Cook

A File Construction Tool

User Guide

Peter Miller
pmiller@opensource.grau

This document describes Cook version 2.34
and was prepared 25 September 2010.

This document describing the Cook program, and the Cook program itself, are
Copyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter Miller

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 3 of the License, or (at your optionydater version.

This program is distributed in the hope that it will be useful, WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANABILITY or FITNESS
FOR A FARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should hae receved a mpy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

CONTENTS

[a1 (oo [V o 1o] o HS SRR 1
1.1 Why YOU Want D USE COOK ...ccoieiiiiiiiiieiee ettt e e e e s st e e e e e e e e e e s st nneeeeeaee s 1
1.2 Howto Use thisS MAnUAlccooiiiiiiiiiiee et e e e e e e e as 2
R Y o Tor 1= o 1] (o) Y S S 2
COOK frOmM the OULSIAEceeeeeeeeiiieitt ettt e et e e e et e et e e et bbb s e e sesasaaaaaeeaaseeseseseeseeees 3
2.1 What can COOK A0 fOF MEB2.....cooiiiiiiieiiieci ettt e e e s e e e e eeeeeeas 3
Y2272 VAV o - 1 - o To | Qo [1T 12 P 3
2.3 What can COOKBAYS GO?ovviiiiieiee i e e e e e e e e e e e e 3
2.4 1f SOMENING JOES WIONQ ..ceiivieeeiiiiiiitieiie e e e e e e e e e e e e et e e e e e e s s s st e e e e e e e e e e s s annnnnsrnnnneeeeaaes 3
25 The ReferenCe MaNUAL..........coooiiiiiiiiiiieeeeeee et ee e e b e bbb nans 4
COoO0K from @ COOKIBOOKuuuiiiiiiiii ettt e e e e e e e e e e e e e e e e as 5
G 70 R VAV o F- o [0 1T @ Yo (e [0 1RSSR 5
3.2 Howvdoltell COOK WAt t0 0O7?ooevvieiviiiiiiiiiiccie et e e e e e e e e e e 5
3.3 Creating @ COOKIDOOKuuiiiieeiii e e e e e s s e e e e e e e e e s e s aennn e nareeeeeaees 6
(070] 11 o TR T TN 2= 1= 111 P 8
o R @ o1 .4 F= 1 [o 1 N 1= 2K 1T o PP 8
4.2 COOKDOOK Variableuueeiiieiiieiiii i e e e e ————— 8
T = L Yo | 1= YA 4 o SRR 8
N 1= I o o) (1T SR 9
A5 VIirtUal MAChING ..ottt e e e e e e e e e et e e e e e e e e e e e e e eeeeaaaeeeeeees 9
4.6 Virtual Maching, REVISITEAcovvviiiiiiiiiiiiiieie et e e e e e e 11
INCIUAE File DEPENUENCIEScii ittt e e e e e e e e e s e st e e e e aeeee s s s s nrabananeeeaeeeeesanannnenes 13
5.1 The Manual METNOMccoooiiiiiiiie et e e e e e e e e et e e e e e e e e r bbb as 13
5.2 Debugging COOKBOOKSccoiiiiiiiiiiiiit et e s e e e e e e e e e s e e eeeeeaeeeeaean 13
TR T Koo] [T URSURPRP PP 14
5.4 The SMall MEINOMvuueiiiiiie et e e e e e e e e e e e e e e e e e e eeaerabe bbb aaaas 14
5.5 The Large MEethOdoeeiiiiiiiii et e e e e e e e s e e e e aeeeeee s 15
5.6 The CasCade MELNOM........uuuuiiiiiiii ittt e e e e e e e e eaeaeaeeeeeeeeeeseserares 16
5.7 Dependencies on Deell FIES ccceuiiiiiiiiiie e 17
5.8 Renaming INCIUAE FIlES ... e e e e e e s s rre e e e e e e e e e e e anans 17
01 fo T aTo = T4 =T = o] (= o3 £ EEERRR 18
0 I VAV o Vo L= = o 1T =T o = U] [PR 18
6.2 Private WOTK ATBAS ...coeeiviriiiiiitiiiiiiiieieie i e et e e e e e e e e e e e e et et et et eeeae bbb sesesesaaaeaeeaeeeseeeseeeeees 22
6.3 Whole Project Build AdVantages.........ccccuuvriiiiiiiiee et e e e e e e e s s nee e e e e e e e e e s e nnnnneaeees 24
6.4 HeterogeneoUS BUIldcooiiiiiiec e a e 25
TSI [0 1S3 =111 o T T o PP 26
6.6 MISCEIIANEOUS ...ovviiiiiiiiiiie ittt e s e e e e e e e e e eeaeeeeeeeeeeeeseaereberaraer b araannns 27
A 1 (=T T T 1= o £ PR 28
6.8 COPING WIth LINKS ...uuiiiiiiiiiiee e e e i it e e e e e e s s s e e e e e e e e e e s e st e e e e e e e e e s snannsrntnnneeeaaeeeaean 29
6.9 Coping With VEISION StAMPSccieceiiiiicieieee e e e e e s r e e e e e e e e e s s nnnnrenneees 30
Cookbook Language DefiNitioN.............uueeiiiieeiii i e e e e e e s s r e e e e e e e e e e e anns 31
4% T (o= LN T 1V PP 31
7.1.1 Words and KYWOIAS coooiiiiiiieeece e e e e s e e e e e e e e e s r e e e e 31
T.1.2 ESCAPE SEUUEBICES. ..ot i e i et e e eeeeeeeteeeeeeeeeeeeeteeeeeaa s s s e aeseaeeaaaaeaeteeereeeeeaesesessnsnnnnnnnnnnns 31
80 T 1 T 11T SRR 31
5 S o .4 1=] S 32

A o =] o (oo == S 32
287285 T 1T [o = SRR 32
2 2 131318 o [= R oo o] (=T S 32
7.2.3 INCIUdE-COOKEA-MIBIN eeiiiiiiiiiiee e e e e e e e e e e e e e e e enan 33
4 S | PR OTPPPRTRPPPN 33
T.2.5 AEf oo nnee 33
72 T i 2T [PSSR 33
2 A) -V |1 - 34

7.3 SYyntaxX @nd SEMANTICS........cccuriiiieiiieieeee e e i ereeee e e s e s sr e ereeeeaeeesaaaaanrnranrereeaeeesesannnnnes 35
A T T @) =T = 1| 0 U o (= RS 35
7.3.2 The Compound StatEMENT.......ciiiie e e e e e e e e e 35
7.3.3 Variables and EXPreSSIONS.uuuiiiieeiieiceieitieiee e e e e e e e s e s st r e e e e e e e e e s s snsrrreerereeaaaeaes 35
0 = =Tl o1 PSSR 37
7.3.5 The EXplicit Recipe Stat€mMent............uvviiiiiieeiii i e e 37
7.3.6 The Implicit RECIPe StatemMENt.........uveiiiiiiiie e e e e ennees 41
7.3.7 The Ingredients Recipe Stat€mMeNL...........coocciiiiiiiiiiiee e 42
7.3.8 The Cascade ReCIipe Stat€MENL.........uuuiiiiiieeiie i e s e e e e e e e e nnenes 43
A TS B O o T2 1 12 T T £ SR 43
7.3.10 The Simple Command StateMENL..........ccuiiieeiiiiiiicir e e 43
7.3.11 The Data Command StatemMENL..........uuueiiiiieeeiiiiiiiiierer e e s s rr e e e e e e e e e nneees 43
7.3.12 The Set StateMENL........uuiiiiiiiiie e r e e e e e e s s e s rreeeeeeeesanannes 44
7.3.13 The Fail StatemMeNt........ccceeeiiiiicee e e e e e e e e e e s e s snrn e eeeees 45
A T S I o T | B = 1 (= 1 =T | S 45
7.3.15 The Loop and Loopend StatemMeENtS.......cuvieeeiieieiieiiiiieer e e e e e e e e e e snnnees 45
4 0 G T U o 1 o PR 46

ST = 10 1 ot [T 0T 1 1S 48

S0 A Vo [0 | o] (=Y GO 48

S T2 Vo [0 [U PSR 48

S 0 = T OSSR 48

S o T- 1S =Y o - 1= SO 48

S LS N o~ Y g o (o TSP 49

S T T o= 1 = o - = 49

S A oo 1| T o) PSR 49

STt T ot o | =Y ot =TSP 50

S 0 N oo o PSSR 50

S 00 0 T oo T | 50

S 0 I o = 110 PP 50

S 0 2o 1 PSR 51

S 0 1 o g = V0 T P 51

S 0 0 o o 1S o - 1 o P 51

S0 ST o [0 11 T T SO 52

S 00 T = 11177 F= o S 52

S TNt = o1 I | (= 52

S0 S = 1 £ S SPS 52

8.19 eXISIS-SYMIINK oo e e e e e e e e e e e e e e raaeeaan 53

S T2 O I = o PRSPPI 53

S 22 T 111 (=T PSSR 54

S 227 111 =T o 11 | P UUEESR 54

S 72 T 110 £S5 1o O 54

S22 S 11T [o o 4= U o SRR 55

S 25 T 11651 170 o PSRRI 55

S 022G T 1 (0] 101 (T PSR 55

S A A o = = o O 56
S22 S T o | o] o TSR 56
LS4 T 0 T= = o PRSI 56
ST 10 070 o 0 = PP URTPPPPRP 57
ST 3 R | PP PPPRTTPPR 57
SR | o TP PP PP PP PUPTPPPPPPRPN 57
LSRG B 101 (=Y T 11O 58
S 0 7 S T 1 P 58
SR 1S T [T 1= P SUEESR 58
ST TSR 4= 1 o] o 1= PRSP 58
SR A o 1 = (o3 o I 0 = V]SSP 59
ST 1 T 011 1 1= PP PR 59
ST 1 I 011 g[S T ot o £ TR PR 59
S0 1O B o (o | AP P PP PPPPUPTPRPI 59
S R 0 To] (o [SRR URU PRSP 60
S o) o 1= T = LT Lo TS V) (=] (O EEEERR 60

S 5 o) 1 [1 1 PSR 61
S o) ST TP PP PP PTPPPPPPPPRPPN 62
S LT o = 11 1 - 0 SO 62
S LG T o = 1] | 1 AP 62
S o] =T o 10 1] PR 62
S S T o 1] | PSSR 63
S e T o o) = 63
LSO (=T Vo PP PST 63
SN R (=T To |] | PR 63
S TS YZ - Vo I 1= PSSP 63
TSI T (=1 = [T = o = PP 63

S 7 S (= 1To] 1Y PR PPPRO 64
B.55 SNEII o et e s e e e e e are e e e s neee 64
LTS T G =T | o AP P PP PP PO T PP 64
SR A~ T A 111 64
S LSS =Y o] | PSSR 65
LSS T S =Y (1o T Y P 65
S 0G0 1 o PSSR 65
S LG 3 A 1 oo (o) S 66
S YA 1= o PSR PRPPRP 66
ST T U oL PP PPRT 66
S G 7 U o1 | PR PRSP 66
B85 SUMTIX 1eeiieiiiiiii e e e b e e e e b b e e e e s e bre e e e e abbreeeenan 67
S ST = 1 PP 67
S LG 37 AU 1 1] 1 PSR 67
o1 S TN T (0TS = L1 o S 68
S T TR U o o T SRS 68
S 4 O U]) (o o - - P 68
S R 171 o [o SRR 68
S 7 (o] { o PRSPPI 69
S G T o] (o [PPSR PRPPRP 70
S S 1) (PR PP 70
Predefined VariabIeso e e 71
LS 00 - o 71
9.2 cOMMANA-IINE-OAISuuviiiiiiieeeiie i e e e e e e e s s e e e e e e e e s s s nnnrrrrneereaeees 71

1S S | I PP PP PP 71

10.

11.

12.
13.

14.

9.4 FUNGCTION oottt ettt st e e sttt e s ettt e e e s e bt e e e s annbbe e e e e annbeeeeeennnees 71
9.5 graph_lEaf file e ——————————————— 71
9.6 graph_eXterior_fil©uueeiiiiiie i et 71
9.7 graph_interior_fil@ueeiiiiiie e 71
9.8 graph_leaf Patternoceeiiiiii it 71
(SIS B0 [=V o] g =) (= o] g o = Ut (=1 1 o SRR 71

(S I8 O o =T o] o T T (=1 [g o =11 (=1 o o R 71

1S 8 5 R I8 1RO PR PRR 71
LS 2 1= =T O S EPPTPST 71
S T o T= 1= 11 1= T 1= £ RSP 72
9.14 parallel_JOBS ...ccoo i e e e e —————————————aa 72
S 0 ST o T= 1= 11 1=] S 72
S G =TT T od o [1) PRSI 72
S AT | TP 72
LS 00 T - T 72
LS 00 S T - T £ 72
S 24 O B {0 (== To o PR PRR 72
9.21 tiIMESIAMP_GraNUIATTLYvvveeeiiieeie e e s s r e e e e e e e e s s r e e e e aeeeeeeannnrnnenneeees 72

LS A Y[T | T T 72
LS BV = o] o PO PPPRO 72
LT Tod 10 TN IR o] = Y/ PR 73
00 N o7 T | = 1.4 SRS 73
10.2 defiN@-Or-NUIL ..oooieeeeie e st e s e e e e s enb e e e e e nnnreas 73
10.3 defiN@d-Or-AefAUILocuuiiiiii e e e 73
O =T 0T | 73
10.5 variable DY Path ... e a e e e 73
ACHIONS WNEN COOKING .vveiiiiiiiiiiee it ettt e ettt e e sttt e e e st b et e e e e sabb e e e e s anbbeeeeesasbeeeeesanbaeeeeeans 74
11.1 Scan the COOK Environment Variable...........ccocuuiiiiiiiiiie e 74
11.2 Scan the CommMAaNd LINE.........ooiiiiiiiiiie ettt st e e s abe e e e s snbaeeeeeans 74
11.3 Locate the COOKDOOK..........uiiiiiiiiiiie ettt e e e e nnees 74
11.4 Form the Listing FIlENAMEcoceieiii e e e e e e e e s e neenee e 74
11.5 Create the LiStiNG fille.....ccooi i e e r e e e e e e e e e e e 74
11.6 Scan the COOKDOOK..........uueiiiiiiiiie et nb e e e e e nbeeas 74
11.7 Determing targets t0 COOKuuuumiiiiiiiieeiiiiiicttieier et e e e e e e s s s s r e e e e e e e e e s s s snstereeeereeaeeeeessnnnnns 74
I S I Yo (1 o = = (o[- SRS 74
11.9 The DependeRaGraphi cuiiiiiiiie et e e e e e e e e e s s s s e e e e e e e 76
I O 1 L= = 1L PR PRPR 77
(@041 0 I =d (=ToT=To [T o ot PSR 79
1o T T gL 0 T= L (= 1 SR 80
I T R 0o To] Q) = 11 =] 1 £ PP PPPOTRRRRR 80
R T o Lo [0 o Tl bt o] (= F7] (o] o 1P 81
Y0 o] o] 1= To I @0 o] 4o o o ¢ SRR 84
= ST PP PP PP PP PP PPPPPPPPPPR 84
I o PP PP PPPTOTPPRP 84
I T PP PTPPRR 85
o O PP STPPRP 85
I o o o 85
I ST o (o011 R RPT TP PRPN 85
I 1 PRSP 86
T 11 o] = 1 Y PP 86

T o | SRS 87

0 0 o o T | =T o USRS 87
o PR 88
7 = o U | . = S 88
I = o oSN 88
SN 88
L T 1= g o o | USRS 89
I L 89
I Y7 Vo o P 89
I Y 7= Vo o o 1 =T oY/ 90
T €11 TS T SR 91

Vi

Cook UseiGuide

1. Introduction

This document describesok, a maintenance tool designed to construct fil€ok may be used to
maintain consisterycbetween recutable files and the associated source files that are used to generate them.
The consistencis designated by the rela# last-modified times of files and is thus automatically adjusted
each time a file is edited, compiled or otherwise modifieédok validates the consistepof a g/stem of

files and gecutes all commands necessary to maintain that consjstenc

Cook is a tool for constructing files. It is\g@n a st of files to create, and instructions detailingviio
construct them. In annon-trivial program there will be prerequisites to performing the actions necessary
to creating apfile, such as extraction from a source-control syst€mok provides a mechanism to define
these.

When a program is being\d#oped or maintained, the programmer will typically change one filevefae
which comprise the programCook examines the last-modified times of the files to see when the
prerequisites of a file ka changed, implying that the file needs to be recreated as it is logically out of date.

Cook also praides a facility for implicit recipes, allowing users to specifyho form a file with a gien
suffix from a file with a different sfik. For example, to creafdenameo from filenamec

1.1 Why You Want To Use Cook

+ Cook is a replacement for the traditionadke1) tool.

» There is anake2cookitility included in the distribution to help ceart makefiles into cookbooks.
« Cook is more powerful than the traditiomaaketool.

» Cook has true variables, not simple macros.

» Cook has a simpleub powerful string-based description language withyrauit-in functions. This
allows sophisticated filename specification and manipulation without loss of readability or
performance.

« Cook has user defined functions.
+ Cook can build in parallel.

+ Cook can distribute builds across your LAN.

Cook is able to build your project with multiple parallel threads, with support for rules which must be
single threaded. It is possible to distri® parallel builds wer your LAN, allowing you to turn your
network into a virtual parallel build engine.

Cook is able to use fingerprints to supplement file modification tiffieis. allows build optimization
without contorted rules.

« Cook can be configured with ampdicit list of primary source files. This allthe dependeryc
graph to be constructeddter by not going down dead ends, and also allows better error messages
when the graph carnbe mnstructed. Thisequires an accurate source file manifest.

In addition to walking the dependsngraph, Cook can turn the input rules into a shell script, or a
web page.

- Cook has speciatascadedependencies, allowing powerful include depengeggecification,
amongst other things.

- And Cook doestt'interpret tab differently to 8 space characters!
If you are putting together a source-code distribution and planning to write efilmagonsider writing a
cookbook instead. Although Cook takes a day ar tavlearn, it is much more powerful and a bit more
intuitive than the traditionainakg1) tool.

Peter Miller Pae 1

Cook UseiGuide

1.2 How to Use this Manual

This manual is divided into wvparts. Thefirst part is tutorial introduction toook. This part runs from
chapter 4 to chapter 5.

The second part is for reference and details preciselychok works. Thispart runs from chapter 6 to
chapter 14.

Users familiar with other programs similardook are advised to skim the tutorial part beforerdj into
the reference part.

1.3 Ancient History

Cook was aiginally developed because | was marooned on an operating system without anyéing e
vaguely resemblingnakél). Thiswas in 1988. Sincd had to write my own, | added aeémprovements.
When | finally escaped back teix, in 1990, it took only tw days to poricook to SystemV | have snce
deleted all code for that original operating system, although clues to its identity are still present.

After | hadcook up onunix, the progress the world had made caught up with me. It was gratifying that
mary of the features other make-oid authors had thought necessary were either already present, or easily
and seamlessly added.

Cook was written with portability in mind. This does not means it is entirely portahieijtltomes close.
Cook has been tested on numerous flavors. Thiswas made much simpler in 1994 when | started using
the GNU Autoconf utility This means that when you obtain the sources for Cook, all wauthdo is un

the configurescript included in the distrnition and Cook will be configured for your system. See the
BUILDING file in the source distribution for more information.

In 1996 Cook had internationalization support added, so that users coaldriitet messages and other
warning and informational messages printed in theiwvedtinguage. Thisvas made possible by the GNU
Gettext utilities.

In 1997 Cook had a major re-write of significant portions of its inference enghig.enabled the addition
of parallel processing support, and simplified adding user-defined functions to the cookbook language.

Peter Miller Page 2

Cook UseiGuide

2. Cook from the Outside

This chapter is part of the tutorial onvito use thecook program. Itfocuses on he to usecook, without
needing to kna how cook works internally.

2.1 What can cook do for me?

By far the most common use of cook, by experts and beginners alike, is to issue the command
cook
and cook will consult its cookbook to see what needs to be done.

In generalcook is used to tad a €t of files and che on them in some way to produce another set of files;
such as the source files for a program, and tooturn them into the»ecutable program file. In order for
cook to do anything useful, it needs to knavhat to do. "What to do" is contained in a file called
Howto.cookin the same directory as the files it is going to work §bu need to gecute the cook
command in the same directory as all of the files.

2.2 What is cook doing?

TheHowto.coolfile was written by the same person who wrote the source filesntains a set of recipes;
each of which, among other things, contain commands fartbienanipulate the filesThe cook program
echos each of the commands it is abouktmge, so that you can watch what it is doing as it goes.

If the Howto.cookfile contained only commands, yowwd be better dfusing a shell script. In addition to

the commands is information tellirmgpok which files need to be constructed before other files can be, and
from this informationcook determines the order in which tgeeute the commandsAlso, cook examines

other information to determine which commands it need not do, because the associated files are already up-
to-date.

2.3 What can cook always do?
If you are in a directory with Hlowto.coolfile, you can expect aviecommon requests to work

cook clobber This command can bexgected to remee any fies from the directory which
cook is able to reconstruct.

cook all This is the default action, and so can be obtained by a souple request. It
causesook to construct some specific file or set of files.

cook clean This is similar to "cook clobber" akie, but it only remwes intermediate files,
and not not the final file or files which "cook all* constructs.
In addition to the aha, manyHowto.cookiles will also define

cook install If a program or library or document is constructed in the directbey this
command will install it into the correct place in the system.

cook uninstall The neerse of the abee, it removes smething from the system.

2.4 If something goes wrong

Most errors whilecook is constructing file are caused by errors in the source files, and rddwhe.cook
file. In general, you can fix the problems in the source files, gecli= thecook command again, and
cook will resume from the command which incurred the error.

To help you while editing the files with the errocepk keeps a listing file of all the commands Xeeuted,
and ay output of those commands, in a file calléawto.listin the current directory.

You may wantcook to find all the errors it can before you doyaadliting, do do this, use th&ontinue
option (it may be abbreviated tofor corvenience).

Peter Miller Page 3

Cook UseiGuide

2.5 The Reference Manual

For more information about the command lingaments and options of the various commands mentioned,
you should consult the on-line manual pages. The Cook Reference Manual is also a good source of this
information, and is\&ilable from the same place as you obtained this manual.

Peter Miller Paye 4

Cook UseiGuide

3. Cook from a Cookbook

This chapter describes the contents and meaning of a cookbook, a file which contains infawoktion
needs to do its joblt focuses on what a cookbook looks like, and touches ow aréas of hw cook
works does its job.

3.1 What does Cook do?

The basic building block fazook is the concept of eecipe. A recipe has three parts:
1. oneor more files which the recipe constructs, known asaifyets of the recipe

2. zeroor more files which are used by the recipe to construct thettdmown as thangredientsof
the recipe

3. oneor more commands toxecute which construct the tts from the ingredients, known as the
bodyof the recipe.
When a number of recipes arev@i, some recipes may describenhto cook the ingredients of other
recipes. Whereook is asked to construct a particular target it automatically determines the correct order to
perform the recipe bodies to cook the requested target.

