can be manipulated at design time. If you install your IDE after you 
have installed JClass LiveTable, you will have to manually add LiveTable to the IDE’s 
component manager. Refer to the JClass and Your IDE section in the Installation Guide for 
more information. Also, consult your IDE documentation for information on working 
with third–party components.

Please see Section 9.7, Property Differences Between the JClass LiveTable Beans, for 
information on the differences between the LiveTable Bean, and the data binding Beans.

9.1.3 Setting Properties using Methods in the API
With the exception of read-only properties (which only have a get method), every 
property in JClass LiveTable has a set and get method associated with it. For example, to 
retrieve the value of the FrameBorderType property of a given cell and label area:

getFrameBorderType();

To set the FrameBorderType property in the same object:

setFrameBorderType(JCTbleEnum.BORDER_IN);

9.2   JClass LiveTable and JavaBeans
The JavaBeans included with JClass LiveTable make it easy to create applications and 
applets in an Integrated Development Environment. JClass LiveTable provides the 
following Beans:

■ LiveTable: the core JClass LiveTable Bean.

../getstarted/index.html


Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 161

■ JBuilder Bean (JBdbTable): the same as the LiveTable Bean, but can bind LiveTable 
to a database using Borland JBuilder’s DataSet (version 3.0 or greater).

■ LiveTable DataSource Bean (DSdbTable): the same as the LiveTable Bean, but can 
bind LiveTable to a database using Quest’s JClass DataSource.

9.3   Setting Properties for the LiveTable Bean

At design-time, most LiveTable properties are set using simple menu choices or text 
entry boxes on the property sheet. Some properties that are set for individual cells or 
labels, or ranges of cells or labels, are set using a property editor. The LiveTable property 
editors provide a visual interface for setting the properties using a model of the table you 
are creating, and a number of ways for selecting the cell(s) or ranges that you want to set 
the property for. 

To make it easier to use, the LiveTable Bean combines some properties into special 
property groups that are set using a single editor. For example, the Style property 
combines the Foreground, Background, and Font properties and presents them in a single 
editor.

9.3.1 JClass LiveTable Property Editors
The following is a typical property editor with elements common to other LiveTable 
property editors:

Each property editor has the same interface for selecting the cells to which a specific 
property is applied. On the left is a view of the table (the data reflects the properties you 
are setting). On the right are two groups of controls: Selected region provides an 
alternate control of part of the table selected; Table Size controls the size of the table 
view in the editor. Both of these interact with the table on the left. 

It is important to note that the table view is provided only as a visual guide for setting 
properties. Its size and contents may not necessarily reflect those of the actual table you 
are building. 



162 Part I ■ Using JClass LiveTable

Selecting a Cell or Cell Range
The purpose of the property editors is to apply a given property to a single cell or label, 
or to a range of cells or labels. You can select cells interactively using the mouse or by 
using the Selected region controls.

To select cells using the mouse:

■ Click an individual cell with the mouse to select that cell.

■ Click and drag the mouse to select a range of cells.

■ Click on a row or column label to select that row or column.

■ Click on a cell, hold down the Shift key and click another cell to select a range of cells 
between the two.

Note that when you make selections with the mouse, the ranges you select are displayed 
in the Selected region controls, as shown in the following diagram:

To select cells using the Selected region controls:

Selecting Labels
To select labels using the mouse:

■ Row labels: click the row label or select a range of row labels and choose Label from 
the Column pull-down menu in the Selected region controls.

To select a single cell, choose Range from both the 
row and column pull-down menus, then type the 
row index and column index for the cell. For 
example, the cell that intersects the fourth row and 
the third column would be selected by typing 3 for 
the Row range and 2 for the Column range 
(remember, the rows and columns start at 0).

To select a range of cells, you must specify the row 
and column index for the top-left and bottom-right 
cells in the range (typically specifying a range is 
easier to do with the mouse). Choose Range from 
both the row and column pull-down menus, then 
type the numbers of the top and bottom rows of the 
range separated by a comma; then type the left and 
right columns of the range separated by a comma. 
This has specified a bounding box for the range. 



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 163

■ Column labels: click the column label or select a range of column labels and choose 
Label from the Row pull-down menu in the Selected region controls.

It may seem odd to be choosing in the Column box for row labels and in the Row box for 
column labels, but it is easier to understand if you consider that you are really specifying 
the row of column labels or the column of row labels. 

To select labels using the Selected region controls: 

Changing the Property Editor Table Size
The Table size controls set the working size of the table view in the editor. By default, the 
property editors display a 10 row, 5 column table, which is sufficient for most selection. If 
you need to edit properties for a specific row or column beyond this limit, use the Table 
size controls to enlarge the working area in the property editor. To change table size, 

To select all row labels, choose all in the Row pull 
down menu, and choose label in the Column pull 
down menu. 

To select a row label, choose label from the 
Column pull-down menu. Then choose range in 
the Row pull down menu, and type the desired row 
number in the text field. 

To select all column labels, choose all in the 
Column pull down menu, and choose label in the 
Row pull down menu. 

To select a column label, choose label from the 
Row pull down menu. Then choose range in the 
Column pull down menu, and type the desired row 
number in the text field. 



164 Part I ■ Using JClass LiveTable

enter a new value in the Row or Column text field and press Enter (or traverse out of the 
field); the table view will update to the new dimensions.

Note: To change the actual size of the table you’re building, use the Table size controls 
on the DataEditor. The DataEditor is the only editor that uses the Table size controls this 
way. 

You can undo any of your changes and reset the properties to the values they had when 
you opened the editors by clicking the Reset All button. 

9.3.2 LiveTable Properties

The LiveTable Bean exists because the current generation of Java IDEs do not support 
properties in contained objects. While current Java IDEs allow properties in contained 
objects to be modified, they cannot yet properly generate code for the property change. 
LiveTable works around this problem by exposing many JClass LiveTable properties in 
one object. While not all properties are provided, the most common properties are 
available. 

The following sections list the properties exposed in the LiveTable Bean. Many of the 
properties can be set for individual cells/labels or ranges; these properties are set using 
visual property editors (see Section 9.3.1, JClass LiveTable Property Editors, for a 
description of a typical editor and how to select cells). Note that the illustrations are from 
Sun’s BeanBox in the Beans Development Kit (BDK). The properties and editors are 



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 165

listed in alphabetical order; the BeanBox unfortunately does not list properties in 
alphabetical order.

about
about 
displays the 
component 
version and 
points to 
other sources 
of JClass 
information

allowCellResize
Setting allowCellResize determines 
which part of a cell users can click and 
drag to resize cells. The default setting, 
RESIZE_ALL, allows resizing by clicking 
and dragging both row and column cell 
borders.

allowResizeBy
Setting allowResizeBy determines 
which part of the table can be used to 
resize rows and columns: cells, labels 
or both. This property works in 
conjunction with allowCellResize. 

autoScroll
The autoScroll property determines if 
the table automatically scrolls when the 
user drags the mouse or traverses past 
the borders of the table.



166 Part I ■ Using JClass LiveTable

cellBorderWidth
Entering a number into the cellBorderWidth field specifies the thickness of the border 
around each cell and label. 

cellSize
The cellSize editor lets you set row height and column width values as either fixed pixel 
values or variable values. Changes made to cell dimensions are only applied to selected 
cells, and cells found in the same rows and columns as the selection.

data
The data property, exclusive to the LiveTable Bean and not available in the data binding 
Beans, enables you to add and customize table data and row/column labels. There are 
two ways to get data in a table – by entering data directly using the DataEditor, or by 
specifying a data file (which can contain label information). 

 

The data file format is a space-delimited text file that can contain Strings, doubles, or 
integers. This example file contains 4 rows and 4 columns with no labels:

TABLE 4 4 NOLABEL
 '0,0' '0,1' '0,2' '0,3'
 '1,0' '1,1' '1,2' '1,3'
 '2,0' ‘2,1' '2,2' '2,3'
 '3,0' '3,1' '3,2' '3,3'



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 167

To include reserved characters (like spaces), enclose the data item in single quotation 
marks, for example 'The Cuppa'. This example shows how to specify labels:

TABLE 4 3
        'Col 0'  'Col 1'  'Col 2'
'Row 0'    '0,0'   '0,1'    '0,2' 
'Row 1'    '1,0'   '1,1'    '1,2' 
'Row 2'    '2,0'   '2,1'    '2,2' 
'Row 3'    '3,0'   '3,1'    '3,2' 

editHeightPolicy

The table can control the height of a cell editing component using the editHeightPolicy 
property. This property can take one of three values:

■ EDIT_SIZE_TO_CELL resizes the 
component to fit the table’s cell size.

■ EDIT_ENSURE_MINIMUM_SIZE resizes 
the component to its minimum size.

■ EDIT_ENSURE_PREFERRED_SIZE 
resizes the cell to the editing 
component’s preferred size. 

editWidthPolicy 
The table can control the width of a 
cell editing component using the 
editWidthPolicy property. The valid 
values this property takes are the same 
as those associated with 
editHeightPolicy.

focusColor
Choosing a color for the focusColor 
property determines the color of the 
focus rectangle. The focus rectangle is 
the line drawn around the inside of the 
cell that currently has focus. 



168 Part I ■ Using JClass LiveTable

frameBorderWidth
Enter a value in the frameBorderWidth property field to determine the thickness of the 
frame around the cell and label areas of the table in pixels. 

frozenCellLayout
Working with the frozenCellLayout property editor sets whether there are any frozen 
rows or columns, and specifies their position in the table. Frozen rows can be placed at 
the top or bottom of the table, and frozen columns can be placed on the left or right side 
of the table. 

labelLayout
Working with the labelLayout property editor offers full control over label attributes. 
You determine if row or column labels exist, then specify offsets and label placement. 

focusIndicator
The focusIndicator property 
determines how cell focus is shown to 
the user. This indicator appears inside 
the cell that currently has focus. 
The default is FOCUS_RECTANGLE.

frameBorderType
Setting the frameBorderType 
property determines what type of 
border is used for the frame 
enclosing the cell and label areas. 
Choose a border type from the pull-
down menu. Note that the 
FrameBorderWidth property must be 
set to greater than 5 in order for the 
etched border types to be visible.



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 169

Label offset is the distance in pixels between the edge of the table and the labels. You can 
place row labels at the top or bottom of the table, and column labels at the right or left 
side of the table.

leftColumn
Enter the column number in this field to specify which is the left-most column when 
displaying the table. 

marginHeight
Enter a value in the marginHeight field to determine the height of the top and bottom 
margins of each cell.

marginWidth
Enter a value in the marginWidth field to determine the width of the left and right margins 
of each cell. 

minCellVisibility
By default, when a user traverses to a cell that is not currently visible, LiveTable scrolls 
the table to display the entire cell. Enter a percentage value in the minCellVisibility 
field to set the percentage of the cell that is scrolled into view when it is the target of a 
traversal. 

When MinCellVisibility is set to 100, the entire cell is made visible. When 
MinCellVisibility is set to 10, only 10% of the cell is made visible. If 
MinCellVisibility is set to 0, the table will not scroll to reveal the cell. 

sBLayout
Working with the sBLayout property editor offers full control over visual and behavioral 
scrollbar attributes: 

The Scrollbar Display settings determine if horizontal or vertical scrollbars exist. If so, 
you can also determine if the scrollbars are displayed at all times, or only when the table’s 
contents exceed the table’s size. 



170 Part I ■ Using JClass LiveTable

The Scrollbar Position settings determine whether scrollbars are positioned by cells or at 
sides. The former option places the scrollbar beside the cell/label viewport, while the 
latter places the scrollbar beside the edge of the table area. Note that there is no visual 
difference between the two options unless the cell/label area is smaller than the table 
area. 

The Scrollbar Attachment settings determine how far along the side of the table the 
scrollbars extend. To cells (default) places the scrollbar along the edge of all visible, non-
frozen cells, while To table places the scrollbar along the edge of the entire table. 

Scrollbar Offset sets the amount of space, in pixels, between the scrollbar and the table. 

Scrollbar Tracking determines the type of feedback a user receives when they click and 
drag a scrollbar. Live tracking refreshes the table as the user scrolls. The Column 
number/Row number and Row/Column options do not redraw the table until the user 
stops scrolling by releasing the mouse button. 

However, to offer the user feedback, the Column number/Row number option 
displays a box with the current cell number, while the Row/Column option displays the 



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 171

actual contents of the current cell. The row or column from which the displayed contents 
are taken is determined by the number entered in the Row or Column fields.

selectedBackground 
Selecting a color for the 
selectedBackground property determines 
the background (highlight) color for cells 
that have been selected. The default is the 
foreground color for the cells. 

selectedForeground 
Selecting a color for the 
selectedForeground property determines 
the foreground (highlight) color for cells 
that have been selected. The default is the 
background color for the cells. 



172 Part I ■ Using JClass LiveTable

spannedCells
The spannedCells property editor lets you visually implement cell spanning with your 
table. Use the displayed table to select which cells are to be combined. The cell found at 
the top left corner of the spanned range becomes the new cell.

selectIncludeLabels
By default, when a user clicks a label, 
the entire row or column, including the 
label, is highlighted. To change it so 
that the label is not highlighted with the 
rest of the cells, set this property to 
false.

selectionPolicy
The SelectionPolicy property 
controls the amount of selection 
allowed on the table, both by end-
users and by the application.



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 173

styles
The styles property editor gives you control over cell style options, including: cell 
colors, font attributes, editable and traversable states, and alignment in cells. 

 

You can also use the styles property editor to work with and set all border properties for 
cells in the selected area. By using the pull-down menus, you can set which cell sides have 
borders, what type of border is used, whether clip hints are displayed (should the cell’s 
contents exceed its size) and what the selected cells border color is.

When choosing border or cell background/foreground colors, the color selection options 
offer precise control. You can select a color by using the Hue/Saturation/Brightness 



174 Part I ■ Using JClass LiveTable

(HSB) panel, the Red/Green/Blue (RGB) Panel, or the color swatch. All three methods 
offer color previews for both text and objects. 

topRow
Enter the row number in this field to specify which is the topmost row when displaying 
the table.

9.4   Tutorial: Building a Table in an IDE

The following exercise will guide you through the steps to produce a JClass LiveTable 
program in an IDE. The exercise is the same as the one in ‘Hello Table’ – 
JClass LiveTable Tutorial, in Chapter 1, which explains how to build a table using the 
API. The example uses JavaSoft’s BeanBox IDE in the Java BDK. This tutorial assumes 
that you have some experience working with a Java IDE. If you are unsure how to get the 
LiveTable Bean into your IDE, please consult the IDE documentation.

This program displays information about orders for ‘The Musical Fruit’1, a fictional 
wholesale coffee distributor, based on the following data: 

1. We apologize for the addition of yet another coffee reference in an already crowded pantheon. 

Customer Name Order Date Item Quantity (lbs.) Price/lb.

The Cuppa 11/11/97 French Mocha 60 $7.01

The Underground Cafe 11/14/97 Brazilian 
Medium

112 $6.80

RocketFuel and Cake Cafe 10/30/97 Espresso Dark 300 $8.02



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 175

9.4.1 The Basic Table

The first step is to create a default table. In the BeanBox, click the LiveTable component 
displayed in the ToolBox, then to insert the table component, click in the BeanBox 
window. The BeanBox displays a default-sized (10 rows by 5 columns) table with visible 
row and column labels:

Supplying the Data 
The data for the table is contained in the data source. You can provide the data by 
entering it into the table using the DataEditor, or by specifying that a file is the data 
source. Start the DataEditor by clicking the data property on the property sheet. Notice 
that the editor defaults to using the table as the data source.

The data we want to display is stored in a file. To use this file as the data source:

1. Click Browse.

2. Navigate to the examples/table/datasource directory of your JClass LiveTable distribu-
tion.

WideEyes Coffee House 11/12/97 Colombian/Ir
ish Cream 
Flavored

120 $5.30

Jitters Caffeine Cavern 10/01/97 Ethiopian 
Medium

80 $7.50

Twitchies on the Mall 12/06/97 French Roast 
Kona

160 $14.50

Quest Software 12/12/97 Colombian 22,000 $5.28

Customer Name Order Date Item Quantity (lbs.) Price/lb.



176 Part I ■ Using JClass LiveTable

3. Choose the tutorialdat.txt file.

When you choose the file, the table display in the editor populates with the data from 
the data source. Also, the Table size fields should be disabled, as shown in the 
following illustration:

4. To close the editor, click Done. The table displayed in the BeanBox now shows the 
values from the data source:

9.4.2 Improving the Table’s Appearance

Using some of the properties for modifying a table’s appearance, you can easily move 
from the basic table to a more interesting table that’s easier to understand, and easier to 
use. The following sections explain how to set these properties using an IDE. 

Adding Column Labels
The table currently displayed in the BeanBox is not very useful to an end-user. Not only is 
it not interesting to look at, but you cannot tell what kinds of information the various cells 
contain because there are no column labels. In the original data outline for the table, we 
indicated that we wanted the following column labels:

■ Customer Name

■ Order Date

■ Item

■ Quantity (lbs)

■ Price/lb



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 177

Labels are cells that can never be edited and can contain any Object (Strings, images, 
Integers, and so on). Notice that since our data source contained no data for the labels, the 
LiveTable Bean does not display any labels in the BeanBox. 

If you had entered the table data directly into the Bean, you could add the labels using the 
DataEditor. But since the file is the data source, adding the labels must be done by 
editing the file. For convenience we have included the labels in another data file. Load 
this data file using the DataEditor as before. The new file is called tutorialdat-labels.txt, 
located in the examples/table/datasource directory of your JClass LiveTable distribution. 

By default, the table displays row and column labels that have values. This is controlled 
by the labelLayout property. Now that you have column labels, the table in the IDE 
should update to look something like the following illustration: 

Notice that if you click a label in your table, you do not get the focus rectangle the way 
you do if you click a cell: labels cannot be edited and cannot be the target of a traversal. 
In certain circumstances, clicking a label performs an action (see Section 9.4.3, Adding 
Interactivity), but in this case the labels do not perform any interactive function.



178 Part I ■ Using JClass LiveTable

The labels have a default border and color set to make them stand out from the table. In 
this exercise, we will take it one step further by changing the colors and fonts of the labels 
using the StyleEditor, accessed by clicking the styles property on the property sheet:

To begin, select the column labels. In the Selected region box:

1. Choose label from the Row pull-down menu.

2. Choose all cells from the Column pull-down menu.

This applies any settings you choose to the column labels. Next, choose the font and 
size of the label text. In the Font box: 

3. Choose Times New Roman from the font pull-down menu.

4. Choose 14 from the point size pull-down menu.

Note: The type of font displayed on a user’s system depends entirely on the fonts that 
are local to that user’s computer. If a font name specified in a Java program is not 
found on a user’s system, the closest possible match is used (as determined by the 
Java AWT). 

Finally, change the color of the label text. In the Color box:

5. Choose Foreground, then select a white color from the Swatches tab.

6. Choose Background, then select a blue color from the Swatches tab.

7. You should be able to see these changes in the sample table in the StyleEditor. Click 
Done to commit the changes and return to the BeanBox. 



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 179

Your changes are now visible in the BeanBox. You now have a basic table with labels 
colored and text formatted to differentiate them from the rest of the table cells.

Label Layout 
You can change the position of the labels relative to the table, and control their distance 
from the table to help make the labels even more distinctive. By default, labels are 
displayed right against the table border. You can make it stand off by using the 
LabelLayout editor, accessed by clicking the labelLayout property on the property 
sheet:

For this exercise, you are going to add some space between the column labels and the top 
of the table and take out the row labels. In the LabelLayout editor: 

1. In the Label Display box, both row and column labels are selected by default. Clear 
the Row label display check box.

2. In the Labels Offset box, change the value in the Column field from 0 to 2 pixels. 

The changes are immediately reflected in the editor and the BeanBox. 

3. Click Done to commit the changes and return to the BeanBox. 



180 Part I ■ Using JClass LiveTable

Having changed the alignment and font, your table should now look something like the 
following illustration:

Changing the Cell Borders and Thickness
JClass LiveTable has properties that you can use to change the way the cell borders and 
cell spacing appears. 

There are a number of choices for cell borders, outlined earlier in the description of the 
style property. For the example program, you’re going to thicken the cell borders and 
change the border style. This involves working with the cellBorderWidth and styles 
properties on the property sheet. 

1. First, to change the cell border width value, simply edit the value in the text box for 
the cellBorderWidth property. Set the value to 2 instead of the default (1).

To change the cell border type for the table cells and labels, you need to call the 
StyleEditor (again, click styles in the property sheet). 

2. To begin, select all non-label cells. In the Selected region box, choose all cells from 
the Row pull-down menu and choose all cells from the Column pull-down menu.

Now that you have selected all cells, change their border: 

3. Click the Types drop-down list in the Borders box and select border in.

To change the border type for the column labels, you now need to select all column 
labels. In the Selected Region box: 

4. Choose label from the Row pull-down menu and choose all cells from the Column 
pull-down menu.

This applies any settings you choose to the column labels. Now, change their border: 

5. Click the Types drop-down list in the Borders box and select border out.



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 181

The table should now resemble the following in the BeanBox: 

9.4.3 Adding Interactivity

In a real-world situation, our example table would likely be used to track orders and 
accounts with a large number of customers. Your users will likely want to update the data, 
sort the information displayed in the table, and select sections of the table to perform 
operations on them. 

We’ll add some basic user-interactivity to our example table to give you a sense of some 
of the things JClass LiveTable can do. You can explore user-interactivity further in 
Programming User Interactivity, in Chapter 6.

Controlling Cell Editability
Using the LiveTable Bean, the data source is editable by default. You can change the 
editability of cells using the EditState property. Note that in the data source, Quest 
Software has ordered 22,000 pounds of coffee. This is obviously a typographical error, 
but we’re going to make sure Quest Software gets all 22,000 pounds of coffee by not 
allowing that cell to be edited.

Invoke the style editor by clicking styles on the property sheet. 

In our original data, the cell containing the value 22,000 was located at row 6, column 3. 
(Recall that arrays in Java are zero-based – thus, the row and column indexes begin at 
zero.) You can either select this cell with the mouse, or type these values in Row and 
Column fields in the Selected region box. 

Note that each cell in the editor’s table reflects its current traversable and editable state. A 
cell that is editable must also be traversable, but a cell that is traversable does not 
necessarily have to be editable. For this particular cell, leave traversability on, and simply 
unset its editability:

1. In the Interaction box, clear the Editable checkbox. This makes the cell traversable 
but not editable, as is displayed in the editor’s table.

2. Click Done.

Now we can be sure that nobody will change Quest Software’s coffee order!



182 Part I ■ Using JClass LiveTable

Enabling Cell Selection
JClass LiveTable provides methods that set how users can select cells, ranges of cells, and 
entire rows and columns. Selection is enabled by setting the SelectionPolicy property. 
By default, cell selection reverses the foreground and background colors of the cells to 
highlight the selection. You can enable selection by choosing a value from the 
SelectionPolicy pull-down menu in the LiveTable property sheet. 

1. Choose SELECT_MULTIRANGE. This allows users to select one or more cells in rows or 
columns by clicking and dragging the mouse, or using keyboard combinations. 

By default, setting the SelectionPolicy property enables selection of entire rows or 
columns by clicking on the row or column label. When the user clicks on the column 
label, the column display, including the label, is reversed to highlight the selection. You 
can configure the table not to highlight the label by setting the SelectIncludeLabels 
property to false.

Resizing using Labels Only
By default, users can resize rows, columns, and labels by clicking on their borders and 
dragging to resize. You can change this functionality to have the resize capability 
available only from the label; to resize a column, the user resizes its label rather than its 
cells. LiveTable provides the allowResizeBy property to enable this feature. In the 
property sheet, change the allowResizeBy property to RESIZE_BY_LABELS.

Changing the Focus Rectangle Color
Finally, some of your users have complained that it’s hard for them to see what cell 
currently has focus because the focus rectangle is plain black. You can change the color of 
the focus rectangle easily by setting the focusColor property:

When you click on the FocusRectColor property, the default color chooser appears. 



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 183

Choose red from the color chooser. Now your users should be able to see the focus 
rectangle clearly.

9.4.4 The Final Program
Your simple table program has evolved into an interactive, easy-to-understand utility. 
Although it’s far from being a real order-tracking system, using a few more 
JClass LiveTable features, it soon could be. The following illustration shows all of the 
visual changes that you’ve accomplished. From here you can try out other properties and 
see how they affect the table’s appearance and behavior.

9.5   Data Binding with IDEs

If you are using an IDE to develop Java applets and applications, the LiveTable data 
binding Beans allow you to bind a table with a JDBC–compliant data source, an ODBC 
data source (by using the JDBC–ODBC bridge), or an IDE–specific data source. The 
data binding Beans are loosely based on a Model–View–Controller (MVC) data 
mechanism. The direct link between the table component and the IDE’s data source 
offers an easy and efficient way of representing and modifying data in your tables.

As outlined earlier in Section 9.2, JClass LiveTable and JavaBeans, LiveTable includes 
data binding Beans: JBdbTable is used with JBuilder’s DataSet and DSdbTable is used 
with any JDBC data source (and JClass DataSource) in any IDE.

The principles of data binding and connecting to a database in any environment are 
similar. The following sections assume that you are:

■ familiar enough with your IDE or other development environment to create and 
work with basic application projects

■ familiar with setting up database connectivity in your development environment’s 
projects

Note: The examples used in the following sections use a sample JClassDemo database 
(demo.mdb) that can be found in the JCLASS_HOME/demos/common/databases directory. As 
such, these examples are primarily meant to illustrate data binding with IDEs, as you will 
not be able to duplicate them if you do not have the sample database.



184 Part I ■ Using JClass LiveTable

9.5.1 Data Binding LiveTable with a JBuilder Data Source

To data bind to a JBuilder’s DataSet using JBdbTable, you require:

■ Borland JBuilder 3.0 or greater

■ JDK 1.3.1 or greater

■ JClass LiveTable’s JBdbTable Bean

■ a data source properly set up in Windows’ ODBC Data Source Administrator

Creating a Java application that contains a data bound table in JBuilder requires an 
understanding of database connectivity in a JBuilder project. Binding your table with a 
database in this IDE involves: 

■ creating the project and laying out the UI

■ adding and configuring the Database component

■ adding and configuring the QueryDataSet component

■ adding and configuring the LiveTable data binding Bean (JBdbTable)

There are different methods and components with which a JBuilder project with database 
connectivity can be created. The following provides a general overview of data binding, 
as it is assumed that you are familiar with working with your IDE. For specific 
information, please refer to your JBuilder documentation, where comprehensive tutorial 
and reference information can be found about setting up an application project, adding 
the Database and QueryDataSet components to manage the JDBC connection, and 
communicating with the database.



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 185

Let’s begin with a basic project in JBuilder, where the UI components are set up, 
readying the project for the addition of the database and data binding components.

Figure 19 Example project work space with defined UI components, ready for database components.

Adding the Database Component to the Project
In the Data Express tab of the Component Palette, click the 
borland.sql.dataset.Database object, designating it as the component to be added. 
Next, click an empty area of the Component Tree. The database object is added to your 
project.

Figure 20 Selecting the Database component on the Component Palette.

Setting the Connection Property for the Database Component
Now that the database object has been inserted into your project, you need to define the 
JDBC Connection information for this object. This is done by setting the connection 
property in the Inspector, when the database object is selected.

It is here that you select the data source that you want bound to your table component. 
All available data sources and DataGateway sources recognized by JBuilder are listed and 
available to be set as the main data source. These data sources are defined with Windows’ 
ODBC Administrator. In this example, the demo.mdb database (JClassDemo) is selected.



186 Part I ■ Using JClass LiveTable

Adding the Database component and setting the connection properties adds the following 
lines of code to your project:

import borland.sql.dataset.*;
...
Database database1 = new Database();
...
database1.setConnection(new com.borland.dx.sql.dataset.

ConnectionDescriptor("jdbc:odbc:JClassDemo", "", "", false, 
"sun.jdbc.odbc.JdbcOdbcDriver"));

This code introduces the database component (in this example, it is named database1) and 
points it to the data source that you define (in this example, the sample demo.mdb 
database, JClassDemo is used).

Adding the QueryDataSet Component to the Project
Now that you have set up the link between your project and the desired database, you 
need to interact with that database. In the Data Express tab of the Component Palette, 
click the borland.sql.dataset.QueryDataSet object, designating it as the component to 
be added. Next, click an empty area in the Component Tree. The database query 
component is added to your project. 

Figure 21 Selecting the QueryDataSet component on the Component Palette.

Setting the Query Property for the QueryDataSet Component
Now that the QueryDataSet component has been added, you need to define which parts 
of which database will be used. To do this, you need to query the database with an SQL 
statement. This is done by setting the query property in the Inspector, when the 
QueryDataSet object is selected.



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 187

In the query property area, select the database you just added, and browse the tables if 
you have to get the proper information for your table. Enter the SQL statement that 
represents your needs. Test it to be sure that such a query will be successful.

Figure 22 Entering the query statement to the selected database.

Adding the QueryDataSet component and setting the query property adds the following 
lines of code to your project:

QueryDataSet queryDataSet1 = new QueryDataSet();
...
queryDataSet1.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor
(database1, "select * from customer", null,true,Load.ALL));

This code defines a new QueryDataSet component (in this example, named 
queryDataSet1), which lets you read and write to and from the database by way of SQL 
statements. It also defines which part of the database is extracted, and bound to your table 
component. In this example, the Customer table is selected with the query statement. 



188 Part I ■ Using JClass LiveTable

Once the project’s database and database connectivity components are in place and 
properly defined, the table component can be added, and the data binding can occur.

Figure 23 The project is ready for the table data binding component.

Adding the LiveTable Data Binding Bean to the Table
When you installed JClass LiveTable, its JBuilder components, including the LiveTable 
data binding Bean, were installed on JBuilder’s Component Palette. If they are not there, 
please refer to the JClass and Your IDE section in the Installation Guide for information 
about manually adding JClass LiveTable components to JBuilder’s Palette.

Click the table data binding Bean on the Component Palette, designating it to be added. 
Next, insert the data binding table component by clicking anywhere in the component 
tree (the table will be its default size), or by dragging and defining its size in the UI 
Designer.

Figure 24 Selecting the data binding LiveTable component on the Component Palette.

Setting the Dataset Property for the LiveTable Data Binding Component
Now that the data binding table component is part of the project, you need to define its 
DataSet. This is done by setting the dataSet property in the Inspector, when the table 
component is selected in the Component Tree.