Cook would not be especially useful if you had togiexplicit recipes for ha to cook every little thing.
As a resultcook has the concept of amplicit recipe. Animplicit recipe is very similar to anxglicit
recipe, except that the targets and ingredients of the recipatieensto be matched to file names, rather
than explicit file names. This means it is possible to write a recipexdonme which constructs a files
with a name ending ind’ from a file of the same name, but ending.éhrather than.o'.

In addition to recipesgook needs to knw whento construct targets from ingredient€ook has been
designed to cook as little as possible. "As little as possible" is determined by examining when eash file w
last modified, and only constructing targets when that are out of date with the ingredients.

3.1.1 When is Cook useful?
From the abee description,cook may be described as a tool for maintaining consigtefisets of files.

3.1.2 When is Cook not useful?

Cook is not useful for maintaining consistgraf sets of things which arwithin files and thuscook is
unable to determine when thevere modified.For example,cook is not useful for maintaining consistgnc
of sets of records within a database.

3.2 How do | tell Cook what to do?

Sets of recipes are gathered together into cookbdateencook is executed it looks for a cookbook of the
nameHowto.cookin the current directorylf you did not name a file to be constructed on the command
line, the first target in the cookbook will be constructed.

The best way to understandvhdo write recipes is anxample. Inthis example, aprogram,prog, is
composed of three filefo.g bar.candbaz.c To inform cook of this, the cookbook
#include "c"

prog: foo.o bar.o baz.o

{
}
is sufficient forprogto be constructed.

This cookbook has tevparts. Thdine
#include "c"

cc -0 prog foo.0 bar.o baz.o;

Peter Miller Paye 5

Cook UseiGuide

tells cook to refer to a system cookbook which tells it, among other thingstdoonstruct asomethingp
file from asomething: file.

The second part is a recipe. The first line of this recipe
prog: foo.o bar.o baz.o
names the targgbrog, and the ingredient$po.o, bar.oandbaz.o

The next three lines

}

are the recipe bogdyvhich consists of a singlec(1) command to bexecuted. Recipdodies are alays
within { curly braceg, and commands ®alays end with a semicolon)(

cc -0 prog foo.0 bar.o baz.o;

Thus, to updateorog after aly of the source files va been edited, it is only necessary to issue the
command

cook prog
This could be simplified furthebecausecook will cook the targets of the first recipe by delt; in this
caseprog.

The paver of cook becomes more apparent when include files are considered. If theofitesrdbaz.c
include the filedefs.h this would automatically be detected ¢nok. If defs.hwere to be edited, armbok
re-executed, this would causeook to recompile botHoo.candbaz.¢ and relink prog. The information
about hev to turn .c files into.o files came from thée#include "c" " line, which read in the C recipes
distributed with Cook.

3.2.1 The common program case
The abee example may be simplifiedven further If the four filesfoo.c bar.c, baz.canddefs.hall resided
in a directory with a path déome/where/mg, then theHowto.cooKile in that directory need only contain
#include "c"
#include "program”
for prog to be cookd. Thisis because theptogram " cookbook looks for all of theomething files in
the current directorycompiles them all, and links them into a program named after the current directory.

The default target in thgofogram " cookbook is calledll. The ingredient o#ll is the program named
after the current directaryTwo ather targets are supplied by this cookbook:

clean remues dl of the somethingp files from the current directory.

clobber remwes the program named after the current diregtang also remees dl of the something
files from the current directory.

3.3 Creating a Cookbook

To usecook you will usually need to define a cookbook, by creating a file, usually d¢édledio.cookin the
current directorywith your favarite text editor.

This file has a specific formaflhe format has been designed to be easy to leaan fer the casual user
Much of the power ofook is contained in hw it works, without complicating the format of the cookbook.

Peter Miller Paye 6

Cook UseiGuide

Example of what a cookbook looksdilre scattered throughout this document. The following example is
the entire cookbook for mgmprograms, some quite large:

#include "c"

#include "yacc"

#include "usr.local"

#include "program"
As you can seeyen for mary complex programs, the cookbook is remarkably simple.

Peter Miller Pae 7

Cook UseiGuide

4. Cooking in Parallel

Cook is able to use the dependentformation in the cookbook to schedule more than one recipe body at
once, where theare independent. In large projects this is almostgs possible.

Paallel processing is of most use on multi-processor systdimste are cases, Wever, when running tw
jobs at once on a workstation cangaklvantage of disk or network latencies.

Paallel processing requires more resources than the simple case. Because more commands are running,
more CPU is required,ub also more virtual memory and more temporary file spdoe. need to be sure
that cooking in parallel is a sensible thing to be doing.

4.1 Command Line Option

The-PARallel option is used to tell Cook to run the recipe bodies in parallel. By default, 4 jobs run in
parallel. You may specify the number of jobs after the optag.(-par=2) if you wish.

4.2 Cookbook Variable

It is also possible to set the number of jobs from within the cookbook by usirgatakel_jobs
variable. Thiscan be used to automate the selection of the number of jobs, based on the current host name:
if [not [defined parallel_jobs]] then

{
host = [os node];
if [in [host] cerberus] then
parallel_jobs = 3;
else if [in [host] zaphod] then
parallel_jobs = 2;
else if [in [host] hydra] then
parallel_jobs = 8;
}

In this way, the number of jobs will be set appropriately for each machingider the number of jobsag
not already set by the command line option.

4.3 Recipe Writing

Most recipes run in parallel without fidfulty, howeve some will require special treatment. The problems
arise from conflict for resources — usually temporary files.

The simplest example of thisyacdl). Theoutput filenames are hard-codederewhen you write a more
general recipe:

%.c: %.y
single-thread yy.tab.c
{
[yacc] [yacc_flags] %.y;
sed "'s/[yY][lyY)/%_/g" yy.tab.c > [target];
rm yy.tab.c;
}

Replacing theYY is a common method for getting more than one yacc grammar into a prodgfamn
into trouble with theyy.tab.c file becausewery one of the yacc grammars will need to use the same
temporary file name.

The single-thread clause tells cook to find something else to do if it disothat it wants do tavof
these at the same time.

Peter Miller Page 8

Cook UseiGuide

The temporary file name may not be sident as in the yacc case. The GNU Autoconf utilities use a
number of temporary files in the current directémt none of them appear in the text of the recipes.
%: %.in: config.status
single-thread conftest.subs

{
CONFIG_FILES\=[target] CONFIG_HEADERS\= config.status;
}
It is common, if your project uses GNU Autoconf, to generatersk files in this vay. Once the
config.status script is produced, all of these files will then be candidates for cook to genenatte — b

they can only be done one at a time.

Other resources, such as tapevedyj can also be described in tiagle-thread clause. Yu can do
this by device namee(g./dev/irmt/0) or by some descriptie gring. Thesingle threading is performed
by mutually exclusie gring sets, not by inode.

4.3.1 Concurrent Execution Threads

Each recipe, when its actions axeited, is gecuted within anxecution thread.Execution threads share
almost @erything in common; this includes all of thanables, the state of thisét” statement, the stat
cachegtc

If you need to create variable names, or temporary file names, which are unique to a thread, use the
[thread-id] variable. Thisvariable has a uniquealue for the life of a thread. No other concurrent
thread will hae the same value.

Note, havever, that the[thread-id] values of completed threads will be re-used; this ensures that when
it is used to construct variable names, theables will be re-used. This pemts memory bloat when
cooking large projects.

4.4 File Locking

The abw@e dscussion applies to utilities which perform no file locking, and thus cannot detect or sequence
multiple accesses to a resource. Other programs, such as those which access databases,gnitey ha
capable file locking mechanisms and are able to manage multiple parallel updates on theiviatimg ob

the need for theingle-thread clause.

4.5 Virtual Machine

It is possible to simulate a parallel machine if you are on aanktwCookis able to distribute tasks to
computers on a network, if it isvgn sufficient information.

The first information Cook requires is the list of machin&his is done using thparallel_hosts
variable. Note: The tasks will be distributed amongst these machines independent of the setting of the
parallel_jobs variable. i.e.even if you are not doing parallel processing.

parallel_hosts = larry curly moe;
If you want to gie cne machine more weighting than the others, (sagause it is twice as fast) you simply
name it more than once. Cook will use these names in round-robin fashion.

4.5.1 Remote Shell Command
Cook uses the Beekeyrsh(1) command to woke the remote commandyYou can set the command, or the
command and some options, usingphaeallel_rsh variable. Thedefault value is
parallel_rsh = rsh;
In order to work in a useful wa€ook makes some assumptions about your environment and your account:

- That your system administrators allost(1) to be used on your network.

- That your account name is the sameatirmachines (otherwise noven thersh - login-name
option will help).

Peter Miller Pae 9

Cook UseiGuide

- That the/etc/hosts.equiv file, or your™/.rhosts file, is set omall machines so that you
don't need to gie a @assword.

- That all of the necessary files and directories are mounted in exactly the same place on all of the
machines; and that there the same filegn all machines, via NFS or similaAutomounters can
malke this especially messy.

- That your account start-up scripts set the necessafiyoement settingse.g. command search
PATH without ary intervention required.

- That all of the machines are of the same architecture, or that the architecturerdatien’

- That the system time is synchronized on all machines, vdatg1) from cron(8), or using NTPor
similar.

4.5.2 Limitations
There are some inherent limitations in thie(1) protocol.

« Your current environment variable settings are not transferred addegher areulimit settings.etc
If any are important, you need to write the cookbook to explicitly replicate them.

. The exit status of the remote command is not reported in the exit statusref(tjecommand
There are internal contortions used by Cook to obtain the exit status; error about mysteriously named
files usually indicate that one or more of the\abasumptions is being broken.

4.5.3 Secure Shell

It is possible to use the Secure Shell (ssh) instead of Remote Shell (rsh).v@&imgifully authenticated,
fully encrypted sessions, botken your intranet andwen over the Internet. Once you ha it installed and
configured correctlyou simply replace thesh command in the alve examples with thesshcommand.

This is accomplished by setting
parallel_rsh = "ssh";
Somewhere near the top of your cookbook.

4.5.4 Host Binding
In some cases, such as licensing conditions, some commands will only run on a limited set &dtbsts.
than perform all commands on those hosts, it is possible to bind recipes to specific hosts. This binding
overrides theparallel_hosts variable.
%.c: %.esql
host-binding shylock
{

}

This example says that the embedded SQL preprocessor is only to be run on the datadrasallsdrv
“shylock’, probably due to usurious licensing feellowever, you may want to perform your other
development activities on more lightly loaded machines; this clause only applies to this one recipe, other
recipes beha & normal.

esql %.esql > [target];

The host-binding clause may hae nore than one host named, andytiéll be used in round-robin
fashion. Thids a recipe-leel variant of theparallel_hosts variable.

The host-binding clause will apply independent of the setting of the settpagallel _jobs and
parallel_hosts variables.

The recipe leel host-binding overrides the cookbook el parallel_hosts when determining
which remote hosts should be used.

If the list of hosts gien to the host-binding clause is empfythe local host will be used (normal recipe
execution will occur).

1. The Berkelg sources certainly dohtontain code to do this. Do pther vendors he a nore useful implementation?

Peter Miller Page 10

Cook UseiGuide

If you need to include the local host in the round robin,losalhost or [os node] , howeve this

will behave exactly the same as for a remote hostu should also consider hard coding the name, that
way you get the same behavior no mater which of the machines in the round robin the Cook command is
executed on.

4.5.5 Load Balancing
It is possible to uséost-bindingto perform load balancingThis is accomplished by usimyp(1) to
discover which hosts are least bysind then using this information tovioke the system’ssh(1).

This may be accomplished by using

parallel_rsh = "cook_rsh";
somavhere near the top of your cookbook ¢mok_ish —sfor secure shell).You then gve dasses of hosts
to the host-bindingclause of the recipes, rather than specific host narS8esg.cook_rslil) for more
information about setting up classes of hosts.

If you still need to gie pecific host names to some recipamk_rsiil) will cope with this, too.

4.6 Virtual Machine, Revisited

It is also possible to wa Cook run multiple processes in parallel withouting to knav what machines
are ¥ailable. Thismethod puts control of the netvk resources in the hands of an external program, one
example of which isook _rsh , distributed with Cook.

Once you hee auch a virtual network defined it becomes very easy to build projects for multiple platforms
or architectures in the samaeild. It also allows easily adding wemachines, or disabling machines for
maintenance. Theirtual network can be changed aydime without disturbing ongoing delopment.

The following examples will hae the form allowing multiple architectureuitds, but of course tlyewill
work for single architecture as well.

4.6.1 cook rsh

Thecook_rsh system is just one way of defining the capabilities ofzangietwork in a way that a single
program can makthe best choice of machine for aei job. It does so in a @y that is reliable and does a
decent job of balancing loads acrosailable machines,\en with multiple developers doing builds at the
same time.

Each job that requested \@aok_rsh picks the appropriate machine from those able to do the job at that
instant in time. In contrast fmarallel_hosts or host-binding hostA hostB etc , it does not
work from a list which was current at the time a cook process started. Thus it is less vulnerable to
machines going 6fine or becoming@erloaded as time passes.

Currentlycook_rsh usesrsh to actually &ecute the job, so requires the same network setup. Tie ne
version may usenulticast instead for een finer control and reliability.

There are minor differences in the setup to asek _rsh control. Thefirst is that Cook no longer
requires a list of machines. It is not necessary to set péallel_hosts variable. The
parallel_rsh variable is set as:

parallel_rsh = cook_rsh -v;
The-v option produces information as to what machine was actually picked for each job.

4.6.2 Host Binding
All recipe bodies which should run in parallel nedtbat-binding setting. Rathethan list the hosts to
be used we form a name which is usedcbgk_rsh to select an appropriate machine. This name may
include ararchitecture component and a@peration component.
%1/%.0: %.c
host-binding %1_C
{

}

[%1_cc] -o [target] -c [resolve %.c];

Peter Miller Pae 11

Cook UseiGuide

%1/%2: [addprefix %1/ [%2_objs]]
host-binding %1 L
{

[%1_1d] -o [target] [resolve [need]];
This example says that the compiles for a certain architecture shosldaes& on ap machine designated
as a compile host for that architectudmd linking jobs should go to machines designated as a link host for
that architecture. Of course the same machine could probably do bothybleulpet to define it as you
see fit, and change the designations from moment to moment. Current designations per architecture are:

_C Compile (Compilesource code)

L Link (link binary programs)
T Test (runautomatic tests)
B Build (including cooking, or generic jobs)

And others may be added if necessary by simple extension.

4.6.3 Administration of cook_rsh

The definition of the virtual network used bgok _rsh is contained in just a twvconfiguration files.One
file lists designations, and lists machines belonging to each designation. The othexciadaifile, which
lists machines which should not be used for whenteeason.

The designations file may be created by hand if desired htility calledrate_hosts is provided that
can generate theost_lists.pl file, possibly after being customized for the particular requirements of
a gven environment.

The exclusion file lists machines that shouldenbe lected. Thexclusion file can be edited atyatime
and adding a machine will prent ary further jobs from going its &. Remaoing the name will aain
allow selection of that machineHow soon a job actually goes there depends greatly on theorietw
utilization. Theexclude_hosts file contains machine names and optional comments. xample
exclude_hosts file might contain:

| ist of hosts to exclude from arch_hosts lists

f or whatever reason.

monolith # not a development machine - the FTP host
namshub # developer test station

tiamat # unreliable configuration

locutus # Being upgraded

This is handy for maintenance on machines. If a particular machine needs to be brought down you simply
add its name to the exclusion file. Checking its process list will tell whgmwarently running remee
jobs are done. After that it can safely be brought down without affectingctive tuilds.

Peter Miller Pae 12

Cook UseiGuide

5. Include File Dependencies

A significant factor in a cookbook accurately describing the dependencies in a program are the include file
dependencies. Theege three methods for doing this in Cook. The first is easily understandable but is too
slow to use on large projects, the second is a little harder to understandotiks well for large projects.

The third method is rather casluted, but works well for projects with mathousands of source files and
multiple simultaneous architectures built within the same source tree.

The recipes here are merelyaenples and starting points; you will almost certainly need to enhance them
to suit the needs of your projects. Areas you will need to address include (aisteace ofcc -I path

options, (b) the use dfearch_list variable and theresolve] function, and (c) heterogeneous
development. Thetechniques also apply to other languages, such as Fortran, Pascal and Roff, but each
requires a language-specific include scanning program

5.1 The Manual Method

Well, actually there are four methods, if you count maintaining the dependencies mafh@&hhas the
serious defect that humans tenddmet to update the cookbook. On a large project not aléldpers are
familiar with the workings of Cook, and so theshy avay from updating the cookbook. By finding ways to
automate include dependgnprocessing, we reduce the risk that adigper will forget to update the
cookbook, and we reduce the risk that the cooklzoddpyendeng information is out-of-date.

Automatic include dependepenethods described belohave flaws, and can ner replace a human for
flexibility and domain knwledge. Orthe other hand, humansveaketter things to do with their time than
grope files for include file dependenciesdlikrite neat software).

5.2 Debugging Cookbooks

Before we proceed furtheit is worth spending some time w@ing some of the methods for dejging
your cookbook, because small misgtakn implementing the methods bgloan become quite difficult to
locate.

5.2.1 Command Locations
Usually Cook will echo all the commands ieeutes, just beforexecuting them. If you add the line
set tell-position;
near the top of your cookbook, Cook will add the filename and line number within the cookbook to each
command it echoes. This can be useful in figuring out which recipe Cook actually chxsmite.e

5.2.2 Printing Stuff
Often you will want to hae Gook print various pieces of information. The wrong way to do it is with the
shell’'s "echo" command

echo variable "=" [variable];
because this iokes another process (which can neakelbugging parallel cookbooks harder) and because
of the optionaldata ... dataendavhich can follev commands (see the command statement in the language
definition, belav). Thecorrect method is to call the "print" function,dikis

function print[_FILE__]: [__LINE__]: variable "=" [variable];
Note the use of the _ FILE__ and _ LINE__ builtins, which provide you with cookbook position
information.

5.2.3 Trigger Ingredients
Another useful piece of information is the ingredients which caused Coolkdkeim m@rticular recipe
body. The following function

function say-why =

{
if [count [@1]] then

2. Thec_inclprogram understands Roff, you just need to useitheption.

Peter Miller Page 13

Cook UseiGuide

@1 =[@1];
if [count [@2]] then
@2 =[@2];

local tt = [target];
if [defined targets] then
tt = [targets];
localt=;
if [in [count [younger]] 0 1 2 3] then
{

function print [@1] [@2]
Building [target]
because of [younger];

}
else
{
function print [@1] [@2]
Building [target] because of
[wordlist 1 3 [younger]] et al;
}
can be inserted at the beginning of a recipe
%.0: %.c
{
function say-why [FILE][_LINE_J;
cc -c %.c;
}

to say wly the recipe was iroked. Thiswill even include dependencies automatically determined by all of
the methods which follg, not just those named on the right-hand-side of the recipe itself.

5.3 Tools

All of the automated include file dependgmethods described belouse thec_incl(1) program included
in the Cook distribtion. It has a number of options tailored for use with CoBkr exact information
about thec_incl command, consult the on-limean(1) system (it should lwve been installed) or the Cook
Reference Manual.

Other tools are\ailable. Thecommonest is to use tlgecM option, which produces a list of include
files on the standard output. BecausegbeM output is aimed at GNU Mak you will need amawlk(1)
or sed1) script to massage the output into a format suitable for Cook.

5.4 The Small Method

The easiest way to determine a filgiclude dependencies is within the recggagredients.
%.0: %.c: [collect c_incl -api %.c]

{
}

Note the second colon — tleecondset of dependencies are onlydeated after Cook has chosen to
activate the recipe (based on the first set). This does not guarantee that thistélges (it may hee be
generated blex or yacq, which is wly the--Absent-Program-lgnore option is required.

cc -c %.c;

This method has the advantage of simplicittyuses a single recipe which reads theywecipes usually
read, and does not containyamusual constructs.

There are tw problems with this method. The first is that it doésnale well. When there are only anfe
source files, the processing burden of runminicl for every .c file every time Cook is imoked is hardly
noticeable. The_incl program caches the results of its scans, so that is can minimize the length of time

Peter Miller Pae 14

Cook UseiGuide

taken, and this does help a littlelowever projects with hundreds or thousands of files fimehehe cached
performance an unreasonable burden; it is constantly re-calculating something which has not changed from
one run to the next.

The second problem is that tbeincl program is run when the dependggcaph is being built, not when it
is being valked. Thismeans that the file (or a subordinaté file) may hae keen out-of-date at the time.
When the graph is alked, it will have keen rgenerated, and the tvgets of include files, those determined
by c_incl at graph building time, and those seercbyt graph walking time, may not agree — which may
result in compile-time errors.

5.5 The Large Method

For projects with large numbers of files, hundreds wnethousands, it is necessary to re-calculate the
include file dependencies only wheixrdile changes, or a subordinatefile. Ideally Cook should access
this information directlyrather than running a program to determine it or to fetch it.

The first task is to me te information whicke_incl caches into a format that Cook can access directly;
Cook can then read in this information as it scans the cookt®pknaking a separat&lependency’file
for each.c file, we can use existing Cook mechanisms to descriwedkeep this file up-to-date.

The dependenydile is generated and maintained as follows:
%.c.d: %.c
{
c_incl --no-cache %.c
"--prefix="%.0 "[target]": %.c™
"--suffix="set nodefault;™
-0 [target];
}
This recipe generates a file which contains a mini-cookbook describing the ingredient®lojethéle.
The dependencies are in terms of the object file becausg dfdhe .h files change, it is the object file
which is out-of-date, not the file. Themini-cookbook itself is also described, so that if ahthe source
files change, the mini-cookbook can be brought up-to-date again.

The recipe for the object file is less complicated than in the previous section, because the mini-cookbooks
supplement it:
%.0: %.c

{
}

The only thing missing is oto get the information in the mini-cookbooks into the main cookboriiis
is done with an include diregg in the cookbook itself, but a special form of it. The names of the mini-
cookbooks can be determined the same way as the names of the object files, and this allows the cookbook
fragments such as the following to be written:

object_files = [fromto %.c %.0 [source_files]];

dependency_files = [fromto %.c %.c.d [source_files]];

cc -c %.c;

#include-cooked [dependency _files]
The#include-cooked directive ;ays to include the named files (there may be more than one) if the file
exist. Oncethe cookbook (and its includes)veabeen read in, the files included with this direetae
checled to see if theare up-to-date. If theare not, then theare re-cooked, and then Cook stan®ro
again; this time with up-to-date include dependencies.

The advantage of the method is that if the source files dbahge, the dependgninformation is not
recalculated, this can result in significantisgs. Also,no processes arevioked if nothing has changed,
Cook reads the information directifBecause file opens are significantly cheaper than procegsiions,
this results in a significant performance immment.

The disadvantage of this method is that it is harder to describe and harder to implEsrtkatuninitiated

Peter Miller Page 15

Cook UseiGuide

the cookbook looks incomplete angedy complex.