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 189

It is here that you set the property to the QueryDataSet component name that is part of 
your project. In this example, the name of the component is queryDataSet1. This action 
adds these lines of code to your .java file:

import com.klg.jclass.table.db.jbuilder.*;
...
JBdbTable jBdbTable1 = new JCdbTable();
...
jBdbTable1.setDataSet(queryDataSet1);
...
this.getContentPane().add(jBdbTable1, BorderLayout.NORTH);

This code introduces the LiveTable data binding Bean, and connects it to JBuilder’s 
DataSet. 

Figure 25 The project now contains a data bound table.

Now that the table component has been linked to the QueryDataSet component, the data 
bound table is part of the project. The project can now be compiled and run, or continued 
to be developed.

9.5.2 Data Binding Using JClass DataSource

Using the DataSource data binding Bean (DSdbTable), you can bind a table component 
with any JDBC–compliant data source. The DSdbTable Bean works in any IDE1 but can 
also be used if you are developing an applet or application without one. Data binding 
with the DSdbTable Bean requires:

■ Sun Microsystems’ Beans Development Kit (BDK) or an IDE

■ JDK 1.3.1 or greater

■ JClass DataSource

■ JClass LiveTable’s DSdbTable Bean

1. If you are developing an application with JBuilder, you can use the specific data binding Bean, JBdbTable, that was 
designed for use with it.



190 Part I ■ Using JClass LiveTable

■ a data source properly set up in Windows’ ODBC Data Source Administrator

JClass DataSource is available as part of the JClass DesktopViews suite. Visit 
http://www.quest.com for information and downloads.

When data binding your table component with a database, JClass DataSource manages 
the connection and queries to the database in your development project. Using the 
DSdbTable Bean creates a table component that connects with JClass DataSource, thus 
completing the data binding link.

JClass DataSource uses two data binding Beans: the JCData Bean and the JCTreeData 
Bean. JCData allows data binding to flat data models, while JCTreeData allows data 
binding to hierarchical data models. The following example provides a general overview 
of data binding a LiveTable component to a database in Sun’s Bean Development Kit.

It is assumed that you already are familiar with setting up a database connection with 
JClass DataSource. For specific information, please refer to your JClass DataSource 
documentation. Binding your table with a database involves:

■ creating a project in an IDE or the Beans Development Kit

■ establishing a database connection with JCData or JCTreeData

■ inputting database query statements with either the JCData or the JCTreeData’s 
NodePropertiesEditor or TreePropertiesEditor

■ adding the DSdbTable data binding Bean to the work area

Establish a database connection with JCData
Insert JCData into the design area. Doing this will allow you to begin working with the 
NodePropertiesEditor in the BDK Properties window.

If desired, enter names in the Description and Model Name fields. In this example, we 
will leave the BDK’s default names (Node1 and JCData1). On the Serialization tab, 
click Save As to save your serialization file. Next, click the Data Model tab to specify 
which database you want to connect to.

You need to specify the Server Name and Driver on the Data Model / JDBC / 
Connection tab. For the purposes of this example, we are using the demo.mdb (JClass 
Demo) database. In the Server Name field, enter or select jdbc:odbc:JClassDemo, and 
in the Driver field, enter or select sun.jdbc.odbc.JdbcOdbcDriver. Ensure that the 
Prompt User For Login checkbox is note selected, and test the connection. When you 

http://www.quest.com


Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 191

receive confirmation that the database connection is successful, you can begin to set up 
the query statements.

Figure 26 Connecting to the demo.mdb database in Sun’s Beans Development Kit.

Inputting database query statements with the DataBean
In order to properly query the database you have connected to, you need to input your 
query statement in the fields found on the Data Model / JDBC / SQL Statement tab. 
For this example, the demo.mdb database contains various tables, one of which is 
Customers. Enter select * from Customers in the SQL Statement window to take all of the 
fields from the demo.mdb’s customers table, then click Set.



192 Part I ■ Using JClass LiveTable

Now that you’ve successfully connected to, and queried the database, click Done. 

Adding DSdbTable
The last step in creating a data bound table in your development project is adding the 
actual table component. In the BDK’s Toolbox, click the DataSource data binding Bean 
(DSdbTable) and drop it into the BeanBox design area. Doing this will allow you to begin 
working with the DSdbTable properties in the Properties window. In the list of properties, 
click the dataBinding property, and set the connection to the appropriate data source. 
The data source is determined by what you entered in the Description and Model 
Name fields in the DataBeanComponentEditor (if you used the defaults in this example, 



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 193

they will be Node1 and JCData1). The table object will update to reflect the successful 
binding to the data source.

At this point, you have a table component in your design area, that is bound to the 
designated data source. You can now continue developing the rest of your application.

9.6   Interacting with Data Bound Tables
When a data bound table component has been successfully placed into your applet or 
application, you can interact with the table that takes advantage of the binding between 
the component and the data source.

Figure 27 Interacting with the data bound table component.



194 Part I ■ Using JClass LiveTable

These actions are accessible through the table component’s pop–up menu. By right–
clicking a record, or multiple selected records, a list of possible actions is presented to the 
user.

9.7   Property Differences Between the JClass LiveTable Beans

Most of the common properties of the data binding Beans (JBdbTable and DSdbTable), 
are the same as the LiveTable Bean. By retaining most of the LiveTable Bean properties 
(outlined in Section 9.3.2, LiveTable Properties), the new Beans provide feature–rich data 
binding table components.

The following data binding Bean properties are either unavailable, or have a new editors.

Pop–up Menu Item Function

Insert Record Adds a new record to the current table and bound 
data source.

Delete Record(s) Removes the selected row(s) from the current table 
and bound data source.

Cancel Record(s) Cancels changes made to selected records.

Cancel All Cancels all changes made to all records.

Requery Record and Details Requeries the selected record(s) and any of its 
children from the database.

Requery All Requeries all records in the table from the database.

Save Record(s) Commits changes to selected records in the table, and 
updates the bound data source.

Save All Commits all changes made in the table to the 
database

Data binding Bean Property difference from LiveTable Bean

CellSize Unavailable in the data binding Beans.

Data Unavailable: replaced by specific data binding 
properties.

FrozenRow Unavailable in the data binding Beans.

LeftColumn Unavailable: data bound table always starts at 
column 0.

RowLabelDisplay Unavailable in the data binding Beans.



Outliner

Chapter 9 ■ JClass LiveTable Beans and IDEs 195

SpanningCells Unavailable in the data binding Beans.

Style Same property; new editor.

TopRow Unavailable: data bound table always starts at 
row 0.

TraverseCycle Unavailable: always on in the data binding 
Beans.

Data binding Bean Property difference from LiveTable Bean



196 Part I ■ Using JClass LiveTable



Part
II

Reference 
Appendices





199

Appendix A
Event Summary

This table is a quick reference to JClass LiveTable’s events and their corresponding event 
listeners. Event listeners may use up to three methods that are used during the process of 
executing the event. The standard naming convention for these methods are 
before<Event>, <event>, and after<Event>. For details on how to use events and 
listeners in your programs, see Events and Listeners, in Chapter 7. 

Event and 
Description

Event 
Methods

Action
Listener 
Interface

be
fo

re

on af
te

r

JCCellDisplayEvent

Posted when a cell’s 
contents are to be 
displayed in a table.

getRow
getColumn
getCellData
getDisplayData
setDisplayData

JCCellDisplayListener

JCEditCellEvent 

Posted when a cell’s 
contents are to be 
edited.

getRow
getColumn
getEditingComponent
getType
isCancelled
setCancelled

— —

JCEditCellListener

JCPaintEvent 

Posted when a portion 
of the table is painted. 

getType
getStartRow
getStartColumn
getEndRow
getEndColumn
getCellRange

JCPaintListener



200 Part II ■ Reference Appendices

JCPrintEventa

The event posted for 
each page during the 
printing process.

getGraphics
getMarginUnits
getNumHorizontalPages
getNumPages
getNumVerticalPages
getPage
getPageDimensions
getPageMargins
getPageResolution
getTableDimensions
getType

— —

JCPrintListener

JCResizeCellEvent

Posted when a cell in 
the table is resized. 

getRow
getColumn
getCurrentRowHeight
getNewRowHeight
setNewRowHeight
getCurrentColumnWidth
getNewColumnWidth
setNewColumnWidth
isCancelled
setCancelled

—

—

—

—

—

JCResizeCellListener

JCResizeCellEvent

Posted while a cell is 
being resized. 

getRow
getColumn
getCurrentRowHeight
getNewRowHeight
setNewRowHeight
getCurrentColumnWidth
getNewColumnWidth
setNewColumnWidth
isCancelled
setCancelled

JCResizeCellMotionListenerb

JCScrollEvent

Posted when a user 
resizes a row and/or 
column.

getAdjustable
getDirection
getEvent
getType
getValue
setValue —

JCScrollListener

Event and 
Description

Event 
Methods

Action
Listener 
Interface

be
fo

re

on af
te

r



Outliner

Appendix A ■ Event Summary 201

JCSelectEvent

Posted when a user 
selects one or more 
cells.

getType
getStartRow
getStartColumn
getEndRow
getEndColumn
isCancelled
setCancelled
getAction
getActionString

—

JCSelectListener

JCSortEvent

Posted after a 
sortByColumn call.

getColumns
getNewRows

JCSortListener

JCTableDataEvent

Posted when the 
TableDataModel object 
is modified.

getRow
getColumn
getNumAffected
getDestination
getCommand

JCTableDataListenerc

JCTraverseCellEvent

Posted when a user 
traverses from one cell 
to another. 

getRow
getColumn
getNextRow
getNextColumn
setNextRow
setNextColumn
getTraverseType
isCancelled
setCancelled

—
—

—

JCTraverseCellListener

a. JCPrintEvent actions are not before<Event>, on<Event> and after<Event> as they are with other 
events; the action events are printPageHeader(), printPageBody() and printPageFooter().

b. JCResizeCellMotionListener has one method: resizeCellDragged(). It is called repeatedly during 
cell resizing.

c. JCTableDataEvents are posted by the table’s data source, and not by the table itself.

Event and 
Description

Event 
Methods

Action
Listener 
Interface

be
fo

re

on af
te

r



202 Part II ■ Reference Appendices



203

Appendix B
JClass LiveTable Property Listing

Properties of com.klg.jclass.table.JCTable ■ Properties of com.klg.jclass.table.CellStyleModel

Properties of com.klg.jclass.table.beans.LiveTable ■ Properties of com.klg.jclass.table.db.jbuilder.JBdbTable

Properties of com.klg.jclass.table.db.datasource.DSdbTable

The following lists summarize all of the JClass LiveTable properties. Each of these 
properties have two accessor methods: set and get. Methods are instantiated using 
set(PropertyName), and you can retrieve the current value of any property using the 
property’s get method.

The lists below are organized by the class that their accessor methods are called in, and 
further by the type of property. The lists show the property, a brief description, and either 
its enumerable value, defined by JCTableEnum or an example of a value for setting the 
property. Default values are marked with an asterisk (*).

B.1   Properties of com.klg.jclass.table.JCTable 

Name Description Values/Examples

AllowCellResize The AllowCellResize 
property specifies 
whether and how an end 
user is able to resize rows 
and columns. 

JCTableEnum.RESIZE_ALL*
JCTableEnum.RESIZE_NONE
JCTableEnum.RESIZE_COLUMN
JCTableEnum.RESIZE_ROW

AllowResizeBy This property determines 
whether row heights and 
column widths can be 
resized by labels.

JCTableEnum.RESIZE_BY_LABELS*
JCTableEnum.RESIZE_BY_CELLS
JCTableEnum.RESIZE_BY_ALL

AutoEdit Determines whether an 
editor is automatically 
displayed in a cell when it 
is entered.

boolean value: default false



204 Part II ■ Reference Appendices

AutoScroll This property sets how 
the table scrolls when the 
user moves out of the 
bounds of the displayed 
table.

JCTableEnum.AUTO_SCROLL_NONE*
JCTableEnum.AUTO_SCROLL_ROW
JCTableEnum.AUTO_SCROLL_COLUMN
JCTableEnum.AUTO_SCROLL_BOTH

CellBorderWidth Sets the shadow thickness 
around each cell.

integer: number of pixels

CharHeight Height in characters of 
individual cells.

specific row number,
JCTableEnum.LABEL, or 
JCTableEnum.ALL, plus the number 
of characters

CharWidth Width of column in 
characters.

specific column number, 
JCTableEnum.LABEL, or 
JCTableEnum.ALL, plus the number 
of characters

ColumnHidden Determines if the column 
is hidden.

boolean value: default false

ColumnLabelDisplay Determines whether the 
column labels display in 
the table.

boolean value: default false

ColumnLabelOffset Distance between column 
labels and table cells.

pixels (default: 0). For example:
setColumnLabelOffset(4)

ColumnLabel
Placement

Location of the column 
labels (top or bottom of 
the table).

JCTableEnum.PLACE_TOP*
JCTableEnum.PLACE_BOTTOM

ColumnSelection Selects a range of 
columns.

int column range

Component Swing and lightweight 
AWT components in 
individual cells.

row and column index, component

ComponentBorder
Width

This property determines 
the spacing between the 
border of a cell and the 
cell component.

integer value (pixels)

Name Description Values/Examples



Outliner

Appendix B ■ JClass LiveTable Property Listing 205

Cursor Creates a cursor and 
determines the cursor 
type.

Cursor.CROSSHAIR_CURSOR
Cursor.DEFAULT_CURSOR
Cursor.E_RESIZE_CURSOR
Cursor.HAND_CURSOR
Cursor.MOVE_CURSOR
Cursor.N_RESIZE_CURSOR
Cursor.NE_RESIZE_CURSOR
Cursor.NW_RESIZE_CURSOR
Cursor.S_RESIZE_CURSOR
Cursor.SE_RESIZE_CURSOR
Cursor.SW_RESIZE_CURSOR
Cursor.TEXT_CURSOR
Cursor.W_RESIZE_CURSOR
Cursor.WAIT_CURSOR

EditHeightPolicy Vertical sizing policy for 
cell editors.

JCTableEnum.EDIT_SIZE_TO_CELL* 
JCTableEnum.EDIT_ENSURE_

MINIMUM_SIZE 
JCTableEnum.EDIT_ENSURE_

PREFERRED_SIZE

EditWidthPolicy Horizontal sizing policy 
for cell editors.

JCTableEnum.EDIT_SIZE_TO_CELL* 
JCTableEnum.EDIT_ENSURE_

MINIMUM_SIZE 
JCTableEnum.EDIT_ENSURE_

PREFERRED_SIZE

FocusColor Determines the color of 
the focus indicator.

Any java.awt.Color object.

FocusIndicator This property sets the 
focus indicator.

JCTableEnum.FOCUS_RECTANGLE*
JCTableEnum.FOCUS_DASHED_

RECTANGLE
JCTableEnum.FOCUS_NONE
JCTableEnum.FOCUS_HIGHLIGHT

Font Sets the font for the entire 
table.

array of colors

Foreground Sets the foreground color 
for the entire table.

array of colors

FrameBorder Sets the border for the 
frame around the table.

CellBorderModel

Name Description Values/Examples



206 Part II ■ Reference Appendices

FrameBorderWidth Sets the thickness of the 
frame around the entire 
table.

pixels (default:0). For example:
setFrameBorderWidth(5);

FrozenColumn
Placement

Sets the location of all 
frozen columns within the 
component display. 
Changing the placement 
of frozen columns does 
not change the location of 
the columns in the table's 
internal CellValues.