Another problem is that if you delete an include file, Cook will complain that it is unable Ve dwezi
dependengcfile because the include file is not prese®itmply delete the dependegnfile and start aajn.
To avoid the problem, reme references to include files, and neittd, before deleting the include files.
This problem is seen from time to time, but does not present a huge problem in normal practice.

5.6 The Cascade Method

When large numbers of files arevélved, it becomes clear that the more popular include files are being
scanned repeatedlyrhis can be un-necessarily time-consuming when a popular include file is touched, as
the dependenydiles of all.c files which reference itven indirectly, must be re-calculated.

There is also a problem when you are attempting to perform heterogenédsi$dy multiple architectures

out of the same sources. This is typically done by inserting the architecture name into the object file path as
a drectory This presents another problem: nominating all of the architectures on the left-hand-side of the
regenerated dependgncecipes. Especiallyf you add another one after the fact wndl the existing
dependengcfiles must be recalculated, merely to add the arehitecture.

An alternatve is to £an each of the source files and include files once, and request cook to combine them
together at build time, rather than at dependence scan time. This is doneassiade recipes. These
recipes nominate additional ingredients (on their right-hand-sizey ibfatie files on their left-hand-size
appears in an ingredients list.

cascade foo.c = bar.h;
This recipe says that amnecipe which hago.cfor an ingredient, also h&gr.hfor an ingredient.

This tales care of the heterogeneous case, because while the recipes remain specified in a simple manner
viz:
%1/%0%.0: %0%.c

{
}

Any and all of them which compiléo.cwill depend orbar.h from thecascade recipe. (Thisexample
assumes that you are usige(1) in the usual &y, and that your architecture names match the GNygketar
names.)

%21-gcc -o [target] -c %0%.c;

The dependencfiles are generated and maintained in much the same way as before, except that you need
two: one for.c files and one forh files:
%0%.c.d: %0%.c
set no-cascade

{
c_incl --no-cache --no-recurs %0%.c
"--prefix="cascade %0%.c =™
"--suffix=";"
-0 [target];
}

%0%.h.d: %0%.h
set no-cascade

{
c_incl --no-cache --no-recurs %0%.h
"--prefix="cascade %0%.h ="
"--suffix=";"
-0 [target];
You will also need to add thé.d files to the#include-cooked lines, to ensure tlyeare generated|f

there are angeneratedc or.h files, you will need to mention these, too.

Peter Miller Paye 16

Cook UseiGuide

5.7 Dependencies on Derived Files

If the relationship between a ¢t and a devied ingredient appears only in a dexd cookbook, it is lilely

that a clean build (solely from primary source files) vdll.f It is recommended that relationships such as

this be placed in a primary source cookbook. Cook looks for such dependencies, and will warn you about
them.

An example of this is commonly seen when using-theoption with yacql). If you hare a gparate
lexical analyzer (the usual reason for usidg it will need to include the generated token definition file.

When you first add thgacq1) grammar definition, Cook will generate both tbeand.h file from the
usual yacc recipedlt is only later when you hge deaned out all deved files (including the dependgnc
files) that you may hee poblems. Wherés it recorded that Cook needs to regenerate the token definition
file before it can determine the include dependencies oftiwal@nalyzer?(They were in ad file which

was “cleaned’ away.)

Cook will detect this situation at the first possible moment, and warnBwauplacing the dependenin a
non-derved cookbook €.g. Howto.cook) the warning will go way, and you will be able to do reliable
clean builds.

If you are convinced that Cook &wayswrong in your case, it is possible to suppress tlaigimg. Place
the line

set no-include-cooked-warning;
in your main cookbook, and the warning will not be issued.

Suppressing the warning could lead to problems. It is often better to add the ingredients vecijpetiy
warning to the cookbook,ven if you think it is redundantThis disables a single instance of thaerming,
rather than all of them - subsequentid instances will still be reported. (Implicit ingredients recipes,
rather than explicit ones, are a useful altewesfiyou have a onsistent pattern.)

5.8 Renaming Include Files

A consistent problem when youveautomatically generated include dependencies is that when ye& mo
an include file, Cook complains that a required ingredient does not exist.

The easiest way tovaid this is to do a fe things before you build again after moving the include file.
» Move the include file to the mename.

« Where the include file wesom, put a file containing the line
#error "I'm not here"
to male Cook happ (the ingredient will exist), but also ¥ the compiler generate an error if you
miss a reference to it.

- Edit all the references to the old include file name to reference th@ame. Dont worry if you
miss one or two, the previous step will catch it.

- Reluild the program. Cook will automatically re-calculate all of the include dependences and then
recompile.

« If you missed one of the include file references, Cook will not complairthb compiler will. (This
assumes you are using whole-project builds, as describedliare Rojectschapter.)

» Once the program builds cleapfgmove the fake dd include file, because you kndor certain that
there are no longer gmeferences.

Peter Miller Page 17

Cook UseiGuide

6. Building Large Projects

This chapter ceers some of the issues you may come acrossildibg large projects. It ges a &eleton
for how you could use Cook to build a medium-to-large projects, aled eovers some heterogeneous
build issues. It is gpected that you will use this chapter as a guide; yotgla@ment environment, and the
shape of each individual project, mean that you will probably change this to suit your own needs.

The material in this chapter uses mamary features of Cook. If you are not familiar with Cook, you may
want to read the rest of this User Guide to get a good idea of £fealtUres and capabilitiegven if you
are familiar with Cook, you may need to refer to the language guideudtsthbfunction descriptions from
time to time.

6.1 Whole Project Build

The skeleton gien here builds the whole project as a single Cookodation, @en when the project
consists of tens thousands of individual source filgss is distinct from a build process which has Cook
recursvely invoking itself in deeper directories, or a shell script doing much the s&uome of the
adwantages of doing whole projeatilals will be discussed in a later sectidfor now it is sufficient to say
that experience has shown repeatedly that this method does scale to significant projects.

The first thing about a single build pass is that it happensveelata sngle fixed place. The logical place
is the top of the project source ttedhis works well with theseach list functionality mentioned belw,
which simplifies the structure of pete work areas.

6.1.1 Project Directory Structure
In the examples use in this chapthe following directory structure is assumed:

==—_Project
J=—Howto.cook
T—_library
Q%urcelc
B sourcez2c
+=—include
o
] api2.h
F=—program1l
qgume&
7 source4c
i efc...
“5— program2
qgurce&
7 source6e

Below the project directory is dbrary directory which contains functions common to all of the
programs. Allsource files in this directory are to be compiled, and linked into a libAaflyen the
programs are linked, tievill all reference this library.

Next to thelibrary directory is thanclude directory This describes interfaces and data shared by the
project. Informatiorwhich is prvate to the internals of the library or a programs belongs there, not in the
shared include space.

The rest of the directories beldhe project directory are programs to hdltb Thesources files in each are
to be compiled and linked, together with the common libreryform the programs. The name of the

3. If you ever want to use Aegis for configuration management, this is what Aegis expects.

Peter Miller Page 18

Cook UseiGuide

program will be taken from the directory.

This is a common enough picture, repeated forynm@injects. Your individual projects may vary in the
details; you may he nore directory lgels belav thelibrary directory or dl of your programs may be
belov a sngle commanddirectory With simple changes to the examplegegiin this chapteryou will be
able to cope with just aboutyaproject structure.

6.1.2 File Manifest
There are man ways of discuering the source files you areovking with. Many configuration
management systems are able tegbu a list of them.For example, if you were using Aegis, yowwld
say
change_files =
[collect aegis -I cf -terse -p [project] -c [change]];
project_files =
[collect aegis -I pf -terse -p [project] -¢ [change]];
manifest =
[sort [change_files] [project_files]];
If you were using RCS, you could find all of the RCS files, and reconstruct the original filenames from
them,viz:
manifest =
[fromto ./%0RCS/%,v %0%
[collect find . -path "™*/RCS/*,v" -print]
I;
Or you could simply scan the directory tree:
manifest =
[fromto ./%0% %0%
[collect find . I - type d -print]
I;
This is will find too much, but what follows will not be altered by tHisyou want to get more adwnced,
however, it helps to hae an accurate primary source file manifest.

6.1.3 Compiling C Sources

Recalling that the dild will take pace from the top of the source tree, this means that there it is going to
have © be drectory components in the filenames in the commamduted by Cook, and in the recipes
Cook is to use.

This chapter uses C examples, but the same techniques work just as will with Fortrar, @r @npthing
else. Mosbf it maps directly; you may need to adjust for your specific compiler behavior.

This chapter starts with the lowestdeof building a project, the ingidual source files, and works itsaaw
upwards, lilding on the examples until the whole project, including the library and all programs ae link
in a single pass.

So, when cooking C sources, you need recipes of the form
CcC = gcc;
cc_flags = -g -Wall -O;

%0%.0: %0%.c

[cc] [cc_flags] -c %0%.c
-0 [target];
}
The *%0 part of the patterns matches zero or more directory parts. If your compiler insists on putting the
output (o) file into the current directory (the topvéone) you will need to mee t, after:
%0%.0: %0%.c
{

[cc] [cc_flags] -c %0%.c;

Peter Miller Page 19

Cook UseiGuide

mv %.0 [target];
}
But, most existing sources will be assuming that most of their include files are in the same directory as the
source files.We reed include options to indicate this. This is most easily done by using more pattern
elements
9%1/%0%.0: %1/%0%.c
{
[cc] [cc_flags] -1%1 -c %0%.c
-0 [target];
}
Or by using the dirname of the source file
%0%.0: %0%.c
{
[cc] [cc_flags] -I[dirname %0%.c] -c %0%.c
-0 [target];
}
For structures more than 2 directories deep, these gduce different options. Depending on your
project structure, if you wva deep directories, one will probably be more suitable than the. o®rez
elggant use for deeper directory structures is to reflect the C++ inheritance hyedhrettly in the
directory hierarcia

The simple[cc_flags] variable is often not sfitient. Insteadyou may vant to replace it with
[variable_by path "cc_flags" %0%.c] which will look for several variables (all prefixed with
"cc_flags") based on the name of the source file. Sdeuthetions Libary chapter for a description of this
function.

The common include file will also need to be searched. Because of where the command is issued, it is
rather simple to add theclude directory,viz:
%0%.0: %0%.c

[cc] [cc_flags]
-I[dirname %0%.c] -linclude
-C %0%.c -0 [target];
}
It is important to note that all of these recipes, and the commandsxtrute, are independent of the
location of the source file. It is possible to customizecthifags used, based on the target file, vere
the directory containing the file, without compromising the generality of the fecipe

6.1.4 Tracking Include Dependencies
When it comes to tracking include dependencies usimgl, you need to rememheagain, that the Cook
happens from a single place. All of the recipes thatclwrites for you must beelative to that place

Continuing our example, and assuming we are using the cascade include method describedvinubke pre
chapterwe reed include dependeantiles which look similar to

cascade programl source3c =

include/ apilh

Working backwards, we need to create the deperdéeaising the following recipe:
%0%.c.d: %0%.c
set nocascade
{
c_incl -nc -ns -nrec
-I[dirname %0%.c] -linclude
%0%.c

4. Hint: use a function, and pdsarget] as the argument.

Peter Miller Page 20

Cook UseiGuide

-prefix "'cascade %0%.c ="
-suffix ;™
-0 [target];

}

For other source languages, you will need to usectliecl --languae option.

The dependenycfiles need to be included in the magiaywso that Cook will build them again if there
out of date. This method needs the source file manifest i@ #rer names.
dep-files =
[addsuffix .d
[match_mask %0%.c [manifest]]
[match_mask %0%.h [manifest]]

#include-cooked [dep-files]
These files will only be re-calculated if thare out of date; theare small and often zero-length, and so are
usually very quick to read, adding little to the time it takes to read the cookbook.

Notice that adding a mesource file will automatically cause it to be scanned for include dependencies,
without modification to the cookbook.

6.1.5 Linking Libraries
To link libraries with a generic recipe, you need a generalizey af specifying their contentsA little
trickery with constructed variable names does the job:
%l/lib%.a: [[target]_obj]
set unlink

{
}

The right-hand-side of recipes has late binding, and we use the name of the target to tell us the name of the
variable which holds all of the object files. Assigning thésiable looks bizarre, but it looks more logical
as you hee more and more of them...
library/liblibrary.a_obj =
[fromto %0%.c %0%.0
[match_mask "library/%0%.c" [manifest]]

ar cq [target] [[target]_obj];

I;
The great thing about this construct is that you can build a loop, usingsdoa’'statement, that assigns a
variable for each of your libraries, if youv&mnore than one.

Notice that adding a melibrary source file will automatically cause it to be compiled into the liprary
without modification to the cookbook.

6.1.6 Linking Commands
WEe'll use a similar trick for each of the programs you want to link... First the link line
bin/%: [[target]_obj]
set mkdir

{
}

Then the objectsariable. Notehow we ad a libraryfilenamehere, this will still only use the library
portions actually referenced, not the whole libyaryit won’t bloat your programs.
bin/ program _obj =
[fromto %0%.c %0%.0
[match_mask program/%0%.c [manifest]]

[cc] -o [target] [[target]_obj];

]
library/liblibrary.a

Notice that adding a meprogram source file will automatically cause it to be compiled anédimkto the

Peter Miller Pae 21

Cook UseiGuide

program, without modification to the cookbook.

The loop construct tends to obscure things, which ig tlik essential assignment wasepi first. This
next fragment shows the whole loop.
programs =
[fromto %/main.c %
[match_mask %/main.c [manifest]]
I;
program_list = [programs];
loop
{
program = [head [program_list]];
if [not [count [program]]] then
loopstop;
program_list = [tail [program_list]];

bin/[program]_obj =
[fromto %0%.c %0%.0
[match_mask [program]/%60%.c
[manifest]
]

]
library/liblibrary.a

And now tell Cook you actually want it to do somethinggliuild all of the programs...

all: [addprefix bin/ [programs]];
Notice thg way thecommands variable is constructed: just adding asneommand (and itsain.c file)
will automatically cause it to be built, without modification to the cookbook.

6.2 Private Work Areas

This chapter is about large projects, but large projects usually means large numbedoptide The
directory structure and cookbook presented aodbes not immediately lend itself to use by multiple
developers.

6.2.1 Directory Structure

The method suggested here uses Gogkach list functionality which nominates a search list of
directories that Cook looks in to find the files named in the recipleis. can be used toverlay a prvate
work area on top of a master repository.

% Repository -
7 main.c - :
y partl.c,’ Combined View

/ N~/ .
main.c
Wark Area - partl.c
main.c / part2.c

part2.c e

When recipes are run, the results are written into thik &rea, which means that the repository can be
completely read-only.

It follows from this, that the directory structure of the work area exactly parallels the directory structure of
the repository.Exceptyou only check out files into your work area that you actually need to change.

Peter Miller Pae 22

Cook UseiGuide

6.2.2 Finding the Cookbook
Setting the search list is done with a simple assignment. In your work area, create &isiwipleook
file, containing only 3 lines:

set mkdir;

search_list = . /project/repository ;

#include /project/repository/Howto.cook
You only use this file if you dot’need to modify the cookbook itselffou can male it work aways, even
if you are modifying the cookbook, by giving the cookbook a different namaén(cook), and changing
Howto.cook to aways read

set mkdir;

search_list = . /project/repository ;

#include [resolve main.cook]
The [resolve] function walks the search list, looking for the FileThis gives you access to Coak’
internal search mechanisrhlowever, we dso need to modify each of the recipes teettie search list into
account.

The uneplained mkdir flag is used to request that directories be automatically created before recipe
bodies are runThis is common for large projects, where the source files are structuredvietal seb-
directories, rather than all lumped together in the one plab&s may be necessarfpr example, if ac

file in the repository needs to be recompiled becausefde in the work area has been changed.

6.2.3 File Manifest
The files could be in either of bnplaces. Yu need to merge them. Most configuration management tools
do this for you; in this example we’ll scan the directory tre@énagrortunately Cook comes with a tool to
do this efficiently.
all_files_in_. =;
#include manifest.cook
manifest = [all_files_in_.];

[* This reduces re-scanning to a minimum. */
set fingerprint;

%0manifest.cook: ["if" [in "%0" "] "then" "." "else" "%0"]
set mkdir
{
cook_bom /* Bill Of Materials */
[addprefix '--dir=" [search_list]]
[need] [target] ;
}
At the end of this fragment, theanifest variable contains a complete list of all files in the directory
tree(s). Thivariable may then be taken apart with thatch_mask function to build ingredients lists.

Theif function is diferent to thaf statement. lallows you to select one of twalues (thehen part or
the else part) without creating a dummyasiable. Inthis example, it would be impossible to create a
dummy \ariable. Remembedp quote théf , then andelse strings, otherwise Cook will think there

if, thenandelsekeywords, and gie you a syntax error.

The constructedhanifest.cooffiles work for both the top-lel directory and individual sub-directories.

6.2.4 Compiling C Sources

The C compilation recipe needs to be changed to read...
%0%.0: %0%.c
{

[cc] [cc_flags]

5. The search list defaults to just dot (the current directory) if not set.

Peter Miller Page 23

Cook UseiGuide

[prepost "-I" /[dirname %0%.c] [search_list]]
[prepost "-I" "/include" [search_list]]

-C [resolve %0%.c]

-0 [target];

This ensures that the rights places are searched for include files.

The prepost function is used to add a prefix and a suffix to each of the remaining strings. Téig is v
useful when constructing filenames, as areattdprefix ~ andaddsuffix functions.

6.2.5 Tracking Include Dependencies
A similar change needs to be made to the include dependencies recipe...
%0%.c.d: %0%.c
set nocascade
{
c_incl -nc -ns -nrec
[prepost "-I" /[dirname %0%.c] [search_list]]
[prepost "-I" "/include” [search_list]]
[resolve %0%.c]
-prefix ’cascade %0%.c =™
-suffix ";™
[addsuffix "-rp="[search_list]]
-0 [target];

Note that the form of the output of this recigi@es nothange. Thisneans that the recipes it writesnk
evan if you subsequently cgp file from the repository to the work area, or uncope.

6.2.6 Linking Libraries
The library recipe needsviemodifications.
%l/lib%.a: [[target]_obj]
set unlink

{

ar cq [target] [resolve [[target]_obj]];

The variable assignmentvgh above requires no modifications.

6.2.7 Linking Commands
The command linking recipe requiresvfenodifications.
bin/%: [[target]_obj]
set mkdir

{
}

The variable assignment needs no modifications.

6.3 Whole Project Build Advantages

The advantage of using a whole projestid is that the dependepgraph is complete, and the order of
traversal may be freely determined by CooRreaking the build into fractured segments denies Cook
access to the whole graph, and dictates the ordervefsed to one which, in the light of the entire graph,
would be incorrect.

[cc] -o [target] [resolve [[target] _obj]];

It greatly simplifies the creating of work areas fovdiepers, by using Cook'seach _list functionality.

A whole project hild also permits theook -continueoption to work in the presence of a wider range of
errors.

The whole project build also permits tbeok -paralleloption to parallelize more operations.

Peter Miller Paye 24

Cook UseiGuide

6.4 Heterogeneous Build

Large projects frequently wolve numerous taget architectures. This may be in the form a multipleveati
compilations, performed in suitable hosts, or it map thk form of cross-compilation.

In this example, we assume that the GNU C Compiler (GCC) is being used. When GCC is installed as a
cross compilerthe command namesd, as, Id , etq) are installed with the architecture name as a prefix.

For consisteny, the natve compiler is installed with its own architecture names as a prefix, in addition to
the more commonly usegtc command. Thigxample will exploit this normal installation practice.

6.4.1 Cross Compiling C Sources
In order to support cross compiling, the C compilation recipe needs to be changed to read...
%1/%0%.0: %0%.c
host-binding [defined-or-null %1-hosts]
{
%1-gcc [cc_flags]
[prepost "-I" /[dirname %0%.c] [search_list]]
[prepost "-I" "/include" [search_list]]
-C [resolve %0%.c]
-0 [target];

This uses the first directory element of ttaeget to be the architecture name. This allows multiple
architectures to be compiled in the same source tree, simultaneously.

Because of the practice of installing a duplicate GCC in the same form as the cross compilers, this same
recipe continues to work for ned kuilds.

Thehost-bindingine tells Cook to run the command on one of the hosts nominated in a variable named for
the architecture (or as a nagi doss-compiler of no suchaviable &ists). (Thedefined-or-null
function is a@ailable in the “functions’library distributed with Cook.)

Remembering these architectures felkhe GNU comention, these lines could read

i386-linux-hosts = fast faster fastest ;
This will do two things for you: first, it will alvays execute linux compiles on linux hostsem when Cook
is not ecuted on one; second, it will use more than one of them when you usgatzdlel option.

It is possible to use implicit ingredients recipes to say that all object o g@thitecture depend on a
magic include filee.g.

i386-linux/%0%.0: include/linux-special.h;
could be used to say that all Linux object files depend on this include file. (This is a sledge-hammer
approach, and a more subtle method is preferable, but it is sometimes required.)

6.4.2 Tracking Include Dependencies
Because of the cascade form of include dependmere is no need to do anything different for include
dependenciesyen if you add another architecture some time in the future.

6.4.3 Linking Libraries
The library recipe needsviemodifications.
%1/%/lib%.a: [%/1ib%.a_obj]
set unlink

{
%1-ar cq [target] [resolve [%/lib%.a_obj]];

The variable assignmentvgh ebove requires no modifications.

6.4.4 Linking Commands
The command linking recipe requiresvfenodifications.
%1/bin/%: [bin/%_obj]

Peter Miller Page 25

Cook UseiGuide

set mkdir

{
}

The variable assignment needs no modifications.

6.4.5 What to Build
The list of what to build becomes more interestitygu can nominate anand all architectures for which
you have aoss compilers, or nat cmpilers and nate tosts.

all:

%1-gcc -o [target] [resolve [bin/%_obj]];

[addprefix i386-linux/bin/ [commands]]
[addprefix sparc-linux/bin/ [commands]]
[addprefix sparc-solaris2.0/bin/ [commands]]
[addprefix m68k-sunos4.1.3/bin/ [commands]]

All of these architectures will beuldt in a single Cook imocation, on appropriate machines if necessary
The use of-continue and--parallel work over the entire scope of the build.

6.5 Installing Things

The biggest hassle is that timstall(1) command, which should kwchow to do nost installation tasks, has
completely incompatible interfaces on the various platforitgs is why the GNU Autoconf system comes
with aninstall-shscript, which &ithfully emulates the BSD options. Once yowéa eliable command
line interface to aninstall(1) program (be it Perl or shell) you can then write sensible installation
cookbooks.

If we have a Ist of commands, we would install as follows:
prefix = /usr/local;
bindir = [prefix]/bin;
install = install;

install: [addprefix [bindir]/ [commands]];
[bindir])/%60%: bin/%0% bin/%0.mkdir
{

}

That magichin/%0.mkdir file is used to record that the destination directodigte. Whileyou can
often assume this, it is notaays true when you are building thingsdikRPM packages.
bin/%0.mkdir:

{

[install] -m 755 bin/%0% [bindir]/%0%;

[install] -d [bindir]/%0
set errok;
touch [target];
}
The alternatie is to Lse
set mkdir;
at the top of your cookbook. This creates directories fgetarbefore rules are run. The install recipe then
reads
set mkdir;

[bindir])/%0%: bin/%0%
{

}

because there is no need for thenkdir " recipe. This,howerer gives you less control wer the
directories permission modes, and it doebalp when you \ant to create empty directories as part of the

[install] -m 755 bin/%0% [bindir]/%0%;

Peter Miller Page 26

Cook UseiGuide

install. Usethe appropriate technique for your needs.

6.6 Miscellaneous

This section contains assorted material thatesoa variety of topics. (As the manual expands, it will
probably be meed somewhere else.)

6.6.1 Lots of Dependencies
There are cases where you may want to nominate a whole category of files as depending on something else.
For example, you may want to say that all your fubar-language sources depend on your fubar campiler Y
could say something such as

cascade [match_mask %0%.fubar [manifest]] = fubarcompiler;
but recall thateverythingwhich has afubar file as an ingredient will also hafubarcompiler as an
ingredient. Thignay not be what you wanted.

Recall, also, that compiler recipes carry specific informatiou could more specifically nominate the
compiler by saying
%0%.0: %0%.fubar: fubarcompiler

{
}

which would be much more seledi @out which uses of.fubar files also depend on
fubarcompiler

fubarcompiler -c %0%.fubar -o [target];

There are times when writing cross-compilation recipes when ymt t8 nominate an operating-system-
specific include file for all of the object files:
%1/%0%.0: %0%.c
{
[* general cross compiler recipe */
%1-gcc -¢ %0%.c -o [target];
}
/* All windows NT objects depend on this include file */
i386-NT/%0%.0: winnt.h;
You can also usejatesto male you recipes more seleeti The gating expression may be just about
anything, but is often a pattern match or simple set membership.

%.0: %.c
if [in [target] foo.0 bar.0o]
{
/* foo.o0 and bar.o are magic */
cc -DMAGIC [cc_flags] -c %.c;
}

The gate is most easily read as(tiis condition)use this recipe”.

6.6.2 Error Processing

Cook stops processing a recipe at the first erfothe error occurs when constructing a command to be
executed, the command isot executed. Ifa recipe body contains more than one command, and one of
them gets an error (and doddmvethe errok flag set) the rest of the command widit be executed.

In addition, if an error occurs whilxeeuting a recipe bodyhe targets of the recipe will be deleted (on the
assumption that tlyeare probably only partially completed, or otherwise defelti To override this
behavior use thepreciousflag.

6.6.3 NFS
A perennial problem for building projectses networks is that the clocks damhatch. Ifyou use théime-
adjustflag, this problem is largely s@d. Thesimplest method is to put
set time-adjust;
at the top of your cookbook.

Peter Miller Page 27

Cook UseiGuide

File fingerprints, while not directly relant to NFS, can &r significant performance imprements, as
they can eliminate mancases of unnecessary re-compilatidio. turn them on, use

set fingerprint;
at the top of your cookbook. See belfor more discussion of fingerprints.

6.6.4 Symbolic Links

Symbolic links are followed to the actual file, when determining file modification tifies.modification

time of the symbolic link itself is not usedlhis means that “symlinkarms’ can be used when
constructing work areas, particularly when yoanivfunctionality more comptethansearch_list can

provide.

6.7 File Fingerprints

Cook has the ability to supplement the last-modified time-stamps the operating system supplies for each file
with a “fingerprint”. This is a cryptographically strong checksum, with an mind-bogglingly lo
probability that tve different files will have the same fingerprint.

When Cook needs to knoif a file has changed, it looks at the last-modified time-stamp. If it has changed
since the last time the fingerprinag/ calculated, the fingerprint is re-calculated. If the fingerprints match,
Cook knows the file contents are unchanged, and uses the old time-stamp, and also sypprege an
actions which would otherwise happen if the file contents had actually changed. (Cook remembers the both
the nev and old time-stamps, so that it can bic&nt about re-calculating checksums and still use the old
time stamp for out-of-date calculations.)

When recipe bodies are run, Cook knows that the target(s) be&n modified, so it doesmeed to re-
examine the operating systesitlea of the last-modified time-stamp, it simply re-fingerprints.

It is tempting to try to achi® ©omething similar by writing recipe bodies which onlyeewrite their
targets if thg actually changedE.g.

%.0: %.c
{
if [exists [target]] then
{
[CC] -0 %.tmp -c %.c;
if cmp %.tmp %.0\;
then mv %.tmp %.0\;
else rm %.tmp;
}
else
[CC] -0 %.0 -Cc %.c;
}

However, this will not work (whether or not you ha fingerprints turned on)Largely as a defense aigst
NFS time synchronization problems and stupid systems with very coarse file time-stampskri@oak’ *
that because the recipe bodpsmun the targetchanged’, causing all down stream dependencies to be
considered out-of-date.

In addition, this recipe would lga the last-modified time-stamp out-of-date if the file was unchanged.
This means the recipe would trigger again in the next Caekudon, ngaing mary of the intended
savings.

Fingerprints are intended for this purposat, lheve the advantage of leaving the last-modified time-stamps
correct, and theneed to do half the 1/O that thenpg1) command does. Also, all down stream dependent
files are touched, to ensure their last-modified time-stamps are also condistemally; if they needed to

be re-built for some other reason, theryttveuld be re-built, not simply touched.

While there is somewerhead in initially calculating the fingerprints for annwork area, thg repay that
overhead map times wer. This is especially true if your system has generated code in it, particularly
generated include files, but there are also savings for sirapiglter projects.

Peter Miller Page 28

Cook UseiGuide

6.7.1 Turning Fingerprints On
To turn fingerprints on, you need to add the lines
set fingerprint;
set time-adjust;
to your cookbook. That second line is no essentia,itbcorrects last-modified time-stamps when NFS
time synchronization problems would otherwise cause inconsistent behavior.

While it is possible to turn fingerprints on for a subset of the files in your project, it is not as stramidatforw
as it may seem. There is n@awto bind the fingerprint request to a single file, only to recipes, so you need
to use the‘Set fingerprint " recipe flag on all recipes between the vai¢ source file and the
ultimate taget. Thistends to be messy.

6.7.2 Vanishing Dependencies
It is quite common that you need to neid a file if one of the dependencies is reetb Usually this is
quite hard to detect, because Cook has trouble seeing something theis)’compared to the preus
execution. Havever an ingenious method has been described by Gilles Lamiral <lamiral@mail.dotcom.fr>
which “remembers’though a file:

function contents-remember =

{
/* @1 = name of contents file */
/* @2..N = the value of [need] */
[write [args]];
}
function contents-changed =
{
/* @1 = name of contents file *
/* @2..N = the value of [need] */
if [not [exists [resolve [@1]]]] then
return O;
local old-contents = [collect_lines cat [resolve [@1]]];
/* return 0O if nothing disappeared, >0 if did disappear */
return [count [stringset [old-contents] - [tail [arg]]]];
}

libfred.a libfred.contents: [fred_obj]
set ["if" [contents-changed libfred.contents [fred_obj]]
"then" forced]

unlink
{
ar cq [target] [resolve [fred_obj]];
[contents-remember libfred.contents [fred_obj]];
}

Note: because the set clausevauated when the target isauated, the [need] variable is notadable.

In this example, you must Y& alculated the final alue of [fred_obj] before the recipe appears in the
cookbook. Thesvduation of the set clause also limits the application of this technique to explicit recipes; it
will not work for implicit (pattern) recipes, because the value of the pattern elements is not known at the
time the set clause ivauated.

6.8 Coping with Links

You will notice that the defult operation of Cook copes with links (hard links and symbolic links) rather
poorly. For example, the recipe
two: one

{
}

will always conclude that filéwo is out-of-date. This is because fileseandtwo have exactly the same

In one two;

Peter Miller Page 29

Cook UseiGuide

time stamp.

If you specify a weaker time constraint, Cook will allthis kind of recipe to be written, amadt conclude
the files is alvays out of date:
two: one(weak)

{
}

The “(weak) " on the end of the ingredient name tells Cook to use the weak edge type, rather than the
strict edge type.

In one two;

This technique is useful for symbolic links, too.

One other thing which can be very useful for both link typasphrticularly symbolic links to directories,
is the “set unlink’ recipe flag.
two: one(weak)
set unlink
{

In -s one two;

This remaes the target (if necessary) before the recipe body is run.

6.9 Coping with Version Stamps

In some systems, the version stamp is regenerateddior leuild, but you dort’want to relink zillions of
executables just because the version stamp has changed, but nothing else has.

By using the‘(exists) " edge type, you can tell Cook that an ingredient is needed feea giget, lut
that it should neer be mnsidered to makthe target out-of-datel-or example:

#include "c"
all: progl prog2;
version.c:
set forced
{
date "'+#define VERSION \"%C\"" > [target];
}
progl: progl.o mylib.a version.o(exists)
{
gcc -o [target] [need];
}
prog2: prog2.0 mylib.a version.o(exists)
{
gcc -o [target] [need];
}

This cookbook will generate awerersion.cfile every time that Cook is run, and thus awneersion.dfile.
However, the progl andprog? files will not be re-linked unless something else changed as well.

Peter Miller Page 30

Cook UseiGuide

7. Cookbook Language Definition

This chapter defines that language which cookbooks are written in. While some of its properties are similar
to C, do not be misled.

A number of sections appear within this chapter.
1. TheLexical Analysisection describes what the words of the cookbook language look like.

2. The Preprocessorsection describes the include mechanism and the conditional compilation
mechanism.

3. TheSyntax and Semantisgction describes towords in the cookbook may be combined to form
valid constructs (theyntay, and what these constructs mean gmantics
The sections are laid out in the recommended reading order.

7.1 Lexical Analysis

The cookbook is made of a number of recipes, which are in turn maderd$.wThissection describes
what constitutes a word, and what does not.

7.1.1 Words and Keywords
Words are made of sequences of almogtcharacterand are separated by white space (including end-of-
line) or the special symbol€ook is always case sensit when reading cookbooks.

The characters={}[] are the special symbols, and are words in themselves, needing no delimiting.

In addition to the special symbols, some words, knowkeasords have special meaning toook. The
keywords are:

else host-binding loopstop single-thread
fail if return then
function loop set unseten

You will meet the lkeywords in later sections.

7.1.2 Escape Sequences
The characteY is theescapecharacter If a character is preceded by ary specialness, if it had gnwill
be remeed. If it had no specialness it mayMeaome added.

This means that, if you want to udeas a word, rather than ayvord, at least one of its characters needs
to be escaped, for exampié

The escape sequences which are special are as follows.

\b The backspace character
\f The form feed character
\n The newline or linefeed character
\r The carriage return character
\t The horizontal tab character
\nnn A character with a value ofnn, where
nnn is an octal number of at most 3
digits.
An escaped end-of-line is totally ignored. It should be noted that a cookbook mayvactnianon-
printing ASCII characters in it other than space, tab and end-of-line.

7.1.3 Quoting

Words, and sections of words, may be quoted. yfraart of a word is quoted it cannot beekord. This
means that, if you want to uffeas a word, rather than aykvord, at least one of its characters needs to be
quoted, for exampl&f’.

Both single () and double () quotes are understood lbgok, and one may enclose the othéfa quote is

Peter Miller Pae 31

Cook UseiGuide

escaped it does not open or close a quote as it usually would.

Cook does not like nrewlines within quotes.This is a generally good heuristic for catching unbalanced
guotes. Ifyou really want a newline within a string, use theescape.

7.1.4 Comments

Comments are delimited on the left By and on the right by/. If the/ character has been escaped or
guoted, it doesm’introduce a comment. Comments may be nested. Comments may span multiple lines.
Comments are replaced by one logical space.

7.2 Preprocessor

The preprocessor may be thought of as doing a lithik Wwefore theSyntax and Semantisgction has its
turn.

The preprocessor is #en by preprocessor diectives A preprocessor direete is a ine which starts with a
hash §) character Each of the preprocessor direes is described bela.

7.2.1 include
The most common preprocessor dineeis
#include" fil enanme”

This preprocessor direeé is processed as if the contents of the named file had appeared in the cookbook,
rather than the preprocessor include divecti

The most common use of the #include direxis to include system cookbook&or example, may small
programs can be ddoped using the following simple cookbook:

#include "c"

#include "program”
The standard places to search are firgtpath specified with thd nclude command line option, and then
$HOME/.cookand thernlusr/local/share/cooin that order.

7.2.2 include-cooked

This directive looks similar to the one abg but do not be decegd.
#include-cooked filename..

You may name sexal filenames on the line, and yhmay be expressions.

The search path used for these files is the same as that used for other cooked filessesash thst
variable and theesolvebuilt-in function for more information.The order in which you set tlseach _list
and thetfinclude-cookedlirectives is important. Alays set thesearch list variable first, if you are going
to use it.

Files included in this way are checked, afteyythavebeen read, to makaure thg are up-to-date. If the
are notcook brings them up-to-date and then re-reads the cookbook and sturts o

You will only get a warning if the files are not fountllsually, cook will either succeed in constructing
them, in which case tlgewill be present the second time around, oatalferror will result from attempting
to construct them. Note that it is possible to go into an infinite loop, if the files are constantly out-of-date.

The commonest use of this construct is maintaining include file depsgriisador source files.
obj = [fromto %.c %.0 [glob *.c]];

%.0: %.c

[cc] [cc_flags] -¢c %.c;

}

%.c.d: %.c

{

c_incl -prefix "'%.0 "[target]": %.c™ -suffix ";
-no-cache %.c > [target];

Peter Miller Page 32

Cook UseiGuide

}

#include-cooked [fromto %.0 %.c.d [obj]]
This cookbook fragment showsvdnclude file dependencies are maintained. Notice the .d files hare
a recipe to construct them, and thatyttaee also included.Cook will bring them up-to-date if necessary
and then re-read the cookbook, so that it weagd working with the current include dependenci€Bhe
doubly nested quotes are to insulate the spaces and special characters fianokkentk the shell.)

You could usegcc -MM if you prefer (you will need some extra shell scripfjhe c_incl program
understands absent files better but ddesnderstand conditional compilation, amgtc understands
conditional compilation but ges fatal errors for absent include fileé/arning: If you are usingeach list

you must usec_incl. Gcc returns complete paths, which will resultcook failing to notice when an
include file is copied from later in the search list to eardigd then modified.

There are times when you dbmlant the#include-cooked directives to be ated upon.You can over-
ride it using the--no-include-cooked command line option, Ui it is often easier to use the
[command-line-goals] variable, and say something like

#if [not [match %1clean%?2 [command-line-goals]]]

#include-cooked [fromto %.0 %.c.d [obj]]

#endif
This construct means that wheaean &plicit ‘‘clean " goal (or similar) is requested, tiénclude-
cooked lines will not be performed. This is sensible, because cleaning actions usuallyeremo
dependengfiles; there is no point making suretreee up-to-date first.

7.2.3 include-cooked-nowarn
This directive is dmost identical to the one al® but no warning is issued for absent files.

#include-cooked-nowarn filename..
You may name seeral filenames on the line, and theay be expressions.
724 if

The #if directve may be used to conditionally pass tokens to the syntax and semantics processing.
Directives take the form

#if expressionl

somethingl

#elif expression2

something2

#else

something3

#endif
There may be gnnumber ofelif clauses, and thelse clause is optional. Only one of tkemethings
will be passed through.

7.2.5 ifdef

This directve takes a similar form to thié directive, but with a different first line:
#ifdef variable

This is syntactic sugar for
#if [defined variable]

This is of most use in bracketi#iinclude directives.

7.2.6 ifndef

This directive takes a similar form to thi€ directive, but with a different first line:
#ifndef variable

This is syntactic sugar for
#if [not [defined variabléd]]

This is of most use in bracketiinclude directives.

Peter Miller Page 33

Cook UseiGuide

7.2.7 pragma
This is for the addition of extensions.

7.2.7.1 once
This directive is to ensure that include files in which it appears are included exactly once. Thisvéirecti
has the form

#pragma once

7.2.7.2 unknown extensions
Any pragma extensions not recognized will be ignored.

Peter Miller Paye 34

Cook UseiGuide

7.3 Syntax and Semantics

The syntax is described using “train trdakiagrams, with prose descriptions of the related semantics.

7.3.1 Overall Structure
The general form of the cookbook is defined as

cookbook

A cookbook is defined as a sequence of statements. Each statement statexeeuted. efor a definition
of what it means when a statementxsceited, see the individual statement definitions.

The nonterminal symbdaitatemenwill be defined in the sections balo

Please note that a statement is nobgs evaluated when is is read, but at specific, well defined times.

7.3.2 The Compound Statement
A nonterminal symbol which will be referred to belas the compound_statemestymbol, defined as

follows:
3N
e =

The compound statement may be used anywhere a statement may be, and in particular

stmt %]
T

cstmt

7.3.3 Variables and Expressions
Cook provides variables to the user to simplify things.

7.3.3.1 The Assignment Statement
It is possible to assign to variables with the following statement.

stmt |1 |
e [H—eers |5

When this statement isxecuted, the ariable whose name the left hand expressi@uates to will be
assigned the value that the right hand expressionviktages to.

For example:

program_obj = foo.o bar.o baz.o;
Note: It is possible to wer-ride the value of tilt-in functions and variables with this statement. This will
not produce an error messageywheer it is usually not desirable as it will change the meaning of the rest of
your cookbook.

7.3.3.2 The Assign-Append Statement
It is possible to append to the value of variables with the following statement.

Peter Miller Page 35

Cook UseiGuide

stmt |] |
/ll:em| N e i e NG

When this statement ixecuted, the variable whose name the left haqmtession ealuates to will hae its
value appended by the value that the right hatutession list ealuates to. Expression values are lists of
words, appending means to append to tloedwist; it doesnot mean appending to the last string of the
value.

For example:

program_obj += [glob "deeper/*.0"];
Note: It is possible to wer-ride the value of tilt-in functions and variables with this statement. This will
not produce an error message (unlestuating them with no guments is an error), haver it is usually
not desirable as it will change the meaning of the rest of your cookbook.

7.3.3.3 The Setenv Statement
It is possible to assign to environment variables with the following statement.

Stmt N [~ | L

%ﬁﬁv /e i e N i i B NG
When this statement ixecuted, the environment variable whose name the left hand expregaliastes
to will be assigned the value that the right hand expressionvélstages to. It is an error if theaviable
does not already exist.

For example:
setenv PATH = [getenv PATH]":"[getenv HOME]/more-bin;

7.3.3.4 The Setenv-Append Statement
It is possible to append to the value of an environment variables with the following statement.

stmt =setenv = Xt = TS | =
U /A it NS Bt bl R NG/
When this statement ixecuted, the environment variable whose name the left hand expregdliastes

to will have its value appended by thalue that the right hand expression ligdleates to. Evaluation is
analogous to the assign-append statement.

For example:
setenv FRED += nurk;

7.3.3.5 Expressions
Many definitions malk reference to thexpr, dist and exprs nonterminal symbols. These are defined as
follows.

Theelistis a list of at least one expression,

T]

whereas thexprsis a list of zero or more expressions.

e S

An expression is composed of words, variable references, functeations, or concatenation of
expressions. Theoncatenation is implied by abutting theotyarts of the epression together.g:
"[fred]>thing " is an indirection orfred concatenated with the literal wordthing "

exprs

Peter Miller Page 36

Cook UseiGuide

expr

When an[elist] expression is wduated, theelist is evaluated first. If the result is a single word, then a
variable of that name is searched. féf found the value of an expression of this form is the value of the
variable.

If there is no variable of thegin name, or theslistevduated to more than one word, the firgirais talken
to be a built-in function name. If there is no function of this name it is an error.

The cat operator works as one wouldpect, joining the last word of the left expression and the fiostlw

of the right expression togethend otherwise leaving the order of the expressions alone. One usually uses
the trivial case of single wordkpressions. & more comple concatenations, see the [catenate] and [join]
built-in functions.

7.3.4 Recipes
A number of forms ofstatementare concerned with tellingook how to cook things. There are three
forms, theexplicit recipe, thamplicit recipe, and thengredientsrecipe.

7.3.5 The Explicit Recipe Statement
The explicit recipe has the form

stmt [piet | o] [\
o~ [T v Hﬁﬂﬁs Hﬁ%l oot o0 [

The target(s) of the recipe are to the left of the colon, and the ingredientyg, &eimo the right. The
statements, usually commands, which are to be performed to (re)construaje¢h@)tare contained in the
compound statement. The expressions are ardy&ed into vards when the recipe ixecuted. Recipe
bodies may hae local variables.

For example:
program: [program_obj]
{
/* use [need] rather than [program_obj] in case
there are additional ingredients recipes
(see below). */
cc -0 program [need];
}

The target expressions and recipe flags asu@ted when the recipe is instantiatetihe ingredients
expressions and the recipatg are eduated at graph building time. The body and use statements are
executed at graph walking time.

The recipes also taka ‘host-binding attribute. Seehe chapter on Cooking inaRallel for hav this is
attribute is written and used. If the host binding flag isagj it is alvays used, ¥en when not cooking in
parallel. If it is not gwven and you are cooking in parallel, it will default to the contents of the
[parallel_hosts] variable.

7.3.5.1 Recipe Flags
Theflagsare defined as follows.

Peter Miller Page 37

Cook UseiGuide

flags

%;\1 \F

Powrmy s
"/ DA

Recipe flags areveluated when the recipe targets avdl@ated. Atthis time,noneof the [target], [tagets],
[need] or [younger] variables are set, and neither ay@ftihe pattern matches (%, %) available.

A number of flags may be used

clearstat Thedast-modified time of the files named ireeuted commands will be rewed from

the last-modified time cache. This is essential for commands suet{lgsandmv(1).
noclearstat Dmot clear entries from the last-modified time cache. This is usually the default.
ctime Usethe ctime of files as well as the mtime when determining the last-modified time of a

file. Thisis the default.

no-ctime Donot supplement st_mtime with st_ctime. This can be important if you version control
tool often hard links files for efficieyc

default If no targets are specified on the command line, the first recipe witletiatflag will
be used. Not meaningful for implicit recipes.

nodefult If no targets are specified on the command line, and there are no recipes défatiite
flag set, the first recipwithout the nodefaultflag will be used. Not meaningful for
implicit recipes.

errok Exitstatus from commands will be ignored.

noerrok Ifthe noerrokflag is specified, the commands within the actions bound to the recipe must
always be successful. This is usually the default.

file-size-statistics Thisption tellscookto print file size statistics at the enf of the run. The filename to use
is settable in thffile-size-statistics] variable, or defaults tofile-size-
statistics.txt " if n ot set.

no-file-size-statistics This option says not to collect file size statistics. This is the default.

fingerprint Filefingerprints are used to supplement last-modified time information about files, which
is hov cookdetermines if a file is out-of-date and needs to beeanhokf a file appears to
have changed, from the last-modified time, it is fingerprinted, and the fingerprint
compared with what it was in the padthe file has changed if and only if the fingerprint
has also changedA cryptographically strong hash is used, so the chance of a file edit
producing an identical fingerprint is less than 1 in 2**2@ingerprinting is disabled by
default.

nofingerprint Dot use file fingerprinting. This is usually the default.
forced Iftheforcedflag is specified, the actions bound to the recipe wilagd be galuated.

noforced Ifthe noforcedflag is specified, the actions bound to the recipe willvauated when
the recipe is logically out-of-date. This is usually the default.

gae-after-ingredients Thiflags causes the recipatg to be eduated after the ingredients \rea keen
evduated and determined to be cookable. This is usually the default.

gae-before-ingredients Thilag causes the recipatg to be applied before the ingredients aatuated
and determined to be cookable. This is useful if the ingredigdiisation itself needs to
be conditional.

implicit-ingredients
This flag may be used to specify that a resipegredients may be satisfied by implicit
recipes. Thiss usually the default.