JCTableEnum.PLACE_LEFT*
JCTableEnum.PLACE_RIGHT

FrozenColumns Specifies the number of 
columns from the start of 
the table that are not 
horizontally scrollable.

number of columns to freeze. For 
example: setFrozenColumns(3); 

FrozenRow
Placement

Specifies the location of 
all frozen rows.

JCTableEnum.PLACE_TOP*
JCTableEnum.PLACE_BOTTOM

FrozenRows Specifies the number of 
rows from the start of the 
table that are not 
vertically scrollable.

number of rows to freeze. For 
example: setFrozenRows(2);

HorizSBAttachment Attach point for 
horizontal scrollbar. 
When set to 
SIZE_TO_CELLS, the 
scrollbar ends at the edge 
of the visible cells. When 
set to SIZE_TO_TABLES, 
the scrollbar is attached 
to the whole side of the 
table.

JCTableEnum.SIZE_TO_CELLS*
JCTableEnum.SIZE_TO_TABLE

HorizSBDisplay Determines when to 
display horizontal 
scrollbar. 

JCTableEnum.SBDISPLAY_ALWAYS    
JCTableEnum.SBDISPLAY_NEVER     
JCTableEnum.SBDISPLAY_AS_

NEEDED*

HorizSBOffset Distance between the 
table and horizontal 
scrollbar in pixels.

integer: number of pixels. For 
example:
setHorizSBOffset(3);

Name Description Values/Examples



Outliner

Appendix B ■ JClass LiveTable Property Listing 207

HorizSBPosition Position of horizontal 
scrollbar. When set to 
POSITION_BY_CELLS, the 
scrollbar is attached to 
the visible cells. When set 
to POSITION_AT_SIDE, the 
scrollbar is attached to 
the whole side of the 
table.

JCTableEnum.POSITION_BY_CELLS*
JCTableEnum.POSITION__AT_SIDE 

HorizSBTrack Determines how the 
horizontal scrollbar acts 
during scroll tracking.

JCTableEnum.TRACK_LIVE*
JCTableEnum.TRACK_COLUMN_

NUMBER
JCTableEnum.TRACK_ROW

HorizSBTrackRow Determines the row 
number whose text is 
displayed when 
JCTableEnum.TRACK_
ROW is used with 
setHorizSBTrack()

JCTableEnum.LABEL
or
integer value (row number’s cell 
data)

JumpScroll Determines whether the 
table will visually scroll 
smoothly or whether the 
display will ‘jump’ to 
display the cells scrolled 
to.

JCTableEnum.JUMP_NONE*
JCTableEnum.JUMP_HORIZONTAL
JCTableEnum.JUMP_VERTICAL
JCTableEnum.JUMP_ALL

LeftColumn Indicates the non-frozen 
column at least partially 
visible at the left side of 
the window.

integer: column number

MarginHeight Specifies the distance (in 
pixels) between the inside 
edge of the cell border.

integer: pixels. For example: 
setMarginHeight(4);

MarginWidth Specifies the distance (in 
pixels) between the inside 
edge of the cell border 
and the left/right edge of 
the cell’s contents.

integer: pixels. For example:
setMarginWidth(3);

Name Description Values/Examples



208 Part II ■ Reference Appendices

MaxHeight Sets the maximum 
number of pixels for a 
row’s height.

integer value (pixels)

MaxWidth Sets the maximum 
number of pixels for a 
column’s width.

integer value (pixels)

MinCellVisibility Minimum visible 
percentage of a cell.

integer: 1 to 100

MinHeight Sets the minimum 
number of pixels for a 
row’s height.

integer value (pixels)

MinWidth Sets the minimum 
number of pixels for 
column’s width.

integer value (pixels)

PixelHeight Row height in pixels. 
This property controls 
the height unless set to 
JCTableEnum.NOVALUE.

integer value (pixels)
Special values: 
JCTableEnum.VARIABLE 
JCTableEnum.AS_IS
JCTableEnum.VARIABLE_ESTIMATE

PixelWidth Column width in pixels. 
This property controls 
the width unless set to 
JCTableEnum.NOVALUE.

integer value (pixels)
Special values: 
JCTableEnum.VARIABLE
JCTableEnum.AS_IS
JCTableEnum.VARIABLE_ESTIMATE

PopupMenuEnabled Determines whether or 
not to display the table 
popup menu.

boolean value
default: false for LiveTable
default: true for JBdbTable and 
DSdbTable

RepaintEnabled Sets whether the table 
should be redrawn and 
recomputed whenever 
one of its properties is set.

boolean value (default: true)

ResizeEven Specifies that when a user 
resizes a row or column, 
all of the rows or columns 
also resize the same 
amount.

boolean value (default: false)

Name Description Values/Examples



Outliner

Appendix B ■ JClass LiveTable Property Listing 209

ResizeInteractive Determines if a table is 
repainted to reflect 
column width or row 
height changes if they are 
resized interactively.

boolean value (default: false)

RowHidden Determines if the row is 
hidden.

boolean value (default: false)

RowLabelDisplay This property has a 
boolean value to 
determine whether the 
row labels display in the 
table

boolean value (default: true)

RowLabelOffset Offset between row labels 
and table.

integer: number of pixels

RowLabelPlacement Location of the row 
labels.

JCTableEnum.PLACE_LEFT*
JCTableEnum.PLACE_RIGHT

RowSelection Selects a range of rows. integer range

SelectIncludeLabels Sets the selection 
behavior for row and 
column labels. When 
true, full column or row 
selections do not change 
the visible properties of 
the label. When false, 
the row or column label is 
changed.

boolean (default: true)

SelectedBackground Background color for 
cells that have been 
selected. The default is 
the cells’ foreground 
color.

Color value. For example:
setSelectedBackground(Color.

yellow);

SelectedBackground
Mode

Sets the table’s 
background color for 
selected cells.

JCTableEnum.USE_SELECTED_
BACKGROUND

JCTableEnum.USE_CELL_
BACKGROUND

JCTableEnum.USE_CELL_
FOREGROUND

SelectedCells List of selected cells. Vector or JCCellRange

Name Description Values/Examples



210 Part II ■ Reference Appendices

SelectedForeground Foreground color for cells 
that have been selected. 
The default is the cells’ 
background color.

Color value. For example:
setSelectedForeground

(Color.blue);

SelectedForeground
Mode

Sets the table’s 
foreground color for 
selected cells.

JCTableEnum.USE_SELECTED_
FOREGROUND

JCTableEnum.USE_CELL_
BACKGROUND

JCTableEnum.USE_CELL_
FOREGROUND

SelectionModel Specifies the mode for 
selecting, based on cells, 
rows, or columns. 

SelectionModel

SelectionPolicy Sets the type of allowable 
selection.

JCTableEnum.SELECT_NONE 
JCTableEnum.SELECT_SINGLE
JCTableEnum.SELECT_RANGE 
JCTableEnum.SELECT_MULTIRANGE 

SeriesDataSorted Specifies if series are 
sorted when the table is 
sorted. If set as true, the 
series information sorts 
with the table data.

boolean (default: true)

StoreImageEnabled Determines whether an 
image of the table is 
maintained off-screen.

boolean (default: false)

TopRow Indicates the non-frozen 
row at least partially 
visible at the top of the 
table.

integer: row number

TrackBackground Determines the 
background color of the 
track component.

Color value

TrackCursor Determines whether the 
cursor changes.

boolean (default: true)

TrackForeground Determines the 
foreground color of the 
track component.

Color value

Name Description Values/Examples



Outliner

Appendix B ■ JClass LiveTable Property Listing 211

TrackSize Returns the size of the 
track component.

Dimension value

TraverseCycle Specifies that when a user 
traverses to past the top, 
bottom, left, or right of 
the table, the traversal 
wraps to the opposite 
side.

boolean (default: true)

VariableEstimate
Count

Sets the number of cells 
to use in estimating 
variable pixel 
calculations.

default: JCTableEnum.ALL

VertSBAttachment Attach point for vertical 
scrollbar. When set to 
SIZE_TO_CELLS, the 
scrollbar ends at the edge 
of the visible cells. When 
set to SIZE_TO_TABLE, the 
scrollbar is attached to 
the whole side of the 
table.

JCTableEnum.SIZE_TO_CELLS
JCTableEnum.SIZE_TO_TABLE

VertSBDisplay Determines when to 
display vertical scrollbar. 

JCTableEnum.SBDISPLAY_AS_
NEEDED*

JCTableEnum.SBDISPLAY_ALWAYS
JCTableEnum.SBDISPLAY_NEVER 

VertSBOffset Distance between the 
table and vertical 
scrollbar.

integer: number of pixels. For 
example:
setVertSBOffset(4);

VertSBPosition Position of vertical 
scrollbar. When set to 
POSITION_BY_CELLS, the 
scrollbar is attached to 
the visible cells. When set 
to POSITION__AT_SIDE, 
the scrollbar is attached 
to the whole side of the 
table.

JCTableEnum.POSITION_BY_CELLS
JCTableEnum.POSITION_AT_SIDE 

Name Description Values/Examples



212 Part II ■ Reference Appendices

B.2   Properties of com.klg.jclass.table.CellStyleModel 

VertSBTrack This property determines 
how the vertical scrollbar 
acts during scroll 
tracking.

JCTableEnum.TRACK_LIVE*
JCTableEnum.TRACK_ROW_NUMBER
JCTableEnum.TRACK_COLUMN

VertSBTrackColumn Determines the column 
number whose text is 
displayed when 
JCTableEnum.TRACK_
ROW is used with 
setVertSBTrack().

JCTableEnum.LABEL
or
integer value (row number’s cell 
data)

VisibleColumns Sets the number of 
columns used to 
determine the initial table 
size. This value is not 
updated when columns 
or the table are resized.

integer: number of visible columns

VisibleRows Sets the number of rows 
used to determine the 
initial table size. This 
value is not updated 
when rows or the table 
are resized.

integer: number of visible rows

Name Description Values/Examples

Background Sets the background color 
of the cell.

Color value

CellBorder Sets the cell border object 
for the cell.

CellBorderModel

CellBorderColor Sets the cell’s border color. Color value

CellBorderColorMode Sets the mode used to 
determine cell border 
color.

JCTableEnum.USE_CELL_
BORDER_COLOR

JCTableEnum.BASE_ON_
BACKGROUND

JCTableEnum.BASE_ON_
FOREGROUND

Name Description Values/Examples



Outliner

Appendix B ■ JClass LiveTable Property Listing 213

CellBorderSides Visible border sides 
(defined by 
CellBorderType) for 
individual cells.

JCTableEnum.BORDERSIDE_NONE 
JCTableEnum.BORDERSIDE_ALL* 
JCTableEnum.BORDERSIDE_LEFT
JCTableEnum.BORDERSIDE_

RIGHT
JCTableEnum.BORDERSIDE_TOP
JCTableEnum.BORDERSIDE_

BOTTOM

ClipHints Determines whether clip 
arrows are shown, and 
where, when the contents 
of the cell do not fit in the 
cell frame. 

JCTableEnum.SHOW_NONE
JCTableEnum.SHOW_HORIZONTAL
JCTableEnum.SHOW_VERTICAL
JCTableEnum.SHOW_ALL

Editable Editable attribute for 
individual cells.

boolean value (default: true) 

Font Sets the cell’s font. Font value

Foreground Sets the foreground color 
of the cell.

Color value

HorizontalAlignment Sets the horizontal 
alignment for the contents 
of the cell.

JCTableEnum.LEFT*
JCTableEnum.CENTER
JCTableEnum.RIGHT

RepeatBackground Determines if the 
background color repeats 
for rows or columns.

JCTableEnum.REPEAT_NONE*
JCTableEnum.REPEAT_ROW
JCTableEnum.REPEAT_COLUMN

RepeatBackground
Colors

Repeats pattern for 
background colors.

array of colors

RepeatForeground Determines if the 
foreground color repeats 
for rows or columns.

JCTableEnum.REPEAT_NONE*
JCTableEnum.REPEAT_ROW
JCTableEnum.REPEAT_COLUMN

RepeatForeground
Colors

Repeats pattern for 
foreground colors.

array of colors

Traversable Allows traversal of 
individual cells.

boolean (default: true)

VerticalAlignment Sets the vertical alignment 
for the contents of the cell.

JCTableEnum.TOP*
JCTableEnum.CENTER
JCTableEnum.RIGHT

Name Description Values/Examples



214 Part II ■ Reference Appendices

B.3   Properties of com.klg.jclass.table.beans.LiveTable

Name Description

about Displays component version and contact information.

allowCellResize Determines whether end-user can resize cells at run-
time.

allowResizeBy Sets how cells can be resized.

autoEdit Determines whether the table automatically displays an 
editor when entering a cell.

autoScroll Determines whether table scrolls during 
selection/traversal.

cellBorderWidth Specifies width of cell/label borders.

cellSize Specifies row heights and column widths.

data Specifies table data, data source, and row/column 
labels.

editHeightPolicy Determines height control of cell editing components.

editWidthPolicy Determines width control of cell editing components.

frameBorderType Specifies frame border type.

frameBorderWidth Specifies frame border width.

frozenCellLayout Determines the position of frozen rows/columns.

focusColor Sets the color of the focus indicator.

focusIndicator Determines the type of focus indicator used.

jumpScroll Determines whether jump scrolling is turned on.

labelLayout Determines the position of row/column labels.

leftColumn Specifies first column displayed on screen.

marginHeight Specifies top and bottom cell margins.

marginWidth Specifies left and right cell margins.

minCellVisibility Determines amount of cell scrolled into view during 
traversal.

popupMenuEnabled Determines whether the pop-up menu is enabled.

resizeEven Determines whether cell resizing is applied evenly to 
non-label cells.



Outliner

Appendix B ■ JClass LiveTable Property Listing 215

B.4   Properties of com.klg.jclass.table.db.jbuilder.JBdbTable

resizeInteractive Determines whether cell resizing is interactively 
displayed.

sBLayout Determines the space between scrollbars and cells.

selectedBackground Determines the background color of selected cells.

selectedForeground Determines the foreground color of selected cells.

selectIncludeLabels Determines whether selection includes row and 
column labels.

selectionPolicy Determines type of cell selection allowed.

spannedCells Specifies cell ranges to treat as spanned cells.

styles Sets the styles property, which defines visual aspects of 
the table.

swingDataModel Sets the table’s data source to use a specified Swing 
TableModel object, instead of using the data property.

topRow Specifies first row displayed on screen.

trackCursor Sets whether the mouse pointer movements are 
tracked.

traverseCycle Determines whether cell traversal cycles on the same 
row or moves to the next row.

Name Description

about Displays component version and contact information.

allowCellResize Determines whether end-user can resize cells at run-
time.

allowResizeBy Sets how cells can be resized.

autoEdit Determines whether the table automatically displays an 
editor when entering a cell.

autoScroll Determines whether table scrolls during 
selection/traversal.

cellBorderWidth Specifies width of cell/label borders.