Peter Miller Page 38

Cook

UseiGuide

no-implicit-ingredients

This flag may be used to specify that a resipegredients may not be satisfied by
implicit recipes; this is of most use with utilities such as RCS where the recipe writer
knows that the ingredients cannot be constructed.

include-cooked-warning Thilag may be used to enable warnings when the relationship betweegeta tar

and a deried ingredient appears only in a dexd cookbook. Thiss usually the defult.
This flag is only meaningful at the cookbookeée it is not meaningful for indidual
recipes or commands.

no-include-cooked-warning Thifag may be used to disable warnings when the relationship between a

taget and a devied ingredient appears only in a dex cookbook. Thisflag is only
meaningful at the cookbook vd, it is not meaningful for individual recipes or
commands.

ingredients-fingerprint Thislag may be used to cause recipes to re-trigger when their ingredients list

changes in anway. This is especially useful, for example, in causing libraries to be
rebuilt when a content source file is rered

no-ingredients-fingerprint Cancelyaactive ingredients-fingerprinsetting.

match-mode-cook Use nadi Cook pattern matching.

match-mode-regeUse POSIX regular expression pattern matching.

meter

nometer
mkdir

nomkdir

precious

noprecious

recurse

norecurse

silent

nosilent

stripdot

nostripdot

Ifthe meterflag is specified, a summary of the CPU usage by the commands within this
recipe will be printed after each command. The silent optivaside this option.

Dot meter commands. This is usually the default.

If the mkdir flag is specified, the directories ofyatargets will be created before the
actions bound to the recipe analaated.

If the nomkdirflag is specified, the directories ofyatargets will need to be created by
the actions bound to the recipe. This is usually the default.

Ifthe preciousflag is specified, if the actions bound to the recipe fail, the targets of the
recipe will not be deleted.

Ithe noprecioudlag is specified, if the actions bound to the recipe fall, tlgetsiof the
recipe will be deleted. This is usually the default, so that erroneqestgawill be re-
cooked.

Ifthis flag is specified, recipes will recurse upon themselves if one of their ingredients
matches one of their g&ts. Thisan cause problems, and so it is not the default.

Ithis flag is specified, the recipe will not recurse if one of its ingredients matches one of
its tagets. Thids the default.

Ifthesilentflag is specified, the commands within the actions bound to the recipe will not
be echoed.

Commandwill be echoed. This is usually the default.

Thisoption causesook to remae leading "./" prefixes from filenames. This is usually
the default.

Thisoption causesook to leave leading "./" prefixes on filenames.

symlink-ingredients Whemnising a search path, of an ingredient exists, but is not in the wepofethe

Peter Miller

search path, this option request that a symbolic link to the actual file be created in the top
level directory This option is typically used on a pescipe basis for for brain dead tools,
like GNU Automake, which don’grok search paths.

Page 39

Cook UseiGuide

no-symlink-ingredients Rerse of the abee. Neve create symbolic links for ingredients.

tell-position Thisoption causes the filename and line number to be printed when echoing commands
just before the are executed, in addition to the command itself.

no-tell-position Thisoption suppresses the printing of the filename and line number when echoing
commands just before thare executed. Thids usually the default.

time-adjust Thisoption causegook to check the last-modified time of the targets of recipes, and
adjust them if necessaryp make aure thg are consistent with (younger than) the last-
modified times of the ingredients. This usually adjusts the file time into the (near) future.
A warning message will be printed, telling youshmary seconds the file was adjusted.
This results in more system calls, and cawshings down on some systefns

no-time-adjust Daot adjust the file last-modified times after performing the body of a recipe. This is
usually the default.

time-adjust-back This option causemk to force the last-modified time of the targets of recipes to be
exactly one (1) second younger than their youngest ingredient. This usually adjusts the
file time into the (recent) pasf warning message will be printed, telling yomhmany
seconds the file was adjusted. This results in more system calls, and wathists
down on some systemsThis is primarily useful when some later process is going to
compress file modification times; this provides smarter compression.

unlink If the unlink flag is specified, of antargets will be unlinked before the actions bound to
the recipe are performed.

nounlink If the nounlink flag is specified, the recipe targets are not kexhdefore the actions
bound to the recipe are performed. This is usually the default.

Each flag may also be specified in thgaige, by adding a "no" prefix, to werride ary existing positve

default setting. There is a strict precedence defined for the variogis ¢é flag setting, see the end of the

"How Cook Works" chapter for details.

7.3.5.2 Recipe Gate

Each recipe may ka agate The gate is a way of specifying a conditional recipe; if the condition is not
true, the recipe is not used. The condition is in addition to the condition that the ingredients are cookable.
For example:

program: [program_obj]

if [not [in horrible.o [program_obj]]]

gae

{

}

7.3.5.3 Then Clause
There are times when it is necessary tovktitat a recipe has been applied, but because the recipe was up-
to-date, the recipe body was not run.

cC -0 program [program_obj];

6. This flag was once named thHapdate’ flag. Thename was changed to more closely reflect its function. The old name
continues to work.

Peter Miller Page 40

Cook UseiGuide

use

N Lipen) ——estmt |

The then-clause is rurvery time the recipe is appliedyen if the recipe is up-to-date. It will be run after
the recipe bodyif the recipe body is run. All of the usual percent (%) substitutions and autouddicles
will apply. Recipe then-clauses mayvaslocal variables.

For example:
program: [program_obj]
{

CC -0 program [program_obj];

install-set += program;

}
7.3.5.4 Double Colon

Most cookbooks are constructed so thatabk finds a suitable recipe for the target it is currently
constructing, it will apply the recipe and then conclude that it has finished constructingée tiasome
rare cases you will antcook to keep going after applying a recip& ecify this use a “double colon’
construction:

stmt - | /o~
JIjehst TS Hﬁlﬁs H:gﬁ H%tmt H:as@ FZ
This operates li& a rormal explicit recipe, ot cook will continue on looking for recipes after applying this

one. Assoon as an applicable “single colorécipe is found and appliedpok will conclude that it has
finished constructing the target.

For example:
all:: programs
{ [print "all programs done'];
;II:: libraries
{ [print "all libraries done"];
}

7.3.6 The Implicit Recipe Statement
Implicit recipes are distinguished frompdicit recipes in that and implicit recipe has a target witBoa ’
character in it.

7.3.6.1 Simple Form
In general the user will rarely need to use the implicit recipe form, as there are a huge range of implicit
recipes already defined in the system default recipes.

An example of this recipe form is
%: %.g9z
{

}

This recipe tell€ook how to use thegzca(l) program.

gzcat %.gz > %;

Peter Miller Pae 41

Cook UseiGuide

7.3.6.2 Complex Form

The implicit recipe recipe has a second form where there areetw of ingredients, separated by another
colon. In this form, the ingredients specified in the first ingredients list are used to determine the
applicability of the recipe; if these are all constructible then the recipe will be applied; &eamot
constructible then the recipe will not be applidtithe recipe is applied, the ingredients specified in the
second ingredients list are required to be constructibhe the second ingredients list section is known as
theforced ingredientsection.

Note: if you want the first ingredients list to be empty youstseparate the twoolons with a space,
otherwisecook will think this is a “double colori'recipe.

An example of this is the C recipe
%.0: %.c: [collect c_incl -api %.c]

{
}

This recipe is applied if th&.cfile can be constructed, and is not applied if it cannot be construthed.
include dependencies are onkpeessed if the recipe is going to be applied; but if #ie expressed, tle
mustbe constructible. This means that absent include files generate &n error

cc -c %.c;

The nave form of this recipe
%.0: %.c [collect c_incl -api %.c]

{
}

will attempt to apply the_incl command before ths.c file is guaranteed toxest. Thisis because the
exprs2is performed after thexprsl all exist (because tlyeare constructible, thehavebeen constructed).
In this nave form, absent include files result in the recipe not being applied.

7.3.6.3 Double Colon

Just as explicit recipes ¥v@a ‘double colon’form, so do both types of implicit recipes. The semantics are
identical, with cook looking for more than one applicable implicit recipe, but stopping if it finds an
applicable “single colon’i mplicit recipe.

cc -c %.c;

As stated earlier in this manuabok first scans for explicit recipes before scanning for implicit recipfes.
an explicit recipe has been appliedpk will not also look for applicable implicit recipesyen if all the
applicable explicit recipes were double colon recipes.

7.3.7 The Ingredients Recipe Statement
The ingredients recipe has the form

stmt " |, T | _| e |
1 NG frags [T T\
The target(s) of the recipe are to the left of the colon, and the prerequisites are to thEheghtare no

statements to perform to cook thegets of this recipe, it is simply supplementary tg ather recipe,
usually an implicit recipe.

For example:
program: batman.o robin.o;
The right-hand-side expressions are omiglated into words when the recipe is instantiated.

Ingredients recipes are usually explicit, but it is also valid to use implicit ingredients recipes.

For example:
some-%-program: %.0;

7. This is not the recommended way of determining C include dependencies, see the “Include Deperdeapiesfor more
information.

Peter Miller Page 42

Cook UseiGuide

7.3.8 The Cascade Recipe Statement
The cascade recipe statement has the form

stmt - : T oticr |/
Ceascade) ekt |==S-r-elist [=5

This recipe specifies on its right-hand-side additional ingredients foremipe which has ingredients
mentioned on the left-hand-side of this cascade recipe.

Unlike dl other recipe forms, both the left-hand-saled the right-hand-side arevaluated when the recipe
is instantiated.

For example:
cascade batman.c = robin.h;
cascade somelib.a = some-deeper-lib.a;

7.3.9 Commands
Commands may takseveal forms incook. They al have ame thing in common; tlyeexecute a command.

7.3.10 The Simple Command Statement
The simplest command form is

stmt ot | [a | —
—efist [=—fegs |~

When e&ecuted, theelistis evaluated into a wrd list and used as a command to be passed to the operating

system. OruUNIX this usually means that a shell izdked to run the command, unless the string contains

no shell meta-characters.

Theflagsare those which may be specified in the explicit recipe stateribey.havea higher precedence
than either theetstatement or the recipe flags.

Some characters in commands are special both to the shell and toYoookill need to quote or escape
these characters. Each commandxeceted in a separate process, sodthecommand will not work, you
will need to combine it with the ralent commands, not forgetting to escape the semicelpaoh@aracters.

When Cook needs tovoke a $ell to execute a command, it uses the shell named in SRé&ELL
ervironment ariable. Ifthe cookbook is to be used byariety of users, each with a different shell setting,
it may be useful to add a

setenv SHELL = /bin/sh;
line at the top of your cookbook.

It is also important to note that unless #reok flag has been specified, the shell will bgegithe -e
option, which will cause it to exit immediately after the first command

which returns a non-zero exit status. This can be important when

commands in the .profile or .bashrc (or similar) file fails.

7.3.11 The Data Command Statement
For programs which requirstdin to be supplied byook to perform their functions, the data command
statement has been provided.

stmt Letist | I—tags | —(data) —expr |dataend) ———

In this form, theexpr is evaluated and used as input to the command. Betweendateeand dataend
keywords the definition of the special symbols and whitespace change. There are @rdyetial
symbols,[and], to dlow functions and variable references to appear in dpeession. Inaddition,
whitespace ceases tovieats usual specialness; it is handed to the command, instead.

For those of you familiar with writing shell scripts, this is analogoukei@ documents. Iallows you to
create an input file without creating an explicit temporary fitealso allows you to create files that you

Peter Miller Page 43

Cook UseiGuide

could not create usinechoredirected into the fife

Thedata keyword must be the last on a line, whitespace afted#& keyword up to and including end-of-
line, will notbe given to the command.

The dataend keyword must appear alone on a line, optionally surrounded by whitespace; if it is not alone,
it is not adataend keyword and will not terminate the expression.

An example of this may be useful.
{usr/fred/%: %

{

newgrp fred;
data
cp % /usr/fred/%
dataend
}

The newgrgl) command is used to change the default group of a process, and tea thadl; so the

“cp” is executed by this sub-shell when it reads its standard infpuhe directory/usr/fredhas read-only
permissions for others, and group write permissions, and belonged tofguand you were a member
of groupfred, the abee implicit recipe could be used to gothe file.

Here is an example of hwato cope with stupidly short NT command lines:
%.LIB: [%_obj]

{

cat > %.contents;
data
[unsplit "\n" [unix-to-dos [need]]]
dataend

link -lib "/out:"[unix-to-dos [target]] @%.contents;
rm %.contents;

The “@somethin m eans the linker should read file names fromsthraethindile.

This technique will also ark with Unix if you hae nore then 5MB of command linegamentsand the
program is written to ha an option something lik this (mary havea-f option).

7.3.12 The Set Statement
It is possible to werride the defaults used Igook or even those specified by th€EOOK environment
variable, by using theetstatement.

stmt | N
S 3 s =

The flag values are those mentioned inftagsclause of the explicit recipe statemeMany command-
line options hee equivalent flag settings. There is nanset’ statement, to restore the deft settings, bt
it is possible to set flags the other way adding or removing the “noprefix.

To st flags for individual recipes, use titegsclause of the recipe statements.

To st flags for individual commands, use flagjsclause of the command statements.

7.3.12.1 Examples
Fingerprinting is not used by default, because it can cause sufprises, and takes a little more CPTh
enable fingerprinting for you project, place the statement

set fingerprint;
somavhere near the start of yottowto.cookfile. The-No_FingerPrint command line option can still
override this, but the default behavior will be to use fingerprints.

8. For example, Windows NT has a ludicrously small command line length limit.

Peter Miller Paye 44

Cook UseiGuide

To prevent echoing of commands as ytere executed, place

set silent;
someavhere in yourHowto.cookfile. The-NoSilent command line option can stiliverride this, but the
default behavior will be not to echo commands.

7.3.13 The Fail Statement
Cook can be forced to think that a recipe has failed by the uses fEtlsgatement.

stmt :/F " | /N
O) l [T/

This is hugely useful when programs do not return a usefust@tus, ot do fail. If they haveprinted an
error message, but not produced the output file, you could use the Fail statement without arguments:
fred: other stuff

set unlink
{
brain-dead [need] -o [target];
if [not [exists [target]]] then
fall;
}

If you give the Fail statement grerguments, thg will be printed as an error message before the recipe
fails:
fred: other stuff

set unlink
{
brain-dead [need] -o [target];
if [not [exists [target]]] then
fail Did not produce [target] file.;
}

7.3.14 The If Statement
The if statement has one ofdorms.

Jif— - expr . ithem | l—stmt |
" /1T 77 T T
e et 1

el St

In nested if statements, tlekse will bind to the closestlselessif. An expression isdlse if and only if all
of its words are null or it has no words.

stmt

Note that one or both of the subordinate statements may be compound statements, should you need to say
something more comptehan a single statement.

7.3.15 The Loop and Loopend Statements
Looping is provided for irtook by the generic infinite loop construct defined belo

stmt . \
oo) =—stmt |

A facility is provided to break out of a loop atyaint.

stmt

oonsion
~Joopstop)=+

The statement following thi@op directive is executed repeatedly fover. Theloopstop statement is only
semantically valid within the scope ofapp statement.

Here is an example of hoto use the loop statement:

Peter Miller Page 45

Cook UseiGuide

dirs=abcd,;
src=;

tmp = [dirs];
loop

{

tmp_dir = [head [tmp]];
if [not [tmp_dir]] then
loopstop;
tmp = [tail [tmp]];
src = [src] [glob [tmp_dir]"/*.c"];

}

There is also a “for eacH'oop variant, allowing a more terse expression of exactly the same thing
dirs=abcd,;
src=;

loop tmp_dir = [dirs]

src = [src] [glob [tmp_dir]"/*.c"];
}

You can use loopstop within such a loop. Note that the loop bagstbe a compound statement.

7.3.16 Functions
It is possible to define your own functions.

7.3.16.1 Function Definition
User-defined functions are specified using something similar to an assignment.

function N

r . N
chon) /-d C //%tmt }

Functions must be defined beforeytlaee used.

You need to ma& aure you do not re-define a built-in-function as this maseldre consequences.

7.3.16.2 The Return Statement
You return values from a function by using the return statement:

stmt N \
=etarn ['K’ =)

Note that return statements are not meaningful outside a function definition.

7.3.16.3 Function Arguments

The arguments to the function are passed in‘dng’‘variable. Eaclargument is also separately defined in
the ‘@1” to “‘@9” variables for direct accesglf there are more than 9, you will need to upedrd n
[arg]]” for agument 10 and later). These variables are unique for each functimation, @en if they are
nested.

You can use the “@1to “‘@9” variables as local variables if youMeap need of their values.

All of these special names are thread safe and recursionEadey function ivocation receies its ovn
set of them.

7.3.16.4 Example
An example of a function definition is a “capitalizEinction:
function capitalize =

{
@1l=,

Peter Miller Page 46

Cook UseiGuide

loop @2 = [downcase [arg]]

{

}
return [@1];

@1 += [upcase [substr 1 1 [@2]]][substr 2 99 [@2]];

}

This function capitalizes the first letter of each of its arguments.

User-defined functions arevisked in the same way a built-in functions.
host = [os node];
Host = [capitalize [host]];
See the “Function Librarysection for additional function examples which are distributed with Cook.

7.3.16.5 Function Call Statement
User defined functions may bevaked in the same way as built-in functions, butytimeay also be imoked
in the same way as commands, providing a form of subroutine.

stmt - _ —
kfunctlon);*zehst o

If the function return value is not zero, it is consideredadit fust as a command woulaif The
commonest use of this is tovoke the built-in print function for debugging cookbooks.

function print[__FILE__][__LINE__] hello [getenv USER];
These function calls may be used in recipe bodies, or in the general cookbook.

7.3.16.6 Local Variables
Functions can hee local variables simply by using theowd local on the left-hand-side of the
assignment. Cameeeds to be tah with theloop statement and the= assignment, as the variable needs
to be established as a local variafinist.

function capitalize =

{
local result = ;
local tmp =
loop tmp = [downcase [arg]]
result += [upcase [substr 1 1 [tmp]]][substr 2 99 [tmp]];
return [result];
}

Functions may hae & mary local variables as thdike.

Local variables are reentrantou can write recursie functions, and eachvaocation of the function has an
independent set of local variables.

Local variables are thread-saf¥ou can use the same user-defined function io parallel threads, and
their local variables are completely independent.

The “arg” and “@1” to *‘@9" variables are implicitly local.

Peter Miller Page 47

Cook UseiGuide

8. Built-In Functions

This chapter defines each of the built-in functioncadk A built-in function is invoked by wsing an
expression of the form

[func-name a arg ..]
in most places where a literal word is valid.

8.1 addprefix

The addprefixfunction is used to add a prefix to a list oords. Thisfunction requires at least one
argument. Thdirst argument is a prefix to be added to the second and subsequent arguments.

8.1.1 See Also
addsuffix, patsubst, prepost, subst

8.2 addsuffix

The addsuffixfunction is used to add a suffix to a list oords. Thisfunction requires at least one
amgument. Thdirst argument is a suffix to be added to the second and subsequent arguments.

8.2.1 See Also
addprefix, patsubst, prepost, subst

8.3 and

This function requires at least amarguments, upon which it forms a logical conjunction. Tladug
returned is "1" (true) if none of the arguments are " (false), otherwise "™ (false) is returned.

8.3.1 Example

The following cookbook fragment showsvinto use the [and] function in conditional recipes.
#if [and [defined change] [defined baseline]]
...do something...
#endif

This fragment will onlydo somethingf both thechangeandbaselinevariables are defined.

8.3.2 Caveat
This function is rather clumsynd probably needs to be replaced by a better syntax within the cookbook
grammar itself.

This function does not short-circuitauation.

8.3.3 See Also

or, not

8.4 basename

The basenamereats each argument as filenames, and extractsitathé suffix of each filename. If the
filename contains a period, the basenameaery/thing up to (but not including) the period. Otherwise, the
basename is the entire filename.

Please note: this is not the same behavior as the hbBgenam@) utility. For this, [basename
[notdir argd] or[fromto %0%.c %0% argg may be more appropriate.

8.4.1 Example
Expression Result
[basename foo.c] foo
[basename foo/ba] foo/bar

Peter Miller Page 48

Cook UseiGuide

[basename baz] baz
[basename foo/bar/baz] foo/bar/baz
8.4.2 See Also
addsuffix, dirname, entryname, fromto, nqtdirffix
8.4.3 Caveat

This function is almost nothing kkthe Unix command of the same naneoperates in this manner for
compatibility with other packages.

8.5 cando

This function is used to test whether Cook knoww ho cook the gven tamets. Itreturns all of the
arguments for which desdtions can be found, or nothing if none can.

8.5.1 Caveat
This will use as much of the cookbook as has been read in up to the point where this functionTiigsed.
can mean that crucial recipessbaet to be parsed and instantiated.

8.5.2 See Also
cook, uptodate

8.6 catenate

This function requires zero or moreggaments. Ifno aguments are supplied, the result is an empiydw
list. If one or more arguments are supplied, the result is a word list of one word being the catenation of all
of the arguments.

8.6.1 Example

Expression Result

[catenate a] a

[catenate a b] ab

[catenatea”"b] "ab"
Quotes used in the results for clarity.

8.6.2 See Also
split, unsplit, prepost, join

8.7 collect

The arguments are interpreted as a command to be passed to the operating®ystesult is one ard
for each white-space separated word of the output of the command.

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.7.1 Example
Read the date and time and assign it to a variable:
now = [collect date];
Do not use the collect function to expand a filename wildcard, used the [glob] function instead.

8.7.2 See Also
collect_lines, recute, glob, read, read_lines, write

8.7.3 Also Known As
shell

Peter Miller Page 49

Cook UseiGuide

8.8 collect_lines

The aguments are interpreted as a command to be passed to the operating system. The resultigd"one "w
for each line of the output of the command.

8.8.1 Example
To read each line of a file into a variable:
files = [collect_lines cat file];
Spaces and tabs in the input lines will be preserved in the "words" of the result.

8.8.2 See Also
collect, execute, glob, read, read_lines, write

8.8.3 Caveat
You will probably get better performance using #tinclude-cooked directive, and a recipe to create
the included file.

8.9 cook

This function requires one or moregaments, filenames to be tested to see if #e up-to-date, and be
brought up-to-date if thyeare not. The result are true ("1") if the files are (now) up-to-date, or false (") if
they could not be built.