Name Description



216 Part II ■ Reference Appendices

cellSize Specifies row heights and column widths.

dataSet Specifies the table data source.

editHeightPolicy Determines height control of cell editing components.

editWidthPolicy Determines width control of cell editing components.

frameBorderType Specifies frame border type.

frameBorderWidth Specifies frame border width.

frozenCellLayout Determines the position of frozen rows/columns.

focusColor Sets the color of the focus indicator.

focusIndicator Determines the type of focus indicator used.

labelLayout Determines the position of row/column labels.

leftColumn Specifies first column displayed on screen.

marginHeight Specifies top and bottom cell margins.

marginWidth Specifies left and right cell margins.

minCellVisibility Determines amount of cell scrolled into view during 
traversal.

popupMenuEnabled Determines whether the pop-up menu is enabled.

resizeEven Determines whether cell resizing is applied evenly to 
non-label cells.

resizeInteractive Determines whether cell resizing is interactively 
displayed.

sBLayout Determines the space between scrollbars and cells.

selectedBackground Determines the background color of selected cells.

selectedForeground Determines the foreground color of selected cells.

selectIncludeLabels Determines whether selection includes row and column 
labels.

selectionPolicy Determines type of cell selection allowed.

spannedCells Specifies cell ranges to treat as spanned cells.

styles Sets the styles property, which defines visual aspects of 
the table.

Name Description



Outliner

Appendix B ■ JClass LiveTable Property Listing 217

B.5   Properties of com.klg.jclass.table.db.datasource.DSdbTable

swingDataModel Sets the table’s data source to use a specified Swing 
TableModel object, instead of using the data property.

topRow Specifies first row displayed on screen.

trackCursor Sets whether the mouse pointer movements are tracked.

traverseCycle Determines whether cell traversal cycles on the same 
row or moves to the next row.

Name Description

about Displays component version and contact information.

allowCellResize Determines whether end-user can resize cells at run-
time.

allowResizeBy Sets how cells can be resized.

autoEdit Determines whether the table automatically displays an 
editor when entering a cell.

autoScroll Determines whether table scrolls during 
selection/traversal.

cellBorderWidth Specifies width of cell/label borders.

cellSize Specifies row heights and column widths.

dataBinding Specifies the table data source.

editHeightPolicy Determines height control of cell editing components.

editWidthPolicy Determines width control of cell editing components.

frameBorderType Specifies frame border type.

frameBorderWidth Specifies frame border width.

frozenCellLayout Determines the position of frozen rows/columns.

focusColor Sets the color of the focus indicator.

focusIndicator Determines the type of focus indicator used.

labelLayout Determines the position of row/column labels.

leftColumn Specifies first column displayed on screen.

Name Description



218 Part II ■ Reference Appendices

marginHeight Specifies top and bottom cell margins.

marginWidth Specifies left and right cell margins.

minCellVisibility Determines amount of cell scrolled into view during 
traversal.

popupMenuEnabled Determines whether the pop-up menu is enabled.

resizeEven Determines whether cell resizing is applied evenly to 
non-label cells.

resizeInteractive Determines whether cell resizing is interactively 
displayed.

sBLayout Determines the space between scrollbars and cells.

selectedBackground Determines the background color of selected cells.

selectedForeground Determines the foreground color of selected cells.

selectIncludeLabels Determines whether selection includes row and column 
labels.

selectionPolicy Determines type of cell selection allowed.

styles Sets the styles property, which defines visual aspects of 
the table.

swingDataModel Sets the table’s data source to use a specified Swing 
TableModel object, instead of using the data property.

topRow Specifies first row displayed on screen.

trackCursor Sets whether the mouse pointer movements are 
tracked.

traverseCycle Determines whether cell traversal cycles on the same 
row or moves to the next row.

useDatasourceEditable Determines whether the editable column state is 
defined by the data source or the table.

Name Description



219

Appendix C
Porting JClass 3.6.x Applications

Overview of Changes ■ Porting Strategies ■ Highlights of Main Changes

JClass LiveTable for Java2 is significantly different from previous versions. The focus of 
JClass LiveTable for Java2 is to make any changes necessary to take full advantage of 
Swing, and to restructure the product for future expansion. 

C.1   Overview of Changes

The major changes are listed in the following table. Each change is discussed in more 
detail later in this appendix. 

Change Rationale

package name change 
(com.klg.jclass.table)

Old package name pre-dated naming standard.

Swing-like API JClass 4 is Swing-based.

data subpackage Makes it easier to find stock data sources. Stock data 
sources now include the JC prefix.

beans subpackage Makes it easier to find Beans. Important for users who 
wish to remove the Beans from deployment JARs.

no more JCString JCString has been replaced by HTML in cells.

JCTable and Table In LiveTable 3.*, Table was the core class and JCTable was 
a backwards-compatibility class for LiveTable 2.* 
customers. 
In LiveTable 4.*, JCTable is the core class, and Table is a 
backwards-compatibility class for LiveTable 3.* customers. 

beans APIs Various bean properties have been modified. Essentially, 
the LiveTable 4.* Beans are not backwards compatible. 
This porting guide does not talk about the Beans.

new events The events fired by LiveTable have been rationalized 
based on user feedback. The listener methods have been 
renamed to be consistent across all methods.



220 Part II ■ Reference Appendices

C.2   Porting Strategies

LiveTable 4.x comes with two tools designed to help you move from LiveTable 3.x to 4.x: 

■ com/klg/jclass/util/scripts/table3to4.pl is a Perl conversion script. It is designed to convert 
about 60-80% of table code. 

■ com.klg.jclass.table.Table is a subclass of JCTable that supports the old 
LiveTable 3 API. 

C.3   Highlights of Main Changes

New Beans Subpackage
All the Beans have been moved to the beans subpackage. There have been many Bean 
property changes. 

No More JCString
JCStrings have been replaced by HTML in cells. This is supported by Swing, and has 
been added to LiveTable where appropriate. 

You can now put raw HTML into headers and footers, as long as the text starts with 
<html>. HTML is also valid in axis annotations, axis titles, and legend elements. 

Style-based Property Setting
Styles are objects that encapsulate all the visual attributes of cells. You set the property for 
the style object, then apply it to a range of cells.

In LiveTable 3.*, each visual attribute was set individually on a range of cells. 

For example, the following code sets the foreground and background color on a range of 
cells: 

table.setForeground(1, JCTableEnum.ALL, Color.blue);
table.setBackground(1, JCTableEnum.ALL, Color.black);

Using styles, the attribute is set on the style, and the style is applied to the cells: 

JCCellStyle style;
style.setForeground(Color.blue);
style.setBackground(Color.blue);
table.setCellStyle(1, JCTableEnum.ALL, style);

cell changes LiveTable now supports two different rendering models. 
Many renderers and editors were updated to make use of 
Swing and of the new rendering model. All stock editors 
and renderers use the JC prefix.

Change Rationale



Outliner

Appendix C ■ Porting JClass 3.6.x Applications 221

In general, styles are easier to use for tables that tend to set multiple attributes on ranges 
of cells (the majority of cases for table users).

Please refer to Building a Table, in Chapter 2, for details on style-based property setting. 

JCTable and Table
In LiveTable 4.x, JCTable is the core class. Table is a subclass of JCTable that is to be 
used if you want to use LiveTable 3.x API calls. Table does not support all the LiveTable 
3.x API. 

Beans APIs
Many of the Bean properties are the same. The Appearance property has been replaced 
by Styles. 

New events
The new event structure has been rationalized, and is documented in Events and 
Listeners, in Chapter 7. It is recommended that you rewrite your event handling code 
based on the new events. 

Cell Editors and Renderers
Most classes now begin with JC. 

The drawing-based rendering model (formerly called CellRenderer) is now called 
JCLightCellRenderer. The getPreferredSize() method now takes a Graphics object: 

There is now a new rendering model based on a component called 
JCComponentCellRenderer. Some of the default renderers now use this component 
instead of JCLightCellRenderer. 

JCComponentCellRenderer and JCLightCellRenderer have a common base class called 
JCCellRenderer. 

Not all of the renderers are still around.

Old New

jclass.cell.CellRenderer com.klg.jclass.cell.JCLightCell
Renderer

getPreferredSize(CellInfo,
Object)

getPreferredSize(Graphics, JCCellInfo,
Object)

Old New

ButtonCellRenderer None

CheckboxCellRenderer JCCheckBoxCellRenderer



222 Part II ■ Reference Appendices

The advanced cell editors and renderers have been removed. Users are expected to use 
JClass Field for this purpose. 

The editing interface has changed slightly: 

ChoiceCellRenderer JCComboBoxCellRenderer

EllipsisCellRenderer None

ImageCellRenderer JCImageCellRenderer

RawImageCellRenderer JCRawImageCellRenderer

ScaledImageCellRenderer JCScaledImageCellRenderer

StringCellRenderer JCStringCellRenderer

WordWrapCellRenderer JCWordWrapCellRenderer

None JCHTMLCellRenderer

None JCLabelCellRenderer

Old New

initialize(InitialEvent,
CellInfo,Object)

initialize(AWTEvent, JCCellInfo,
Object)

getPreferredSize(CellInfo,
Object)

None. Use component preferred size.

KeyModifier[]
getReservedKeys()

JCKeyModifier[] getReservedKeys()

Old New



223

Appendix D
Colors and Fonts

Colorname Values ■ RGB Color Values ■ Fonts

This section provides information on common colorname values, specific RGB color 
values, and fonts applicable to all Java programs.

D.1   Colorname Values

The following lists all the colornames that can be used within Java programs. The 
majority of these colors will appear the same (or similar) across different computing 
platforms.

D.2   RGB Color Values

The following lists all the main RGB color values that can be used within 
JClass LiveTable. RGB color values are specified as three numeric values representing 
the red, green, and blue color components; these values are separated by dashes (“-”).

The following RGB color values describe the colors available to Unix systems. It is 
recommended that you test these color values in a JClass program on a Windows or 
Macintosh system before utilizing them.

■ black ■ lightGray

■ blue ■ lightBlue

■ cyan ■ magenta

■ darkGray ■ orange

■ darkGrey ■ pink

■ gray ■ red

■ grey ■ white

■ green ■ yellow

■ lightGray



224 Part II ■ Reference Appendices

The list begins with all of the variations of white, then blacks and greys, and then 
describes the full color spectrum ranging from reds to violets.

Example code from an HTML file:

    <PARAM NAME=backgroundList VALUE="(4, 5 255-255-0)">

 

RGB Value Description

255-250-250 Snow

248-248-255 Ghost White

245-245-245 White Smoke

220-220-220 Gainsboro

255-250-240 Floral White

253-245-230 Old Lace

250-240-230 Linen

250-235-215 Antique White

255-239-213 Papaya Whip

255-235-205 Blanched Almond

255-228-196 Bisque

255-218-185 Peach Puff

255-222-173 Navajo White

255-228-181 Moccasin

255 248-220 Cornsilk

255-255-240 Ivory

255-250-205 Lemon Chiffon

255-245-238 Seashell

240-255-240 Honeydew

245-255-250 Mint Cream

240-255-255 Azure

240-248-255 Alice Blue

230-230-250 Lavender

255-240-245 Lavender Blush

255-228-225 Misty Rose

255-255-255 White

0-0-0 Black



Outliner

Appendix D ■ Colors and Fonts 225

47-79-79 Dark Slate Grey

105-105-105 Dim Gray

112- 128-144 Slate Grey

119- 136-153 Light Slate Grey

190- 190-190 Grey

211- 211-211 Light Gray

25-25-112 Midnight Blue

0-0-128 Navy Blue

100- 149 237 Cornflower Blue

72-61-139 Dark Slate Blue

106-90-205 Slate Blue

123- 104 238 Medium Slate Blue

132-112- 255 Light Slate Blue

0-0-205 Medium Blue

65-105-225 Royal Blue

0-0-255 Blue

30-144-255 Dodger Blue

0-19 -255 Deep Sky Blue

135-206-235 Sky Blue

135-206-250 Light Sky Blue

70-130-180 Steel Blue

176-196- 222 Light Steel Blue

173-216-230 Light Blue

176-224-230 Powder Blue

175-238-238 Pale Turquoise

0-206-209 Dark Turquoise

72-209-204 Medium Turquoise

64-224-208 Turquoise

0-255-255 Cyan

224-255-255 Light Cyan

95-158-160 Cadet Blue

102-205-170 Medium Aquamarine

RGB Value Description



226 Part II ■ Reference Appendices

127-255-212 Aquamarine

0-100-0 Dark Green

85-107-47 Dark Olive Green

143-188-143 Dark Sea Green

46-139-87 Sea Green

60-179-113 Medium Sea Green

32-178-170 Light Sea Green

152-251-152 Pale Green

0-255-127 Spring Green

124-252- 0 Lawn Green

0-255-0 Green

127-255- 0 Chartreuse

0-250-154 Medium Spring Green

173-255-47 Green Yellow

50-205-50 Lime Green

154-205-50 Yellow Green

34-139-34 Forest Green

107-142-35 Olive Drab

189-183-107 Dark Khaki

240-230-140 Khaki

238-232-170 Pale Goldenrod

250-250-210 Light Goldenrod Yellow

255-255-224 Light Yellow

255-255-0 Yellow

255-215-0 Gold

238-221-130 Light Goldenrod

218-165-32 Goldenrod

184-134-11 Dark Goldenrod

188-143-143 Rosy Brown

205-92-92 Indian Red

139-69-19 Saddle Brown

160-82-45 Sienna

RGB Value Description



Outliner

Appendix D ■ Colors and Fonts 227

205-133-63 Peru

222-184- 135 Burlywood

245-245-220 Beige

245-222-179 Wheat

244-164-96 SandyBrown

210-180-140 Tan

210-105-30 Chocolate

178-34-34 Firebrick

165-42-42 Brown

233-150-122 Dark Salmon

250-128-114 Salmon

255-160-122 Light Salmon

255-165- 0 Orange

255-140-0 Dark Orange

255-127-80 Coral

240-128-128 Light Coral

255-99-71 Tomato

255-69-0 Orange Red

255-0-0 Red

255-105-180 Hot Pink

255-20-147 Deep Pink

255-192-203 Pink

255-182-193 Light Pink

219-112-147 Pale Violet Red

176-48-96 Maroon

199-21-133 Medium Violet Red

208-32-144 Violet Red

255-0-255 Magenta

238-130-238 Violet

221-160-221 Plum

218-112-214 Orchid

186-85-211 Medium Orchid

RGB Value Description



228 Part II ■ Reference Appendices

D.3   Fonts

There are five different font names that can be specified in any Java program. They are:

■ Courier

■ Dialog

■ DialogInput

■ Helvetica

■ TimesRoman

Note: Font names are case-sensitive.

There are also four standard font style constants that can be used. The valid Java font 
style constants are:

■ bold

■ bold+italic

■ italic

■ plain

These values are strung together with dashes (“-”) when used with the VALUE attribute. 
You must also specify a point size by adding it to other font elements. To display a text 
using a 12-point italic Helvetica font, use the following:

Helvetica-italic-12

All three elements (font name, font style, and point size) must be used to specify a 
particular font display; otherwise, the default font is used instead.

Note: Font display may vary from system to system. If a font does not exist on a system, 
the default font is displayed instead.

153-50-204 Dark Orchid

148-0-211 Dark Violet

138-43-226 Blue Violet

160- 32-240 Purple

147-112-219 Medium Purple

216-191-216 Thistle

RGB Value Description



229

Appendix E
JClass LiveTable Inheritance Hierarchy

General JClass LiveTable Classes
The following figure gives an overview of class inheritance for table creation in 
JClass LiveTable. 