8.9.1 Caveat
This will use as much of the cookbook as has been read in up to the point where this functionTiigsed.
can mean that crucial recipes/baet to be parsed and instantiated.

This function works one argument at a time. This isvelothan the main cookbook, which will pursue all
targets simultaneously.

8.9.2 See Also
cando, uptodate

8.10 count

This function requires zero or moregaments. Theesult is a word list of one word containing the
(decimal) length of the argument word list.

8.10.1 Example

This cookbook fragment echoes the number of files, and then the name of the last file:
echo There are [count [files]] files.;
echo The last file is [word [count [files]] [files]].;

8.10.2 See Also
head, tail, word

8.10.3 Also Known As
words

8.11 defined

This function requires a single argument, the name of a variable to be testgistmeoe. Itreturns "1"
(true) if the named variable is defined and ™ (false) if it is not.

8.11.1 Example
This function is most often seen in conditional portions of cookbooks:
if [defined baseline] then
cc_flags = [cc_flags] -I[baseline];

Peter Miller Page 50

Cook UseiGuide

8.12 dir

This function requires one or more arguments, the names of files which wélltieir directory parts
extracted.

8.12.1 Example

Expression Result
[dir a] .

[dira/b] a

[dir a/b/c] a/b

8.12.2 See Also
basename, entryname, notgiathname, relate_dirname, suffix

8.12.3 Also Known As
dirname

8.13 dirname

This function requires one or more arguments, the names of files which wélltieir directory parts
extracted.

8.13.1 Example

Expression Result

[dirname a] ‘pwd’

[dirname a/b] a

[dirname a/b/c] a/b
When the answer would be”‘(the current directory), the result is instead the absolute path of the current
directory This allons repeated [dirname] applications to climb the directory tree, no matter where you
start. Seeelative_dirnamefor one which returns ".i nstead.

8.13.2 See Also
basename, entryname, notgimthname, relate_dirname, suffix

8.13.3 Also Known As
dir

8.14 dos-path

This function requires one or more arguments, which will beested from a UNIX path into a DOS path.
This is of most use underiddows-NT, to corvert Cook’s internal pathnames into DOS pathnam@&he
UNIX porting layer usually hides this from Cook.)

8.14.1 Example

Expression Result
[dos-path a/b/c] a\b\c
[dos-path //c/temp] c:\temp

[dos-path //server/sti}f \\server\stuff

8.14.2 See Also
un-dos-path

Peter Miller Page 51

Cook UseiGuide

8.15 downcase

This function requires one or more arguments, words to be forced into lower case.

8.15.1 Example

Expression Result
[downcase FOOQ] foo
[downcase Bar] bar
[downcase baz] baz

8.15.2 See Also
upcase

8.16 entryname

This function requires one or morggaments, the names of files which willvieatheir entry name parts
extracted.

8.16.1 Example

Expression Result
[entryname foo.c] foo.c
[entryname foo/bar] barc
[entryname baz] baz

8.16.2 See Also
basename, disuffix

8.16.3 Also Known As
notdir
8.17 execute

This function requires at least ongament, and »ecutes the command\gn by the aguments. Ifthe
executed command returns non-zero exit status the resulting value is "™ (false), otherwise it is "1" (true).

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.17.1 Caveat
This function is not often required as its functionalityvailable in a more useful form as recipe bodies.

8.17.2 Example
To get access to a wide range of Unix command, sutés§$), you can use this function in conditionals

if [not [test -d fubar]] then

{
rm -f fubar;
mkdir fubar;
}
8.17.3 See Also
collect
8.18 exists

This function requires onegument, being the name of a file to test iistence. Theesulting word list
is " (false) if the file does not exist, and "1" (true) if the file does exist.

Peter Miller Page 52

Cook UseiGuide

8.18.1 Example
To remove the target of a recipe before building it again:

%.a: [%_obj]

{
if [exists [target]] then
rm [target]
set clearstat;
[ar] gc [target] [%_obj];
}

Note: youmustuse the clearstat, because otherwise &oskat cache” will be incorrect.

This is only an wample. Itis better to perform this particular activity using thenfink’’ flag. Seethe
[find_command] function, belg for an example.

8.18.2 See Also
cando, find_command, uptodate

8.19 exists-symlink

This function requires onegrment, being the name of a file to test faseence. Theest will not follow
symbolic links, so it may be used to test for tkistence of symbolic links themsels. Theresulting vord
listis ™ (false) if the file does not exist, and "1" (true) if the file does exist.

8.19.1 See Also
exists, readlink

8.20 expr

This function may be used to calculate simple integer arithm&peessions. Thenumbers and the
operators are expected to each be a sepagienant. Theesult is a string containing the value of the
evduated expression.

8.20.1 Operators
The following operators are understood. {havethe same precedence as the eaent C operators.

Operator Associatity

() -
L~ - -
* 1 % .
+ - -
<< >> N
< <= > >= N
== I= N
& R
| .
&& -
Il -
?: -

Please note that there is no short-circudduation of the?: or &&or|| operators.

You may need to quote some of the operators, to insulate them from their usual Cook interpretation (colon
and equals characters in particular).

Numbers may be gén in decimal, octal (with & prefix), or hexadecimal (with @x prefix). Theresult is
always decimal.

Peter Miller Page 53

Cook UseiGuide

8.20.2 See Also

count

8.21 filter

This function requires one or moregaments. Thefirst argument is a pattern, the second and later
arguments are strings to matchaatgt this pattern. The resulting wordlist contains those arguments which
matched the patternvgn as he first argument.

8.21.1 Example

Expression Result

[filter %.c a.c a.0] a.c
[filter %.cc a.c a.0]

8.21.2 Match Mode
This function is affected by the selected match mode. Sdéléhslame Patternshapter for details.

8.21.3 See Also
filter_out, stringset

8.21.4 Also Known As
match_mask

8.22 filter_out

This function requires one or moregaments. Theirst argument is a pattern, the second and later
arguments are strings to matchaatgt this pattern. The resulting wordlist contains those arguments which
did not match the patternvgh as he first argument.

8.22.1 Example

Expression Result

[filter_out %.c a.c a.0] a.o
[filter_out %.cc a.ca.0] a.ca.o

8.22.2 Match Mode
This function is affected by the selected match mode. SdaléthBlame Patternshapter for details.

8.22.3 See Also
filter, gringset

8.23 findstring

The findstring function is used to match aefixstring against a set of strings. This function takes at least
one agument. Thefirst agument is the fixed string, the second and subsequent arguments are matched
against the first. The result contains one word for each of the second and subsepueants, each will

either be the empty string (false) or the string to be matched, if a match was found.

8.23.1 Example

Expression Result
[findstringaabc] a™"
[findstring a b c]

Quotes are for clarifyto emphasize the empty strings. Because the empty string is "false", this can be used

Peter Miller Page 54

Cook UseiGuide

in anif statement:
if [findstring fish [sources]] then
sources = [sources] hook.c;

8.23.2 See Also
filter-out, match, match_mask, patsubst, stringset, subst

8.24 find_command

This function requires at least onggament, being the names of commands to search forAhFEPThe
resulting word list contains either ™ (false) or a fully qualified path name for each commamd gi

8.24.1 Example
Some systems requiranlib(1) to be run on archés, and some do not. Here is a simple way to test:
ranlib = [find_command ranlib];

%.a: [%_obj]

set unlink
{
ar qc [target] [%_obj];
if [ranlib] then
[ranlib] [target];
}

8.24.2 See Also
cando, exists, uptodate

8.25 firstword

This function requires zero or moregaments. Thevordlist returned is empty if there were ngaments,
or the first argument if there were arguments.

8.25.1 Example
You can iterate along a list using tloop statement combined with tfiestword andtail functions:

dirs=abcd;
src =;

tmp = [dirs];
loop

{

tmp_dir = [firstword [tmp]];
if [not [tmp_dir]] then
loopstop;
tmp = [tail [tmp]];
src = [src] [glob [tmp_dir]"/*.c";
}

More efficient ways exist to do this, this an example only.

8.25.2 See Also
count, glob, fromto, prepost, tail, word

8.25.3 Also Known As
head

8.26 fromto

This function requires at leastdvarguments. Fromtaives the user access to the pattern transformations
awailable tocook. The first agument is the "from" form, the second argument is the "to" form. All other

Peter Miller Page 55

Cook UseiGuide

arguments are mapped from one to the other.

8.26.1 Example
Given a list of C source files, generate a list of object files as follows:
obj = [fromto %.c %.0 [src]];

8.26.2 See Also
filter, filter_out, subst See the pattern matching chapter for more information about patterns.

8.26.3 Match Mode
This function is affected by the selected match mode. Sdéléhslame Patternshapter for details.

8.26.4 Also Known As
patsubst

8.27 getenv

Each agument is treated as the name of an environmamihde. Theesult is the value of eachgaiment
variable, or " if it does not exist (consistent with command shell behaviour).

8.27.1 Example
To read the value of the TERM environment variable:
term = [getenv TERM];
Values of variables are not automagically set from the environment, you must set each one explicitly:
cc = [getenv CC];
if [not [cc]] then
CC = gCC;
8.27.2 See Also

find_command, home

8.28 glob

Each argument is treated assll) file name pattern, andganded accordinglyThe resulting list of
filenames is sorted lexicographically.

You may need to quote the pattern, to protect square brackets from the meaning cook attaches to them.

Note: The character sequenée is a comment introduceend is a frequent source of problems when
combined with theglob function. Remembetio quoteglob arguments which need this character sequence.
See the [head] function, b&lpfor an example of this.

8.28.1 Example

To find the sources in the current directory:
src = [glob *.c];
obj = [fromto %.c %.0 [src]];

8.28.2 See Also
filter, filter_out, shell

8.28.3 Also Known As
wildcard

8.29 head

This function requires zero or morggaments. Thevordlist returned is empty if there were ngaments,
or the first argument if there were arguments.

Peter Miller Page 56

Cook UseiGuide

8.29.1 Example
You can iterate along a list using tlamp statement combined with tieadandtail functions:

dirs=abcd,
src =;

tmp = [dirs];
loop

{

tmp_dir = [head [tmp]];
if [not [tmp_dir]] then
loopstop;
tmp = [tail [tmp]];
src = [src] [glob [tmp_dir]"/*.c";
}

More efficient ways exist to do this, this an example only.

8.29.2 See Also
count, glob, fromto, prepost, tail, word

8.29.3 Also Known As
firstword

8.30 home

The homefunction is used to find the home directory of the named useng.may name more than one
user If no users are named, it returns the home directory of the current user.

8.31 if

This function requires one or more arguments, the arguments before the "theh'ane used as a
condition. Ifthe condition is true the words between the "then" word and the "else" word are the result,
otherwise the wrds after the "else” word are thalwe. The'else" clause is optional. There is no way to
escape the "then" and "else" words.

8.31.1 Example
Here is an example of th&f*’ function. Pleaseote that'if’’, ‘‘then” and “else” are reserved words, so
you need to quote them beforeytivéll be recognised on the function context.

%: %_obj

set ["if" [defined all_shallow] "then" shallow]
{

[cc] -o [target] [%_obj];
}

8.31.2 Caveat

It is often clearer to use tlilestatementhan this function. The recipe flags akeleated at the same time

as the recipe tgets. Nonef the [target], [targets], [need], [younger] variables or pattern matches (%, %1,
etc) are set at this time.

8.32 in

This function requires one or moregaments. Thevordlist returned is a single word: the ixdef the
matching word (1 based) if the first argument is equal yméthe later ones; or " (false) if not.

This function can also be used for equality testing, just use a single element in the set.

Because it returns the index, the return valus can be used wjttattt or [words] functions.

Peter Miller Page 57

Cook UseiGuide

8.32.1 Example

Frequently seen in conditional parts of recipes:
%: [%_obj]

{
[cc] -o [target] [%6_obj];
if [in [target] [private]] then
chmod og-rwx [target];
}

8.32.2 See Also
stringset, word, words
8.33 interior_files

This function requires zeroguments. Theesult is the list of files which are interior to the depengenc
graph. (Fileswvhich are constructed by a recipe.) This function is only meaningful within a recipe body.

8.33.1 See Also
leaf_files function, graph_interior_file variable, graph_interior_pattern variable
8.34 join

Thejoin function is used to join twsets of strings togethedement by element. The argument list must
contain an een number of arguments, with the first half joined paise with the last half. There is no
marker of ag kind between the lists, so the user needs to enswyrarthéoth the same length.

8.34.1 Example

Expression Result
[joinabcd] achd
[join a b] ab

8.34.2 See Also
basename, catenate, suffix

8.35 leaf files

This function requires zeroguments. Theesult is the list of files which are ke of the dependenc
graph. (Fileswhich are not constructed by a recipe.) This function is only meaningful within a recipe
body.

8.35.1 See Also
interior_files function, graph_leaf_file variable, graph_leaf pattern variable

8.36 matches

This function requires one or moregaments. Thefirst argument is a pattern, the second and later
arguments are strings to match against the pattern. The resulting wordlist contains ™ (false) if did not
match and the 1-based list indgrue) if it did.

The returned list indemay be used in combination with the [words] function.

8.36.1 Example
This function may be used to test for strings whickete@rticular form:
if [matches %1C%?2 [version]] then
cc_flags = [cc_flags] -DDEBUG
If the version contains a Capital-C charadteen turn on debugging.

Peter Miller Page 58

Cook UseiGuide

8.36.2 Match Mode
This function is affected by the selected match mode. SdaléthBlame Patternshapter for details.

8.36.3 See Also
filter, filter-out, words

8.37 match_mask

This function requires one or moregaments. Theirst argument is a pattern, the second and later
arguments are strings to matchaatgt this pattern. The resulting wordlist contains those arguments which
matched the pattern\gn as he first argument.

8.37.1 Example

Expression Result

[match_mask %.c a.c a.0] a.c
[match_mask %.cc a.c a.0]

8.37.2 Match Mode
This function is affected by the selected match mode. SdaléthBlame Patternshapter for details.

8.37.3 See Also
filter-out, findstring, stringset

8.37.4 Also Known As
filter

8.38 mtime

This function requires one gument, the name of a file to fetch the last-modified time of. The resulting
wordlist is ™ (false) is the file does noxist, or a string containing a (sortable) representation of the date
and time the files were last modified.

8.38.1 See Also
exists, mtime-seconds, sort_newest

8.39 mtime-seconds

This function requires one gument, the name of a file to fetch the last-modified time of. The resulting
wordlist is " (false) is the file does natist, or a string containing number of seconds since the epoch that
the files were last modified. This is more useful than [mtime] for doing arithmetic on.

8.39.1 See Also
exists, expymtime, sort_newest

8.40 not

This function requires zero or more arguments, the value to be logicgdede Itreturns "1" (true) if all
of the arguments are "™ (false), or there are myuments; and returns " (false) otherwise. This is
symmetric with the definition of true and false ifior

8.40.1 Example
This is often seen in recipes:
%1/%0%2.0: %1/9%0%2.c
single-thread %2.0

{

if [not [exists [dirname [target]]]] then
mkdir -p [dirname [target]]

Peter Miller Page 59

Cook UseiGuide

set clearstat;
[cc] [cc_flags] -1%1 %1/%0%2.c;
mv %?2.0 [target];

}

Note that %0 matches zero or more whole filename portions, including the trailing slash. See the chapter
on pattern matching for more information.

This is an example onlyThe “mkdir” recipe flag creates the directory more efficiently.

8.40.2 See Also
and, or

8.41 notdir

This function requires one or more arguments, the names of files which véllitter entry name parts
extracted.

8.41.1 Example

Expression Result
[notdir foo.c] foo.c
[notdir foo/barc] barc
[notdir baz] baz

8.41.2 See Also
basename, dirname, relai dirname, suffix

8.41.3 Also Known As
entryname

8.42 operating_system

This function requires zero or moregaments. Theaesulting wordlist contains thealues of warious
attributes of the operating system, as named in tganaents. Ifno attributes are named, "system" is
assumed. Belois a list of attributes:

node Thename of the computeook is presently running on.
system Thename of the operating systawok is presently being run undeFor example: if you

were running on SunOS 4.1.3, this would ret8ariOS'.

release Thepecific release of operating system, within natoek is presently being run under
For example: if you were running on SunOS 4.1.3, this would retirh3 "

version \ersion information.For SUnOS 4.1.3, this would return the kernel build numiar
other systems it is often the kernel patch release number.

machine Thename of the hardare cook is presently running onFor example: If you were
running on SunOS 4.1.3 this would retusuti4 " or similar.
This function may be abbreviated to "os".

8.42.1 Example

This function is usually used to determine the architecture (either system or machine):
arch=[os system]-[os release]-[os machine];
if [matches SunOS-4.1%1-sun4%?2 [arch]] then

arch = sun4;
else if [matches Sun0OS-5.%1-sun4%?2 [arch]] then
arch = sunb;

else if [matches Sun0OS-5.%1-i86pc [arch]] then

Peter Miller Page 60

Cook UseiGuide

arch = sunbpc;

else if [matches Convex0S-%1-%?2 [arch]] then
arch = convex;

else
arch = unknown;

8.42.2 Caveat

This function is implemented using thmamg2) system call. Some systems do not implement this
correctly and therefore this function is less useful than it should be, and needs the pattern match appropach
used abwe.

8.42.3 See Also

collect

8.42.4 Also Known As
0s

8.43 options

This functions takes no guments. Theesults is a complete list @bok options, exactly describing the
current options settings. This intended for use in constructing reeamikinvocations.

The option setting generated are a combination of the command line options useskéocaok, the
contents of the COOK environment variable, the results of ‘te¢’ ‘command and the variouseét”
clauses.

8.43.1 Example
The top leel cookbook for a recurge project structure can be as follows:

%:

{
dirlist = [dirname [glob "*/Howto.cook’]];
loop
{
dir = [head [dirlist]];
if [not [dir]] then
loopstop;
dirlist = [tail [dirlist]];
cd [dir]\; cook [options] %;
}
}
/*

* T his recipe sets the default.
* |t d oesn't actually do anything.
*/
all;;
Please note the % hiding on the end of the nestelcommand, this is o the target is communicated to
the nestedook invocation.

8.43.2 Caveat

Recursve Gook is not recommended, because grsents the dependengraph and forces Cook toalk
the graph in (potentially) the wrong ordérhis introduces a number of significant problerssingle top-
level cookbook is recommended.

Peter Miller Page 61

Cook UseiGuide

8.43.3 See Also
The supplied ‘fecursive” cookbook does exactly this. In order to use it, you neddbato.cookfile
containing the single line

#include "recursive"

8.44 or

This function requires at least dwerguments, upon which it forms a logical disjunction. Thaue
returned is "1" (true) if anone of the arguments is not " (false), otherwise "™ (false) is returned.

8.44.1 See Also
and, not

8.45 pathname

The function requires one or more arguments, being files names to be replaced with their full path names.

8.45.1 Example
Relatve rmmes are made absolute, and redundant slashes and dots &selremo
pwd = [pathname .];

8.45.2 See Also

basename, dirname, entryname

8.46 patsubst

This function requires at leastaverguments. Btsubst gies the user access to the pattern transformations
available tocook. The first agument is the "from" form, the second argument is the "to" form. All other
arguments are mapped from one to the other.

8.46.1 Example
Given a list of C source files, generate a list of object files as follows:
obj = [patsubst %.c %.0 [src]];

8.46.2 Match Mode
This function is affected by the selected match mode. Sdeléhslame Patternshapter for details.

8.46.3 See Also
filter, filter_out, subst

8.46.4 Also Known As
fromto

8.47 prepost

This function must hae & least tvo asguments. Thdirst argument is a prefix and the second argument is a
suffix. Theresulting vord list is the third and later arguments eaclegthe prefix and suffix as defined by
the first and second arguments.

8.47.1 Example

Expression Result
[prepost sund4/ .0 ab] sund/a.o sund/b.o
[prepost -1 " . bl] -1. -1bl

8.47.2 See Also
addprefix, addsuffix, patsubst, subst

Peter Miller Page 62

Cook UseiGuide

8.48 print

The arguments are printed as an informstiressage. Theisual output wrapping is performedhe
function returns the empty list as a result.

This function is frequently use to debug cookbooks.

8.49 quote

Each argument is quoted by double quotes, with%$ydicial characters escaped as necessary.

8.49.1 See Also
collect, ecute

8.50 read

The argument is interpreted as the name of a text file to be read. The result isrdrferveach white-
space separated word of the file.

8.50.1 Example
Read a thexamplefile and assign it to a variable:
example = [read example];

8.50.2 See Also
collect, collect_lines, read_lines, write

8.51 readlink

The arguments are assumed to be symbolic links, and #ileigsvare read. It is a fatal error if the files
named are not symbolic links.

8.51.1 See Also
collect, exists-symlink
8.52 read_lines

The argument is interpreted as the name of a text file to be Téadresult is one word for each line of the
file.

8.52.1 Example
Read a thexamplefile and assign it to a variable:
example = [read_lines example];

8.52.2 See Also
collect, collect_lines, read, write
8.53 relative_dirname

This function requires one or more arguments, the names of files which vélltieir directory parts
extracted.

8.53.1 Example

Expression Result

[relative_dirname a]
[relative_dirname a/b] a

9. Seesh(1) andcsh(1) for more information.

Peter Miller Page 63

Cook UseiGuide

[relative_dirname a/b/c] a/b
Seedirnameif you want to climb the directory tree with repeated applicatioelgtive dirnameuwiill
continue to return “.once the current directory is reached.

8.53.2 See Also
basename, dirname, entryname, nofgithname, suffix

8.53.3 Also Known As
reldir
8.54 resolve

This builtin function is used to res@\file names when using tlsearch list variable to locate filesThis
builtin function produces resolved file names as outpihis is useful when taking partial copies of a
source to perform controlled updates. The targets of recipesnaesalooked into the current directory.

8.54.1 Example
This function is used in cookbooks which usegbach list functionality:
search_list = . baseline;

%.0: %.c

{

[cc] [cc_flags] [addprefix -I [search_list]] [resolve %.c];

The cookbooks distributed with Cook contain full support forsémrch_list functionality They are a
good source of examples ofilado write recipes which takthis into account.

8.55 shell

The arguments are interpreted as a command to be passed to the operating®ystesult is one ard
for each white-space separated word of the output of the command.

The command will not be echoed unless the -No_Silent option is specified on the command line.

8.55.1 Example
Read the date and time and assign it to a variable:
now = [shell date];
Do not use the shell function to expand a filename wildcard, used the [wildcard] function instead.

8.55.2 See Also
collect_lines, recute, wildcard

8.55.3 Also Known As
collect

8.56 sort

The arguments are sortecitgraphically. Note: Duplicates arenot removed. Usethe stringsetfunction
if you want to do this.

8.56.1 See Also
sort_newest, stringset

8.57 sort_newest

The aguments are sorted by file last-modified time, youngest to oldest. File names are resolved first (see
the resole function, bela). Absenffiles will be sorted to the start of the list.