JCTable is the core JClass LiveTable class, with which most table programming is 
performed, and from which all LiveTable Beans are extended. The JCListTable class 



230 Part II ■ Reference Appendices

extends JCTable and provides a quick way of formatting a table to look and act like a list. 
The data binding Beans allow you to bind your table application to an IDE-specific or 
ODBC/JDBC-compliant data source. 

JClass LiveTable Data Classes
The following figure provides an overview of class inheritance for data handling in 
JClass LiveTable. 

TableDataModel is the core data source interface, and EditableTableDataModel extends 
this interface to allow editing of the data. JCVectorDataSource stores table data in a series 
of vectors. JCInputStreamDataSource extends JCVectorDataSource to read from any 
stream, and JCAppletDataSource, JCBeanFileDataSource, JCFileDataSource, and 
JCURLDataSource further extend it to read from specific stream types. The other stock 
data sources exist for other, more specific, situations.



231

Appendix F
Distributing Applets and Applications

Using JarMaster to Customize the Deployment Archive

F.1   Using JarMaster to Customize the Deployment Archive

The size of the archive and its related download time are important factors to consider 
when deploying your applet or application.

When you create an applet or an application using third-party classes such as JClass 
components, your deployment archive will contain many unused class files unless you 
customize your JAR. Optimally, the deployment JAR should contain only your classes 
and the third-party classes you actually use. For example, the jctable.jar, which you used to 
develop your applet or application, contains classes and packages that are only useful 
during the development process and that are not referenced by your application. These 
classes include the Property Editors and BeanInfo classes. JClass JarMaster helps you 
create a deployment JAR that contains only the class files required to run your 
application.

JClass JarMaster is a robust utility that allows you to customize and reduce the size of the 
deployment archive quickly and easily. Using JClass JarMaster you can select the classes 
you know must belong in your JAR, and JarMaster will automatically search for all of the 
direct and indirect dependencies (supporting classes).

When you optimize the size of the deployment JAR with JClass JarMaster, you save 
yourself the time and trouble of building a JAR manually and determining the necessity 
of each class or package. Your deployment JAR will take less time to load and will use less 
space on your server as a direct result of excluding all of the classes that are never used by 
your applet or application.

For more information about using JarMaster to create and edit JARs, please consult its 
online documentation.

JClass JarMaster is included in the JClass DesktopViews suite of products. For more 
details please refer to Quest’s Web site.

http://www.quest.com


232 Part II ■ Reference Appendices



233

Appendix G
Overview of Examples and Demos

JClass LiveTable Examples ■ JClass LiveTable Demos

G.1   JClass LiveTable Examples

The following sections offer an overview of the examples included with JClass LiveTable. 
These examples demonstrate the various concepts that can be used to create a table. The 
examples vary in depth and complexity, but all are helpful in showing you how to 
implement some of JClass LiveTable’s features. 

Note: Please consult the Installation Guide to ensure that you are properly set up to run 
these examples. 

G.1.1 Introductory Examples
The introductory JClass LiveTable examples are part of the tutorial found in ‘Hello Table’ 
– JClass LiveTable Tutorial, in Chapter 1, that walk you through the construction and 
modification of a basic table. These examples are part of the examples.table.intro 
package, and are found in the examples/table/intro directory: 

ExampleTable1.java A table with basic visual and interactive properties. 

ExampleTable2.java A table based on the previous example, but with labels. 

ExampleTable3.java The previous example table’s label colors have been 
changed.

ExampleTable4.java The label fonts and text alignment have been modified. 

ExampleTable5.java Cell and frame borders and spacing have been 
changed. One table cell’s colors have been changed. 

ExampleTable6.java Cell editing has been enabled. Cell width and height 
have been changed. 

ExampleTable7.java Table resizing only with labels has been set. 

ExampleTable8.java Column sorting has been enabled. 

../getstarted/index.html


234 Part II ■ Reference Appendices

G.1.2 Table Layout Examples
The layout examples demonstrate how to build tables that go beyond the basic grid 
design for tables. These are part of the examples.table.layout package, and are found in 
the examples/table/layout directory: 

G.1.3 Cell Style Examples
The cell style examples demonstrate how style properties affect the appearance of 
individual or groups of cells. You can find more information about cell style properties in 
Cell Styles, in Chapter 2. These examples are part of the examples.table.styles 
package, and are found in the examples/table/styles directory: 

G.1.4 Cell Examples
The cell editing and rendering examples demonstrate specific applications for 
JClass LiveTable’s editors and renderers. For more information about cell editors and 
renderers, please refer to Displaying and Editing Cells, in Chapter 4. These examples are 
part of the examples.table.cell package, and are found in the examples/table/cell 
directory: 

Cars.java A table that contains tables. This example also 
demonstrates cell spanning and visual property settings. 

Flexible.java Columns resize dynamically, depending on how the 
whole table is resized. 

Animated.java Displays animated cells. 

BorderTypes.java Showcases the cell border options available, including 
some customized cell borders. 

CellBorders.java Demonstrates various cell border appearance attributes, 
including border type, border width, and cell side 
coverage. The table updates with each selection. 

RepeatColor.java Uses alternating background colors for rows or 
columns, to improve readability. 

TextureTable.java Uses a customized border type that tiles a background 
image onto table cells. 

UpdateStyle.java Continuously updates the background color property 
for a particular table row’s style. 

CurrencyTable.java Uses CurrencyRenderer to take all data, regardless of its 
original type, and render it as dollar values in the table. 



Outliner

Appendix G ■ Overview of Examples and Demos 235

G.1.5 Table Listener Examples
The event and listener examples demonstrate how you can work with events that your 
table receives. For more information about the types of events and listeners available, 
please refer to Events and Listeners, in Chapter 7. These examples are part of the 
examples.table.listeners package, and are found in the examples/table/listeners 
directory: 

Histogram.java Uses a custom cell renderer to take randomized integer 
data, and render them as horizontal bars in a table. 

MoneyTable.java Uses a custom cell editor and a custom data type.

TriangleTable.java A demonstration of a non-text based editor and 
renderer for Integer and Polygon types.

WordWrap.java Uses a word wrapping renderer to handle long String 
data in cells. 

BooleanDisplay.java Uses the JCCellDisplay listener to intercept the display 
event and change it before rendering (changes the 
boolean from true/false to yes/no). 

CancelEdit.java Shows how to use JCTableDataEdit and 
JCTableDataListener to cancel active edits when the 
data source changes.

DoubleClickEdit.java Demonstrates the use of JCEditCell events by 
requiring a user to double click a cell in order to edit it. 
A single click, or click and drag, only selects cells. 

EditCell.java Demonstrates the use of JCEditCell events by placing 
a message in the table’s pane, telling you which 
column’s cell is being edited. 

ResizeCell.java Uses JCResizeCell events to ensure that the maximum 
and minimum set values for row heights and column 
widths are adhered to when the user resizes rows and 
columns. These maximum and minimum values are 
defined in the table’s code. 

SelectListener.java Uses JCSelectListener events to make sure that the 
portion of the table that is defined as non-selectable are 
not included in cell range selections, and cannot be 
initially selected. 

SkipNavigation.java Cell traversal events are used to listen for and skip a 
column. When the user traverses to the right from 
column 0, cell focus skips column 1 and moves to 
column 2. 



236 Part II ■ Reference Appendices

G.1.6 Table Interaction Examples
The interaction examples show you how to improve the usability of your table 
applications by enhancing some of your table’s interactive features. For information about 
table interactions, please refer to Programming User Interactivity, in Chapter 6. These 
examples are part of the examples.table.interactions package, and are found in the 
examples/table/interactions directory:  

G.1.7 Data Source Examples
The data source examples demonstrate how you can customize and use data sources with 
your table application. These examples are part of the examples.table.datasource 
package, and are found in the examples/table/datasource directory:  

Sorter.java Demonstrates column sorting by performing a String 
and numerical sort on a column of integers. 

TwoTables.java JCScroll events are used to sync the horizontal 
scrolling for two separate tables. 

ColumnLabelPopUp.java Shows how to use column labels as tool tips.

DragDrop.java Demonstrates the use of drag and drop by allowing the 
user to interactively reorder rows and columns. This is 
done by clicking and dragging labels. 

ExcelTableExample.java Demonstrates how to copy and paste selected cells from 
a JCTable to a Microsoft Excel spreadsheet and vice-
versa.

TableAutoColumnResize.java Depicts how to emulate JTable auto column resizing in 
JCTable. 

TraverseOnEnter.java Displays how cell traversal (across rows) can optionally 
be handled by using the Enter key. 

DynamicTest.java This example table continually updates the data it 
displays, as its data source’s values randomly change. 

DynamicTest2.java This example is the same as DynamicTest.java, except 
that it uses AbstractDataSource. 

FileData.java Demonstrates how to load data from an external file by 
using JCFileDataSource. Both a CSV and table format 
file are loaded and displayed side by side.



Outliner

Appendix G ■ Overview of Examples and Demos 237

G.1.8 DataSource Data Binding Examples
The data binding examples demonstrate the use of data binding in tables. Binding your 
table to a ODBC, JDBC, or IDE-specific data source gives you live control over a robust 
data source. These examples are part of the examples.table.db.* package, and are 
based in the examples/table/db/ directory: 

FontList.java Uses the getFont() method to access AWT’s available 
fonts and use it as the data source. Displays the name, 
appearance, and other information pertaining to the 
available fonts.

Pivot.java Shows how to create a data source instance that can 
transpose itself. You can use a customized data source 
or create your own. 

StaticEditableTest.java A basic, custom data source that is built on editable 
String values. 

StaticTest.java This example is the same as the previous example, 
except that the table data is not editable. 

XMLFileData.java Demonstrates how to load XML-formatted data from 
an external file by using JCFileDataSource. 

Please note that in order to run this example, you will 
need to have the jaxp.jar and crimson.jar files in your 
CLASSPATH. For more information, please see 
Loading Data from an XML Source, in Chapter 3.

XMLTableModelData.java Demonstrates how to load XML-formatted data into a 
Swing TableModel class. 

Please note that in order to run this example, you will 
need to have the jaxp.jar and crimson.jar files in your 
CLASSPATH. For more information, please see 
Loading Data from an XML Source, in Chapter 3.

datasource/SimpleData.java Shows how to bind DSdbTable to JClass DataSource.

jbuilder/JBuilderDBTable.java This example shows how to bind JBdbTable to a 
JBuilder QueryDataSet.



238 Part II ■ Reference Appendices

G.1.9 Advanced JClass LiveTable Examples
The advanced examples combine two or more concepts demonstrated in previous 
examples. They are found in the examples.table.advanced package, and are in the 
examples/table/advanced directory: 

G.2   JClass LiveTable Demos
The JClass LiveTable demos showcase different types of complete table solutions. They 
combine several table concepts that are explained in this manual, including cell spanning, 
user interaction, and editors and renderers. 

The following table offers an overview of each demo that comes with JClass LiveTable, 
including demo name, package, description, and sample screen shot.

Note: Please consult the Installing JClass Products section in the Installation Guide to 
ensure that you are properly set up to run these demos. 

DecimalTableCellDisplay.java This example assigns each column to take on a different 
format of the same number. It uses 
CellDisplayListener to format the rendered text, and 
it uses UserData to store the numeric format of the cells.

DecimalTableCellStyle.java This example shows how to achieve the same results as 
DecimalTableCellDisplay.java, except that 
CellStyleModel object is used.

Gradient.java Creates a color whose value is incrementally changed 
from cell to cell. This example uses the cell style 
defaults, but shows how to bypass some properties for 
particular cells.

BeanSweeper.java 
demos.table.beanSweeper

This demo recreates the well known minesweeper 
game. In the creation of this table, cell styles are 
used extensively. Style properties that affect cell 
and border colors, border types, and image use, 
give the game its look. 

../getstarted/index.html


Outliner

Appendix G ■ Overview of Examples and Demos 239

Calculator.java 
demos.table.calculator

This basic calculator demo is a simple yet effective 
demonstration of how cell styles can be used to customize the 
look of your table. In this case, cell border and color 
properties are set to make this look like an authentic $2 
calculator. This demo also implements a data source that 
gathers information that is input by the user. 

CustomCells.java 
demos.table.customCells

An effective demonstration of using 
custom cell renderers, which take 
various data types and converts 
them to the standard desired 
formats. Also, column sorting and 
JClass Field component integration 
are showcased. 

Matrix.java
demos.table.matrix

This information matrix shows how a 
custom JCCellRenderer can be used to 
add properties that are not built into 
JClass LiveTable. Here, an 
implementation of the CellStyleModel 
interface, RotatedCellStyle, adds the 
Rotation property to render text at any 
given angle. 



240 Part II ■ Reference Appendices

PrimeTime.java 
demos.table.primetime

This demo presents television 
listings, and shows what can be 
achieved with cell styles and cell 
spanning. This demo also 
incorporates printing functionality 
into a table. 

SpreadSheet.java 
demos.table.spreadsheet

This spreadsheet demo 
emulates an Excel-style 
spreadsheet. It supports a 
subset of spreadsheet 
functionality and is intended to 
demonstrate formulae 
integration with table.

Within this demo you can also 
chart a selected region of the 
spreadsheet.

Stocks.java 
demos.table.stocks

This stock information demo provides the 
user with quick data updates and colors 
rows according to changes in value. Custom 
cell rendering and cell styles are 
emphasized with this demo. 



241

Index
A
about property 165, 214–215, 217
Abstract Windowing Toolkit, see AWT 15
AbstractDataSource 76
adding labels 35
alignment

cells 53
changing, tutorial 16

AllowCellResize property 118, 165, 203, 214–215, 
217

effect on mouse pointers 129
AllowResizeBy property 165, 203, 214–215, 217
API 3

programming 27
setting properties 160

applets 231
JarMaster 231

applications
distributing 231
JarMaster 231

attaching scrollbars 33
autoEdit property 203, 214–215, 217
automatic scrolling 120
autoScroll property 165, 204, 214–215, 217
AWT

color constants 15
font styles, tutorial 17
image file formats supported 58

B
background

colors 15, 52
repeating 52

property 52, 212
basic table 10
Bean 159

LiveTable 161, 164
about property 165
allowCellResize property 165
allowResizeBy property 165
autoScroll property 165
CellBorderWidth property 166
CellSize property 166
data property 166

editHeightPolicy property 167
editWidthPolicy property 167
focusColor property 167
focusIndicator property 168
frameBorderType property 168
frameBorderWidth property 168
frozenCellLayout property 168
LabelLayout property 168
leftColumn property 169
marginHeight property 169
marginWidth property 169
minCellVisibility property 169
sBLayout property 169
selectedBackground property 171
selectedForeground property 171
selectIncludeLabels property 172
selectionPolicy property 172
spannedCells property 172
styles property 173
topRow property 174

LiveTable, changing property editor table size 163
LiveTable, property

editors 161
LiveTable, selecting cell 162
LiveTable, selecting labels 162
property differences 194
setting properties 161

BeanBox 159
Beans Development Kit 159
borders

colors 38
component 38
custom 56
frame attributes 162, 172
sides

specifying 57
table frame 38
type 54
width 37

Borland JBuilder
data binding 184

built-in styles, using and modifying 50

C
CellBorder property 212



242 Index

CellBorderColor property 212
CellBorderColorMode property 212
CellBorderSides property 57, 213
CellBorderType property 19
CellBorderWidth property 19, 37, 204
cellBorderWidth property 166, 214–215, 217
CellInfo interface 100
cells

adding color to one cell, tutorial 18
alignment 53
alignment, tutorial 16
area

spacing from labels 36
border sides 57
border types 54
border width 37
border, IDE tutorial 180
borders, tutorial 19
CellEditor interface 79
CellInfo interface 100
CellRenderer interface 79
clipping arrows 43
controlling editor size 42
controlling selection at runtime 126
current 28
custom borders 56
customizing traversal 115
default editors 90
default selection 123
default traversal 115
definition 28
determining visibility 121
dimensions 43
displaying 79, 131
displaying images 58
displaying multiple lines 46
editable, tutorial 21
editing 28, 63, 79, 89, 133

default 80
editors

and CellInfo interface 100
controlling size 42
creating 92
default 90
defined 90
getting reserved keys 93
handling events 99
key control 99
mapping a data type 91
registering 113
reserving keys 93, 99
setting for a series 91
subclassing 94
writing 96

fonts 54
forcing traversal 116

image alignment 53
image layout 58
interactive traversal 117
making visible 121
margins 37
mathematical operation 114
maximum height/width 46
minimum height/width 46
minimum visibility 116
multiline 46
newline characters 46
preset styles, selection 32
range

referencing 29
referencing, all 30
referencing, one 29
removing a selection range 126
renderers 84

component based 87
creating 84
data type 83
mapping 83
mapping a data type 83
registering 113
setting 82
subclassing 85
writing 85

rendering 28, 81
default 80

reserving keys for editors 93
resizing 118
selected cell list 125
selecting 144
selecting ranges 125
selection

customizing 124
selection colors 34
selection, row and column labels 125
selection, tutorial 22
setting dimensions 43
setting properties 31
setting renderers 82
setting selection colors 34
setting values 69
size

absolute 44
character height/width 43
character width/height 43
pixel width/height 44
variable 45
changing to fixed values 45

size, tutorial 20
spacing 19
spanning 58
specific data types 80
styles 47



Index 243

built-in, modifying 50
built-in, using 50
changing default 48
defining 48
getting and setting 48
parent styles 49
pluggable look and feel 51
properties 47
retrieving from table 49
setting properties 31
tutorial 15

text alignment 53
thickness, IDE tutorial 180
traversal 115
traversing 151
values

setting 69
variable dimensions 45

changing to fixed values 45
cellSize property 166, 214, 216–217
CellStyleModel 15, 50
central registry 113
change values 76
changing default cells

styles 48
character

determining cells
size 43

height 43
width 43

CharHeight property 43, 204
tutorial 20

CharWidth property 43, 204
tutorial 20

ClassCastException 113
clip arrows

tutorial 12
clip hints

displaying 57
ClipHints property 57, 213
clipping

arrows 43
image 57
text 57

colors 52
AWT constants 15
background 52
colorname values 223
focus rectangle 33
foreground 52
repeating 52
RGB 223
RGB color value list 223
selection 124
setting 52
setting, tutorial 15

colors, selection 34
setting 34

ColumnHidden property 47, 204
ColumnLabelDisplay property 204

tutorial 14
ColumnLabelOffset property 36, 204
ColumnLabelPlacement property 35, 204
columns

adding 67, 78
adding labels, IDE tutorial 176
controlling resizing 118
default resizing behavior 118
deleting 68
determining number 40
determining visibility 121
disallowing resizing 118
displaying 41
dragging 126
freezing 41–42
hiding 46
labels 35, 62, 129

displaying 14
labels, placement 35
making visible 121
moving 68
placement of frozen 42
referencing, all 29–30
referencing, entire 30
referencing, one 29
removing 78
resizing 118
resizing all at once 119
resizing with labels 119
selecting labels 125
set as left 34
setting the number 66
sorting 127, 129
sorting frozen 127
sorting multiple 128
sorting, tutorial 24
specifying labels 66
swapping 41
visible, getting 40
visible, setting 40
width

pixel value 43
width property 43
width, setting 43

ColumnSelection property 204
ColumnTrigger property

and dragging 126
and sorting 129

com.klg.jclass.table.beans.LiveTable 214
com.klg.jclass.table.CellStyleModel 212
com.klg.jclass.table.db.datasource.DSdbTable 217
com.klg.jclass.table.db.jbuilder.JBdbTable 215



244 Index

com.klg.jclass.table.JCTable 203
com.klg.jclass.util.formulae 103
comments on product 6
component borders 38
Component property 204
ComponentBorderWidth property 38, 204
context 29
creating a cell editor 92
creating cell renderers 84
CSV 62
current cell 28

definition 28
current context 29
Cursor property 205
cursor type 33

tracking 33

D
data

caching 65
cell editor 80
cell renderer 80
data source 62
data storage 61
editing 63
format, detection 62
from an input stream 64
getting from database 65
getting into a table 62
handling 61
property 166, 214
storing 64–65
Swing TableModel objects 66
updating dynamically 74

data binding
examples 237
IDE 183
JBuilder 184
JClass DataSource 189

data bound
interacting 193

data source
adding and removing listeners 63, 69
and table size 62
communication with the table 61
creating 72
editable 63
editable, tutorial 21
event listeners 63
examples 236
IDE tutorial 175
JBuilder 184
JClass DataSource 189
JCVectorDataSource 64

model-view-controller 61
object 61
retrieving data 62
setting cell values 69
setting properties 66
stock data properties 66
stock data sources 63
tutorial 11

data type
cell renderers 83
mapping 83
mapping to a cell editor 91

database
getting data 65

dataBinding property 217
dataSet property 216
default

cell editors 90
scrolling 120

defaultCellStyle 51
defaultLabelStyle 51
deleting rows and columns 68
demos 238

BeanSweeper.java 238
Calculator.java 239
CustomCells.java 239
Matrix.java 239
overview 233
PrimeTime.java 240
SpreadSheet.java 240
Stocks.java 240

destination parameter 68
dimensions

cell 43
displaying

cells 131
clip hints 57
rows and columns 41

distributing 231
applets and applications 231
JarMaster 231

dragging rows and columns 126
drawBackground 56
drawing cells 80
dynamically updating data 74

E
editable cells 63
Editable property 63, 213
EditableTableDataModel 63
EditHeightPolicy property 205
editHeightPolicy property 42, 167, 214, 216–217
editing cells 63, 80, 89
editors



Index 245

LiveTable 161
setting 91

EditWidthPolicy property 42
editWidthPolicy property 167, 205, 214, 216–217
evaluate

method in MathValue 105
event listeners 131

adding and removing 69
cell display 132
data source 63
entering cells 134
JCCellDisplayListener 131
JCEnterCellListener 134
JCPaintListener 136
JCPrintListener 137
JCResizeListener 138
JCScrollListener 141
painting 136
printing 137
resizing 138

events 112, 131
cell display events 132
cell editors 99
editing cells 133
JCCellDisplayEvent 131
JCEditCellEvent 133
JCPaintEvent 136
JCPrintEvent 137
JCResizeEvent 138
JCScrollEvent 141
JCSortEvent 147
JCTraverseCellEvent 149, 151
painting 136
printing 137
resizing 138
scrolling 141
sorting 147
summary 199
TableListenerPropagator 112
traversal 149, 151

examples 233
advanced 238
cell 234
cell style 234
data binding 237
data source 236
introductory 233
overview 233
table interaction 236
table layout 234
table listener examples 235

exceptions 113
ClassCastException 113
OperandMismatchException 113

expression 105
interface 105

lists 112, 114
MathExpressionList 112
QueryExpressionList 112
TableExpressionList 112

mathematical 103
references 114

F
FAQs 5
feature overview 1
fixed values 45
focus rectangle

color 33
focusColor property 167, 205, 214, 216–217
focusIndicator property 168, 205, 214, 216–217
FocusRectColor property 33
Font property 205, 213
font styles

AWT 17
fonts

cells 54
labels 54
matched by AWT 18
names 228
point size 228
setting, tutorial 17
size, tutorial 17
style constants 228

footers
printing 156

foreground
colors 15, 52

repeating 52
property 52

Foreground property 205, 213
format, RGB 223
formulae hierarchy 103
formulae package 103
formulas

adding to JClass LiveTable 103
using in JClass LiveTable 113

frame
border 162, 172

FrameBorder property 38, 205
FrameBorderType property

in IDEs 168
frameBorderType property 168, 214, 216–217
frameBorderWidth property 38, 168, 206, 214, 216–

217
freezing

columns 42
rows 42

frozen
column placement 42



246 Index

columns 41
and sorting 127

row placement 42
rows 41

frozenCellLayout property 168, 214, 216–217
FrozenColumnPlacement property 206
FrozenColumns property 206

properties
FrozenColumns 41

FrozenRowPlacement property 206
FrozenRows property 41, 206

G
get method 203
getDataFormat

method in MathValue 105
getValueAt

method in MathMatrix 108
method in MathVector 107

GIF
image file formats supported 58

global table properties 32

H
headers

printing 156
hiding

columns 46
rows 46

HorizontalAlignment property 58, 213
HorizSBAttachment property 33, 206
HorizSBDisplay property 121, 206
HorizSBOffset property 206
HorizSBPosition property 207
HorizSBTrack property 207
HorizSBTrackRow property 207

I
IDEs 159

data binding 183
setting properties 32, 160
tutorial 174

image
alignment in cell 53
clipping 57
displaying in cells 58
formats supported 58
layout 58
layout in cell 58

inheritance hierarchy 229

input stream
getting data from 64

Integrated Development Environment (IDE) 160
interactivity 115

IDE tutorial 181
interacting with data bound tables 193
tutorial 21

internationalization 26
introduction

JClass LiveTable 1

J
JAR 231

JarMaster 231
JarMaster 231

JAR 231
JavaBeans

features of 159
JBuilder 184

data binding 184
JCCachedDataSource 65
JCCellBorder class 54
JCCellDisplayEvent 131, 199
JCCellDisplayListeners 131
JCCellRange

in cell selection 125
JCCellRenderer 83
JCCellStyle 15, 48, 50
JCComponentCellRenderer 87
JCEditCellEvent 199
JCExpressionCellRenderer 80
JCInputStream 62
JCInputStreamDataSource 64
JClass 3.6.x applications

porting 219
JClass DataSource 189
JClass JarMaster 231
JClass LiveTable, introduction 1
JClass technical support 5

contacting 5
jclass.cell package 79
JCListTable 32
JCPaintEvent 136, 199
JCPaintListener 136
JCPrintEvent 137, 200
JCPrintListener 137
JCPrintPreview 157
JCPrintTable 155, 158
JCResizeCellEvent 118, 138, 200
JCResizeCellListener 138
JCResizeCellMotionListener 138
JCScrollEvent 122, 141, 200
JCScrollListener 122, 141
JCSelectEvent 201



Index 247

JCSelectListener 145
JCSortEvent 147, 201
JCSortListener 147
JCTable 27
JCTableDataEvent 149, 201
JCTableDataListener 150
JCTraversalCellEvent 151
JCTraverseCellEvent 117, 201
JCTraverseCellListener 151
JCVectorDataSource 11

editing 64
JDBC 183
JPEG

image file formats supported 58
JumpScroll property 207, 214

K
keys

control 99
reserving for cell editors 93, 99

L
label parameter 67
labelLayout property 168, 214, 216–217
labels

adding 13, 35
border sides 57
border width 37
column, IDE tutorial 176
columns 62
custom borders 56
definition 28
displaying, tutorial 14
fonts 54
formatting 13
layout, IDE tutorial 179
margins 37
offset from table 36
placement 35
preset styles, selection 32
referencing, all 30
referencing, all columns 30
referencing, all rows 30
referencing, column 29
referencing, row 29
resize, tutorial 23
rows 62
selecting 125
setting properties 31
spacing from cell area 36
spanning 58
specifying row and column 66

using for resizing 119
leftColumn property 34, 121, 169, 207, 214, 216–217
list of cell editors 90
listeners 112, 131

examples 235
management 76
scroll 122
TableListenerPropagator 112

LiveTable
general classes, inheritance 229

LiveTable Bean
about property 165
allowCellResize property 165
allowResizeBy property 165
autoScroll property 165
CellBorderWidth property 166
CellSize property 166
data property 166
editHeightPolicy property 167
editWidthPolicy property 167
focusColor property 167
focusIndicator property 168
frameBorderType property 168
frameBorderWidth property 168
frozenCellLayout property 168
LabelLayout property 168
leftColumn property 169
marginHeight property 169
marginWidth property 169
minCellVisibility property 169
properties 164
sBLayout property 169
selectedBackground property 171
selectedForeground property 171
selectIncludeLabels property 172
selectionPolicy property 172
setting properties 161
spannedCells property 172
styles property 173
topRow property 174

LiveTable Data
classes, inheritance 230

loading data 69
localization 26

M
mapping 83

a data type 83
marginHeight property 37, 169, 207, 214, 216, 218
margins

cell and label 37
setting 37

marginWidth property 37, 169, 207, 214, 216, 218
math values 105



248 Index

mathematical expressions 103
Mathematical operations 109

binary 109
range of cells 114
unary 109

MathExpressionList 112
MathMatrix 107

constructors 107
getValueAt method 108
matrixValue method 108
methods 108
numberValue method 108
setValueAt method 108
toString method 108
VectorValue method 108

MathScalar 106
constructors 106
matrixValue method 106
methods 106
numberValue method 106
toString method 106
vectorValue method 106

MathValue 103
class 105
evaluate method 105
getDataFormat method 105
matrixValue method 105
methods 105
numberValue method 105
setDataFormat method 105
vectorValue method 105

MathVector 106
constructors 106
getValueAt method 107
matrixValue method 107
methods 107
numberValue method 107
setValueAt method 107
toString method 107
vectorValue method 107

matrixValue
method in MathMatrix 108
method in MathScalar 106
method in MathValue 105
method in MathVector 107

MaxHeight property 208
maximum pixel

height 46
width 46

MaxWidth property 208
methods

accessor 203
minCellVisibility property 169, 208, 214, 216, 218
MinHeight property 208
minimum

cell visibility 116

pixel height 46
pixel width 46

MinWidth property 208
model-view-controller 11, 61

data source 61
mouse pointers

custom 129
disabling tracking 130

multiline 46
headers, spanning 60

multiple
columns, sorting 128
lines in cells 46

MVC, see model-view-controller 61

N
newline character

and Multiline property 46
num_columns parameter 68
num_rows parameter 68
numberValue

method in MathMatrix 108
method in MathScalar 106
method in MathValue 105
method in MathVector 107

NumColumns property 40, 62
NumRows property 40, 62

O
ODBC 183
offset of labels 36
OperandMismatchException 113
Operation class 108
operations

constructor 108
mathematical 109

binary 109
unary 109

methods 108
reducing values 111

operators
Abs 109
Add 109
Average 109
Ceiling 109
Count 110
Divide 110
Floor 109
GeometricMean 110
in com.klg.jclass.util.formulae 109
Max 110
Median 110



Index 249

Min 110
Multiply 110
Power 110
Product 110
Root 109
Round 109
Sort 111
StdDeviation 111
Subtract 111
Sum 111
Trunc 109

P
page layout

page size 155
setting, for printing 155

page margins
setting, for printing 156

page numbering
setting, for printing 156

page resolution 156
painting 136
parent cell styles

creating 49
PixelHeight property 44, 208

setting, tutorial 20
user row resizing 118
using to hide rows 46

pixels
absolute height and width 44
estimate 45
maximum height/width 46
minimum height/width 46
variable height and width 45

changing to fixed values 45
PixelWidth property 44, 208

column resizing 118
setting, tutorial 20
using to hide columns 46

pluggable look and feel (PLAF) 51
popupMenuEnabled property 208, 214, 216, 218
porting