Peter Miller Paye 64

Cook UseiGuide

8.57.1 Example
This function is often used to "shorten thaitvwhen building large project, so that the file you edited most
recently is recompiled almost immediately:
src = [glob *.c];
obj = [sort_newest [fromto %.c %.0 [src]]];
This trick does not alays work as expected, and candagnificant time for little result.

8.57.2 See Also
fromto, glob, sort

8.58 split

The split function is used to split strings into multiple stringsiegithe separatorThis function requires at
least one gument. Thdirst argument is the separator charadtexr second and subsequent arguments are
to be separated. The result is the separated strings, each as a separate word.

8.58.1 Example

Expression Result

[split ;" "foo:bar:baz"] foo bar baz
[split" " "New York"] New York
Each of the words in the result is a separate string.

This can be useful in splitting an environment variable into sepacatiswor example:
path = [split ":" [getenv PATH]];

8.58.2 See Also
unsplit, join, catenate, strip

8.59 stringset

Logical operations are performed on sets of strifiggese include conjunctior) or implicit, disjunction
(*) and difference).

8.59.1 Example

Expression Result
[stringset a b a] ab
[stringseta b c * a] a
[stringsetabc-a] bc
[stringsetab-c+d] abd
The can be very useful in constructing lists of source files:
src = [stringset [glob "*.[cyl]"] - y.tab.c lex.yy.c];

8.59.2 See Also
filter, filter_out, glob, in, patsubst, subst

8.60 strip

The strip function is used to reme leading and trailing white space fromomds. Internakequences of
white space are replaced by a single space.

8.60.1 Example

Peter Miller Page 65

Cook UseiGuide

Expression Result

[strip " " "foo " " bar"] foo bar
[strip " really big "] "really big"
Quotes are used here for claréigd are not present in the internal representation of strings.

8.60.2 See Also
split

8.61 stripdot

Thestripdotfunction is used to remve leading “\ ” directories from each of the path name arguments.

8.61.1 Example

Expression Result
[stripdot ./foo.c] foo.c
[stripdot baro] baro
[stripdot /fubar] /fubar

8.61.2 See Also
set stripdot

8.62 strlen

The strlen function is used to obtain the lentghs of strings. It returns a list of the lengths (in bytes, not
characters) of each of the arguments.

8.62.1 Example

Expression Result
[strlen]
[strlen foo.c] 5

[strlen foo.c bar] 55
[strlen foo bar baz] 333

8.63 subst

The substfunction is used to perform string substitutions on itgiarents. Thigunction requires at least
two aguments. Thefirst agument is the "from" string, the second argument is the "to" strip.
occurreneces of "from" are replaced with "to" in the third and subsequent arguments.

8.63.1 Example
This is a literal replacement, not a pattern replacement:

Expression Result

[subst bufalo cress water.btdlo] water.cress
[subst .c .0 test.c] test.o

[subst .c .o stat.cache.c] stat.oache.o

Note that last case: it is not selgeti

8.63.2 See Also
filter, filter_out, patsubst

8.64 substr

The substrfunction is used to perform substringtracton. Thedirst agument is the starting position in the

Peter Miller Paye 66

Cook UseiGuide

string, starting from one. The second argument is the number of charactextadt. eThirst and
subsequent arguments will be processed to extract sub-strings.

8.64.1 Example

Expression Result

[substr 1 1 Peter] P
[substr 3 99 Miller] ller

8.64.2 See Also
subst, patsubst

8.65 suffix

The suffixfunction treats each gument as a filename, and extracts the suffix from each. If the filename
contains a period, the suffix igeeything starting with the last period. Otherwise, the suffix is the empty
string (as opposed to nothing at all).

8.65.1 Example

Expression Result
[suffix a.c foo hy] .c™My
[suffix stat.cache.c] .c
[suffix .eric]

Quotes are used here for claréigd are not present in the internal representation of strings.

The suffixfunctions in this ey to allav sensible results when using tfeén function to re-unite filenames
dismembered by thHeasenameandsuffixfunctions.

8.65.2 See Also

basename, dirname, entryname, join, patsubst

8.66 tail

This function requires zero or moregaments. Theavord list returned will be empty if there is less than
two arguments, otherwise it will consist of the second and later arguments.

8.66.1 See Also
count, head, word

8.67 unsplit

The unsplitfunction is used to glue strings togethesing the specified gluelThe first argument is thexte
to go between each of the second and subsequent arguments.

8.67.1 Example

Expression Result
[unsplit ;" one tvo three] "one:tw:three"
[unsplit " " four five 9x] "four five gx"

The quotes are necessary to isolate characters such as colon and space which cook would normally treat
differently.

Peter Miller Page 67

Cook UseiGuide

8.67.2 See Also
catenate, prepost, split

8.68 un-dos-path

This function requires one or more arguments, which will beeted from a DOS path into a UNIX path.
This is of most use underiwdows-NT, to convert DOS pathnames into Coakinternal pathnameg(The
UNIX porting layer usually hides this from Cook.)

8.68.1 Example

Expression Result
[un-dos-path a\b\c] a/blc
[un-dos-path c:\temp] llcltemp

[un-dos-path \\servenstyif //server/stuff

8.68.2 See Also
dos-path
8.69 upcase

This function requires one or more arguments, words to be forced into upper case.

8.69.1 Example

Expression Result
[upcase FOO] FOO
[upcase Bar] BAR
[upcase baz] BAZ

8.69.2 See Also

downcase

8.70 uptodate

This function may be used to determine if files are up-to-dateturns a word list containing the names of
the up-to-date files, or empty if none of them are up-to-deey are not brought up to date if tlyeare not
already This function requires one or more arguments.

8.70.1 Caveat
This will use as much of the cookbook as has been read in up to the point where this functionTiigsed.
can mean that crucial recipessbaet to be parsed and instanciated.

8.70.2 See Also
cando, cook

8.71 wildcard

Each argument is treated assl1) file name pattern, andganded accordinglyThe resulting list of
filenames is sorted lexicographically.

You may need to quote the pattern, to protect square brackets from the meaning cook attaches to them.

Note: The character sequente is a comment introduceend is a frequent source of problems when
combined with thewildcard function. Remembeio quotewildcard arguments which need this character
sequence.

Peter Miller Paye 68

Cook UseiGuide

8.71.1 Example

To find the sources in the current directory:
src = [wildcard *.c];
obj = [patsubst %.c %.0 [src]];

8.71.2 See Also
filter, filter_out, patsubst

8.71.3 Also Known As
glob

8.72 word

Theword function is used to extract a specifiond from a list of verds. Thefunction requires at least one
argument. Thdirst argument is the number of the word to extract from tbedligt. Thewordlist is the
second and subsequeng@aments. Arempty list will be returned if you ask for an elemerittbé end of
the list.

8.72.1 Example

Expression Result

[word 1 one tw three] one
[word 2 one tw three] two
[word 3 one tw three] three
[word 5 one two three]
The last element of a list of words may be extracted as:
last = [word [count [list]] [list]];

8.72.2 See Also
count, head

8.72.3 Wordlist

This function may be used to extract a list of words from a larger list. The first argument is the starting
position, and the second argument is the ending poistion, weluBhe third and subsequenigaments

are the list to be extracted from. Positions are numbered starting from 1. If the start is bigger than the end,
they will be quietly svapped. Ifthe start is bigger than the list, the result will be empty.

8.72.3.1 Example

Expression Result

[wordlist 2 3 foo bar baz] bar baz

[wordlist 1 1 foo bar baz] foo

[wordlist 7 3 foo bar baz] baz
There are a number of functions which are similar

Expression Similato
[wordlist 1 1list] [headlist]
[wordlist 2 9999ist] [tail list]
[wordlist N N list] [word N lisf]

8.72.3.2 See Also
firstword head, tail, word, words

Peter Miller Page 69

Cook UseiGuide

8.73 words

This function requires zero or moregaments. Theesult is a word list of one word containing the
(decimal) length of the argument word list.

8.73.1 Example

This cookbook fragment echoes the number of files, and then the name of the last file:
echo There are [words [files]] files.;
echo The last file is [word [words [files]] [files]].;

8.73.2 See Also
head, tail, word

8.73.3 Also Known As
count

8.74 write

This function requires one or moregaments. Thdirst agument is the name of the file to write, the
second an later arguments are lines to be written to th€Titgs is specifically a text file.) The result is an
empty word list.

This function is very useful in writing command line file forindows-NT, due to its absurdly short
command line interface.

8.74.1 See Also
read, read_lines

Peter Miller Page 70

Cook UseiGuide

9. Predefined Variables

A number of variables are defined ¢yok at run-time.

9.1 arg

This is the arguments list for user-defined functiohwdividual arguments are split out intg@1” to
“@9". Thesecan also be used at automaticiables. Cautiorarg and the automatic variables ateared
for parallel &ecution, causing weird interactions if yoxeeute a command within the function.

9.2 command-line-goals

The value of this variable is the goals specified on the command ling, iffamone were specified, and the
default goal is in effect, the value will be empty.

9.3 FILE__

The value of this variable is the logical name of the file which containis ithe case ofinclude-
cooked files, the physical name may be obtained using the [resolve] function. The logical name may be
set using thétline directive.

9.4 __FUNCTION__

The value of this variable is the name of the function whixdtiges it. It is not set for the global
cookbook scope or the recipe body scope.

9.5 graph_leaf file

File names which are listed in thisnable could be leaf files of the dependegcaph. (Seealso the
leaf filesfunction, for Cooks idea of the leaf files.)

9.6 graph_exterior_file
File names which are listed in this variable cannot be preseny inagnin the dependeggraph.
9.7 graph_interior_file

File names which are listed in thianiable could be interior files of the dependegaph. (Sealso the
interior_filesfunction, for Cooks idea of the interior files.)

9.8 graph_leaf pattern

File names which match the patterns in this variable could be leaf files of the depegrdphc (Sealso
theleaf_filesfunction, for Cooks idea of the leaf files.)

9.9 graph_exterior_pattern

File names which match the patterns in this variable cannot be presepinayaim the dependepgraph.

9.10 graph_interior_pattern

File names which match the patterns in ttdsiable could be interior files of the dependeg@aph. (See
also theinterior_filesfunction, for Cooks idea of the interior files.)

9.11 _ LINE__

The value of this variable is the line number within of the file which contains it. The line number may be
set using thetline directive.

9.12 need

The ingredients of the recipe currently being cooked.

Peter Miller Pae 71

Cook UseiGuide

9.13 parallel_hosts

This variable may be set to indicate a list of hosts to use to distributesthgien of recipe bodies.

9.14 parallel_jobs

This variable may be set to the number of parallet@ation threads to perform simultaneousBefaults to
1if not set.

9.15 parallel_rsh

This variable may be set to the command useddoute commands on remote machines. Assumes ¢o tak
argument in the same form as the BISB(1) command. Defaults torsh” i f not set.

9.16 search_list

This variable may be set to a list of directories to be searched for targets and ingredients. This list is
initially the current directory (.) and will wbys hare the current directory prepended if it is not present.
This is useful when taking partial copies of a source to perform controlled updates. téseltrebuilt-in

function to determine what file name cook actually found. The targets of recipesware ebvoked into the
current directory.

The cookbooks distributed with Cook contain full support forsémrch_list functionality They are a
good source of examples ofiado write recipes which takthis into account.

9.17 self

The namecook was invoked as, usually "cook".Be careful what you call cook, because anything with the
string "cook" in it will be changed, including bnot limited to) file sdfxes and environmentaviable
names.

9.18 target

The target of the recipe currently being cooked, or the first target if there is more than one.

9.19 targets

The targets of the recipe currently being amhk Thisincludes all tagets of the recipe, should there be
more than one.

9.20 thread-id

This variable has a unique value for earecation thread, for the lifetime of that thread. This value may
be used to construct thread-uniqueiable names, thread-unique temporary file names, or anything else
that needs to be unique to eactecaition thread. The thread IDs are re-used, and w&adehreads in
sequence may kia the same thread ID; it is only guaranteed that no other simultaneous threadeviticha
same thread ID. By re-using thread IDs, generataiblle names are also re-usedpiding memory
bloat.

9.21 timestamp_granularity

This variable may be set to the granularity of the filesystemttime in secondsDefaults to 1 second if
not set (a suitable value for most systems). Recommended non-default values include 2 seconds for Cygwin
on FAT32 and 4 seconds for PrimeOS.

9.22 younger

The subset of the ingredients of the recipe currently being cooked which are younger than the target.

9.23 version

The version otook currently executing.

Peter Miller Page 72

Cook UseiGuide

10. Functions Library

There is a file of functionsvailable to you by using a
#include "functions"”
line in your cookbook. The file defines a number of useful functions.

The functions in the file also seras &les of har you can write your own functions.

10.1 capitalize

The capitalizefunction maps all of its arguments into lower case, and then the first letter of gactear
is mapped to upper case. Zero, one or more arguments maxebe gi

10.2 defined-or-null

Thedefined-or-nulfunction may be used to determine ifariable has been set (on the command line, for
example) and return its value if so, otherwise return the empty list.

This function should only be \@gn one argument - the name of the variable to look fadditional
arguments will be ignored.Too few aguments will produce a complaint about the ™ variable being
undefined.

10.3 defined-or-default

The defined-or-defaulfunction may be used to determine if a variable has been set (on the command line,
for example) and return its value if so, otherwise return trenglefault value.

The first argument is the name of the variable to look for.

The second and later arguments (if present) are tlzailtleflue to be used if the named variable is not
defined. Optional.

10.4 repeat

The repeatfunction is used to repeatedly call another function, once for each of the spegjtiatbats.
The can be useful when dealing with functions which do not automatically accept argument lists in the
form you require.

There are maninstances where the repeat function call be used gangle avoid used to the “loop {
loopstop }' construct.

The first argument is the name of the function yaantwcalled. This function must accept a single
argument.

The second and subsequent arguments are argualees\to be passed to the named function, one at a
time.

The results of the wocations of the function are accumulated in the order in whichwileee calculated.
The accumulated results are returned.

10.5 variable_by path

The variable_by pathfunction is used to@ract the union of option settings redat to a particular
compilation or link. By using aariable prefix, this function may be used to obtain the setting of a wide
variety of options and commands.

Global \ariables are searched in a no particular order for the necessary information. All are searched, all
found are used.

For example, the function calvariable_by path cc_flags foo/bar/baz.c] will hunt for
variables with the following namescc_flags_foo/bar/baz.c and cc_flags_foo/bar and
cc_flags_foo andcc_flags . Itis expected that the vast majority of theswiables will not be set.

Duplicates are renved.

Peter Miller Page 73

Cook UseiGuide

11. Actions when Cooking

This section describes whatok does when you ask it to cook somethir@ook performs the follaing
actions in the order stated.

11.1 Scan the COOK Environment Variable

The COOK ervironment variable is looked forlf it is found, it is treated as if it consisted @jok
command line guments. Onlythe -Help option is illegd. This could result is very strange behavior if
used incorrectly.

This feature is supplied toverride cook’s default with your own preferences.

11.2 Scan the Command Line

The command line is scanned as defined in chapter 3.

11.3 Locate the Cookbook

The current directory is scanned for the cookbook. Names which a cookbook veadydhade

howvto.cook Howto.cook .heto.cook
howvto.cook Haev.to.cook .hev.to.cook
cookfile Cookfile .cookrc
cook file Cook.file .cook.rc
The first so named file found in the current directory will be ugda: order of search is not definedou
are strongly advised to Y& just one of these name forms in wmlirectory The nameHowto.cookis the
preferred form.

11.4 Form the Listing Filename

The listing file, if not explicitly named in the \dronment variable or on the command line, will be the
name of the cookbook, with pisuffix removed and ".list ' appended.

11.5 Create the Listing file

The listing file is createdlf cook is executing in the background, or thHoT Ty option has been specified,
stdoutand stderr will be redirected into the listing filelf cook is executing in the foreground, and the
-NoT Ty option has not been specifiatidoutandstderrwill be redirected into a pipe totag1) command,;
which will, in turn, copy the output into the named file.

A heading line with the name of the file and the date, is generated.

11.6 Scan the Cookbook

When cook reads the cookbook itvaduates all of the statements it finds in Wsually these statements
instantiate recipes, although other things are possible.

Recipes contain statements that are n@uated immediatelybut which are remembered for later
execution when cooking a tget. Themeaning of a cookbook is defined in chapter X.

11.7 Determine targets to cook

If no target files are named on the command line, thgetsuof the first defined explicit or ingredients
recipe. Itis an error if this is none.

11.8 Cooking a Target

A derivation graph is formed using all of the targetgegi Oncethe dervation graph is formed, it will be
walked, looking for files which are out of date.

To huild the dewation graph for a target, each the following steps is performed in the ovedar gi

Peter Miller Paye 74

Cook UseiGuide

1. Cook exploits knowledge of the dextion graph that the user may provide to it:

- If the graph_exterior_filevariable is set, and the file name is listed in it, the file is not a leaf,
and the deviation will backtrack and try another alternagti

- If the graph_exterior_patterrvariable is set, and the file name matches one of the patterns
listed in it, the file is not a leaf, and the dation will backtrack and try another altermai

- If the graph_leaf filevariable is set, and the file name is listed in it, the file is a leaf file of the
derivation. Thereis no need to attempt to applyyarecipes. lwill be an error if the file does
not exist.

- If the graph_leaf pattervariable is set, and the file name matches one of the patterns listed
in it, the file is a leaf file of the degtion. Thereis no need to attempt to applyyarecipes.
It will be an error if the file does not exist.
These optimizations require an accurate source file manifest, but can result is substantial
performance impnements.

2. Cook scans through the instantiated ingredients recipes in the orderwétre defined. All
ingredients recipes with the target in their target list are used.

If a recipe is used, thenymgredients also lva their dervation graph constructed. Wheralking
the graph, if ap of the ingredients are younger than the target, all otkdicé or implicit recipes
with the same target will be deemed to be out of tfate.

3. Cook then scans through the instantiated explicit recipes in the orgewére defined. All gplicit
recipes with the target in their target list are used.

If a recipe is a used, the ingredients alseeteir dervation graph constructed. When walking the
graph, if aly ingredients are out of date or thegetrdoes not yet exist (or the "forced" flag is set in
the recipes setclause) the recipe body will be performed. If a recipe has no ingredients, it will not
be performed, unless the target does not yet exist, or it is forced.

4. |If the taget was not in the target list ofyaexplicit recipe,cook then scans the instantiated implicit
recipes in the order thievere defined, in tav passes. Implicitecipes which not not ke pattern
elements in the basename of the targets are scanned before implicit recipes whiah fidtéras
in the basename. Usually this has no significant effestgla in heavily heterogeneousuilds
this method is often used in constructing the depernydiéies, so that all architectures may use the
one implicit dependencrecipe, rather than statingeey architecture xplicitly. Within each pass,
the order of scan is the order of definition.

Implicit recipe targets and ingredients may contain a wildcard charé&)emhich is wly they are
implicit. Whenexpressions areveluated into word lists in an implicit recipe,yaword containing
the wildcard charactefq) will be expanded out by the current wildcard expansion.

If the taget matches a pattern in the targets of an implicit recipe, it is a candidate. Each ingredient
of a candidate recipe is recwdy cooked. If ary ingredient cannot be cooked, then the implicit
recipe is not used. If all ingredients can be cooked, then the implicit recipe is used.

If an implicit recipe is a used, the forced ingredients alse kreeir dervation graph constructedt
is an error if a forced ingredient cannot be constructed.

Only the first implicit recipe to get to this point is used. The scan stops at this point.

5. If the target is not the subject ofyaimgredients orlicit recipe, and no implicit recipes can be
applied, then seral dervations are attempted, in the order specified:

- If the graph_interior_filevariable is set, and the file name is listed in it, the file is a not leaf
file of the denation. Cookwill backtrack and try another alternagi

10. Atarget which does not exist yet is considered to be infinitely ancient, and/éhythiag is younger than it.

Peter Miller Page 75

Cook UseiGuide

- If the graph_interior_patternvariable is set, and the file name matches one of the patterns
listed in it, the file is a not leaf file of the destion. Cookwill backtrack and try another
alternatve.

- If the graph_leaf filevariable is set, and the file name is listed in it, the file is a leaf file of the
derivation. Itwill be an error if the file does not exist.

- If the graph_leaf pattervariable is set, and the file name matches one of the patterns listed
in it, the file is a leaf file of the dedtion. It will be an error if the file does not exist.

- If either of thegraph_leaf fileor graph_leaf patterrvariables are set, then the file is not a
leaf, and the deration will backtrack and try another alternati

- If the file exists, then it is up to date, and the file is a leaf file of theatien.

- If the file does not exist the@ook doesnt know how, and the desiation will backtrack and
try another alternate.
If a command in the body of amecipe &il, cook will not that body awp further and will not perform the
body of ary recipe for which the target of the failed actions was an ingredient, directly or indirectly.

Cook will trap recursve looping of targets.
- If the file exists, the it is up to date, or

- If the file does not exist theamok doesnt know how.

11.9 The Dependency Graph

The abwe wction describes ko Cook derves the dependerycgraph. Oncethe dependerycgraph has
been deried, it is then valked. Thenext section describes a little abouth@ook walks the dependenc
graph.

Cook is a simple kind of expert systerfiou give it a set of of recipes for moto construct things, and a
tamget to be constructed. The recipes can be decomposed iMwigmiordered dependencies between
files.

Cook determines ho to build the target by constructing directed acyclic gagph The \ertexes of this

graph are the files in the system, the edges in this graph are the inter-file dependencies. The edges of the
graph are directed because the pair-wise dependencies are ordered resul@nydic graph - things

which look like loops are resolved by the direction of the edges.

For example, if you hee a gmple cookbook (with the recipe bodies omitted for simplicityg likis:
program: one.o two.o;
one.o: one.c one.h;
two.o: two.c two.h one.h;

here is the corresponding directed acyclic graph.

There are seeral things that can be done with the graph once it has beeedieri

Peter Miller Page 76

Cook UseiGuide

« It can be walked to verify and regenerate the referential integrity of the files (the usual case), or

« it can walked to print the pair-wise dependencies-pa@s option), or

* it can be valked to generate a shell script (#seript option) which does something very similar to
the first option.

11.9.1 Edge Types
Each of the arrows in the almgaph hae a pecific type.

strict edges mean that Cook will decide that ayéars out-of-date if its time stamp is not strictly
younger than all of the ingredients. This is almosigs what you want.

weak edges mean that Cook will decide that a target is out-of-date if its time stamp is oldetban an
the ingredients.This means that the times stamps of the target and ingredients may be equal -
this is useful for hard links and symbolic linkgou gpecify edges of this type by appending the
“(weak) ” string to the name of the ingredient.

exsts edges mean that Cook will arrange for the ingredient to beedoo&fore the recipe is run,tb
the time stamjis not consulted The ingredient cannower make the target out-of-date. This is
useful form coping with version stamps which change often, but yotiwant to re-link unless
something else change¥ou ecify edges of this type by appending ti{exists) " string
to the name of the ingredient.
The default edge type isstrict”. You can use the "time-adjust” setting (see the "set" command) ® mak
this simpler on very fast machines.

11.10 File Status

Cook determines the time a file was last modified by asking the operating system. Because this operation
tends to be performed frequenttpok maintains a cache of this information, rather thanemakundant
calls to the operating system. Because this information is cached, it is possitdekfermemory of a
file's last-modified time to become inconsistent with thesfitetual last-modified timeln particular cook
doenot ask the operating system for the "new" last-modified time of a recipe target once a recipe body is
completed. Carefulise of theset clearstat clause will generally prent this. For example, the
following recipe needs to create a directory when writing its output:
bin/%: [%_obj]
{
if [not [exists bin]] then
mkdir bin;
[cc] -o [target] [need];

If there were seeral programs being cooked, elgn/fooandbin/bar, the second timeook performed the
recipe, it would erroneously attempt to m&khe bin directory a second time - contrary to the test. This is
becauségexists binJused the cache, and nothing tetlek that the cache is mowrong. Therecipe should
have teen written

bin/%: [%_obj]

{
if [not [exists bin]] then
mkdir bin
set clearstat;
[cc] -o [target] [need];
}

which tellscook that it should remee any fies named in thenkdir command from the cache.

An alternatve way of performing the alve example is to set theakdir recipe flag:
bin/%: [%_obj]
set mkdir
{

[cc] -o [target] [need];

Peter Miller Page 77

Cook UseiGuide

}

This flag instructscook to create the directory for the target before running the recipe bidugre is a
similar unlink flag, which unlinks the tgets of the recipe before running the recipe bothese tw flags
take care of most, but not all, uses of ttlearstatflag.

A second mechanism used byok to determine the last-modified times of files is affilgerprint. This is

a ayptographically strong hash of the contents of a file. The chances dffferent files having the same
fingerprint is less than 1 in 2**200f cook notices that a file has changed, because its last-modified time
has changed, a fingerprint is ¢mk of the file and compared with the remembered fingerprint. If the
fingerprints difer, the file is considered to be f#ifent. Ifthe fingerprints match, the file is considered not
to have changed.

This description of fingerprints is somleat simplified, the actual mechanics depends on remembeiing tw
different last-modified times, as well as the fingerprint, in a file catlwak.fpin the current directory.

Fingerprinting can cause some surprisest example, when you use theuch(1l) commandgcook will
often fail to do anything, and report instead tharghing is up-to-date. This is because the fingerprint
has not changed. In this situation, either reenthe .cook.fpfile, or use theNo_Finger Print command
line option.

Peter Miller Page 78

Cook UseiGuide

12. Option Precedence

At various points in the description there are a number of flags and options with the same, gr similar
names. Theseare in fact different heels of the same option.

The different lgels, from highest precedence to lowest, are as follows.
Error Thislevel is used to disable undesirable side effects when an error occurs.

Command Line Options specified on the command lingeroide almost eerything. Thereare some
isolated cases where there is no eglant command line optionThey are in scope for
the entirecook session.

Execute Whera coommand attached to a recipe i®auted, the flags in theset’ clause are gien
this precedenceThey are in scope for the duration of theeeution of the command tkie
are bound to.

Recipe Whera recipe is considered for use, the flags in ta€ tlause are gien the precedence.
They are in scope for theveluation of the ingredients names and tlxecation of the
recipe body; theare not in scope while cooking the ingredients.

Cookbook Whera 'set’ statement is encountered in the cookbook, the option aea tfis priority.
They are in scope until the end of tikeok session.

Environment Variable
When the options in th€OOK ervironment variable are set, there given this
precedence. Tlyare in scope for the entimok session.

Default All options hae a dfault setting. The defaults noted in chapter 3 arevegi this
precedence. Tlyare in scope for the entimok session.

Peter Miller Page 79

Cook UseiGuide

13. File name patterns

There are tw pattern matchers to choose from. The tough part about designing a pattern matcher for
something lile Cook is thatideally the patterns must bevesible. Thatis, it must be possible to use the

same string both as a pattern to be matched against and as a template for building a string once a pattern has
matched. Rathelike the difference between the left and right sides of an editor search-and-replace
command in an editor using the same description for both the search pattern and the replace Tdnsplate.

is why classic regular expressions are not the default.

The choice of which pattern matcher to use is dictated by flag settings:

set match-mode-cook
This causes patterns to be matched using Gaoekive matterns. Thiss the default.

set match-mode-regex

This causes patterns to be matched using regular expressions.
The match mode to use may be set at the cookbwek le

set match-mode-cook;
or at the recipe iel

%.0: %.C

set match-mode-cook
{

[cc] -0 %.0 -Cc %.c;
}

if you want to change your mind temporarily.

The match mode alsofa€ts match functions, such fiker, filter_out fromto match_maskmatchesand
patsubst If you use these in your user-defined functions, you need to be extra careful about this.

The match mode also affects the graph variables, used to specify explicit graph interior and leaf files.

13.1 Cook Patterns

The natve Gook pattern matcher has symmetric left-hand-side and right-hand-side pafthimss best
demonstrated with an example recipe:
%.c %.h: %.y
set match-mode-cook
{
yacc -d %.y;
mv yy.tab.c %.c;
mv yy.tab.h %.h;

Notice hav the left-hand-side of the recipe (the targets) uses the same style of patterns as the right-hand-
side (the ingredients and the recipe body).

This matcher has elen match "fields", referenced & and%0 to %9. The% character can be escaped
as%%. The% and%1 to %9 forms match ay character except slash;(these forms may not match a
leading empty string, tovaid problems with false matches against absolute pdthe.%0 form matches
all characters, but must be either emptyhavewhole path components, including the trailihgn each
component.

A few examples will mak this clearer:

string doesiot match

%.C snot/fred.c
%1/%2.c etc/bool/fred.c

Peter Miller Page 80

Cook UseiGuide

string matches setting
%.c fred.c %="fred"
%1/%2.c snot/fred.c %71="snot"
%2="fred"
%0%5.c fred.c %0=""
%5="fred"
%0%6.c snot/fred.c %0="snot/"
%6="fred"
%0%?7.c etc/boo/fred.c %0="etc/boo/"
%7="fred"
lusr/%1/%1%2/%3.%2%4 /usr/man/manl/fred.1®61="man"
%2="1"
%3="fred"
%4="x"

The % 0 behaior is designed to alle patterns to rangever subtrees in a controlled manne¥ote that the
use of this sort of pattern in a recipe will result in deeper searches thanuvheecge designer auld
expect.

13.1.1 Examples
There are tw main places where patterns are used: withnttach_maskand fromto functions, and in
recipes.

You can perform file name filtering and rewriting as follows:
source_files = [collect cat MANIFEST];
object files =
[fromto %0%.c %0%.0 [match_mask %0%.c [manifest]]]
[fromto %0%.y %0%.gen.o [match_mask %0%.y [manifest]]]

The recipes to go with the almfiles may be
%0%.0: %0%.c
single-thread ["if* %0 "then" %.0]

{
/* note: no slash before dot */
cc -c -1%0. %0%.c;
if %0 then
mv %.0 %0%.0;
}

This recipe can compile files in adar project, where source files appear in a number of sub-directories.
The *-19%0.” ensures that there are locally include-able files in the sub-directories. #4®¢ had been
entirely omitted from the recipe, it will only compile files in the current directory.

A commonyaccrecipe, used when there is more than one yacc grammar in a project, ledkisiik
%0%.gen.c %0%.gen.h: %0%.y
single-thread yy.tab.c yy.tab.h
{

yacc -d %0%.y

yy = [collect echo %0% | sed "'s/["A-Za-z0-9]/_/"];
sed "'s/lyY]IlyY)"[yy]"_/g™ yy.tab.c > %0%.gen.c;
sed "'s/lyYIlyY)"[yy]"_/g™ yy.tab.h > %0%.gen.h;
rm yy.tab.c yy.tab.h;

To be nore selectie aout the “%0’ portion, use more pattern elements before or after it.

13.2 Regular Expressions

The regular expression pattern matcher uses PO$i{areexpressions. Ihas asymmetric left-hand-side

Peter Miller Page 81

Cook UseiGuide

and right-hand-side patterns. This is best demonstrated with an example recipe:
WCEHOW.e WCAO)Wh: Wy
set match-mode-regex
{

yacc -d \\1.y;
mv yy.tab.c \\1.c;
mv yy.tab.h \1.h;

Notice hav the left-hand-side of the recipe (the targets) uses a completely different style of patterns as the
right-hand-side (the ingredients and the recipe body).

All those backslashes are necesshegause Cook uniformly applies C escapes to strings when it reads
them, and it doeshknow you mean a regular expression backslash until you use it in a recipe context.

Seere_forma(7) for a definition of POSIX 1003.2 regular expressions; you want the “bR&s.

Please note that characters which are special to Cook will need to be escaped with a backslash, or enclosed
in quotes. These include curly brace$ (‘and “} "), square brackets‘[*’ and “]'"), colon (“:'") and

equals (='"). Backslashalways needs to be escaped, whether encoded in a string or not, because within a
string it serves to escape the string terminator.

You dso need to remember that dot’(j is a @mmon character in filenames, and frequently significant in
file name patters, but it is a regular expression wildc¥odl need to escape it to malit literal.

You need to ma& asolutely certain that when recipesvéarore than one left-hand-size (as in the yacc
example) that the patterdl assign identical values to their nested sub-expressions.

The usual right-hand-side replacements aaflable: an escaped number is replaced withrtle nested
sub-epression; and the ampersan@.’(') is replaced by the whole left-hand-side (if yowéarore than
one left-hand-side, this is ambiguous). Backslash may be used to escape them.

13.2.1 Examples
There are tw main places where patterns are used: withntiach_maslkand fromto functions, and in
recipes.

You can perform file name filtering and rewriting as follows:
set match-mode-regex;
source_files = [collect cat MANIFEST];
object_files =
[fromto W(.*\\)\\.c \1.0
[match_mask W\(.*\\)\\.c [manifest]]]
[fromto W(.*\W)\\.y \1.gen.o
[match_mask W\(.*\)\\.y [manifest]]]

The recipes to go with the almfiles may be
WCAW)Wo: Wl.c

"then” [notdir \\1.0]]

{
cc -c -I[[relative_dirname \\1] \\1.c;
if [not [in [relative_dirname \\1] .]] then
mv [notdir \\1.0] \\1.0;
}

This recipe can compile files in adar project, where source files appear in a number of sub-directories.
The “-I\1.” ensures that there are locally include-able files in the sub-directories.

A commonyaccrecipe, used when there is more than one yacc grammar in a project, ledkisiik
WA gen.c W X\W\.gen.h: \1.y
single-thread yy.tab.c yy.tab.h

Peter Miller Paye 82

Cook

UselGuide
{
yacc -d \1.y
yy = [collect echo \\1 | sed "'s/[*A-Za-z0-9)/_/"];
sed "s/[yY]lyY]/"[yy]"'_/g" yy.tab.c > \\1.gen.c;
sed "s/[yY]lyY]/"[yy]"_/g" yy.tab.h > \\1.gen.h;
rm yy.tab.c yy.tab.h;
}
To be nore selectie aout the \(.*\\) " portion, use more pattern elements before or after it.
Peter Miller

Page 83

Cook UseiGuide

14. Supplied Cookbooks

A number of cookbooks are supplied withok. To make use of one, a preprocessor direetd the form
#include" whi chone"
must appear at the start of your cookbook.

Cook does not hae any built-in" recipes. All recipes are stored in text files, sottae more easily read,
understood, copied, hacked or corrected. The supplied cookboaksnlithe /usr/local/share/cook
directory.

You may supply your wn "system" recipes, by placing cookbooks into a directory c&8@ME/.cookor
using the-lnclude command line option, possibly in yoR€ OOKenvironment variable.

141 as

This cookbook defines loto use the assembler.

14.1.1 recipes

%.0: %.s Construct object files from assembler source files.

14.1.2 variables

as Theassembler command. Not altered if already defined.

as_flags Optionto pass the assembler command. Not altered if already defiteddefault is
empty.

as_src Assemblesource files in the current directory.

dot_src Sourcdiles constructable in the current directory (unioned witistig setting, if
necessary).

dot_obj Objectfiles constructable in the current directory (unioned witisting setting, if
necessary).

dot_clean Filesvhich may be remad from the current directory in a clean target.

14.2 c

This cookbook describes Wwdo work with C files. Include file dependencies are automatically determined.

14.2.1 recipes

%.0: %.C Construct object files form C source files, with automatic include file dependenc
detection.

%.In: %.c Construct lint object files from C source files, with automatic include file depgndenc
detection.

14.2.2 variables

c_incl TheC include dependeganiffer command. Not altered if already defined.

cc TheC compiler command. Not altered if already defined.

lint Thelint command. Not altered if already defined.

cc_flags Optiongo pass to the C compiler command. Not altered if already defifleel.defult
is "-O".

Peter Miller Paye 84

Cook UseiGuide

cc_include_flags Optionpassed to the C compiler and c_incl controlling include file searchiay.
altered if already defined. The default is empty.

cC_src Csource files in the current directory.

dot_src Sourcdiles constructable in the current directory (unioned witisting setting, if
necessary).

dot_obj Objectfiles constructable in the current directory (unioned witisteng setting, if
necessary).

dot_clean Filesvhich may be remead from the current directory in a clean target.

dot_lint_obj Lintobject files constructable in the current directory (unioned with existing setting, if
necessary).

14.2.3 See Also
The “library” cookbook, for linking C sources into a library.
The “program’ cookbook, for linking C sources into a program.

14.3 f77

This cookbook describes wdo work with Fortran files.

14.3.1 recipes

%.0: %.f77 Construct object files form Fortran source files.

14.3.2 variables

fr7 TheFortran compiler command. Not altered if already defined.

f77_flags Optiondo pass to the dftran compiler command. Not altered if already defin€de
default is "-O".

f77_src fortran source files in the current directory.

dot_src Sourcdiles constructable in the current directory (unioned witisteng setting, if
necessary).

dot_obj Objectfiles constructable in the current directory (unioned witistimng setting, if
necessary).

dot_clean Filesvhich may be remaed from the current directory in a clean target.

14.3.3 See Also
The “library” cookbook, for linking Fortran sources into a library.
The “program’ cookbook, for linking Fortran sources into a program.

14.4 977

This cookbook is the same as tHé7’’ cookbook, but it sets th&@7 variable to the GNU Fortran compiler
g77.

14.5 gcc
This cookbook is the same as the' ‘@mokbook, but it sets thec variable to the GNU C compilegcc .

14.6 home

This cookbook defined where certain directories are, and some common uses of those directovies, relati
to SHOME.

Peter Miller Page 85

Cook UseiGuide

14.6.1 variables

home Thecurrent users’ home directory.

bin Thedirectory to place program binaries into.
include Thedirectory to place include files into.

lib Thedirectory to place libraries into.

cc_include_flags Thenclude] directory is appended to the search options.

cc_link_flags Th4lib] directory is appended to the search options.

14.7 lex

This cookbook describes Wwdo work with lex files.

14.7.1 recipes

%.c: %.I Construct C source files fronx leource files.

14.7.2 variables

lex The lex command. Nogltered if already defined.

lex_flags Optiongo pass to the lecommand. Notltered if already defined. The default is empty.

lex_src Le source files in the current directory.

dot_src Sourcdiles constructible in the current directory (unioned wittiseing setting, if
necessary).

dot_obj Objectfiles constructible in the current directory (unioned with existing setting, if
necessary).

dot_clean Filesvhich may be remaed from the current directory in a clean target.

dot_lint_obj Lint object files constructible in the current directory (unioned wiiltiag setting, if
necessary).

14.8 library

This cookbook defines koto construct a library If an include file (or files) are defined for this libraypu
will have b gppend them to [install] in youdowto.cookile.

14.8.1 variables

all tamgets of the all recipe

install tagets of the install recipe

me Thename of the library to be constructe@efaults to the last component of the
pathname of the current directory.

ar Thearchve mmmand.

install tagets of the install command. Only defined if the [lib] variable is defined.

14.8.2 recipes

Peter Miller Page 86

Cook UseiGuide

all constructhe targets defined in [all].

clean remue the files named in [dot_clean].

clobber remue te files name in [dot_clean] and [all].

install Constructhe files named in [install]. Only defined if the [lib] variable is defined.
uninstall Remue the files named in [install]. Only defined if the [lib] variable is defined.
14.9 print

This cookbook is used to print files. It will almost certainly need to be changedefgrsie.

14.9.1 recipes

%.lw: %.ps Print a PostScript file.
%.Ip: % Print a text file.

14.9.2 variables

Ip Theprint command. Not altered if already defined.

Ip_flags Optionpassed to the print command. Not altered if already defined. Defaults to empty.

14.10 program

This cookbook defines moto construct a programlf your program uses ribraries, you will hge ©
append them to [Id_libraries] in yohbiowto.cooKile.

14.10.1 variables

all Targets of the all recipe.

install tagets of the install recipe

Id Thename of the linker command. Not altered if already defirget to the same as the
“cc” variable if set, otherwise set to the same as'thé " variable if set, otherwise set
to “Id”.

Id_flags Notaltered if already defined. The default is empty.

Id_libraries Optiongassed to the C compiler when linking, these are typically library search paths

(-L) and libraries {|). Notaltered if already defined. The default is empty.

me Thename of the program to be constructddefaults to the last component of the

pathname of the current directory.

14.10.2 recipes

all Constructhe targets named in [all].

clean Remee the files named in [dot_clean].

clobber Remee the files named in [dot_clean] and [all].

install Constructhe files named in [install]. Only defined if the [lib] variable is defined.
uninstall Remue the files named in [install]. Only defined if the [lib] variable is defined.

Peter Miller Page 87

Cook UseiGuide

14.10.3 See Also

The “c” cookbook, for C sources.

The “f77" cookbook, for Fortran sources.

The “usr” or “‘usr.local’ or ‘*home” cookbooks, for defining install locations.

14.11 rcs

This cookbook is used to extract files from RCS.

14.11.1 recipes

%: RCS/%,v Extract files from RCS.

%: %,V Extract files from RCS.

14.11.2 variables

co TheRCS checkout command.

co_flags Flag$or the co command, default to empty.

14.12 recursive

This cookbook may be used to construct regaredok directory structures, where the topdecookbook
only invokes acookbooks in deeper directories.

All targets gven to this cookbook result in all sub-directories containinglavto.cookfile having cook
invoked with the same target.

14.12.1 Recipes
Theall recipe is defined, but it does nothing, it only exists to set the default target name.

14.13 sccs
This cookbook is used to extract files from SCCS.

14.13.1 recipes

%: SCCS/s.% Extract files from SCCS.
%: 5.% Extract files from SCCS.

14.13.2 variables

get TheSCCS get command.
get flags Flagfor the get command, default to empty.
14.14 text

This cookbook is used to processgttdocuments. Include file dependencies are automatically detected.
The requirements for various preprocessors are automatically detgtedq, tbl, pic, graf).

14.14.1 recipes

%.ps: %.t PostScript for generic *faburce.

%: %.t Straight text from *rdfsource.

Peter Miller Page 88

Cook UseiGuide

14.14.2 variables

text_incl Thetext_incl command (finds include dependencies). Not altered if already set.
text_rof The text_rof command (finds preprocessor requirements). Not altered if already set.
roff_flags Aguments passed taxteroff, and indirectly to the *rdfprogram. Notaltered if already

set. Dehults to empty.

14.15 usr.local

This cookbook defined where certain directories are, and some common uses of those directovies, relati
to /usr/local.

14.15.1 variables

bin Thedirectory to place program binaries into.
include Thedirectory to place include files into.
lib Thedirectory to place libraries into.

cc_include_flags Thenclude] directory is added to the search options.

cc_link_flags Th4lib] directory is added to the search options.

14.16 usr

This cookbook defined where certain directories are, vel@ti/usr.

14.16.1 variables

bin Thedirectory to place program binaries into.
include Thedirectory to place include files into.

lib Thedirectory to place libraries into.

14.17 yacc

This cookbook describes Wwato use yacc. You will have o add "-d" to the [yacc_flags] variable if you
want %.h files generated.

If a y.outputfile is constructed, it will be nved to %.list.

14.17.1 recipes

%.c %.h: %.y Construct C source and header files from yacc source files. Applied if -d in [yacc_flags].

%.c: %.y Construct C source files from yacc source files. Applied if -d not in [yacc_flags].

14.17.2 variables

yacc_src ‘écc source files in the current directory.

dot_src Sourcdiles constructable in the current directory (unioned witisteng setting, if
necessary).

dot_obj Objectfiles constructable in the current directory (unioned witistimng setting, if
necessary).

Peter Miller Page 89

Cook UseiGuide

dot_clean Filesvhich may be remead from the current directory in a clean target.
dot_lint_obj Lint object files constructable in the current directory (unioned with existing setting, if
necessary).

14.18 yacc_many

This cookbook describes Wwao use yacc. The difference with the "yacc" cookbook is that this cookbook
allows you to hae nore that one yacc generated parser in the same program, by using theselditsic
hack of the output.

Peter Miller Page 90

Cook

UseiGuide

15. Glossary

This document employs a number of terms speciftooé.

body

command

cook

cookbook

explicit recipe

fingerprint

flag

A set of statements, usually commands, to be performeddkthe targets of arecipe
after theingredient «ist.

A command is a list of words to be passed toojherating systerto be eecuted.

When used as a verb, refers to the acticosk would perform to create #arge,
according to someecipe.

A file containing input focook, usuallyrecipes.

An explicit recipe is one where thargets contain no patterns. That is, there are no
percent (%) characters in anof thetargets.

A cryptographically strong hash of the contents of a file, use to determine if the file
contents hae changed.

A flag modifies the behavior of a cook sessiecipe or command.

forced ingredientA files which must exist beforetarget file of animplicit recipemay be cookd. The

function

gate

implicit recipe

ingredient

inability to construct a forced ingredient is an error.
A function is an action applied to a word list.

A gate is a condition which allows the conditional application oéape. The ate
condition is in addition to the requirement that the ingredients are cookable.

An implicit recipe is a recipe with patterns in tiaggets. Thatis, there is a percentdg’)
character in at least one of ttaggets.

A files which must exist before target file may be cookd. Inan implicit recipethe
inability to construct of an ingredient means that rb@pe will not be applied. In an
explicit recipe the inability to construct an ingredient is an error.

last-modified time

recipe

target

touch

variable

Peter Miller

unix imbues files with seeral attritutes. Oneof these is a time-stamp of when the file
was last modified. Usually this is when the file was last written to.

A recipeconsists of sgeral parts.
1. Aset oftarges to be ooked,
2. Aset of ingredients of thosargets, and
3. Anoptional set of forced ingredients.
4. Anoptional set of flags.
5. Anoptional gate.
6. Anoptional body .

The object of aecipe, a thing which is cooked.

UNIX imbues files with seeral attritutes. Oneof these is a time-stamp of when the file
was last modified. Usually this is when the fil@asvlast written to, heever it is possible

to simply adjust this attribute, rather than actually writing to the file; this is colloquially
known agtouching a file.

A variable is a named place holder foradue. Thevalue may be changed.

Page 91

Cook UseiGuide

Peter Miller Page 92