JClass 3.6.x applications 219
position parameter 67–68
PreferredSize 87
preset styles 32
print preview 157
printing 137, 155

events 137
headers and footers 156
page layout 155
page margins 156
page numbering 156
page resolution 156

page size 155
preview 157

product feedback 6
programming the API 27
properties

about 214–215, 217
access in IDE 32
accessor methods 203
allowCellResize 203, 214–215, 217

effect on mouse pointers 129
allowResizeBy 203, 214–215, 217
autoEdit 203, 214–215, 217
autoScroll 204, 214–215, 217
Background 212
cell style 47
CellBorder 212
CellBorderColor 212
CellBorderColorMode 212
CellBorderSides 57, 213
CellBorderWidth 37, 204, 214–215, 217
cellSize 214, 216–217
CharHeight 20, 43, 204
CharWidth 20, 43, 204
ClipHints 57, 213
Color 223
column width 43
ColumnHidden 47, 204
ColumnLabelDisplay 204
ColumnLabelOffset 36, 204
ColumnLabelPlacement 35, 204
ColumnSelection 204
ColumnTrigger 126, 129
com.klg.jclass.table.beans.LiveTable 214
com.klg.jclass.table.CellStyleModel 212
com.klg.jclass.table.db.datasource.DSdbTable 217
com.klg.jclass.table.db.jbuilder.JBdbTable 215
com.klg.jclass.table.JCTable 203
ComponentBorderWidth 38, 204
Cursor 205
data 214
dataBinding 217
dataSet 216
Editable 213
EditHeightPolicy 42, 205, 214, 216–217
EditWidthPolicy 42, 205, 214, 216–217
focusColor 205, 214, 216–217
focusIndicator 205, 214, 216–217
Font 205, 213, 228
Foreground 205, 213
FrameBorder 38, 205
frameBorderType 160, 214, 216–217
frameBorderWidth 38, 206, 214, 216–217
frozenCellLayout 214, 216–217
FrozenColumnPlacement 206
FrozenColumns 206
FrozenRowPlacement 206



250 Index

FrozenRows 41, 206
getting 28
global 32
HorizontalAlignment 213
HorizSBAttachment 206
HorizSBDisplay 206
HorizSBOffset 206
HorizSBPosition 207
HorizSBTrack 207
HorizSBTrackRow 207
JumpScroll 207, 214
labelLayout 214, 216–217
leftColumn 34, 207, 214, 216–217
marginHeight 37, 207, 214, 216, 218
marginWidth 37, 207, 214, 216, 218
MaxHeight 208
MaxWidth 208
minCellVisibility 208, 214, 216, 218
MinHeight 208
MinWidth 208
NumColumns 40, 62
NumRows 40, 62
PixelHeight 20, 44, 208

using to hide rows 46
PixelWidth 20, 44, 208

using to hide columns 46
popupMenuEnabled 208, 214, 216, 218
RepaintEnabled 208
RepeatBackground 213
RepeatBackgroundColors 213
RepeatForeground 213
RepeatForegroundColors 213
ResizeByLabelsOnly 23, 119
resizeEven 119, 208, 214, 216, 218
resizeInteractive 209, 215–216, 218
row height 43
RowHidden 47, 209
RowLabelDisplay 209
RowLabelOffset 36, 209
RowLabelPlacement 35, 209
RowSelection 209
RowTrigger 126
sBLayout 215–216, 218
selectedBackground 34, 209, 215–216, 218
SelectedBackgroundMode 209
SelectedCells 209
selectedForeground 34, 210, 215–216, 218
SelectedForegroundMode 210
selectIncludeLabels 209, 215–216, 218
SelectionModel 210
selectionPolicy 22, 210, 215–216, 218
SeriesDataSorted 210
setting 28
setting cell styles 31
setting for a cell 29
setting for a cell range 32

setting for a range 30
setting for all cells 30
setting for all columns 29–30
setting for all labels 30
setting for all rows 29
setting for cells and labels 31
setting for column 29
setting for entire column 30
setting for entire row 30
setting for entire table 30
setting for labels 29–30
setting for range of cells 29
setting in the API 13
SortBy Column 127
spannedCells 215–216
stock data source 66
StoreImageEnabled 210
styles 215–216, 218
summary of 203
swingDataModel 215, 217–218
topRow 34, 210, 215, 217–218
TrackBackground 210
trackCursor 210, 215, 217–218
TrackForeground 210
TrackSize 211
Traversable 213
traverseCycle 211, 215, 217–218
useDatasourceEditable 218
VariableEstimateCount 211
VerticalAlignment 213
VertSBAttachment 211
VertSBDisplay 211
VertSBOffset 211
VertSBPosition 211
VertSBTrack 212
VertSBTrackColumn 212
VisibleColumns 40–41, 212
VisibleRows 40–41, 212

property
definition 159
difference between JClass LiveTable Beans 194
LiveTable properties 164
setting in Java IDE 160
setting using API 160

property editors
LiveTable 161

Q
QueryExpressionList 112
Quest Software technical support

contacting 5



Index 251

R
ranges

in cell selection 125
referencing 30
selected 125
used in cell spanning 59

references
expression 114

registry
JClass central 113

removing cell selections 126
renderers 83–84

component based 87
default 85
editors 28
subclassing 85
unmap 84
writing 85

rendering cells 80–81
RepaintEnabled property 208
RepeatBackground property 213
RepeatBackgroundColors property 213
RepeatForeground property 213
RepeatForegroundColors property 213
repeating colors 52
reset 78
resetSortedRows() method 129
ResizeByLabelsOnly property 119

tutorial 23
ResizeEven property 119, 208
resizeEven property 214, 216, 218
ResizeInteractive property 209
resizeInteractive property 215–216, 218
resizing 138

columns 118
default behavior 118
disabling 118
events and listeners 138
pixel width 118
preset styles 32
rows 118
rows and columns 118–119
using labels only 119
using labels, tutorial 23

results 105
RGB color values 223
RowHidden property 47, 209
RowLabelDisplay property 209
RowLabelOffset property 36, 209
RowLabelPlacement property 35, 209
rows

adding 67, 78
controlling resizing 118
default resizing behavior 118
definition

columns
definition 40

deleting 68
determining number 40
disallowing resizing 118
displaying 41
dragging 126
freezing 41–42
height

pixel value 43
height property 43
height, setting 43
hiding 46
labels 35, 62
labels, placement 35
making visible 121
moving 68
placement of frozen 42
referencing, all 29–30
referencing, entire 30
referencing, one 29
removing 78
resizing 118
resizing all at once 119
resizing with labels 119
selecting labels 125
set as top 34
setting the number 66
specifying labels 66
swapping 41
visible, getting 40
visible, setting 40

RowSelection property 209
RowTrigger property

and dragging 126
runtime

cell selection 126

S
sBLayout property 169, 215–216, 218
scroll listener methods 122
scrollbars 33

attaching 33
component 34
definition 28
disabling interactive 121
display 34
force scrolling by an application 121
jump scrolling 120
options 34
positioning 33
programming 120
tracking 122

scrolling 120, 141



252 Index

automatic 120
disabling interactive 121
forcing 121
jump scrolling 120
listener 122
managing 120
mouse wheel support 121
tracking scrollbars 122

selected cells
list 125

selectedBackground property 34, 171, 209, 215–216, 
218

SelectedBackgroundMode property 209
SelectedCells property 209
selectedForeground property 34, 171, 210, 215–216, 

218
SelectedForegroundMode property 210
selectIncludeLabels property 172, 209, 215–216, 218
selection

cells 144
cells, default 123
colors 34, 124

setting 34
customizing 124
enabling cell selection, tutorial 22

SelectionModel property 210
selectionPolicy property 124, 172, 210, 215–216, 218

tutorial 22
SeriesDataSorted property 210
set method 203
setAutoScroll() method 120
setDataFormat

method in MathValue 105
setEditable method 63
setting

cell renderers, for a series 82
properties in an IDE 32
scrollbar options 34

setValueAt
method in MathMatrix 108
method in MathVector 107

SortableDataViewModel 61
SortByColumn property 127
sorting

and ColumnTrigger property 129
columns 127
columns, tutorial 24
events and listeners 147
frozen columns 127
multiple columns 128
resetting 129
SortByColumn property 127

source parameter 68
SpanHandler 59
spannedCells property 172, 215–216
spanning

cells 58
create multiline headers 60
using JCCellRange 59

StaticDataSource 73
stock data sources

using 63
StoreImageEnabled property 210
storing data 64–65
styles

preset 32
property 173, 215–216, 218

subclassing
cell editors 94
cells

renderers 85
summary of properties 203
support 5

contacting 5
FAQs 5

swapColumns method 41
swapping rows and columns 41
swapRows method 41
Swing TableModel class 71
Swing, using TableModel data objects 66
swingDataModel property 215, 217–218

T
table

basic 10
frame border 38
preset styles 32
printing 137
referencing, entire 30
resize events 138
resizing 138
scrolling 141
size defined by data source 62
sorting 147

table anatomy
cell 28
current cell 28
current context 29
label 28
renderers 28
scrollbars 28

table context 29
table frame

border 162, 172
table layout

examples 234
table scrolling

attaching scrollbars 33
default 120
different component 34



Index 253

setting options 34
Table.isRowVisible() 121
TableDataEvent 74
TableDataItem 62
TableDataListener 74
TableDataModel interface 62
TableDataView 62
TableExpressionList 112
TableListenerPropagator 112
TableModel, using in table 66
TableSwingDataSource 66
technical support 5

contacting 5
FAQs 5

text
alignment in cell 53
clipping 57

topRow property 34, 121, 174, 210, 215, 217–218
toString

method in MathMatrix 108
method in MathScalar 106
method in MathVector 107

TrackBackground property 210
trackCursor property 130, 210, 215, 217–218
TrackForeground property 210
tracking

cursor type 33
mouse pointers, disabling 130
scrollbars 122

TrackSize property 211
Traversable property 213
traversal

cell 115
customizing cell 115
default 115
events 149, 151
forcing 116
interactive 117
preset styles 32

traverseCycle property 211, 215, 217–218
trigger 24
tutorial

adding color to an individual cell 18
adding interactivity 21
background colors 15
basic table 10
cell borders 19
cell selection 22
cell size 20
cell spacing 19
cell styles 15
changing alignment 16
clip arrows 12
fonts, setting 17
foreground color 15
improving table appearance 13

making a table editable 21
PixelHeight property 20
PixelWidth property 20
resize using labels 23
ResizeByLabelsOnly property 23
resizing cells 12
SelectionPolicy property 22
setting a data source 11
setting colors 15
setting properties in the API 13
sorting columns 24
table appearance 12
table changes 12

typographical conventions 2

U
useDatasourceEditable property 218
user interactivity 115

V
values

change 76
parameter 67

variable cell size 20
VariableEstimateCount property 211
vectorValue

method in MathMatrix 108
method in MathScalar 106
method in MathValue 105
method in MathVector 107

VerticalAlignment 58
VerticalAlignment property 213
VertSBAttachment property 211
VertSBDisplay 121
VertSBDisplay property 211
VertSBOffset property 211
VertSBPosition property 211
VertSBTrack property 212
VertSBTrackColumn property 212
visibility

cells 116, 121
columns 121
forcing 121

VisibleColumns property 40–41, 212
VisibleRows property 40–41, 212

W
writing a cell renderer 85



254 Index

X
XML

examples 70
in JClass 70
interpreter 70
loading data 69
primer 69
Swing TableModel class 71
tags 71


	JClass LiveTable
	Preface
	Introducing JClass LiveTable
	Assumptions
	Typographical Conventions in this Manual
	Overview of the Manual
	API Reference
	Licensing
	Related Documents
	About Quest
	Contacting Quest Software
	Customer Support
	Product Feedback and Announcements

	Using JClass LiveTable
	‘Hello Table’ - JClass LiveTable Tutorial
	1.1 The Basic Table
	1.2 Overview of Table Changes
	1.3 Improving the Table’s Appearance
	1.4 Adding Interactivity
	1.5 Proceeding from Here
	1.6 Internationalization

	Building a Table
	2.1 Table Anatomy 101
	2.2 Setting and Getting Properties
	2.3 Preset Table Styles
	2.4 Global Table Properties
	2.5 Column Width and Row Height Properties
	2.6 Cell Styles
	2.7 Cell and Label Spanning

	Working with Table Data
	3.1 Overview: Data Handling in JClass LiveTable
	3.2 Getting Data into your Table
	3.3 Using Stock Data Sources
	3.4 Setting Stock Data Source Properties
	3.5 Loading Data from an XML Source
	3.6 Creating your own Data Sources
	3.7 Dynamically Updating Data

	Displaying and Editing Cells
	4.1 Overview
	4.2 Default Cell Rendering and Editing
	4.3 Rendering Cells
	4.4 Editing Cells
	4.5 The JCCellInfo Interface

	Adding Formulas to JClass LiveTable
	5.1 Introduction
	5.2 com.klg.jclass.util.formulae’s Hierarchy
	5.3 Expressions and Results
	5.4 Math Values
	5.5 Operations
	5.6 Expression Lists
	5.7 Events and Listeners
	5.8 Exceptions
	5.9 Using Formulae in JClass LiveTable

	Programming User Interactivity
	6.1 Cell Traversal
	6.2 Resizing Rows and Columns
	6.3 Table Scrolling
	6.4 Cell Selection
	6.5 Dragging Rows and Columns
	6.6 Sorting Columns
	6.7 Custom Mouse Pointers

	Events and Listeners
	7.1 Displaying Cells
	7.2 Editing Cells
	7.3 Painting Tables
	7.4 Printing Tables
	7.5 Resizing Cells
	7.6 Scrolling in Tables
	7.7 Selecting Cells
	7.8 Sorting Table Data
	7.9 Table Data Changes
	7.10 Traversing Cells

	Table Printing
	8.1 Printing
	8.2 Print Preview

	JClass LiveTable Beans and IDEs
	9.1 An Introduction to JavaBeans
	9.2 JClass LiveTable and JavaBeans
	9.3 Setting Properties for the LiveTable Bean
	9.4 Tutorial: Building a Table in an IDE
	9.5 Data Binding with IDEs
	9.6 Interacting with Data Bound Tables
	9.7 Property Differences Between the JClass LiveTable Beans


	Reference Appendices
	Event Summary
	JClass LiveTable Property Listing
	B.1 Properties of com.klg.jclass.table.JCTable
	B.2 Properties of com.klg.jclass.table.CellStyleModel
	B.3 Properties of com.klg.jclass.table.beans.LiveTable
	B.4 Properties of com.klg.jclass.table.db.jbuilder.JBdbTable
	B.5 Properties of com.klg.jclass.table.db.datasource.DSdbTable

	Porting JClass 3.6.x Applications
	C.1 Overview of Changes
	C.2 Porting Strategies
	C.3 Highlights of Main Changes

	Colors and Fonts
	D.1 Colorname Values
	D.2 RGB Color Values
	D.3 Fonts

	JClass LiveTable Inheritance Hierarchy
	Distributing Applets and Applications
	F.1 Using JarMaster to Customize the Deployment Archive

	Overview of Examples and Demos
	G.1 JClass LiveTable Examples
	G.2 JClass LiveTable Demos


	Index


